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Amenable groups

Definition
A discrete group Γ is amenable (C∗r (Γ) is nuclear) if and only if there is
a net of finitely supported positive definite functions fi on Γ such that
(fi) forms an approximate identity for c0(Γ).

Proof.
(⇒) Følner net.
(⇐) A finitely supported positive definite function is in the Fourier
Algebra A(Γ) (the ultraweakly continuous functionals on VN(Γ)). So we
obtain a bounded net in A(Γ) converging pointwise to the constant
function. Hence this is a bounded approximate identity for A(Γ), and so
Γ is amenable (Leinert).

(All works for locally compact, with “finite” replaced by “compact”.)
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The Haagerup property

Over the last 30 or so years, it’s been incredibly profitable to weaken
amenability in various ways.

Definition
A discrete group Γ has the Haagerup approximation property if and
only if there is a net of positive definite functions fi on Γ such that (fi)
forms an approximate identity for c0(Γ).

So “finitely-supported” becomes “vanishes at infinity; i.e. in c0(Γ)”.

[Haagerup] Fn has HAP.
Groups acting on trees have HAP.
Stable under (amalgamated over a finite subgroup) free products.
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Applications to operator algebras

Let (M, τ) be a finite von Neumann algebra, with GNS space L2(M, τ)
and cyclic vector ξ0. If Φ : VN(Γ)→ VN(Γ) is positive, τ ◦ Φ ≤ τ , and
Φ(x)∗Φ(x) ≤ Φ(x∗x), then there is a bounded map T on L2(M, τ) with

T (xξ0) = Φ(x)ξ0 (x ∈ M).

Theorem (Choda, 83)
Γ has the Haagerup approximation property if and only if VN(Γ) has
the HAP, defined as: there is a net (Φi) of normal UCP maps on
VN(Γ), approximating the identity point-σ-weakly, and preserving the
trace, such that the induced maps on `2(Γ) are compact.

This leads to the HAP for finite von Neumann algebras. [Jolissaint, ’02]
showed this is independent of the choice of trace.
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K-amenability etc.

Theorem (Tu, 99)
If Γ has HAP then Γ is K-amenable.

“Morally”, this means that the left-regular representation
λ : C∗(Γ)→ C∗r (Γ) induces isomorphisms in K-theory,
(λ)∗ : Ki(C∗(Γ))→ Ki(C∗r (Γ)). Actually definition involves KK-theory.

Theorem (Higson, Kasparov, 97, Tu, 99)
If Γ has HAP then the Baum-Connes conjecture holds for Γ.
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Quantum groups
Definition (Woronowicz)
A compact quantum group is (A,∆) where A is a unital C∗-algebra,
∆ : A→ A⊗ A is a ∗-homomorphism which is “coassociative”:
(∆⊗ id)∆ = (id⊗∆)∆; and such that “quantum cancellation” holds:

lin{∆(a)(b ⊗ 1) : a,b ∈ A}, lin{∆(a)(1⊗ b) : a,b ∈ A}

are dense in A⊗ A.

Motivation: Let G be a compact semigroup, set A = C(G), and define

∆ : C(G)→ C(G ×G); ∆(f )(s, t) = f (st) (f ∈ C(G), s, t ∈ G).

Then ∆ is coassociative as the product in G is associative, and
quantum cancellation holds if and only if

st = st ′ =⇒ t = t ′, ts = t ′s =⇒ t = t ′ (s, t , t ′ ∈ G).
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Compact groups to quantum groups

Lemma
A compact semigroup with cancellation is a group.

The Haar (probability) measure (the unique invariant Borel measure on
G) induces a state ϕ in C(G) such that

(ϕ⊗ id)∆(a) = (id⊗ϕ)∆(a) = ϕ(a)1G (a ∈ C(G)).

(Remember that ∆(f )(s, t) = f (st), so ϕ⊗ id)∆ is integrating out the
first variable.)
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Discrete groups to quantum groups

Let Γ be a discrete group, and form C∗r (Γ) acting on `2(Γ), generated
by the left translation operators (λt )t∈Γ. We claim that there is a
∗-homomorphism

∆ : C∗r (Γ)→ C∗r (Γ)⊗ C∗r (Γ); λt 7→ λt ⊗ λt .

Proof: Fell absorption principle, or observe that

∆(x) = W ∗(1⊗ x)W for W (δs ⊗ δt ) = δt−1s ⊗ δt .

Then ∆ obviously coassociative and satisfies quantum cancellation:

(∆⊗ id)∆ = (id⊗∆)∆,

lin{∆(a)(b ⊗ 1) : a,b ∈ C∗r (Γ)} = lin{∆(a)(1⊗ b) : a,b ∈ C∗r (Γ)}
= C∗r (Γ)⊗ C∗r (Γ).
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Universal case

If ϕ is the canonical trace on C∗r (Γ) then

(ϕ⊗ id)∆(a) = (id⊗ϕ)∆(a) = ϕ(a)1 (a ∈ C(G)).

Can also do all this with C∗(Γ):
here the existence of ∆(λt ) = λt ⊗ λt follows by universality— the
map t 7→ λt ⊗ λt is a unitary representation of Γ.

However, the trace ϕ will be faithful on C∗(Γ) if and only if Γ is
amenable.
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General case

In general, starting from (A,∆) can prove the existence of a “Haar
state” ϕ on A with

(ϕ⊗ id)∆(a) = (id⊗ϕ)∆(a) = ϕ(a)1 (a ∈ A).

Important that ϕ may fail to be a trace.

Maybe ϕ won’t be faithful, but can always quotient to obtain
(Ar ,∆r ).
On the GNS space L2(ϕ) set M = A′′r .
Then ∆ extends to M (because we can always construct a
suitable unitary W with ∆(·) = W ∗(1⊗ ·)W ).
Can always form a “universal” version of A, say Au.
Generalises the passage between C∗r (Γ),C∗(Γ) and VN(Γ).
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Representation Theory
Dualising the notion of a group representation, we obtain:

Definition
A finite-dimensional unitary corepresentation is U = (Uij) ∈ Mn(A) with
∆(Uij) =

∑n
k=1 Uik ⊗ Ukj .

The collection of all elements Uij forms a dense ∗-subalgebra of A,
say A0, such that ∆ gives a map A0 → A0 � A0.
In fact, (A0,∆) is a Hopf ∗-algebra.
For C(G) get the “polynomials” on G; for C∗r (Γ) get C[Γ].
The enveloping C∗-algebra of A0 is the “full” or “universal” version
of A, which we denoted Au.
Pick representatives of the irreducibles, say {Uα : α ∈ Λ}.
Peter-Weyl theory: L2(ϕ) ∼=

⊕
L2(Mnα , ϕα). (Classically each ϕα a

trace, but maybe not here).
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Dual groups

The “dual group” Â =
⊕

Mnα carries a coassociative map ∆̂
(whose definition involves multiplier algebras).
For C(G) we obtain C∗r (G); for C∗r (Γ) we obtain c0(Γ)

Can axiomatise such objects: “discrete quantum groups” (van
Daele).
Can dualise again, and get back to the compact quantum group
we started with.
I’ll adopt the notation that G is a discrete quantum group,
C∗r (G) = A,C∗(G) = Au,VN(G) = M.

Similarly, c0(G) = Â the C∗-algebra representing the discrete
quantum group.
The “left-regular representation” or “Fourier transform” is the map
λ : C∗(G)∗ → `∞(G) = M(c0(G)); µ 7→

(
〈µ,Uα

ij 〉
)
∈
∏

Mnα .
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Daele).
Can dualise again, and get back to the compact quantum group
we started with.
I’ll adopt the notation that G is a discrete quantum group,
C∗r (G) = A,C∗(G) = Au,VN(G) = M.

Similarly, c0(G) = Â the C∗-algebra representing the discrete
quantum group.
The “left-regular representation” or “Fourier transform” is the map
λ : C∗(G)∗ → `∞(G) = M(c0(G)); µ 7→

(
〈µ,Uα

ij 〉
)
∈
∏

Mnα .
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HAP

Work with Fima, Skalski, White.

Definition
A “positive definite function” on G is any element λ(µ) ∈ `∞(G) with
µ ∈ C∗(G)∗+. (I.e. the Fourier transform of a positive functional.)

[D., Salmi, 13] give various intrinsic characterizations involving, mainly,
certain completely positive maps.

Definition
G has HAP if and only if there is a net (ai) of positive definite functions,
such that (ai) forms an approximate identity for c0(G).

If G is “amenable” then [Tomatsu, 06] showed, in particular, that G has
HAP.
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Various other characterisations?

As in the classical setting, we have various other characterisations:

G has HAP if and only if there is a “mixing” representation of G
weakly containing the trivial representation.
G has HAP if and only if mixing representations are dense.

Classically G has HAP iff it admits a proper, conditionally negative
definite function.

Working with the Hopf ∗-algebra, can get a notion of this for G.
Quantum probability ideas allow one to form semigroups (under
the convolution product) which give our approximate identities.
Also links with cocycles, again interpreted as unbounded maps on
the Hopf ∗-algebra.
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For von Neumann algebras
We shall say that G is of “Kac type” if ϕ is a trace on VN(G).
Equivalent to the antipode of c0(G) or C∗r (G) being bounded.

Theorem (DFSW)
If G is of Kac type then G has HAP if and only if VN(G) has HAP.

Proof.
(⇒)As in the classical case, states µ on C∗(G) induce multipliers on
VN(G) which are normal, UCP, and preserve ϕ. A calculation shows
that the induced maps on L2(ϕ) agree with λ(µ); so if λ(µ) ∈ c0(G)
they are compact.
(⇐)We use a (vaguely complicated) “averaging” argument to turn
arbitrary normal UCP maps Φ on VN(G) into multipliers. Then [D. 12]
shows that CP multipliers come from states on C∗(G).

The UCP maps we construct restrict to C∗r (G) cf [Dong], [Suzuki].
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Examples
Let U+

N = (Au(N),∆) be the free unitary quantum group: Au(N) is the
universal C∗-algebra generated by elements {uij : 1 ≤ i , j ≤ N} such
that:

U = [uij ] is unitary and U = [u∗ij ] is unitary.
need latter condition for quantum cancellation laws.
U+

N is of Kac type, so has a trace.
the dual of U+

N is not amenable.

Theorem (Brannan, 12)
L∞(U+

N ) has the HAP.

Corollary
The discrete dual of U+

N has HAP.

[Freslon, 13?] has a “transportation” procedure using monodial
equivalence: gives HAP for various non-Kac examples.
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Question

Theorem (DFSW)
For all G, if G has HAP then VN(G) has HAP.

Of course ϕ is not a trace anymore. . .

There is a tight relation between quantum group theory and KMS
states: ϕ is KMS on C∗r (G) and C∗(G).
It’s been suggested that maybe HAP for a state should include the
condition that each map Φ “commute” with the modular
automoprhism group.
Not particularly clear for what values of “commute” this would be
true, for the multipliers constructed above. . .
Not clear what uses this definition might have. . .
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