The Haagerup approximation property for discrete quantum groups

Matthew Daws

Leeds

ICMS, April 2013

Matthew Daws (Leeds)

Haagerup for DQGs

ICMS, April 2013 1 / 17

< 6 b

Amenable groups

Definition

A discrete group Γ is amenable ($C_r^*(\Gamma)$ is nuclear) if and only if there is a net of *finitely supported* positive definite functions f_i on Γ such that (f_i) forms an approximate identity for $c_0(\Gamma)$.

Proof.

 (\Rightarrow) Følner net.

(\Leftarrow) A finitely supported positive definite function is in the Fourier Algebra *A*(Γ) (the ultraweakly continuous functionals on *VN*(Γ)). So we obtain a bounded net in *A*(Γ) converging pointwise to the constant function. Hence this is a bounded approximate identity for *A*(Γ), and so Γ is amenable (Leinert).

(All works for locally compact, with "finite" replaced by "compact".)

Amenable groups

Definition

A discrete group Γ is amenable ($C_r^*(\Gamma)$ is nuclear) if and only if there is a net of *finitely supported* positive definite functions f_i on Γ such that (f_i) forms an approximate identity for $c_0(\Gamma)$.

Proof.

 (\Rightarrow) Følner net.

(\Leftarrow) A finitely supported positive definite function is in the Fourier Algebra *A*(Γ) (the ultraweakly continuous functionals on *VN*(Γ)). So we obtain a bounded net in *A*(Γ) converging pointwise to the constant function. Hence this is a bounded approximate identity for *A*(Γ), and so Γ is amenable (Leinert).

(All works for locally compact, with "finite" replaced by "compact".)

The Haagerup property

Over the last 30 or so years, it's been incredibly profitable to weaken amenability in various ways.

Definition

A discrete group Γ has the Haagerup approximation property if and only if there is a net of positive definite functions f_i on Γ such that (f_i) forms an approximate identity for $c_0(\Gamma)$.

So "finitely-supported" becomes "vanishes at infinity; i.e. in $c_0(\Gamma)$ ".

- [Haagerup] *F_n* has HAP.
- Groups acting on trees have HAP.
- Stable under (amalgamated over a finite subgroup) free products.

イロト 不得 トイヨト イヨト

The Haagerup property

Over the last 30 or so years, it's been incredibly profitable to weaken amenability in various ways.

Definition

A discrete group Γ has the Haagerup approximation property if and only if there is a net of positive definite functions f_i on Γ such that (f_i) forms an approximate identity for $c_0(\Gamma)$.

So "finitely-supported" becomes "vanishes at infinity; i.e. in $c_0(\Gamma)$ ".

- [Haagerup] *F_n* has HAP.
- Groups acting on trees have HAP.
- Stable under (amalgamated over a finite subgroup) free products.

イロト 不得 トイヨト イヨト

Applications to operator algebras

Let (M, τ) be a finite von Neumann algebra, with GNS space $L^2(M, \tau)$ and cyclic vector ξ_0 . If $\Phi : VN(\Gamma) \to VN(\Gamma)$ is positive, $\tau \circ \Phi \leq \tau$, and $\Phi(x)^* \Phi(x) \leq \Phi(x^*x)$, then there is a bounded map *T* on $L^2(M, \tau)$ with

$$T(x\xi_0) = \Phi(x)\xi_0$$
 $(x \in M).$

Theorem (Choda, 83)

 Γ has the Haagerup approximation property if and only if VN(Γ) has the HAP, defined as: there is a net (Φ_i) of normal UCP maps on VN(Γ), approximating the identity point- σ -weakly, and preserving the trace, such that the induced maps on $\ell^2(\Gamma)$ are compact.

This leads to the HAP for finite von Neumann algebras. [Jolissaint, '02] showed this is independent of the choice of trace.

< 日 > < 同 > < 回 > < 回 > < □ > <

K-amenability etc.

Theorem (Tu, 99)

If Γ has HAP then Γ is K-amenable.

"Morally", this means that the left-regular representation $\lambda : C^*(\Gamma) \to C^*_r(\Gamma)$ induces isomorphisms in K-theory, $(\lambda)_* : K_i(C^*(\Gamma)) \to K_i(C^*_r(\Gamma))$. Actually definition involves KK-theory.

Theorem (Higson, Kasparov, 97, Tu, 99)

If Γ has HAP then the Baum-Connes conjecture holds for Γ .

< 国 > < 国 >

K-amenability etc.

Theorem (Tu, 99)

If Γ has HAP then Γ is K-amenable.

"Morally", this means that the left-regular representation $\lambda : C^*(\Gamma) \to C^*_r(\Gamma)$ induces isomorphisms in K-theory, $(\lambda)_* : K_i(C^*(\Gamma)) \to K_i(C^*_r(\Gamma))$. Actually definition involves KK-theory.

Theorem (Higson, Kasparov, 97, Tu, 99)

If Γ has HAP then the Baum-Connes conjecture holds for Γ .

< 回 > < 三 > < 三 >

Quantum groups

Definition (Woronowicz)

A compact quantum group is (A, Δ) where A is a unital C^* -algebra, $\Delta : A \to A \otimes A$ is a *-homomorphism which is "coassociative": $(\Delta \otimes id)\Delta = (id \otimes \Delta)\Delta$; and such that "quantum cancellation" holds:

 $lin\{\Delta(a)(b\otimes 1): a, b\in A\}, \quad lin\{\Delta(a)(1\otimes b): a, b\in A\}$

are dense in $A \otimes A$.

Motivation: Let G be a compact semigroup, set A = C(G), and define

 $\Delta: C(G) \rightarrow C(G \times G); \quad \Delta(f)(s,t) = f(st) \quad (f \in C(G), s, t \in G).$

Then Δ is coassociative as the product in *G* is associative, and quantum cancellation holds if and only if

$$st = st' \implies t = t', \quad ts = t's \implies t = t' \quad (s, t, t' \in G).$$

Quantum groups

Definition (Woronowicz)

A compact quantum group is (A, Δ) where A is a unital C^* -algebra, $\Delta : A \to A \otimes A$ is a *-homomorphism which is "coassociative": $(\Delta \otimes id)\Delta = (id \otimes \Delta)\Delta$; and such that "quantum cancellation" holds:

 $lin\{\Delta(a)(b\otimes 1): a, b\in A\}, \quad lin\{\Delta(a)(1\otimes b): a, b\in A\}$

are dense in $A \otimes A$.

Motivation: Let G be a compact semigroup, set A = C(G), and define

$$\Delta: \mathcal{C}(\mathcal{G})
ightarrow \mathcal{C}(\mathcal{G} imes \mathcal{G}); \quad \Delta(f)(s,t) = f(st) \quad (f \in \mathcal{C}(\mathcal{G}), s, t \in \mathcal{G}).$$

Then Δ is coassociative as the product in *G* is associative, and quantum cancellation holds if and only if

$$st = st' \implies t = t', \quad ts = t's \implies t = t' \quad (s, t, t' \in G).$$

Compact groups to quantum groups

Lemma

A compact semigroup with cancellation is a group.

The Haar (probability) measure (the unique invariant Borel measure on G) induces a state φ in C(G) such that

 $(\varphi \otimes id)\Delta(a) = (id \otimes \varphi)\Delta(a) = \varphi(a)1_G \qquad (a \in C(G)).$

(Remember that $\Delta(f)(s, t) = f(st)$, so $\varphi \otimes id)\Delta$ is integrating out the first variable.)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Compact groups to quantum groups

Lemma

A compact semigroup with cancellation is a group.

The Haar (probability) measure (the unique invariant Borel measure on *G*) induces a state φ in *C*(*G*) such that

$$(\varphi \otimes id)\Delta(a) = (id \otimes \varphi)\Delta(a) = \varphi(a)1_G \qquad (a \in C(G)).$$

(Remember that $\Delta(f)(s, t) = f(st)$, so $\varphi \otimes id)\Delta$ is integrating out the first variable.)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Discrete groups to quantum groups

Let Γ be a discrete group, and form $C_r^*(\Gamma)$ acting on $\ell^2(\Gamma)$, generated by the left translation operators $(\lambda_t)_{t\in\Gamma}$. We claim that there is a *-homomorphism

$$\Delta: C^*_r(\Gamma) \to C^*_r(\Gamma) \otimes C^*_r(\Gamma); \quad \lambda_t \mapsto \lambda_t \otimes \lambda_t.$$

Proof: Fell absorption principle, or observe that

$$\Delta(x) = W^*(1 \otimes x)W \quad \text{for} \quad W(\delta_s \otimes \delta_t) = \delta_{t^{-1}s} \otimes \delta_t.$$

Then Δ obviously coassociative and satisfies quantum cancellation:

$$(\Delta \otimes \operatorname{id})\Delta = (\operatorname{id} \otimes \Delta)\Delta,$$

 $\overline{\operatorname{lin}}\{\Delta(a)(b \otimes 1) : a, b \in C_r^*(\Gamma)\} = \overline{\operatorname{lin}}\{\Delta(a)(1 \otimes b) : a, b \in C_r^*(\Gamma)\}$
 $= C_r^*(\Gamma) \otimes C_r^*(\Gamma).$

イロト イポト イラト イラト

Universal case

If φ is the canonical trace on $C_r^*(\Gamma)$ then

$$(\varphi \otimes id)\Delta(a) = (id \otimes \varphi)\Delta(a) = \varphi(a)1$$
 $(a \in C(G)).$

Can also do all this with $C^*(\Gamma)$:

 here the existence of Δ(λ_t) = λ_t ⊗ λ_t follows by universality— the map t → λ_t ⊗ λ_t is a unitary representation of Γ.

However, the trace φ will be faithful on $C^*(\Gamma)$ if and only if Γ is amenable.

< 回 > < 三 > < 三 >

Universal case

If φ is the canonical trace on $C_r^*(\Gamma)$ then

$$(\varphi \otimes id)\Delta(a) = (id \otimes \varphi)\Delta(a) = \varphi(a)1$$
 $(a \in C(G)).$

Can also do all this with $C^*(\Gamma)$:

here the existence of Δ(λ_t) = λ_t ⊗ λ_t follows by universality— the map t → λ_t ⊗ λ_t is a unitary representation of Γ.

However, the trace φ will be faithful on $C^*(\Gamma)$ if and only if Γ is amenable.

E N 4 E N

In general, starting from (A, Δ) can prove the existence of a "Haar state" φ on A with

 $(\varphi \otimes id)\Delta(a) = (id \otimes \varphi)\Delta(a) = \varphi(a)1$ $(a \in A).$

Important that φ may fail to be a trace.

- Maybe φ won't be faithful, but can always quotient to obtain (A_r, Δ_r).
- On the GNS space $L^2(\varphi)$ set $M = A''_r$.
- Then Δ extends to *M* (because we can always construct a suitable unitary *W* with Δ(·) = *W**(1 ⊗ ·)*W*).
- Can always form a "universal" version of A, say A_u .
- Generalises the passage between $C_r^*(\Gamma)$, $C^*(\Gamma)$ and $VN(\Gamma)$.

3

< 日 > < 同 > < 回 > < 回 > < □ > <

In general, starting from (A, Δ) can prove the existence of a "Haar state" φ on A with

$$(\varphi \otimes id)\Delta(a) = (id \otimes \varphi)\Delta(a) = \varphi(a)1$$
 $(a \in A).$

Important that φ may fail to be a trace.

- Maybe φ won't be faithful, but can always quotient to obtain (*A_r*, Δ_r).
- On the GNS space $L^2(\varphi)$ set $M = A''_r$.
- Then Δ extends to *M* (because we can always construct a suitable unitary *W* with Δ(·) = *W**(1 ⊗ ·)*W*).
- Can always form a "universal" version of A, say A_u.
- Generalises the passage between $C_r^*(\Gamma)$, $C^*(\Gamma)$ and $VN(\Gamma)$.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

In general, starting from (A, Δ) can prove the existence of a "Haar state" φ on A with

$$(\varphi \otimes id)\Delta(a) = (id \otimes \varphi)\Delta(a) = \varphi(a)$$
1 $(a \in A)$.

Important that φ may fail to be a trace.

- Maybe φ won't be faithful, but can always quotient to obtain (*A_r*, Δ_r).
- On the GNS space $L^2(\varphi)$ set $M = A''_r$.
- Then Δ extends to *M* (because we can always construct a suitable unitary *W* with Δ(·) = *W**(1 ⊗ ·)*W*).
- Can always form a "universal" version of A, say A_u.
- Generalises the passage between $C_r^*(\Gamma)$, $C^*(\Gamma)$ and $VN(\Gamma)$.

3

In general, starting from (A, Δ) can prove the existence of a "Haar state" φ on A with

 $(\varphi \otimes \operatorname{id})\Delta(a) = (\operatorname{id} \otimes \varphi)\Delta(a) = \varphi(a)\mathbf{1}$ $(a \in A).$

Important that φ may fail to be a trace.

- Maybe φ won't be faithful, but can always quotient to obtain (*A_r*, Δ_r).
- On the GNS space $L^2(\varphi)$ set $M = A''_r$.
- Then Δ extends to *M* (because we can always construct a suitable unitary *W* with Δ(·) = *W*^{*}(1 ⊗ ·)*W*).
- Can always form a "universal" version of A, say A_u .
- Generalises the passage between $C_r^*(\Gamma)$, $C^*(\Gamma)$ and $VN(\Gamma)$.

In general, starting from (A, Δ) can prove the existence of a "Haar state" φ on A with

 $(\varphi \otimes id)\Delta(a) = (id \otimes \varphi)\Delta(a) = \varphi(a)$ 1 $(a \in A)$.

Important that φ may fail to be a trace.

- Maybe φ won't be faithful, but can always quotient to obtain (*A_r*, Δ_r).
- On the GNS space $L^2(\varphi)$ set $M = A''_r$.
- Then Δ extends to *M* (because we can always construct a suitable unitary *W* with Δ(·) = *W**(1 ⊗ ·)*W*).
- Can always form a "universal" version of A, say A_u.

• Generalises the passage between $C_r^*(\Gamma)$, $C^*(\Gamma)$ and $VN(\Gamma)$.

In general, starting from (A, Δ) can prove the existence of a "Haar state" φ on A with

 $(\varphi \otimes id)\Delta(a) = (id \otimes \varphi)\Delta(a) = \varphi(a)$ 1 $(a \in A)$.

Important that φ may fail to be a trace.

- Maybe φ won't be faithful, but can always quotient to obtain (*A_r*, Δ_r).
- On the GNS space $L^2(\varphi)$ set $M = A''_r$.
- Then Δ extends to *M* (because we can always construct a suitable unitary *W* with Δ(·) = *W*^{*}(1 ⊗ ·)*W*).
- Can always form a "universal" version of A, say A_u.
- Generalises the passage between $C^*_{\Gamma}(\Gamma)$, $C^*(\Gamma)$ and $VN(\Gamma)$.

Dualising the notion of a group representation, we obtain:

Definition

A finite-dimensional unitary corepresentation is $U = (U_{ij}) \in M_n(A)$ with $\Delta(U_{ij}) = \sum_{k=1}^n U_{ik} \otimes U_{kj}$.

- The collection of all elements U_{ij} forms a dense *-subalgebra of A, say A₀, such that △ gives a map A₀ → A₀ ⊙ A₀.
- In fact, (A_0, Δ) is a Hopf *-algebra.
- For C(G) get the "polynomials" on G; for $C_r^*(\Gamma)$ get $\mathbb{C}[\Gamma]$.
- The enveloping C^* -algebra of A_0 is the "full" or "universal" version of A, which we denoted A_u .
- Pick representatives of the irreducibles, say $\{U^{\alpha} : \alpha \in \Lambda\}$.
- Peter-Weyl theory: L²(φ) ≅ ⊕ L²(M_{n_α}, φ_α). (Classically each φ_α a trace, but maybe not here).

3

イロト イポト イヨト イヨト

Dualising the notion of a group representation, we obtain:

Definition

A finite-dimensional unitary corepresentation is $U = (U_{ij}) \in M_n(A)$ with $\Delta(U_{ij}) = \sum_{k=1}^n U_{ik} \otimes U_{kj}$.

- The collection of all elements U_{ij} forms a dense *-subalgebra of A, say A₀, such that Δ gives a map A₀ → A₀ ⊙ A₀.
- In fact, (A_0, Δ) is a Hopf *-algebra.
- For C(G) get the "polynomials" on G; for $C_r^*(\Gamma)$ get $\mathbb{C}[\Gamma]$.
- The enveloping C^* -algebra of A_0 is the "full" or "universal" version of A, which we denoted A_u .
- Pick representatives of the irreducibles, say $\{U^{\alpha} : \alpha \in \Lambda\}$.
- Peter-Weyl theory: L²(φ) ≅ ⊕ L²(M_{n_α}, φ_α). (Classically each φ_α a trace, but maybe not here).

3

イロト イポト イヨト イヨト

Dualising the notion of a group representation, we obtain:

Definition

A finite-dimensional unitary corepresentation is $U = (U_{ij}) \in M_n(A)$ with $\Delta(U_{ij}) = \sum_{k=1}^n U_{ik} \otimes U_{kj}$.

- The collection of all elements U_{ij} forms a dense *-subalgebra of A, say A₀, such that Δ gives a map A₀ → A₀ ⊙ A₀.
- In fact, (A_0, Δ) is a Hopf *-algebra.
- For C(G) get the "polynomials" on G; for $C_r^*(\Gamma)$ get $\mathbb{C}[\Gamma]$.
- The enveloping C^* -algebra of A_0 is the "full" or "universal" version of A, which we denoted A_u .
- Pick representatives of the irreducibles, say $\{U^{\alpha} : \alpha \in \Lambda\}$.
- Peter-Weyl theory: L²(φ) ≅ ⊕ L²(M_{n_α}, φ_α). (Classically each φ_α a trace, but maybe not here).

3

イロト イポト イヨト イヨト

Dualising the notion of a group representation, we obtain:

Definition

A finite-dimensional unitary corepresentation is $U = (U_{ij}) \in M_n(A)$ with $\Delta(U_{ij}) = \sum_{k=1}^n U_{ik} \otimes U_{kj}$.

- The collection of all elements U_{ij} forms a dense *-subalgebra of A, say A₀, such that Δ gives a map A₀ → A₀ ⊙ A₀.
- In fact, (A_0, Δ) is a Hopf *-algebra.
- For C(G) get the "polynomials" on G; for $C_r^*(\Gamma)$ get $\mathbb{C}[\Gamma]$.
- The enveloping C^* -algebra of A_0 is the "full" or "universal" version of A, which we denoted A_u .
- Pick representatives of the irreducibles, say $\{U^{\alpha} : \alpha \in \Lambda\}$.
- Peter-Weyl theory: L²(φ) ≅ ⊕ L²(M_{n_α}, φ_α). (Classically each φ_α a trace, but maybe not here).

Dualising the notion of a group representation, we obtain:

Definition

A finite-dimensional unitary corepresentation is $U = (U_{ij}) \in M_n(A)$ with $\Delta(U_{ij}) = \sum_{k=1}^n U_{ik} \otimes U_{kj}$.

- The collection of all elements U_{ij} forms a dense *-subalgebra of A, say A₀, such that Δ gives a map A₀ → A₀ ⊙ A₀.
- In fact, (A_0, Δ) is a Hopf *-algebra.
- For C(G) get the "polynomials" on G; for $C_r^*(\Gamma)$ get $\mathbb{C}[\Gamma]$.
- The enveloping *C**-algebra of *A*₀ is the "full" or "universal" version of *A*, which we denoted *A*_u.
- Pick representatives of the irreducibles, say $\{U^{\alpha} : \alpha \in \Lambda\}$.
- Peter-Weyl theory: L²(φ) ≅ ⊕ L²(M_{n_α}, φ_α). (Classically each φ_α a trace, but maybe not here).

Dualising the notion of a group representation, we obtain:

Definition

A finite-dimensional unitary corepresentation is $U = (U_{ij}) \in M_n(A)$ with $\Delta(U_{ij}) = \sum_{k=1}^n U_{ik} \otimes U_{kj}$.

- The collection of all elements U_{ij} forms a dense *-subalgebra of A, say A₀, such that Δ gives a map A₀ → A₀ ⊙ A₀.
- In fact, (A_0, Δ) is a Hopf *-algebra.
- For C(G) get the "polynomials" on G; for $C_r^*(\Gamma)$ get $\mathbb{C}[\Gamma]$.
- The enveloping *C**-algebra of *A*₀ is the "full" or "universal" version of *A*, which we denoted *A*_{*u*}.
- Pick representatives of the irreducibles, say $\{U^{\alpha} : \alpha \in \Lambda\}$.
- Peter-Weyl theory: L²(φ) ≅ ⊕ L²(M_{n_α}, φ_α). (Classically each φ_α a trace, but maybe not here).

Dualising the notion of a group representation, we obtain:

Definition

A finite-dimensional unitary corepresentation is $U = (U_{ij}) \in M_n(A)$ with $\Delta(U_{ij}) = \sum_{k=1}^n U_{ik} \otimes U_{kj}$.

- The collection of all elements U_{ij} forms a dense *-subalgebra of A, say A₀, such that Δ gives a map A₀ → A₀ ⊙ A₀.
- In fact, (A_0, Δ) is a Hopf *-algebra.
- For C(G) get the "polynomials" on G; for $C_r^*(\Gamma)$ get $\mathbb{C}[\Gamma]$.
- The enveloping *C**-algebra of *A*₀ is the "full" or "universal" version of *A*, which we denoted *A*_{*u*}.
- Pick representatives of the irreducibles, say $\{U^{\alpha} : \alpha \in \Lambda\}$.
- Peter-Weyl theory: L²(φ) ≅ ⊕ L²(M_{n_α}, φ_α). (Classically each φ_α a trace, but maybe not here).

- The "dual group" $\widehat{A} = \bigoplus M_{n_{\alpha}}$ carries a coassociative map $\widehat{\Delta}$ (whose definition involves multiplier algebras).
- For C(G) we obtain $C_r^*(G)$; for $C_r^*(\Gamma)$ we obtain $c_0(\Gamma)$
- Can axiomatise such objects: "discrete quantum groups" (van Daele).
- Can dualise again, and get back to the compact quantum group we started with.
- I'll adopt the notation that \mathbb{G} is a discrete quantum group, $C_r^*(\mathbb{G}) = A, C^*(\mathbb{G}) = A_u, VN(\mathbb{G}) = M.$
- Similarly, $c_0(\mathbb{G}) = \widehat{A}$ the C*-algebra representing the discrete quantum group.
- The "left-regular representation" or "Fourier transform" is the map $\lambda : C^*(\mathbb{G})^* \to \ell^{\infty}(\mathbb{G}) = M(c_0(\mathbb{G})); \mu \mapsto (\langle \mu, U_{ij}^{\alpha} \rangle) \in \prod M_{n_{\alpha}}.$

3

A D F A B F A B F A B F

- The "dual group" $\widehat{A} = \bigoplus M_{n_{\alpha}}$ carries a coassociative map $\widehat{\Delta}$ (whose definition involves multiplier algebras).
- For C(G) we obtain $C_r^*(G)$; for $C_r^*(\Gamma)$ we obtain $c_0(\Gamma)$
- Can axiomatise such objects: "discrete quantum groups" (van Daele).
- Can dualise again, and get back to the compact quantum group we started with.
- I'll adopt the notation that \mathbb{G} is a discrete quantum group, $C_r^*(\mathbb{G}) = A, C^*(\mathbb{G}) = A_u, VN(\mathbb{G}) = M.$
- Similarly, $c_0(\mathbb{G}) = \widehat{A}$ the C*-algebra representing the discrete quantum group.
- The "left-regular representation" or "Fourier transform" is the map $\lambda : C^*(\mathbb{G})^* \to \ell^{\infty}(\mathbb{G}) = M(c_0(\mathbb{G})); \mu \mapsto (\langle \mu, U_{ij}^{\alpha} \rangle) \in \prod M_{n_{\alpha}}.$

3

A D F A B F A B F A B F

- The "dual group" $\widehat{A} = \bigoplus M_{n_{\alpha}}$ carries a coassociative map $\widehat{\Delta}$ (whose definition involves multiplier algebras).
- For C(G) we obtain $C_r^*(G)$; for $C_r^*(\Gamma)$ we obtain $c_0(\Gamma)$
- Can axiomatise such objects: "discrete quantum groups" (van Daele).
- Can dualise again, and get back to the compact quantum group we started with.
- I'll adopt the notation that \mathbb{G} is a discrete quantum group, $C_r^*(\mathbb{G}) = A, C^*(\mathbb{G}) = A_u, VN(\mathbb{G}) = M.$
- Similarly, $c_0(\mathbb{G}) = \widehat{A}$ the C*-algebra representing the discrete quantum group.
- The "left-regular representation" or "Fourier transform" is the map $\lambda : C^*(\mathbb{G})^* \to \ell^{\infty}(\mathbb{G}) = M(c_0(\mathbb{G})); \mu \mapsto (\langle \mu, U_{ij}^{\alpha} \rangle) \in \prod M_{n_{\alpha}}.$

- The "dual group" $\widehat{A} = \bigoplus M_{n_{\alpha}}$ carries a coassociative map $\widehat{\Delta}$ (whose definition involves multiplier algebras).
- For C(G) we obtain $C_r^*(G)$; for $C_r^*(\Gamma)$ we obtain $c_0(\Gamma)$
- Can axiomatise such objects: "discrete quantum groups" (van Daele).
- Can dualise again, and get back to the compact quantum group we started with.
- I'll adopt the notation that \mathbb{G} is a discrete quantum group, $C_r^*(\mathbb{G}) = A, C^*(\mathbb{G}) = A_u, VN(\mathbb{G}) = M.$
- Similarly, $c_0(\mathbb{G}) = \widehat{A}$ the C*-algebra representing the discrete quantum group.
- The "left-regular representation" or "Fourier transform" is the map $\lambda : C^*(\mathbb{G})^* \to \ell^{\infty}(\mathbb{G}) = M(c_0(\mathbb{G})); \mu \mapsto (\langle \mu, U_{ij}^{\alpha} \rangle) \in \prod M_{n_{\alpha}}.$

- The "dual group" $\widehat{A} = \bigoplus M_{n_{\alpha}}$ carries a coassociative map $\widehat{\Delta}$ (whose definition involves multiplier algebras).
- For C(G) we obtain $C_r^*(G)$; for $C_r^*(\Gamma)$ we obtain $c_0(\Gamma)$
- Can axiomatise such objects: "discrete quantum groups" (van Daele).
- Can dualise again, and get back to the compact quantum group we started with.
- I'll adopt the notation that \mathbb{G} is a discrete quantum group, $C_r^*(\mathbb{G}) = A, C^*(\mathbb{G}) = A_u, VN(\mathbb{G}) = M.$
- Similarly, $c_0(\mathbb{G}) = \widehat{A}$ the C*-algebra representing the discrete quantum group.
- The "left-regular representation" or "Fourier transform" is the map $\lambda : C^*(\mathbb{G})^* \to \ell^{\infty}(\mathbb{G}) = M(c_0(\mathbb{G})); \mu \mapsto (\langle \mu, U_{ij}^{\alpha} \rangle) \in \prod M_{n_{\alpha}}.$

- The "dual group" $\widehat{A} = \bigoplus M_{n_{\alpha}}$ carries a coassociative map $\widehat{\Delta}$ (whose definition involves multiplier algebras).
- For C(G) we obtain $C_r^*(G)$; for $C_r^*(\Gamma)$ we obtain $c_0(\Gamma)$
- Can axiomatise such objects: "discrete quantum groups" (van Daele).
- Can dualise again, and get back to the compact quantum group we started with.
- I'll adopt the notation that \mathbb{G} is a discrete quantum group, $C_r^*(\mathbb{G}) = A, C^*(\mathbb{G}) = A_u, VN(\mathbb{G}) = M.$
- Similarly, $c_0(\mathbb{G}) = \widehat{A}$ the C*-algebra representing the discrete quantum group.
- The "left-regular representation" or "Fourier transform" is the map $\lambda : C^*(\mathbb{G})^* \to \ell^{\infty}(\mathbb{G}) = M(c_0(\mathbb{G})); \mu \mapsto (\langle \mu, U_{ij}^{\alpha} \rangle) \in \prod M_{n_{\alpha}}.$

- The "dual group" $\widehat{A} = \bigoplus M_{n_{\alpha}}$ carries a coassociative map $\widehat{\Delta}$ (whose definition involves multiplier algebras).
- For C(G) we obtain $C_r^*(G)$; for $C_r^*(\Gamma)$ we obtain $c_0(\Gamma)$
- Can axiomatise such objects: "discrete quantum groups" (van Daele).
- Can dualise again, and get back to the compact quantum group we started with.
- I'll adopt the notation that \mathbb{G} is a discrete quantum group, $C_r^*(\mathbb{G}) = A, C^*(\mathbb{G}) = A_u, VN(\mathbb{G}) = M.$
- Similarly, $c_0(\mathbb{G}) = \widehat{A}$ the C*-algebra representing the discrete quantum group.
- The "left-regular representation" or "Fourier transform" is the map $\lambda : C^*(\mathbb{G})^* \to \ell^{\infty}(\mathbb{G}) = M(c_0(\mathbb{G})); \mu \mapsto (\langle \mu, U_{ij}^{\alpha} \rangle) \in \prod M_{n_{\alpha}}.$

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・

HAP

Work with Fima, Skalski, White.

Definition

A "positive definite function" on \mathbb{G} is any element $\lambda(\mu) \in \ell^{\infty}(\mathbb{G})$ with $\mu \in C^{*}(\mathbb{G})^{*}_{+}$. (I.e. the Fourier transform of a positive functional.)

[D., Salmi, 13] give various intrinsic characterizations involving, mainly, certain completely positive maps.

Definition

G has HAP if and only if there is a net (a_i) of positive definite functions, such that (a_i) forms an approximate identity for $c_0(G)$.

If $\mathbb G$ is "amenable" then [Tomatsu, 06] showed, in particular, that $\mathbb G$ has HAP.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

HAP

Work with Fima, Skalski, White.

Definition

A "positive definite function" on \mathbb{G} is any element $\lambda(\mu) \in \ell^{\infty}(\mathbb{G})$ with $\mu \in C^{*}(\mathbb{G})^{*}_{+}$. (I.e. the Fourier transform of a positive functional.)

[D., Salmi, 13] give various intrinsic characterizations involving, mainly, certain completely positive maps.

Definition

G has HAP if and only if there is a net (a_i) of positive definite functions, such that (a_i) forms an approximate identity for $c_0(G)$.

If $\mathbb G$ is "amenable" then [Tomatsu, 06] showed, in particular, that $\mathbb G$ has HAP.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

HAP

Work with Fima, Skalski, White.

Definition

A "positive definite function" on \mathbb{G} is any element $\lambda(\mu) \in \ell^{\infty}(\mathbb{G})$ with $\mu \in C^{*}(\mathbb{G})^{*}_{+}$. (I.e. the Fourier transform of a positive functional.)

[D., Salmi, 13] give various intrinsic characterizations involving, mainly, certain completely positive maps.

Definition

 \mathbb{G} has HAP if and only if there is a net (a_i) of positive definite functions, such that (a_i) forms an approximate identity for $c_0(\mathbb{G})$.

If $\mathbb G$ is "amenable" then [Tomatsu, 06] showed, in particular, that $\mathbb G$ has HAP.

Various other characterisations?

As in the classical setting, we have various other characterisations:

- G has HAP if and only if there is a "mixing" representation of G weakly containing the trivial representation.
- G has HAP if and only if mixing representations are dense.

Classically *G* has HAP iff it admits a proper, conditionally negative definite function.

- Working with the Hopf *-algebra, can get a notion of this for \mathbb{G} .
- Quantum probability ideas allow one to form semigroups (under the convolution product) which give our approximate identities.
- Also links with cocycles, again interpreted as unbounded maps on the Hopf *-algebra.

3

Various other characterisations?

As in the classical setting, we have various other characterisations:

- G has HAP if and only if there is a "mixing" representation of G weakly containing the trivial representation.
- G has HAP if and only if mixing representations are dense.

Classically *G* has HAP iff it admits a proper, conditionally negative definite function.

- Working with the Hopf *-algebra, can get a notion of this for G.
- Quantum probability ideas allow one to form semigroups (under the convolution product) which give our approximate identities.
- Also links with cocycles, again interpreted as unbounded maps on the Hopf *-algebra.

We shall say that \mathbb{G} is of "Kac type" if φ is a trace on $VN(\mathbb{G})$. Equivalent to the antipode of $c_0(\mathbb{G})$ or $C_r^*(\mathbb{G})$ being bounded.

Theorem (DFSW)

If \mathbb{G} is of Kac type then \mathbb{G} has HAP if and only if $VN(\mathbb{G})$ has HAP.

Proof.

 (\Rightarrow) As in the classical case, states μ on $C^*(\mathbb{G})$ induce *multipliers* on $VN(\mathbb{G})$ which are normal, UCP, and preserve φ . A calculation shows that the induced maps on $L^2(\varphi)$ agree with $\lambda(\mu)$; so if $\lambda(\mu) \in c_0(\mathbb{G})$ they are compact.

(\Leftarrow)We use a (vaguely complicated) "averaging" argument to turn arbitrary normal UCP maps Φ on $VN(\mathbb{G})$ into multipliers. Then [D. 12] shows that CP multipliers come from states on $C^*(\mathbb{G})$.

The UCP maps we construct restrict to $C_r^*(\mathbb{G})$ cf [Dong], [Suzuki].

We shall say that \mathbb{G} is of "Kac type" if φ is a trace on $VN(\mathbb{G})$. Equivalent to the antipode of $c_0(\mathbb{G})$ or $C_r^*(\mathbb{G})$ being bounded.

Theorem (DFSW)

If \mathbb{G} is of Kac type then \mathbb{G} has HAP if and only if $VN(\mathbb{G})$ has HAP.

Proof.

 (\Rightarrow) As in the classical case, states μ on $C^*(\mathbb{G})$ induce *multipliers* on $VN(\mathbb{G})$ which are normal, UCP, and preserve φ . A calculation shows that the induced maps on $L^2(\varphi)$ agree with $\lambda(\mu)$; so if $\lambda(\mu) \in c_0(\mathbb{G})$ they are compact.

(\Leftarrow)We use a (vaguely complicated) "averaging" argument to turn arbitrary normal UCP maps Φ on $VN(\mathbb{G})$ into multipliers. Then [D. 12] shows that CP multipliers come from states on $C^*(\mathbb{G})$.

The UCP maps we construct restrict to $C_r^*(\mathbb{G})$ cf [Dong], [Suzuki].

We shall say that \mathbb{G} is of "Kac type" if φ is a trace on $VN(\mathbb{G})$. Equivalent to the antipode of $c_0(\mathbb{G})$ or $C_r^*(\mathbb{G})$ being bounded.

Theorem (DFSW)

If \mathbb{G} is of Kac type then \mathbb{G} has HAP if and only if $VN(\mathbb{G})$ has HAP.

Proof.

 (\Rightarrow) As in the classical case, states μ on $C^*(\mathbb{G})$ induce *multipliers* on $VN(\mathbb{G})$ which are normal, UCP, and preserve φ . A calculation shows that the induced maps on $L^2(\varphi)$ agree with $\lambda(\mu)$; so if $\lambda(\mu) \in c_0(\mathbb{G})$ they are compact.

(\Leftarrow)We use a (vaguely complicated) "averaging" argument to turn arbitrary normal UCP maps Φ on $VN(\mathbb{G})$ into multipliers. Then [D. 12] shows that CP multipliers come from states on $C^*(\mathbb{G})$.

The UCP maps we construct restrict to $C_r^*(\mathbb{G})$ cf [Dong], [Suzuki].

We shall say that \mathbb{G} is of "Kac type" if φ is a trace on $VN(\mathbb{G})$. Equivalent to the antipode of $c_0(\mathbb{G})$ or $C_r^*(\mathbb{G})$ being bounded.

Theorem (DFSW)

If \mathbb{G} is of Kac type then \mathbb{G} has HAP if and only if $VN(\mathbb{G})$ has HAP.

Proof.

 (\Rightarrow) As in the classical case, states μ on $C^*(\mathbb{G})$ induce *multipliers* on $VN(\mathbb{G})$ which are normal, UCP, and preserve φ . A calculation shows that the induced maps on $L^2(\varphi)$ agree with $\lambda(\mu)$; so if $\lambda(\mu) \in c_0(\mathbb{G})$ they are compact.

(\Leftarrow)We use a (vaguely complicated) "averaging" argument to turn arbitrary normal UCP maps Φ on $VN(\mathbb{G})$ into multipliers. Then [D. 12] shows that CP multipliers come from states on $C^*(\mathbb{G})$.

The UCP maps we construct restrict to $C_r^*(\mathbb{G})$ cf [Dong], [Suzuki].

Let $U_N^+ = (A_u(N), \Delta)$ be the free unitary quantum group: $A_u(N)$ is the universal C*-algebra generated by elements $\{u_{ij} : 1 \le i, j \le N\}$ such that:

- $U = [u_{ij}]$ is unitary and $\overline{U} = [u_{ij}^*]$ is unitary.
- need latter condition for quantum cancellation laws.
- U_N^+ is of Kac type, so has a trace.
- the dual of U_N^+ is not amenable.

Theorem (Brannan, 12)

 $L^{\infty}(U_N^+)$ has the HAP.

Corollary

The discrete dual of U_N^+ has HAP.

[Freslon, 13?] has a "transportation" procedure using monodial equivalence: gives HAP for various non-Kac examples,

Matthew Daws (Leeds)

Let $U_N^+ = (A_u(N), \Delta)$ be the free unitary quantum group: $A_u(N)$ is the universal C*-algebra generated by elements $\{u_{ij} : 1 \le i, j \le N\}$ such that:

- $U = [u_{ij}]$ is unitary and $\overline{U} = [u_{ij}^*]$ is unitary.
- need latter condition for quantum cancellation laws.
- U_N^+ is of Kac type, so has a trace.
- the dual of U_N^+ is not amenable.

Theorem (Brannan, 12)

 $L^{\infty}(U_N^+)$ has the HAP.

Corollary

The discrete dual of U_N^+ has HAP.

[Freslon, 13?] has a "transportation" procedure using monodial equivalence: gives HAP for various non-Kac examples.

Matthew Daws (Leeds)

Let $U_N^+ = (A_u(N), \Delta)$ be the free unitary quantum group: $A_u(N)$ is the universal C*-algebra generated by elements $\{u_{ij} : 1 \le i, j \le N\}$ such that:

- $U = [u_{ij}]$ is unitary and $\overline{U} = [u_{ij}^*]$ is unitary.
- need latter condition for quantum cancellation laws.
- U_N^+ is of Kac type, so has a trace.

• the dual of U_N^+ is not amenable.

Theorem (Brannan, 12)

 $L^{\infty}(U_N^+)$ has the HAP.

Corollary

The discrete dual of U_N^+ has HAP.

[Freslon, 13?] has a "transportation" procedure using monodial equivalence: gives HAP for various non-Kac examples,

Matthew Daws (Leeds)

Let $U_N^+ = (A_u(N), \Delta)$ be the free unitary quantum group: $A_u(N)$ is the universal C*-algebra generated by elements $\{u_{ij} : 1 \le i, j \le N\}$ such that:

- $U = [u_{ij}]$ is unitary and $\overline{U} = [u_{ij}^*]$ is unitary.
- need latter condition for quantum cancellation laws.
- U_N^+ is of Kac type, so has a trace.
- the dual of U_N^+ is not amenable.

Theorem (Brannan, 12)

 $L^{\infty}(U_N^+)$ has the HAP.

Corollary

The discrete dual of U_N^+ has HAP.

[Freslon, 13?] has a "transportation" procedure using monodial equivalence: gives HAP for various non-Kac examples,

Matthew Daws (Leeds)

Let $U_N^+ = (A_u(N), \Delta)$ be the free unitary quantum group: $A_u(N)$ is the universal C*-algebra generated by elements $\{u_{ij} : 1 \le i, j \le N\}$ such that:

- $U = [u_{ij}]$ is unitary and $\overline{U} = [u_{ij}^*]$ is unitary.
- need latter condition for quantum cancellation laws.
- U_N^+ is of Kac type, so has a trace.
- the dual of U_N^+ is not amenable.

Theorem (Brannan, 12)

 $L^{\infty}(U_N^+)$ has the HAP.

Corollary

The discrete dual of U_N^+ has HAP.

[Freslon, 13?] has a "transportation" procedure using monodial equivalence: gives HAP for various non-Kac examples.

Matthew Daws (Leeds)

Let $U_N^+ = (A_u(N), \Delta)$ be the free unitary quantum group: $A_u(N)$ is the universal C*-algebra generated by elements $\{u_{ij} : 1 \le i, j \le N\}$ such that:

- $U = [u_{ij}]$ is unitary and $\overline{U} = [u_{ij}^*]$ is unitary.
- need latter condition for quantum cancellation laws.
- U_N^+ is of Kac type, so has a trace.
- the dual of U_N^+ is not amenable.

Theorem (Brannan, 12)

 $L^{\infty}(U_N^+)$ has the HAP.

Corollary

The discrete dual of U_N^+ has HAP.

[Freslon, 13?] has a "transportation" procedure using monodial equivalence: gives HAP for various non-Kac examples.

Matthew Daws (Leeds)

Question

Theorem (DFSW)

For all \mathbb{G} , if \mathbb{G} has HAP then $VN(\mathbb{G})$ has HAP.

Of course φ is not a trace anymore...

- There is a tight relation between quantum group theory and KMS states: φ is KMS on C^{*}_r(G) and C^{*}(G).
- It's been suggested that maybe HAP for a state should include the condition that each map Φ "commute" with the modular automoprhism group.
- Not particularly clear for what values of "commute" this would be true, for the multipliers constructed above...
- Not clear what uses this definition might have...

A B >
 A B >
 A