Involutions on algebras of operators

Matthew Daws and Niels Laustsen

16th May 2006

Involutions on $\mathcal{B}(E)$

Let E be a Banach space, and let $\mathcal{B}(E)$ be the algebra of operators on E.
We asked the question: when does $\mathcal{B}(E)$ admit an involution:

- $(\alpha a+\beta b)^{*}=\bar{\alpha} a^{*}+\bar{\beta} b^{*} ;$
- $\left(a^{*}\right)^{*}=a$.

The Hilbert space, with the standard involution, is the obvious example.

> Before continuing, note that Johnson's uniqueness of norm theorem shows that any involution on $\mathcal{B}(E)$ is automatically continuous. We shall hence assume that involutions are continuous, but maybe not isometric.

Involutions on $\mathcal{B}(E)$

Let E be a Banach space, and let $\mathcal{B}(E)$ be the algebra of operators on E.
We asked the question: when does $\mathcal{B}(E)$ admit an involution:

- $(\alpha a+\beta b)^{*}=\bar{\alpha} a^{*}+\bar{\beta} b^{*} ;$
- $\left(a^{*}\right)^{*}=a$.

The Hilbert space, with the standard involution, is the obvious example.

> Before continuing, note that Johnson's uniqueness of norm theorem shows that any involution on $\mathcal{B}(E)$ is automatically continuous. We shall hence assume that involutions are continuous, but maybe not isometric.

Involutions on $\mathcal{B}(E)$

Let E be a Banach space, and let $\mathcal{B}(E)$ be the algebra of operators on E.
We asked the question: when does $\mathcal{B}(E)$ admit an involution:

- $(\alpha a+\beta b)^{*}=\bar{\alpha} a^{*}+\bar{\beta} b^{*} ;$
- $\left(a^{*}\right)^{*}=a$.

The Hilbert space, with the standard involution, is the obvious example.
Before continuing, note that Johnson's uniqueness of norm theorem shows that any involution on $\mathcal{B}(E)$ is automatically continuous. We shall hence assume that involutions are continuous, but maybe not isometric.

Proper involutions and Hilbert spaces

This subject seems full of repeated discoveries and forgotten results. Niels and I hope we have a fairly accurate history of events.
An involution is proper if $a^{*} a=0$ only when $a=0$.

Proper involutions and Hilbert spaces

This subject seems full of repeated discoveries and forgotten results. Niels and I hope we have a fairly accurate history of events.
An involution is proper if $a^{*} a=0$ only when $a=0$.
Theorem (Kakutani-Mackey-Kawada)
Let E be a Banach space such that $\mathcal{B}(E)$ has a proper involution. Then there is an inner-product $[\cdot, \cdot]$ on E such that:

1. $[T(x), y]=\left[x, T^{*}(y)\right]$;
2. the norm given by $x \mapsto[x, x]^{1 / 2}$ is equivalent to the norm on E.

Involutions and Banach spaces

Theorem (Bognar)
Let E be a Banach space such that $\mathcal{B}(E)$ has an involution. There is a bounded sesquilinear form $[\cdot, \cdot]$ on E such that:

1. $[T(x), y]=\left[x, T^{*}(y)\right]$;
2. $[x, y]=\overline{[y, x]}$;
3. for each $x \neq 0$, there exists y with $[x, y] \neq 0$.

In particular, we need not have that $[x, x] \geq 0$.

Involutions and Banach spaces

Theorem (Bognar)
Let E be a Banach space such that $\mathcal{B}(E)$ has an involution. There is a bounded sesquilinear form $[\cdot, \cdot]$ on E such that:

1. $[T(x), y]=\left[x, T^{*}(y)\right]$;
2. $[x, y]=\overline{[y, x]}$;
3. for each $x \neq 0$, there exists y with $[x, y] \neq 0$.

In particular, we need not have that $[x, x] \geq 0$.

Involution inducing maps

Let E be a Banach space, and $[\cdot, \cdot]$ be a sesquilinear form as in Bognar's Theorem. As the form is bounded, there exists a conjugate-linear map $J: E \rightarrow E^{\prime}$ such that

$$
[x, y]=\langle x, J(y)\rangle=J(y)(x) \quad(x, y \in E)
$$

Then the involution associated with the form satisfies

$$
J T^{*}=T^{\prime} J \quad(T \in \mathcal{B}(E))
$$

where $T^{\prime} \in \mathcal{B}\left(E^{\prime}\right)$ is the linear adjoint or transpose of E,

$$
\left\langle x, T^{\prime}(\mu)\right\rangle=\langle T(x), \mu\rangle \quad\left(\mu \in E^{\prime}, x \in E\right)
$$

Involution inducing maps

Let E be a Banach space, and $[\cdot, \cdot]$ be a sesquilinear form as in Bognar's Theorem. As the form is bounded, there exists a conjugate-linear map $J: E \rightarrow E^{\prime}$ such that

$$
[x, y]=\langle x, J(y)\rangle=J(y)(x) \quad(x, y \in E)
$$

Then the involution associated with the form satisfies

$$
J T^{*}=T^{\prime} J \quad(T \in \mathcal{B}(E))
$$

where $T^{\prime} \in \mathcal{B}\left(E^{\prime}\right)$ is the linear adjoint or transpose of E,

$$
\left\langle x, T^{\prime}(\mu)\right\rangle=\langle T(x), \mu\rangle \quad\left(\mu \in E^{\prime}, x \in E\right)
$$

Involution inducing homeomorphisms

Surprisingly, Bognar did not see the following result. One proof has recently been found by Becerra Guerrero, Burgos, Kaidi, and Rodríguez-Palacios.

Theorem

Let E be a Banach space such that $\mathcal{B}(E)$ has an involution. Let $J: E \rightarrow E^{\prime}$ be the conjugate-linear map given by Bognar's Theorem. Then J is a homeomorphism (that is, J has a bounded inverse) and so the involution is given by

$$
T^{*}=J^{-1} T^{\prime} J \quad(T \in \mathcal{B}(E)) .
$$

$$
\text { each } \mu \in E^{\prime} \text {, there exists } y \in E \text { with }
$$

$$
\langle x, \mu\rangle=[x, y]
$$

$$
(x \in E) .
$$

Involution inducing homeomorphisms

Surprisingly, Bognar did not see the following result. One proof has recently been found by Becerra Guerrero, Burgos, Kaidi, and Rodríguez-Palacios.

Theorem

Let E be a Banach space such that $\mathcal{B}(E)$ has an involution. Let $J: E \rightarrow E^{\prime}$ be the conjugate-linear map given by Bognar's Theorem. Then J is a homeomorphism (that is, J has a bounded inverse) and so the involution is given by

$$
T^{*}=J^{-1} T^{\prime} J \quad(T \in \mathcal{B}(E)) .
$$

This new condition on J is equivalent to the statement that for each $\mu \in E^{\prime}$, there exists $y \in E$ with

$$
\langle x, \mu\rangle=[x, y] \quad(x \in E) .
$$

Reflexivity

The proof shows that any involution on $\mathcal{B}(E)$ restricts to $\mathcal{F}(E)$, the finite-rank operators, and is completely determined by this restriction.

> One can easily show that if E admits such a map $J: E \rightarrow E^{\prime}$, then E must be reflexive. That is, the canonical map from E to its bidual is surjective.

> Call such J involution-inducing.
> So, does every reflexive E admit an involution on $\mathcal{B}(E)$?
> Infact it is simple to see that $\mathcal{B}(\rho P)$, for $1<n<\infty$, admits an involution if and only if $p=2$.

Reflexivity

The proof shows that any involution on $\mathcal{B}(E)$ restricts to $\mathcal{F}(E)$, the finite-rank operators, and is completely determined by this restriction.
One can easily show that if E admits such a map $J: E \rightarrow E^{\prime}$, then E must be reflexive. That is, the canonical map from E to its bidual is surjective.
Call such J involution-inducing.
So, does every reflexive E admit an involution on $\mathcal{B}(E)$?
Infact, it is simple to see that $\mathcal{B}\left(\ell^{p}\right)$, for $1<p<\infty$, admits an involution if and only if $p=2$.

Reflexivity

The proof shows that any involution on $\mathcal{B}(E)$ restricts to $\mathcal{F}(E)$, the finite-rank operators, and is completely determined by this restriction.
One can easily show that if E admits such a map $J: E \rightarrow E^{\prime}$, then E must be reflexive. That is, the canonical map from E to its bidual is surjective.
Call such J involution-inducing.
So, does every reflexive E admit an involution on $\mathcal{B}(E)$?
Infact, it is simple to see that $\mathcal{B}\left(\ell^{\rho}\right)$, for $1<p<\infty$, admits an involution if and only if $p=2$.

Reflexivity

The proof shows that any involution on $\mathcal{B}(E)$ restricts to $\mathcal{F}(E)$, the finite-rank operators, and is completely determined by this restriction.

One can easily show that if E admits such a map $J: E \rightarrow E^{\prime}$, then E must be reflexive. That is, the canonical map from E to its bidual is surjective.

Call such J involution-inducing.
So, does every reflexive E admit an involution on $\mathcal{B}(E)$?
Infact, it is simple to see that $\mathcal{B}\left(\ell^{p}\right)$, for $1<p<\infty$, admits an involution if and only if $p=2$.

Reflexivity

The proof shows that any involution on $\mathcal{B}(E)$ restricts to $\mathcal{F}(E)$, the finite-rank operators, and is completely determined by this restriction.

One can easily show that if E admits such a map $J: E \rightarrow E^{\prime}$, then E must be reflexive. That is, the canonical map from E to its bidual is surjective.

Call such J involution-inducing.
So, does every reflexive E admit an involution on $\mathcal{B}(E)$?
Infact, it is simple to see that $\mathcal{B}\left(\ell^{p}\right)$, for $1<p<\infty$, admits an involution if and only if $p=2$.

Flip example

This example goes back to Aronszajn.
Let E be reflexive, and suppose that there is a bounded, invertible, conjugate-linear map $\Gamma: E \rightarrow E$. An example of a twisted Hilbert space due to Kalton and Peck gives a reflexive Banach space Z for which no such map 「 can exist. However your favourite reflexive Banach space surely will (for example, all L^{p} spaces do).

usual involution.

Flip example

This example goes back to Aronszajn.
Let E be reflexive, and suppose that there is a bounded, invertible, conjugate-linear map $\Gamma: E \rightarrow E$. An example of a twisted Hilbert space due to Kalton and Peck gives a reflexive Banach space Z for which no such map Γ can exist. However your favourite reflexive Banach space surely will (for example, all L^{p} spaces do).
We can define an involution on $E \oplus E^{\prime}$, termed the flip, by defining a sesquilinear form as follows:

$$
[(x, \mu),(y, \lambda)]=\overline{\langle\Gamma(x), \lambda\rangle}+\langle\Gamma(y), \mu\rangle \quad\left((x, \mu),(y, \lambda) \in E \oplus E^{\prime}\right)
$$

$H \oplus H^{\prime} \cong H$. However, the flip involution is not the same as the
usual involution.

Flip example

This example goes back to Aronszajn.
Let E be reflexive, and suppose that there is a bounded, invertible, conjugate-linear map $\Gamma: E \rightarrow E$. An example of a twisted Hilbert space due to Kalton and Peck gives a reflexive Banach space Z for which no such map Γ can exist. However your favourite reflexive Banach space surely will (for example, all L^{p} spaces do).
We can define an involution on $E \oplus E^{\prime}$, termed the flip, by defining a sesquilinear form as follows:

$$
[(x, \mu),(y, \lambda)]=\overline{\langle\Gamma(x), \lambda\rangle}+\langle\Gamma(y), \mu\rangle \quad\left((x, \mu),(y, \lambda) \in E \oplus E^{\prime}\right) .
$$

If one starts with a Hilbert space H, then $H^{\prime} \cong H$, and hence $H \oplus H^{\prime} \cong H$. However, the flip involution is not the same as the usual involution.

Involutions on Hilbert spaces

Let H be a Hilbert space, let $J: H \rightarrow H^{\prime}$ be involution-inducing, and let $[\cdot, \cdot]$ be the usual inner-product on H.
We may define $S \in \mathcal{B}(H)$ by

$$
\langle x, J(y)\rangle=[x, U(y)] \quad(x, y \in H)
$$

> Then U is invertible, as J is, and U is self-adjoint, with respect to the usual involution.
> By the Spectral Theory for normal operators, there exists a measure space (X, μ) such that H is unitarily equivalent to $L^{2}(X, \mu)$, and such that under this identification, U is given by multiplication by a function $f \in L^{\infty}(X, \mu)$. As U is self-adjoint and invertible, we see that f is real-valued and bounded above and below.

Involutions on Hilbert spaces

Let H be a Hilbert space, let $J: H \rightarrow H^{\prime}$ be involution-inducing, and let $[\cdot, \cdot]$ be the usual inner-product on H.
We may define $S \in \mathcal{B}(H)$ by

$$
\langle x, J(y)\rangle=[x, U(y)] \quad(x, y \in H)
$$

Then U is invertible, as J is, and U is self-adjoint, with respect to the usual involution.

Involutions on Hilbert spaces

Let H be a Hilbert space, let $J: H \rightarrow H^{\prime}$ be involution-inducing, and let $[\cdot, \cdot]$ be the usual inner-product on H.
We may define $S \in \mathcal{B}(H)$ by

$$
\langle x, J(y)\rangle=[x, U(y)] \quad(x, y \in H) .
$$

Then U is invertible, as J is, and U is self-adjoint, with respect to the usual involution.
By the Spectral Theory for normal operators, there exists a measure space (X, μ) such that H is unitarily equivalent to $L^{2}(X, \mu)$, and such that under this identification, U is given by multiplication by a function $f \in L^{\infty}(X, \mu)$. As U is self-adjoint and invertible, we see that f is real-valued and bounded above and below.

Krein spaces

Now identify H with $L^{2}(X, \mu)$. Define $g: X \rightarrow \pm 1$ by setting $g(w)=1$ when $f(w)>0$, and $g(w)=-1$ when $f(w)<0$. Let $V \in \mathcal{B}(H)$ be given by multiplication by g, so as f bounded above and below, there exists an invertible, positive map W such that $U=V W$.

Then H, with the sesquilinear form induced by K, is a Krein space (actually, Krein spaces are more general than this). Let the involutions induced by J and K be written as \sharp and b respectively. It then follows that as W is positive, the algebras $(\mathcal{B}(H), \sharp)$ and $(\mathcal{B}(H), b)$ are $*$-isomorphic.

Krein spaces

Now identify H with $L^{2}(X, \mu)$. Define $g: X \rightarrow \pm 1$ by setting $g(w)=1$ when $f(w)>0$, and $g(w)=-1$ when $f(w)<0$. Let $V \in \mathcal{B}(H)$ be given by multiplication by g, so as f bounded above and below, there exists an invertible, positive map W such that $U=V W$.
We can define an involution-inducing map $K: H \rightarrow H^{\prime}$ by

$$
\langle x, K(y)\rangle=[x, V(y)] \quad(x, y \in H)
$$

Then H, with the sesquilinear form induced by K, is a Krein space (actually, Krein spaces are more general than this).
respectively. It then follows that as W is positive, the algebras
$(\mathcal{B}(H), \sharp)$ and $(\mathcal{B}(H), b)$ are $*$-isomorphic.

Krein spaces

Now identify H with $L^{2}(X, \mu)$. Define $g: X \rightarrow \pm 1$ by setting $g(w)=1$ when $f(w)>0$, and $g(w)=-1$ when $f(w)<0$. Let $V \in \mathcal{B}(H)$ be given by multiplication by g, so as f bounded above and below, there exists an invertible, positive map W such that $U=V W$.
We can define an involution-inducing map $K: H \rightarrow H^{\prime}$ by

$$
\langle x, K(y)\rangle=[x, V(y)] \quad(x, y \in H) .
$$

Then H, with the sesquilinear form induced by K, is a Krein space (actually, Krein spaces are more general than this). Let the involutions induced by J and K be written as $\#$ and b respectively. It then follows that as W is positive, the algebras $(\mathcal{B}(H), \sharp)$ and $(\mathcal{B}(H), b)$ are $*$-isomorphic.

Decomposition of Krein spaces

With notation as above, let H_{+}be the functions in $L^{2}(X, \mu)$ supported on the set $\{w: g(w)=1\}$, and let H_{-}be the functions in $L^{2}(x, \mu)$ supported on $\{w: g(w)=-1\}$. Then $L^{2}(X, \mu)=H_{+} \oplus H_{-}$is an orthogonal decomposition, and the involution-inducing map K is given by

$$
\left\langle x_{+}+x_{-}, J\left(y_{+}+y_{-}\right)\right\rangle=\left[x_{+}, y_{+}\right]-\left[x_{-}, y_{-}\right]
$$

for $x_{+}, y_{+} \in H_{+}$and $x_{-}, y_{-} \in H_{-}$.
If you think hard enough about this, you'll see that this is,
roughly, the infinite-dimensional version of Sylvester's Inertia Law.

We've hence seen that, essentially, any involution on $\mathcal{B}(H)$ arises in this way. Of course, the picture for general Banach spaces seems much more complicated.

Decomposition of Krein spaces

With notation as above, let H_{+}be the functions in $L^{2}(X, \mu)$ supported on the set $\{w: g(w)=1\}$, and let H_{-}be the functions in $L^{2}(x, \mu)$ supported on $\{w: g(w)=-1\}$. Then $L^{2}(X, \mu)=H_{+} \oplus H_{-}$is an orthogonal decomposition, and the involution-inducing map K is given by

$$
\left\langle x_{+}+x_{-}, J\left(y_{+}+y_{-}\right)\right\rangle=\left[x_{+}, y_{+}\right]-\left[x_{-}, y_{-}\right]
$$

for $x_{+}, y_{+} \in H_{+}$and $x_{-}, y_{-} \in H_{-}$.
If you think hard enough about this, you'll see that this is, roughly, the infinite-dimensional version of Sylvester's Inertia Law.

We've hence seen that, essentially, any involution on $\mathcal{B}(H)$ arises in this way. Of course, the picture for general Banach spaces seems much more complicated.

Decomposition of Krein spaces

With notation as above, let H_{+}be the functions in $L^{2}(X, \mu)$ supported on the set $\{w: g(w)=1\}$, and let H_{-}be the functions in $L^{2}(x, \mu)$ supported on $\{w: g(w)=-1\}$. Then $L^{2}(X, \mu)=H_{+} \oplus H_{-}$is an orthogonal decomposition, and the involution-inducing map K is given by

$$
\left\langle x_{+}+x_{-}, J\left(y_{+}+y_{-}\right)\right\rangle=\left[x_{+}, y_{+}\right]-\left[x_{-}, y_{-}\right]
$$

for $x_{+}, y_{+} \in H_{+}$and $x_{-}, y_{-} \in H_{-}$.
If you think hard enough about this, you'll see that this is, roughly, the infinite-dimensional version of Sylvester's Inertia Law.

We've hence seen that, essentially, any involution on $\mathcal{B}(H)$ arises in this way. Of course, the picture for general Banach spaces seems much more complicated.

Renormings

We now come to some work by Chris Lance, done at the tail end of interest in representing Banach $*$-algebras, before such study settled on C^{*}-algebras as the "correct" axiomisation.

Lance studied the case when $\mathcal{B}(E)$ admits a partially defined
involution, again defined using a sesquilinear form. He gives a
renorming result which, starting from a fairly general, bounded,
sesquilinear form $[\cdot, \cdot]$ on a Banach space E, gives a norm $\|\cdot\|$
on E such that

$$
\|x\|=\sup \{|[x, y]|:\|y\| \leq 1\} \quad(x \in E) .
$$

In general, this new norm is only smaller than the original norm.

Renormings

We now come to some work by Chris Lance, done at the tail end of interest in representing Banach *-algebras, before such study settled on C^{*}-algebras as the "correct" axiomisation.
Lance studied the case when $\mathcal{B}(E)$ admits a partially defined involution, again defined using a sesquilinear form. He gives a renorming result which, starting from a fairly general, bounded, sesquilinear form $[\cdot, \cdot]$ on a Banach space E, gives a norm $\|\cdot\|$ on E such that

$$
\|x\|=\sup \{|[x, y]|:\|y\| \leq 1\} \quad(x \in E) .
$$

In general, this new norm is only smaller than the original norm.

Renormings

We now come to some work by Chris Lance, done at the tail end of interest in representing Banach *-algebras, before such study settled on C^{*}-algebras as the "correct" axiomisation.

Lance studied the case when $\mathcal{B}(E)$ admits a partially defined involution, again defined using a sesquilinear form. He gives a renorming result which, starting from a fairly general, bounded, sesquilinear form $[\cdot, \cdot]$ on a Banach space E, gives a norm $\|\cdot\|$ on E such that

$$
\|x\|=\sup \{|[x, y]|:\|y\| \leq 1\} \quad(x \in E) .
$$

In general, this new norm is only smaller than the original norm.

Renormings in our case

However, if we apply this result to an involution-inducing map, then the new norm will be equivalent to the old norm:
Theorem
Let E be a (reflexive) Banach space with an involution-inducing map $J: E \rightarrow E^{\prime}$. Then there is an equivalent norm on E making J an isometry. This is equivalent to the involution induced by J being an isometry.

Again, strangely, Lance didn't study this case!

Renormings in our case

However, if we apply this result to an involution-inducing map, then the new norm will be equivalent to the old norm:
Theorem
Let E be a (reflexive) Banach space with an involution-inducing map $J: E \rightarrow E^{\prime}$. Then there is an equivalent norm on E making J an isometry. This is equivalent to the involution induced by J being an isometry.

Again, strangely, Lance didn't study this case!

Representing Banach $*$-algebras

Lance was interested in representing certain Banach *-algebras which are not C^{*}-algebras. We can use our ideas to a similar end.

Let \mathcal{A} be a Banach algebra, and let $\mu \in \mathcal{A}^{\prime}$ be a functional. We say that μ is weakly almost periodic if the map $L_{\mu}: \mathcal{A} \rightarrow \mathcal{A}^{\prime}$ defined by

$$
\left\langle a, L_{\mu}(b)\right\rangle=\langle a b, \mu\rangle \quad(a, b \in \mathcal{A})
$$

is weakly-compact.
By a clever use of interpolation spaces, Davis, Figiel, Johnson and Pelczynski showed that a map $T: E \rightarrow F$ between Banach
spaces is weakly-compact if and only if T factors through a reflexive Banach space.

Representing Banach $*$-algebras

Lance was interested in representing certain Banach
-algebras which are not C^{}-algebras. We can use our ideas to a similar end.

Let \mathcal{A} be a Banach algebra, and let $\mu \in \mathcal{A}^{\prime}$ be a functional. We say that μ is weakly almost periodic if the map $L_{\mu}: \mathcal{A} \rightarrow \mathcal{A}^{\prime}$ defined by

$$
\left\langle a, L_{\mu}(b)\right\rangle=\langle a b, \mu\rangle \quad(a, b \in \mathcal{A})
$$

is weakly-compact.
By a clever use of interpolation spaces, Davis, Figiel, Johnson
and Pelczynski showed that a map $T: E \rightarrow F$ between Banach
spaces is weakly-compact if and only if T factors through a reflexive Banach space.

Representing Banach $*$-algebras

Lance was interested in representing certain Banach
-algebras which are not C^{}-algebras. We can use our ideas to a similar end.

Let \mathcal{A} be a Banach algebra, and let $\mu \in \mathcal{A}^{\prime}$ be a functional. We say that μ is weakly almost periodic if the map $L_{\mu}: \mathcal{A} \rightarrow \mathcal{A}^{\prime}$ defined by

$$
\left\langle a, L_{\mu}(b)\right\rangle=\langle a b, \mu\rangle \quad(a, b \in \mathcal{A})
$$

is weakly-compact.
By a clever use of interpolation spaces, Davis, Figiel, Johnson and Pelczynski showed that a map $T: E \rightarrow F$ between Banach spaces is weakly-compact if and only if T factors through a reflexive Banach space.

Representations on reflexive spaces

N. Young showed how to use the proof of this result to show that μ is weakly almost periodic if and only if there is a reflexive Banach space E, a representation $\pi: \mathcal{A} \rightarrow \mathcal{B}(E)$, and $x \in E, \lambda \in E^{\prime}$ such that

$$
\langle a, \mu\rangle=\langle\pi(a)(x), \lambda\rangle \quad(a \in \mathcal{A})
$$

with $\|\mu\|=\|x\|\|\lambda\|$.
Compare this to the Gelfand-Naimark-Segal construction for a state on a C*-algebra.

Representations on reflexive spaces

N. Young showed how to use the proof of this result to show that μ is weakly almost periodic if and only if there is a reflexive Banach space E, a representation $\pi: \mathcal{A} \rightarrow \mathcal{B}(E)$, and $x \in E, \lambda \in E^{\prime}$ such that

$$
\langle a, \mu\rangle=\langle\pi(a)(x), \lambda\rangle \quad(a \in \mathcal{A})
$$

with $\|\mu\|=\|x\|\|\lambda\|$.
Compare this to the Gelfand-Naimark-Segal construction for a state on a C*-algebra.

Continued

Theorem (Young)

Let \mathcal{A} be a Banach algebra. Then the following are equivalent:

1. there is a faithful (bounded below) representation $\pi: \mathcal{A} \rightarrow \mathcal{B}(E)$ with E reflexive;
2. the weakly almost periodic functionals on \mathcal{A} separate the point of \mathcal{A} (form a quasi-norming set for \mathcal{A}).

Here, $X \subseteq \mathcal{A}^{\prime}$ is quasi-norming if for some $\delta>0$, we have that

$$
\sup \{|\langle a, \mu\rangle|: \mu \in X,\|\mu\| \leq 1\} \geq \delta\|a\| \quad(a \in \mathcal{A}) .
$$

Representing Banach *-algebras

By using interpolation spaces in a more complicated way than Young, we can prove the following result. For a Banach *-algebra \mathcal{A}, a functional $\mu \in \mathcal{A}^{\prime}$ is self-adjoint if

$$
\overline{\left\langle a^{*}, \mu\right\rangle}=\langle a, \mu\rangle \quad(a \in \mathcal{A}) .
$$

Theorem
The following are equivalent:

1. $\mu \in \mathcal{A}^{\prime}$ is self-adjoint;
2. there is a reflexive Banach space E such that $\mathcal{B}(E)$ admits an involution, and a $*$-representation $\pi: \mathcal{A} \rightarrow \mathcal{B}(E)$ such that

$$
\langle a, \mu\rangle=\langle\pi(a)(x), \lambda\rangle \quad(a \in \mathcal{A}),
$$

for some $x \in E, \lambda \in E^{\prime}$ with $\|x\|\|\lambda\|=\|\mu\|$.

Representing Banach $*$-algebras (cont.)

Theorem
Let \mathcal{A} be a Banach *-algebra. Then the following are equivalent:

1. there is a reflexive Banach space F and a bounded-below representation $\pi: \mathcal{A} \rightarrow \mathcal{B}(F)$;
2. there is a reflexive Banach space E such that $\mathcal{B}(E)$ admits an involution, and a bounded-below $*$-representation $\pi: \mathcal{A} \rightarrow \mathcal{B}(E)$.

We can use Lance's renorning result to ensure that the
involution on $\mathcal{B}(E)$ in (2) is isometric (because of the use of
interpolation spaces, which are of an isomorphic character, it
seems to be necessary to use Lance's result here).

Representing Banach $*$-algebras (cont.)

Theorem

Let \mathcal{A} be a Banach *-algebra. Then the following are equivalent:

1. there is a reflexive Banach space F and a bounded-below representation $\pi: \mathcal{A} \rightarrow \mathcal{B}(F)$;
2. there is a reflexive Banach space E such that $\mathcal{B}(E)$ admits an involution, and a bounded-below $*$-representation $\pi: \mathcal{A} \rightarrow \mathcal{B}(E)$.

We can use Lance's renorning result to ensure that the involution on $\mathcal{B}(E)$ in (2) is isometric (because of the use of interpolation spaces, which are of an isomorphic character, it seems to be necessary to use Lance's result here).

Application

Let G be a discrete group. We form the group algebra $\mathbb{C}[G]$, which is formal linear combinations of "point-masses" δ_{g}, for $g \in G$, with multiplication given by convolution

$$
\delta_{g} \delta_{h}=\delta_{g h} \quad(g, h \in G)
$$

and an involution by $\delta_{g}^{*}=\delta_{g^{-1}}$. We norm $\mathbb{C}[G]$ by taking the sum of absolute values of the coefficients: the completion is denoted $\ell^{1}(G)$.

> From classical results on weakly almost periodic functionals on
> $\ell^{1}(G)$, Young's theorem tells us that $\ell^{1}(G)$ is isometric to a
> subalgebra of $\mathcal{B}(F)$ for a suitable reflexive space F.
> Hence $\ell^{1}(G)$ is certainly isomorphic to a closed $*$-subalgebra of
> $\mathcal{B}(E)$ for a suitable E, with $\mathcal{B}(E)$ having an involution.

Application

Let G be a discrete group. We form the group algebra $\mathbb{C}[G]$, which is formal linear combinations of "point-masses" δ_{g}, for $g \in G$, with multiplication given by convolution

$$
\delta_{g} \delta_{h}=\delta_{g h} \quad(g, h \in G),
$$

and an involution by $\delta_{g}^{*}=\delta_{g^{-1}}$. We norm $\mathbb{C}[G]$ by taking the sum of absolute values of the coefficients: the completion is denoted $\ell^{1}(G)$.
From classical results on weakly almost periodic functionals on $\ell^{1}(G)$, Young's theorem tells us that $\ell^{1}(G)$ is isometric to a subalgebra of $\mathcal{B}(F)$ for a suitable reflexive space F.
$\mathcal{B}(E)$ for a suitable E, with $\mathcal{B}(E)$ having an involution.

Application

Let G be a discrete group. We form the group algebra $\mathbb{C}[G]$, which is formal linear combinations of "point-masses" δ_{g}, for $g \in G$, with multiplication given by convolution

$$
\delta_{g} \delta_{h}=\delta_{g h} \quad(g, h \in G),
$$

and an involution by $\delta_{g}^{*}=\delta_{g^{-1}}$. We norm $\mathbb{C}[G]$ by taking the sum of absolute values of the coefficients: the completion is denoted $\ell^{1}(G)$.
From classical results on weakly almost periodic functionals on $\ell^{1}(G)$, Young's theorem tells us that $\ell^{1}(G)$ is isometric to a subalgebra of $\mathcal{B}(F)$ for a suitable reflexive space F. Hence $\ell^{1}(G)$ is certainly isomorphic to a closed $*$-subalgebra of $\mathcal{B}(E)$ for a suitable E, with $\mathcal{B}(E)$ having an involution.

Application continued

The interesting point about $\ell^{1}(G)$ is that $\ell^{1}(G)$ cannot be isomorphic to a closed subalgebra of $\mathcal{B}(H)$ for a Hilbert space H (indeed, for any uniformly-convex Banach space). This follows by looking at Arens products, and does not involve the involution at all.

So, the space E we get, such that $\ell^{1}(G)$ embeds into $\mathcal{B}(E)$,
cannot be a Hilbert space as a Banach space (that is, E is not a Krein space).

Can we choose E to be a "flip" space?

Application continued

The interesting point about $\ell^{1}(G)$ is that $\ell^{1}(G)$ cannot be isomorphic to a closed subalgebra of $\mathcal{B}(H)$ for a Hilbert space H (indeed, for any uniformly-convex Banach space). This follows by looking at Arens products, and does not involve the involution at all.

So, the space E we get, such that $\ell^{1}(G)$ embeds into $\mathcal{B}(E)$, cannot be a Hilbert space as a Banach space (that is, E is not a Krein space).

Can we choose E to be a "flip" space?

Application continued

The interesting point about $\ell^{1}(G)$ is that $\ell^{1}(G)$ cannot be isomorphic to a closed subalgebra of $\mathcal{B}(H)$ for a Hilbert space H (indeed, for any uniformly-convex Banach space). This follows by looking at Arens products, and does not involve the involution at all.
So, the space E we get, such that $\ell^{1}(G)$ embeds into $\mathcal{B}(E)$, cannot be a Hilbert space as a Banach space (that is, E is not a Krein space).
Can we choose E to be a "flip" space?

