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Involutions on B(E)

Let E be a Banach space, and let B(E) be the algebra of
operators on E .
We asked the question: when does B(E) admit an involution:

I (αa + βb)∗ = αa∗ + βb∗;
I (a∗)∗ = a.

The Hilbert space, with the standard involution, is the obvious
example.

Before continuing, note that Johnson’s uniqueness of norm
theorem shows that any involution on B(E) is automatically
continuous. We shall hence assume that involutions are
continuous, but maybe not isometric.
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Proper involutions and Hilbert spaces

This subject seems full of repeated discoveries and forgotten
results. Niels and I hope we have a fairly accurate history of
events.
An involution is proper if a∗a = 0 only when a = 0.

Theorem (Kakutani-Mackey-Kawada)
Let E be a Banach space such that B(E) has a proper
involution. Then there is an inner-product [·, ·] on E such that:

1. [T (x), y ] = [x , T ∗(y)];
2. the norm given by x 7→ [x , x ]1/2 is equivalent to the norm

on E.
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Involutions and Banach spaces

Theorem (Bognar)
Let E be a Banach space such that B(E) has an involution.
There is a bounded sesquilinear form [·, ·] on E such that:

1. [T (x), y ] = [x , T ∗(y)];
2. [x , y ] = [y , x ];
3. for each x 6= 0, there exists y with [x , y ] 6= 0.

In particular, we need not have that [x , x ] ≥ 0.
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Involution inducing maps

Let E be a Banach space, and [·, ·] be a sesquilinear form as in
Bognar’s Theorem. As the form is bounded, there exists a
conjugate-linear map J : E → E ′ such that

[x , y ] = 〈x , J(y)〉 = J(y)(x) (x , y ∈ E).

Then the involution associated with the form satisfies

JT ∗ = T ′J (T ∈ B(E)),

where T ′ ∈ B(E ′) is the linear adjoint or transpose of E ,

〈x , T ′(µ)〉 = 〈T (x), µ〉 (µ ∈ E ′, x ∈ E).
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Involution inducing homeomorphisms

Surprisingly, Bognar did not see the following result. One proof
has recently been found by Becerra Guerrero, Burgos, Kaidi,
and Rodríguez-Palacios.

Theorem
Let E be a Banach space such that B(E) has an involution. Let
J : E → E ′ be the conjugate-linear map given by Bognar’s
Theorem. Then J is a homeomorphism (that is, J has a
bounded inverse) and so the involution is given by

T ∗ = J−1T ′J (T ∈ B(E)).

This new condition on J is equivalent to the statement that for
each µ ∈ E ′, there exists y ∈ E with

〈x , µ〉 = [x , y ] (x ∈ E).
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Reflexivity

The proof shows that any involution on B(E) restricts to F(E),
the finite-rank operators, and is completely determined by this
restriction.

One can easily show that if E admits such a map J : E → E ′,
then E must be reflexive. That is, the canonical map from E to
its bidual is surjective.

Call such J involution-inducing.

So, does every reflexive E admit an involution on B(E)?

Infact, it is simple to see that B(`p), for 1 < p < ∞, admits an
involution if and only if p = 2.
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Flip example

This example goes back to Aronszajn.
Let E be reflexive, and suppose that there is a bounded,
invertible, conjugate-linear map Γ : E → E . An example of a
twisted Hilbert space due to Kalton and Peck gives a reflexive
Banach space Z for which no such map Γ can exist. However
your favourite reflexive Banach space surely will (for example,
all Lp spaces do).
We can define an involution on E ⊕ E ′, termed the flip, by
defining a sesquilinear form as follows:[
(x , µ), (y , λ)

]
= 〈Γ(x), λ〉+〈Γ(y), µ〉 ((x , µ), (y , λ) ∈ E⊕E ′).

If one starts with a Hilbert space H, then H ′ ∼= H, and hence
H ⊕ H ′ ∼= H. However, the flip involution is not the same as the
usual involution.
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Involutions on Hilbert spaces

Let H be a Hilbert space, let J : H → H ′ be involution-inducing,
and let [·, ·] be the usual inner-product on H.
We may define S ∈ B(H) by

〈x , J(y)〉 = [x , U(y)] (x , y ∈ H).

Then U is invertible, as J is, and U is self-adjoint, with respect
to the usual involution.
By the Spectral Theory for normal operators, there exists a
measure space (X , µ) such that H is unitarily equivalent to
L2(X , µ), and such that under this identification, U is given by
multiplication by a function f ∈ L∞(X , µ). As U is self-adjoint
and invertible, we see that f is real-valued and bounded above
and below.
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Krein spaces

Now identify H with L2(X , µ). Define g : X → ±1 by setting
g(w) = 1 when f (w) > 0, and g(w) = −1 when f (w) < 0. Let
V ∈ B(H) be given by multiplication by g, so as f bounded
above and below, there exists an invertible, positive map W
such that U = VW .
We can define an involution-inducing map K : H → H ′ by

〈x , K (y)〉 = [x , V (y)] (x , y ∈ H).

Then H, with the sesquilinear form induced by K , is a Krein
space (actually, Krein spaces are more general than this).
Let the involutions induced by J and K be written as ] and [
respectively. It then follows that as W is positive, the algebras
(B(H), ]) and (B(H), [) are ∗-isomorphic.
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Decomposition of Krein spaces

With notation as above, let H+ be the functions in L2(X , µ)
supported on the set {w : g(w) = 1}, and let H− be the
functions in L2(x , µ) supported on {w : g(w) = −1}. Then
L2(X , µ) = H+ ⊕ H− is an orthogonal decomposition, and the
involution-inducing map K is given by

〈x+ + x−, J(y+ + y−)〉 = [x+, y+]− [x−, y−]

for x+, y+ ∈ H+ and x−, y− ∈ H−.

If you think hard enough about this, you’ll see that this is,
roughly, the infinite-dimensional version of Sylvester’s Inertia
Law.

We’ve hence seen that, essentially, any involution on B(H)
arises in this way. Of course, the picture for general Banach
spaces seems much more complicated.
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Renormings

We now come to some work by Chris Lance, done at the tail
end of interest in representing Banach ∗-algebras, before such
study settled on C∗-algebras as the “correct” axiomisation.

Lance studied the case when B(E) admits a partially defined
involution, again defined using a sesquilinear form. He gives a
renorming result which, starting from a fairly general, bounded,
sesquilinear form [·, ·] on a Banach space E , gives a norm ‖ · ‖
on E such that

‖x‖ = sup{|[x , y ]| : ‖y‖ ≤ 1} (x ∈ E).

In general, this new norm is only smaller than the original norm.
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Renormings in our case

However, if we apply this result to an involution-inducing map,
then the new norm will be equivalent to the old norm:

Theorem
Let E be a (reflexive) Banach space with an involution-inducing
map J : E → E ′. Then there is an equivalent norm on E making
J an isometry. This is equivalent to the involution induced by J
being an isometry.

Again, strangely, Lance didn’t study this case!
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Representing Banach ∗-algebras

Lance was interested in representing certain Banach
∗-algebras which are not C∗-algebras. We can use our ideas to
a similar end.

Let A be a Banach algebra, and let µ ∈ A′ be a functional. We
say that µ is weakly almost periodic if the map Lµ : A → A′

defined by
〈a, Lµ(b)〉 = 〈ab, µ〉 (a, b ∈ A)

is weakly-compact.

By a clever use of interpolation spaces, Davis, Figiel, Johnson
and Pelczynski showed that a map T : E → F between Banach
spaces is weakly-compact if and only if T factors through a
reflexive Banach space.
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Representations on reflexive spaces

N. Young showed how to use the proof of this result to show
that µ is weakly almost periodic if and only if there is a reflexive
Banach space E , a representation π : A → B(E), and
x ∈ E , λ ∈ E ′ such that

〈a, µ〉 = 〈π(a)(x), λ〉 (a ∈ A),

with ‖µ‖ = ‖x‖‖λ‖.

Compare this to the Gelfand-Naimark-Segal construction for a
state on a C∗-algebra.
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Continued

Theorem (Young)
Let A be a Banach algebra. Then the following are equivalent:

1. there is a faithful (bounded below) representation
π : A → B(E) with E reflexive;

2. the weakly almost periodic functionals on A separate the
point of A (form a quasi-norming set for A).

Here, X ⊆ A′ is quasi-norming if for some δ > 0, we have that

sup{|〈a, µ〉| : µ ∈ X , ‖µ‖ ≤ 1} ≥ δ‖a‖ (a ∈ A).



Representing Banach ∗-algebras

By using interpolation spaces in a more complicated way than
Young, we can prove the following result. For a Banach
∗-algebra A, a functional µ ∈ A′ is self-adjoint if

〈a∗, µ〉 = 〈a, µ〉 (a ∈ A).

Theorem
The following are equivalent:

1. µ ∈ A′ is self-adjoint;
2. there is a reflexive Banach space E such that B(E) admits

an involution, and a ∗-representation π : A → B(E) such
that

〈a, µ〉 = 〈π(a)(x), λ〉 (a ∈ A),

for some x ∈ E , λ ∈ E ′ with ‖x‖‖λ‖ = ‖µ‖.



Representing Banach ∗-algebras (cont.)

Theorem
Let A be a Banach ∗-algebra. Then the following are
equivalent:

1. there is a reflexive Banach space F and a bounded-below
representation π : A → B(F );

2. there is a reflexive Banach space E such that B(E) admits
an involution, and a bounded-below ∗-representation
π : A → B(E).

We can use Lance’s renorning result to ensure that the
involution on B(E) in (2) is isometric (because of the use of
interpolation spaces, which are of an isomorphic character, it
seems to be necessary to use Lance’s result here).
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Application

Let G be a discrete group. We form the group algebra C[G],
which is formal linear combinations of “point-masses” δg , for
g ∈ G, with multiplication given by convolution

δgδh = δgh (g, h ∈ G),

and an involution by δ∗g = δg−1 . We norm C[G] by taking the
sum of absolute values of the coefficients: the completion is
denoted `1(G).
From classical results on weakly almost periodic functionals on
`1(G), Young’s theorem tells us that `1(G) is isometric to a
subalgebra of B(F ) for a suitable reflexive space F .
Hence `1(G) is certainly isomorphic to a closed ∗-subalgebra of
B(E) for a suitable E , with B(E) having an involution.
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δgδh = δgh (g, h ∈ G),

and an involution by δ∗g = δg−1 . We norm C[G] by taking the
sum of absolute values of the coefficients: the completion is
denoted `1(G).
From classical results on weakly almost periodic functionals on
`1(G), Young’s theorem tells us that `1(G) is isometric to a
subalgebra of B(F ) for a suitable reflexive space F .
Hence `1(G) is certainly isomorphic to a closed ∗-subalgebra of
B(E) for a suitable E , with B(E) having an involution.



Application continued

The interesting point about `1(G) is that `1(G) cannot be
isomorphic to a closed subalgebra of B(H) for a Hilbert space
H (indeed, for any uniformly-convex Banach space). This
follows by looking at Arens products, and does not involve the
involution at all.

So, the space E we get, such that `1(G) embeds into B(E),
cannot be a Hilbert space as a Banach space (that is, E is not
a Krein space).

Can we choose E to be a “flip” space?
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