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Bundles

A bundle over a topological space X is a topological space B together

with p : B → X a continuous, open, surjective map. The �bre at

x ∈ X is p−1({x }) ⊆ B .

The \trivial bundle" with �bre F

is B = X × F with p(x , f ) = x .

A Mobius Strip is a bundle over

the circle, where each �bre is a

copy of the interval, but the

global topology is not trivial.

Typically our �bres will vary,

and we do not assume any form

of \local triviality", so we are far

from the setting of \�bre

bundles".

David Benbennick, CC BY-SA 3.0, Wikipedia
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Banach bundles

A bundle of Banach spaces is a bundle where each �bre has the

structure of a Banach space, and:

B → [0,∞); b 7→ ‖b‖ is continuous (where we use the norm on the

�bre at p(b) ∈ X );

addition is jointly continuous as a map

+ : {(b1, b2) ∈ B ×B : p(b1) = p(b2)} → B ;

for each λ ∈ C the map B → B ; b 7→ λB is continuous;

if (bi ) is a net in B with p(bi ) → x and ‖bi‖→ 0 then bi → 0x
(the zero vector in the �bre over x ).

Each �bre could be a Hilbert space; the Polarisation Identity shows the

inner product is continuous.
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Sections

A section is a function f : X → B with p(f (x )) = x for each x ∈ X .

We say that B has su�ciently many continuous (cross-) sections if

for each b ∈ B there is a continuous section f with f (x ) = b for

x = p(b).

Notice that the axioms imply that the zero section, x 7→ 0x , is

continuous;

Theorem (Douady, Dal Soglio-H�erault)

Let X be locally compact. A bundle of Banach spaces over X has

su�ciently many continuous sections.

The topology on B , restricted to the �bre at x , is just the norm

topology on the Banach space at x . So the bundle \glues together" the

Banach spaces.
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Properties of sections

Some notation: write E(x ) for the �bre at x ∈ X , which is a Banach

space.

Let Γ be the collection of continuous sections.

Γ is a closed subspace of
∏

x E(x ) for the supremum norm

‖f ‖ = supx ‖f (x )‖E(x ).

If f ∈ Γ and a : X → C is continuous, then af : x 7→ a(x )f (x ) is

also in Γ .

So Γ is a module over C b(X );

A bundle of Banach algebras is such that each E(x ) is a Banach

algebra, and the multiplication map {(b1, b2) : p(b1) = p(b2)} → B is

continuous. Similarly, for a bundle of C ∗-algebras, the involution needs

to be continuous.

If each E(x ) is a C ∗-algebra, then the C ∗-algebra of the bundle

is {af : a ∈ Γ, f ∈ C0(X )}.
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Constructing bundles

Let (E(x ))x∈X be a family of Banach spaces and let A be their disjoint

union (without topology) together with the obvious map p : A → X .

Suppose we have Γ a set of sections with:

under pointwise operations, Γ is a vector space;

for each f ∈ Γ , the map x 7→ ‖f (x )‖ is continuous;
for each x ∈ X , the set {f (x ) : f ∈ Γ } is dense in E(x ).

Theorem (Dauns, Hofmann?)

There is a unique topology on A turning it into a Banach bundle

such that each f ∈ Γ becomes a continuous section.
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Moral

We can also axiomatise the notion of a section, which is called a \�eld"

in the literature.

Bundles and �elds are essentially the same thing.

A bundle gives rise to continuous sections, which form a �eld.

A �eld de�nes a topology which allows us to \glue together" the

spaces into a bundle.

References:

Dixmier \Les C ∗-alg�ebres et leurs repr�esentations"

Fell, Doran, \Representations of ∗-algebras, locally compact

groups, and Banach ∗-algebraic bundles".
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Representation theory of C ∗-algebras

We setup some notation:

Let A be a C ∗-algebra and Â its dual space, the set of unitary

equivalence classes of irreducible representations, given the

hull-kernel topology.

Let PrimA be the space of primitive ideals of A, with the

hull-kernel topology. For I ∈ PrimA let πI : A → A/I be the

quotient map.

We could then consider the \�eld" of C ∗-algebras given by

(πI (A))I∈PrimA = (A/I )I∈PrimA and vector �elds of the form

π 7→ πI (a) = a + I for a ∈ A.
However, a 7→ ‖πI (a)‖ may fail to be continuous. And PrimA is

often a \nasty" topological space.
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Hausdor� to the rescue

Theorem (Lee, Tomiyama)

Let f : PrimA → X be an open, continuous, surjective map onto a

locally compact (Hausdor�) X . Let Ax be A quotiented by⋂
f −1({x }). Then (Ax ) is a continuous �eld, and the C ∗-algebra of

this �eld is (isomorphic to) A.

Recall that if I ⊆ A is a closed (two-sided) ideal then

Prim(A/I ) = {P ∈ PrimA : I ⊂ P }. Thus if E ⊆ PrimA is a subset

and I =
⋂
E =

⋂
P∈E P , then Prim(A/I ) = E .

Matthew Daws (UCLan) Bundles and Fields Istanbul, August 2019 11 / 28



A detailed example: the Heisenberg group

H =


1 x z

0 1 y

0 0 1

 : x , y , z ∈ R

 .
Some notes on the structure:

Can think of as triples (x , y , z ) with product

(x , y , z ) · (x ′, y ′, z ′) = (x + x ′, y + y ′, z + z ′ + x · y ′).
The centre is Z = {(0, 0, z ) : z ∈ R} and H/Z ∼= R2.

N = {(0, y , z )} is a closed normal subgroup, isomorphic to R2,

and A = {(x , 0, 0)} is a closed group, isomorphic to R,
with NA = H and N ∩A = {0}, so H ∼= R2 oα R where

αx (y , z ) = (y , z + x · y)
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Representation theory

The irreducible representations fall into two classes:

characters {χξ,λ : ξ, λ ∈ R} acting on x , y via

χξ,λ(x , y , z ) = e i(ξ·x+λ·y);

in�nite dimensional representations U λ, for λ 6= 0, on L2(R) given
by U λ(x , y , z )f (t) = e iλ(z−y ·t)f (t − x )

So as a set, Ĥ = R2 ∪ R∗ where R∗ = R \ {0}.

R2 → Ĥ is a homeomorphism onto a closed set, and R∗ → Ĥ is a

homeomorphism onto an open set.

T ⊆ Ĥ is closed if and only if:
I T ∩ R2 and T ∩ R∗ are both closed;

I if T ∩ R∗ contains 0 as a limit point, then R2 ⊆ T .

So T̂ is far from Hausdor�!
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C
∗(H) as a bundle

Set A = C ∗(H). It is not hard to check that Ĥ = Â = PrimA.

The map θ : Ĥ → R which is the identity of R∗ and which sends R2 to

0, is surjective, continuous, and open.

Thus we obtain that A is (isomorphic to) a continuous �eld over R
with �bres:

For λ 6= 0 we have the irreducible U λ : C ∗(H) → K(L2(R));
For λ = 0 we have the C ∗-algebra whose spectrum is the

characters χξ,λ, that is, C0(R2).

The bundle over (0, 1] is trivial.

However, what are the vector �elds? However, this can be powerful

tool, see Elliott, Natsume, Nest, \The Heisenberg Group and

K -Theory".

For a complete study of C ∗(H) see Ludwig, Turowska, \The

C ∗-algebras of the Heisenberg group and of thread-like Lie groups".
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Drawbacks

Continuous �elds of C ∗-algebras are an attractive tool, but it does not

interact well with other operations.

Theorem (Kirchberg, Wassermann)

Let B be a C ∗-algebra. Consider continuous �elds over the base

space N∞. Tensoring each �bre against B gives a continuous �eld

if and only if B is exact.

There is a similar criteria for nuclearity (using the maximal tensor

product). Similar results for crossed-products (characterising exactness

of the group) hold.

Matthew Daws (UCLan) Bundles and Fields Istanbul, August 2019 16 / 28



The Dauns-Ho�man Theorem

For a C ∗-algebra A, the multiplier algebra of A is the largest

C ∗-algebra M such that A embeds as a closed ideal of M which is

essential, that is, x ∈M and xA = {0} imply x = 0. Write M (A) for

the multiplier algebra.

Various well-known constructions: double centralisers, bidual

picture, etc.

If A is unital then M (A) ∼= A.

If A = C0(X ) then M (A) ∼= C b(X ) ∼= C (βX )

For P ∈ PrimA let πP : A → A/P be the quotient map.

Theorem

There is an isomorphism φ : C b(PrimA) → ZM (A), the centre of

M (A), with

πP (φ(f )a) = f (P)πP (a) (a ∈ A,P ∈ PrimA, f ∈ C b(PrimA)).
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Corollary: C0(X )-algebras

A C0(X )-algebra is a C ∗-algebra A together with a ∗-homomorphism

ΦA : C0(X ) → ZM (A) which is non-degenerate:

ΦA(C0(X ))A = lin{ΦA(f )a : f ∈ C0(X ), a ∈ A} is dense in A.

A non-degenerate ∗-homomorphism Φ : C0(X ) → C b(Y ) is

always of the form Φ(f ) = f ◦ σ with σ : Y → X continuous.

And any σ gives rise to a Φ.

We typically assume ΦA is injective, which is equivalent to σ

having dense range.

As ZM (A) ∼= C b(PrimA) we see that C0(X )-algebras can also be

described by continuous maps σ : PrimA → X (which have dense

range).
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C0(X )-algebras as �elds/bundles

This setup, σ : PrimA → X , is very close to what we saw before, but

we no longer have that σ is open.

This corresponds to �elds/bundles which are only upper

semicontinuous

lim sup
x→x0

‖x‖ ≤ ‖x0‖.

The bene�t is that C0(X )-algebras are better behaved with respect to

tensor products and so forth.

References:

Williams \Crossed products of C ∗-algebras", esp. Appendix C.

Blanchard, \D�eformations de C ∗-alg�ebres de Hopf".
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Banach C0(X )-algebras: remove?
A Banach C0(X )-algebra is a Banach algebra A which is an essential

(left) C0(X )-module with

f · (ab) = a(f · b) = (f · a)b (f ∈ C0(X ), a , b ∈ A).

(This is also the same as the de�nition using the multiplier algebra of

A).

For x ∈ X let Cx (X ) = C0(X \ {x }) which is identi�ed with

{f ∈ C0(X ) : f (x ) = 0} a subalgebra of C0(X ).

Let Nx = Cx (X ) ·A which by Cohen-Hewitt factorisation is a

closed subspace of A. The above conditions show that it is an

ideal in A.

De�ne Ax = A/Nx , the �bre at x . Let π
x : A → Ax be the

quotient map.

Contrasting to the C ∗-case, we no longer have, for example,

‖a‖ = sup
x
‖πx (a)‖.
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Representations: Hilbert C ∗-modules

C ∗-algebras are naturally represented on Hilbert spaces. The analogue

for a C0(X )-algebra is a Hilbert C∗-module over C0(X ).

This is a Banach space E which is a right C0(X ) module, and which

has an \inner-product" which is C0(X )-valued.

Such objects behave much like Hilbert spaces. A big di�erence is that

bounded linear maps do not automatically have adjoints; this needs to

be an axiom, leading to L(E).

We can form Nx in the same way as before, and then E x turns into a

genuine Hilbert space.

A representation of a C0(X )-algebra A on E is a C0(X )-module map

π : A → L(E). This �bres to give genuine ∗-homomorphisms

πx : Ax → B(E x ).

Matthew Daws (UCLan) Bundles and Fields Istanbul, August 2019 21 / 28



Representations: Hilbert C ∗-modules

C ∗-algebras are naturally represented on Hilbert spaces. The analogue

for a C0(X )-algebra is a Hilbert C∗-module over C0(X ).

This is a Banach space E which is a right C0(X ) module, and which

has an \inner-product" which is C0(X )-valued.

Such objects behave much like Hilbert spaces. A big di�erence is that

bounded linear maps do not automatically have adjoints; this needs to

be an axiom, leading to L(E).

We can form Nx in the same way as before, and then E x turns into a

genuine Hilbert space.

A representation of a C0(X )-algebra A on E is a C0(X )-module map

π : A → L(E). This �bres to give genuine ∗-homomorphisms

πx : Ax → B(E x ).

Matthew Daws (UCLan) Bundles and Fields Istanbul, August 2019 21 / 28



Representations: Hilbert C ∗-modules

C ∗-algebras are naturally represented on Hilbert spaces. The analogue

for a C0(X )-algebra is a Hilbert C∗-module over C0(X ).

This is a Banach space E which is a right C0(X ) module, and which

has an \inner-product" which is C0(X )-valued.

Such objects behave much like Hilbert spaces. A big di�erence is that

bounded linear maps do not automatically have adjoints; this needs to

be an axiom, leading to L(E).

We can form Nx in the same way as before, and then E x turns into a

genuine Hilbert space.

A representation of a C0(X )-algebra A on E is a C0(X )-module map

π : A → L(E). This �bres to give genuine ∗-homomorphisms

πx : Ax → B(E x ).

Matthew Daws (UCLan) Bundles and Fields Istanbul, August 2019 21 / 28



Representations: Hilbert C ∗-modules

C ∗-algebras are naturally represented on Hilbert spaces. The analogue

for a C0(X )-algebra is a Hilbert C∗-module over C0(X ).

This is a Banach space E which is a right C0(X ) module, and which

has an \inner-product" which is C0(X )-valued.

Such objects behave much like Hilbert spaces. A big di�erence is that

bounded linear maps do not automatically have adjoints; this needs to

be an axiom, leading to L(E).

We can form Nx in the same way as before, and then E x turns into a

genuine Hilbert space.

A representation of a C0(X )-algebra A on E is a C0(X )-module map

π : A → L(E). This �bres to give genuine ∗-homomorphisms

πx : Ax → B(E x ).

Matthew Daws (UCLan) Bundles and Fields Istanbul, August 2019 21 / 28



Representations: Hilbert C ∗-modules

C ∗-algebras are naturally represented on Hilbert spaces. The analogue

for a C0(X )-algebra is a Hilbert C∗-module over C0(X ).

This is a Banach space E which is a right C0(X ) module, and which

has an \inner-product" which is C0(X )-valued.

Such objects behave much like Hilbert spaces. A big di�erence is that

bounded linear maps do not automatically have adjoints; this needs to

be an axiom, leading to L(E).

We can form Nx in the same way as before, and then E x turns into a

genuine Hilbert space.

A representation of a C0(X )-algebra A on E is a C0(X )-module map

π : A → L(E). This �bres to give genuine ∗-homomorphisms

πx : Ax → B(E x ).

Matthew Daws (UCLan) Bundles and Fields Istanbul, August 2019 21 / 28



Outline

1 Bundles and sections

2 Links with representation theory

3 C0(X )-algebras

4 Quantum groups

Matthew Daws (UCLan) Bundles and Fields Istanbul, August 2019 22 / 28



SU (2)

Let G = SU (2) the group of 2× 2 complex valued unitary matrices

with unit determinant.

Any member of G is of the form

s =

(
a −b

b a

)
with a , b ∈ C with |a |2 + |b|2 = 1.

Consider C (G) the continuous functions on G . De�ne

α(s) = a , γ(s) = b.

Then the matrix (
α −γ∗

γ α∗

)
∈M2

(
C (G)

)
is unitary.
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SU (2) as a Hopf C ∗-algebra

Set G = SU (2) and A = C (G). We have the \coordinates" α, γ ∈ A
with (

α −γ∗

γ α∗

)
a unitary in M2(A). By Stone-Weierstrauss, α, γ generate A.

Of course, A tells us nothing about the group SU (2). We can encode

the group product G ×G → G as a ∗-homomorphism

∆ : A = C (G) → C (G ×G) = A⊗A.

Then, if s =

(
a −b

b a

)
and t =

(
c −d

d c

)
, then

∆(α)(s , t) = α(st) = ac − bd = α(s)α(t) − γ∗(s)γ(t).

So ∆(α) = α⊗ α− γ∗ ⊗ γ. Similarly ∆(γ) = γ⊗ α+ α∗ ⊗ γ.
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Quantum SU (2)

Woronowicz introduced a \deformation" of SU (2) as follows. Let

0 ≤ q ≤ 1 and let A be the C ∗-algebra generated by elements α, γ such

that (
α −qγ∗

γ α∗

)
is unitary in M2(A).

Such a C ∗-algebra does exist. It is non-commutative; for

0 < q < 1, it is isomorphic to a C ∗-algebra related to the Toeplitz

algebra.

If we de�ne ∆(α) = α⊗ α− qγ∗ ⊗ γ and ∆(γ) = γ⊗ α+ α∗ ⊗ γ
then we obtain a ∗-homomorphism

This is the analogue of the group product.
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Quantum SU (2) continued

∆ : A → A⊗A; (∆⊗ id)∆ = (id⊗∆)∆.

The pair (A, ∆) is a compact quantum group, objects which have

remarkable similarities to compact groups:

Subject to \quantum cancellation", that lin{(a ⊗ 1)∆(b) : a , b ∈ A}

is dense in A⊗A (and (1⊗ a)∆(b)), we get. . .

A \Haar measure", a state ϕ ∈ A∗ which is invariant,

(ϕ⊗ id)∆(a) = (id⊗ϕ)∆(a) = ϕ(a)1.
Have a notion of a \corepresentation", and all unitary

corepresentations split into direct sums of �nite dimensionals.

Analogue of the Peter-Weyl theory.

Lots of operator-algebraic structure appears: for example, ϕ is a

KMS state. So there is automatic interaction with von Neumann

algebra theory.
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A �eld of SUq(2)

Following Bauval and Blanchard, let A be the C ∗-algebra generated by

α, γ, f such that:

f commutes with α, γ;

f = f ∗ ≥ 0 has spectrum [0, 1];

u =

(
α −f γ∗

γ α∗

)
is unitary in M2(A).

Functional calculus, applied to f , provides a ∗-homomorphism

C ([0, 1]) → A, so turning A into C ([0, 1])-algebra.

By restriction, A becomes a C0((0, 1])-algebra.

Theorem

A becomes a continuous �eld over (0, 1] with �bres Aq where Aq is

the C ∗-algebra representing SUq(2). The Haar states vary

continuously.
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Questions

If we have a continuous family of Haar states, then there should be a

von Neumann algebra picture lurking here. But we somehow want to

mix continuity and \measurability": jumping straight to measurable

�elds of von Neumann algebras seems to lose too much information.

What can one say about actions?

What about the locally compact case? Is there a nice source of

examples, beyond the \classical" deformation examples?
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