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Bundles

A bundle over a topological space X is a topological space B together

with p : B — X a continuous, open, surjective map. The fibre at
zecXispi({z})) CB.

Matthew Daws (UCLan) Bundles and Fields




Bundles

A bundle over a topological space X is a topological space B together
with p : B — X a continuous, open, surjective map. The fibre at
zecXispi({z})) CB.
o The “trivial bundle” with fibre F
is B=X x F with p(z,f) = z.
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Bundles

A bundle over a topological space X is a topological space B together
with p : B — X a continuous, open, surjective map. The fibre at
zecXispi({z})) CB.

@ The “trivial bundle” with fibre F
is B=X x F with p(z,f) = z.

o A Mobius Strip is a bundle over
the circle, where each fibre is a
copy of the interval, but the
global topology is not trivial.
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Bundles

A bundle over a topological space X is a topological space B together
with p : B — X a continuous, open, surjective map. The fibre at
zecXispi({z})) CB.

@ The “trivial bundle” with fibre F
is B=X x F with p(z,f) = z.

o A Mobius Strip is a bundle over
the circle, where each fibre is a
copy of the interval, but the
global topology is not trivial.

o Typically our fibres will vary,
and we do not assume any form
of “local triviality”, so we are far
from the setting of “fibre
bundles”.

David Benbennick, CC BY-SA 3.0, Wikipedia
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Banach bundles

A bundle of Banach spaces is a bundle where each fibre has the
structure of a Banach space, and:
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Banach bundles

A bundle of Banach spaces is a bundle where each fibre has the
structure of a Banach space, and:

@ B — [0,00);b — ||b] is continuous (where we use the norm on the
fibre at p(b) € X);
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Banach bundles

A bundle of Banach spaces is a bundle where each fibre has the
structure of a Banach space, and:

@ B — [0,00);b — ||b] is continuous (where we use the norm on the
fibre at p(b) € X);

o addition is jointly continuous as a map
+:{(b1,b2) € B x B:p(b1) =p(bs)} = B;
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Banach bundles

A bundle of Banach spaces is a bundle where each fibre has the
structure of a Banach space, and:

@ B — [0,00);b — ||b] is continuous (where we use the norm on the
fibre at p(b) € X);

o addition is jointly continuous as a map
+:{(b1,b2) € B x B:p(b1) = p(b2)} — B;
o for each A € C the map B — B;b +— AB is continuous;
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Banach bundles

A bundle of Banach spaces is a bundle where each fibre has the
structure of a Banach space, and:
@ B — [0,00); b+ ||b]| is continuous (where we use the norm on the
fibre at p(b) € X);
o addition is jointly continuous as a map
+:{(b1,b2) € B x B:p(b1) =p(bs)} = B;
o for each A € C the map B — B;b +— AB is continuous;
o if (b;) is a net in B with p(b;) — = and ||b;]| — 0 then b, — 0,
(the zero vector in the fibre over z).
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Banach bundles

A bundle of Banach spaces is a bundle where each fibre has the
structure of a Banach space, and:

@ B — [0,00);b — ||b] is continuous (where we use the norm on the
fibre at p(b) € X);

o addition is jointly continuous as a map
+:{(b1,b2) € B x B:p(b1) = p(b2)} — B;
o for each A € C the map B — B;b +— AB is continuous;

o if (b;) is a net in B with p(b;) — = and ||b;]| — 0 then b, — 0,
(the zero vector in the fibre over z).

Each fibre could be a Hilbert space; the Polarisation Identity shows the
inner product is continuous.
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Sections

A section is a function f : X — B with p(f(z)) =z for each z € X.
We say that B has suffictently many continuous (cross-) sections if

for each b € B there is a continuous section f with f(z) = b for
z = p(b).
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Sections

A section is a function f : X — B with p(f(z)) =z for each z € X.
We say that B has suffictently many continuous (cross-) sections if
for each b € B there is a continuous section f with f(z) = b for

z = p(b).

o Notice that the axioms imply that the zero section, z — 0., is
continuous;
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Sections

A section is a function f : X — B with p(f(z)) =z for each z € X.
We say that B has suffictently many continuous (cross-) sections if
for each b € B there is a continuous section f with f(z) = b for
z = p(b).
o Notice that the axioms imply that the zero section, z — 0., is
continuous;

Theorem (Douady, Dal Soglio-Hérault)

Let X be locally compact. A bundle of Banach spaces over X has
suffictently many continuous sections.
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Sections

A section is a function f : X — B with p(f(z)) =z for each z € X.
We say that B has suffictently many continuous (cross-) sections if
for each b € B there is a continuous section f with f(z) = b for
z = p(b).
o Notice that the axioms imply that the zero section, z — 0., is
continuous;

Theorem (Douady, Dal Soglio-Hérault)

Let X be locally compact. A bundle of Banach spaces over X has
suffictently many continuous sections.

The topology on B, restricted to the fibre at z, is just the norm
topology on the Banach space at £. So the bundle “glues together” the
Banach spaces.
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Properties of sections

Some notation: write E(z) for the fibre at z € X, which is a Banach
space.
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Properties of sections

Some notation: write E(z) for the fibre at z € X, which is a Banach
space.
Let T be the collection of continuous sections.

o [ is a closed subspace of [ [, E(z) for the supremum norm
171l = sup, If ()| 5(z)-
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Properties of sections

Some notation: write E(z) for the fibre at z € X, which is a Banach
space.
Let T" be the collection of continuous sections.
o [ is a closed subspace of [ [, E(z) for the supremum norm
171l = supg [|f (2)[| &(x)-
o If f €T and a: X — C is continuous, then af : z — a(z)f(z) is
alsoin T'.
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Properties of sections

Some notation: write E(z) for the fibre at z € X, which is a Banach

space.
Let T" be the collection of continuous sections.

o [ is a closed subspace of [ [, E(z) for the supremum norm

171l = supg [|f (2)[| &(x)-
o If f €T and a: X — C is continuous, then af : z — a(z)f(z) is
alsoin T'.

@ So I' is a module over C%(X);
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Properties of sections

Some notation: write E(z) for the fibre at z € X, which is a Banach
space.
Let T be the collection of continuous sections.

o [ is a closed subspace of [ [, E(z) for the supremum norm
171l = sup, If ()| 5(z)-
o If f €T and a: X — C is continuous, then af : z — a(z)f(z) is
alsoin T'.
@ So I' is a module over C%(X);
A bundle of Banach algebras is such that each E(z) is a Banach
algebra, and the multiplication map {(b1,b2) : p(b1) = p(b2)} — B is
continuous. Similarly, for a bundle of C*-algebras, the involution needs
to be continuous.
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Properties of sections

Some notation: write E(z) for the fibre at z € X, which is a Banach
space.
Let T" be the collection of continuous sections.
o [ is a closed subspace of [ [, E(z) for the supremum norm
171l = sup, If ()| 5(z)-
o If f €T and a: X — C is continuous, then af : z — a(z)f(z) is
alsoin T'.
@ So I' is a module over C%(X);
A bundle of Banach algebras is such that each E(z) is a Banach
algebra, and the multiplication map {(b1,b2) : p(b1) = p(b2)} — B is
continuous. Similarly, for a bundle of C*-algebras, the involution needs
to be continuous.

o If each F(z) is a C*-algebra, then the C*-algebra of the bundle
is{af:a €T, f € Co(X)}.
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Constructing bundles

Let (E(z));cx be a family of Banach spaces and let A be their disjoint
union (without topology) together with the obvious map p: A — X.
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Constructing bundles

Let (E(z));cx be a family of Banach spaces and let A be their disjoint
union (without topology) together with the obvious map p: A — X.

Suppose we have I" a set of sections with:
o under pointwise operations, I' is a vector space;
o for each f €T, the map z — ||f(z)|| is continuous;

o for each z € X, the set {f(z):f €'} is dense in F(z).
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Constructing bundles

Let (E(z));cx be a family of Banach spaces and let A be their disjoint
union (without topology) together with the obvious map p: A — X.

Suppose we have I" a set of sections with:
o under pointwise operations, I' is a vector space;
o for each f €T, the map z — ||f(z)|| is continuous;
o for each z € X, the set {f(z):f €'} is dense in F(z).

Theorem (Dauns, Hofmann?)

There 1s a unique topology on A turning it into a Banach bundle
such that each f € T' becomes a continuous section.
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Moral

We can also axiomatise the notion of a section, which is called a “field”
in the literature.

Bundles and fields are essentially the same thing.

@ A bundle gives rise to continuous sections, which form a field.

o A field defines a topology which allows us to “glue together” the
spaces into a bundle.

References:
o Dixmier “Les C*-algébres et leurs représentations”

o Fell, Doran, “Representations of x-algebras, locally compact
groups, and Banach *-algebraic bundles”.
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Outline

e Links with representation theory
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Representation theory of C'*-algebras

We setup some notation:

o Let A be a C*-algebra and A its dual space, the set of unitary
equivalence classes of irreducible representations, given the
hull-kernel topology.
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Representation theory of C'*-algebras

We setup some notation:

o Let A be a C*-algebra and A its dual space, the set of unitary
equivalence classes of irreducible representations, given the
hull-kernel topology.

o Let Prim A be the space of primitive ideals of A, with the
hull-kernel topology. For I € Prim A let iy : A — A/I be the
quotient map.
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Representation theory of C'*-algebras

We setup some notation:

o Let A be a C*-algebra and A its dual space, the set of unitary
equivalence classes of irreducible representations, given the
hull-kernel topology.

o Let Prim A be the space of primitive ideals of A, with the
hull-kernel topology. For I € Prim A let iy : A — A/I be the
quotient map.

@ We could then consider the “field” of C*-algebras given by
(77 (A)) reprima = (A/I)1cprim 4 and vector fields of the form
ni— mr(a) =a+ I for a € A.
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Representation theory of C'*-algebras

We setup some notation:

o Let A be a C*-algebra and A its dual space, the set of unitary
equivalence classes of irreducible representations, given the
hull-kernel topology.

o Let Prim A be the space of primitive ideals of A, with the
hull-kernel topology. For I € Prim A let iy : A — A/I be the
quotient map.

@ We could then consider the “field” of C*-algebras given by
(77 (A)) reprima = (A/I)1cprim 4 and vector fields of the form
n— my(a)=a+ 1 for a € A.

e However, a — ||7t;(a)|| may fail to be continuous. And Prim A is
often a “nasty” topological space.
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Hausdorff to the rescue

Theorem (Lee, Tomiyama)

Let f :Prim A — X be an open, continuous, surjective map onto a
locally compact (Hausdorff) X. Let A, be A quotiented by

N7 *{z}). Then (A;) 1s a continuous field, and the C*-algebra of
this field is (isomorphic to) A.

Recall that if I C A is a closed (two-sided) ideal then
Prim(A/I)={P € Prim A: I C P}. Thus if E C Prim 4 is a subset
and I = E = (\pep P, then Prim(A/I) =
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A detailed example: the Heisenberg group

1 z 2z
H= 01 y|:z,y,2€R
0 0 1

Some notes on the structure:

@ Can think of as triples (z, ¥, 2) with product
(a;)y)z) : (x/)yl>z/) = (:I: +$/>y + y/>z +z/ +z- y/)-
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A detailed example: the Heisenberg group

1
H = 0 ‘z,y,z €R
0

o~ 8
=@ N

Some notes on the structure:
@ Can think of as triples (z, ¥, 2) with product
(z,9,2) - (z',y",2") = (z+ 2,y +y',z2+2' +z-y').
@ The centreis Z ={(0,0,2): z € R} and H/Z = R?.
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A detailed example: the Heisenberg group

1
H = 0 ‘z,y,z €R
0

o~ 8
=@ N

Some notes on the structure:

@ Can think of as triples (z, ¥, 2) with product
(z,9,2) (2',y',2") =z +z',y+y',z+2"+z-y').

@ The centre is Z ={(0,0,2) : z € R} and H/Z = R?.

e N ={(0,y,2)}is a closed normal subgroup, isomorphic to R?,

e and A ={(z,0,0)} is a closed group, isomorphic to R,

e with NA=H and N N A ={0}, so H = R? x, R where
x(y,2) = (y,z2 +z-y)
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Representation theory

The irreducible representations fall into two classes:
o characters {xz : £,A € R} acting on z,y via
XE,?\(xa Y, Z) = ei(£~x+?\vy)
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Representation theory

The irreducible representations fall into two classes:

e characters {x: : & A € R} acting on z, y via
Xz (z,y,2) = etl&etry);

o infinite dimensional representations U, for A # 0, on L?(R) given
by UMz, y,2)f(t) = eM= v f(t —z)
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Representation theory

The irreducible representations fall into two classes:

o characters {xz : £,A € R} acting on z,y via
XeA(z, Y, 2) = etlEm ),
o infinite dimensional representations U, for A # 0, on L?(R) given
by UNe,y,2)f (t) = e ¥f(t —z)
So as a set, H = R? UR* where R* = R\ {0}.
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Representation theory

The irreducible representations fall into two classes:
o characters {xz : £,A € R} acting on z,y via
XeA(z, Y, 2) = etlEm ),
o infinite dimensional representations U, for A # 0, on L?(R) given
by UMz, y,2)f(¢) = eM* ¥ Vf(t —z)
So as a set, H = R? UR* where R* = R\ {0}.
o R2 5 Hisa homeomorphism onto a closed set, and R* — His a
homeomorphism onto an open set.
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Representation theory

The irreducible representations fall into two classes:
o characters {xz : £,A € R} acting on z,y via
XeA(z, Y, 2) = etlEm ),
o infinite dimensional representations U, for A # 0, on L?(R) given
by UMz, y,2)f(¢) = eM* ¥ Vf(t —z)
So as a set, H = R? UR* where R* = R\ {0}.
o R2 5 Hisa homeomorphism onto a closed set, and R* — His a
homeomorphism onto an open set.
e T C His closed if and only if:

» TNR? and T NR* are both closed;
» if T NRR* contains 0 as a limit point, then R?> C T'.
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Representation theory

The irreducible representations fall into two classes:
o characters {xz : £,A € R} acting on z,y via
XeA(z, Y, 2) = etlEm ),
o infinite dimensional representations U, for A # 0, on L?(R) given
by UMz, y,2)f(¢) = eM* ¥ Vf(t —z)
So as a set, H = R? UR* where R* = R\ {0}.
o R2 5 Hisa homeomorphism onto a closed set, and R* — His a
homeomorphism onto an open set.
e T C His closed if and only if:

» TNR? and T NR* are both closed;
» if T NRR* contains 0 as a limit point, then R?> C T'.

So T is far from Hausdorff!
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C*(H) as a bundle
Set A = C*(H). It is not hard to check that fl = A = Prim A.

The map 0 : H — R which is the identity of R* and which sends R? to
0, is surjective, continuous, and open.
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C*(H) as a bundle
Set A = C*(H). It is not hard to check that H = A = Prim A.

The map 0 : H — R which is the identity of R* and which sends R? to
0, is surjective, continuous, and open.

Thus we obtain that A is (isomorphic to) a continuous field over R
with fibres:

@ For A # 0 we have the irreducible U” : C*(H) — K(L?(R));

@ For A =0 we have the C*-algebra whose spectrum is the
characters x; », that is, Co(R?).
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C*(H) as a bundle
Set A = C*(H). It is not hard to check that H = A = Prim A.

The map 0 : H — R which is the identity of R* and which sends R? to
0, is surjective, continuous, and open.

Thus we obtain that A is (isomorphic to) a continuous field over R
with fibres:

@ For A # 0 we have the irreducible U” : C*(H) — K(L?(R));

@ For A =0 we have the C*-algebra whose spectrum is the
characters x; », that is, Co(R?).

@ The bundle over (0, 1] is trivial.
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C*(H) as a bundle
Set A = C*(H). It is not hard to check that H = A = Prim A.

The map 0 : H — R which is the identity of R* and which sends R? to
0, is surjective, continuous, and open.

Thus we obtain that A is (isomorphic to) a continuous field over R
with fibres:

@ For A # 0 we have the irreducible U” : C*(H) — K(L?(R));
@ For A =0 we have the C*-algebra whose spectrum is the
characters x; », that is, Co(R?).

@ The bundle over (0, 1] is trivial.

However, what are the vector fields? However, this can be powerful
tool, see Elliott, Natsume, Nest, “The Heisenberg Group and
K-Theory”.

For a complete study of C*(H) see Ludwig, Turowska, “The
C*-algebras of the Heisenberg group and of thread-like Lie groups”.
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Outline

e Co(X )-algebras
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Drawbacks

Continuous fields of C*-algebras are an attractive tool, but it does not
interact well with other operations.

Theorem (Kirchberg, Wassermann)

Let B be a C*-algebra. Consider continuous fields over the base
space No,. Tensoring each fibre against B gives a continuous field
if and only if B s ezact.

There is a similar criteria for nuclearity (using the maximal tensor
product). Similar results for crossed-products (characterising exactness
of the group) hold.
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The Dauns-Hoffman Theorem

For a C*-algebra A, the multiplier algebra of A is the largest
C*-algebra M such that A embeds as a closed ideal of M which is

essential, that is, z € M and zA = {0} imply z = 0. Write M (A) for
the multiplier algebra.
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The Dauns-Hoffman Theorem

For a C*-algebra A, the multiplier algebra of A is the largest
C*-algebra M such that A embeds as a closed ideal of M which is

essential, that is, z € M and zA = {0} imply z = 0. Write M (A) for
the multiplier algebra.

@ Various well-known constructions: double centralisers, bidual
picture, etc.
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The Dauns-Hoffman Theorem

For a C*-algebra A, the multiplier algebra of A is the largest
C*-algebra M such that A embeds as a closed ideal of M which is
essential, that is, z € M and zA = {0} imply z = 0. Write M (A) for
the multiplier algebra.

@ Various well-known constructions: double centralisers, bidual
picture, etc.

o If A is unital then M(4) = A.

Matthew Daws (UCLan) Bundles and Fields Istanbul, August 2019 17 /28



The Dauns-Hoffman Theorem

For a C*-algebra A, the multiplier algebra of A is the largest
C*-algebra M such that A embeds as a closed ideal of M which is
essential, that is, z € M and zA = {0} imply z = 0. Write M (A) for
the multiplier algebra.

@ Various well-known constructions: double centralisers, bidual
picture, etc.

o If A is unital then M(4) = A.
o If A= Cy(X)then M(A)= C®X)=C(BX)
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The Dauns-Hoffman Theorem

For a C*-algebra A, the multiplier algebra of A is the largest
C*-algebra M such that A embeds as a closed ideal of M which is
essential, that is, z € M and zA = {0} imply z = 0. Write M (A) for
the multiplier algebra.

@ Various well-known constructions: double centralisers, bidual
picture, etc.

o If A is unital then M(4) = A.

o If A= Cy(X)then M(A)= C®X)=C(BX)
For P € Prim A let mp : A — A/P be the quotient map.
Theorem

There is an isomorphism ¢ : C°(Prim A) — ZM (A), the centre of
M(A), with

np(d(f)a) = f(P)mp(a) (a € AP cPrimA,fc C*PrimA)).
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Corollary: Cy(X )-algebras

A Cy(X)-algebra is a C*-algebra A together with a x-homomorphism
Dy : Co(X) — ZM(A) which is non-degenerate:

D4(Co(X))A =1lin{@4(f)a:f € Co(X),a € A} is dense in A.
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Corollary: Cy(X )-algebras

A Cy(X)-algebra is a C*-algebra A together with a x-homomorphism
Dy : Co(X) — ZM(A) which is non-degenerate:

D4(Co(X))A =1lin{@4(f)a:f € Co(X),a € A} is dense in A.

e A non-degenerate x-homomorphism @ : Co(X) — C?(Y) is
always of the form ®(f) = f o 0 with 0: Y — X continuous.
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Corollary: Cy(X )-algebras

A Cy(X)-algebra is a C*-algebra A together with a x-homomorphism
Dy : Co(X) — ZM(A) which is non-degenerate:

D4(Co(X))A =1lin{@4(f)a:f € Co(X),a € A} is dense in A.

e A non-degenerate x-homomorphism @ : Co(X) — C?(Y) is
always of the form ®(f) = f o 0 with 0: Y — X continuous.

o And any o gives rise to a @.
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Corollary: Cy(X )-algebras

A Cy(X)-algebra is a C*-algebra A together with a x-homomorphism
Dy : Co(X) — ZM(A) which is non-degenerate:

D4(Co(X))A =1lin{@4(f)a:f € Co(X),a € A} is dense in A.

e A non-degenerate x-homomorphism @ : Co(X) — C?(Y) is
always of the form ®(f) = f o 0 with 0: Y — X continuous.
o And any o gives rise to a @.
o We typically assume @ 4 is injective, which is equivalent to o
having dense range.
As ZM(A) = C?(Prim A) we see that Cy(X )-algebras can also be
described by continuous maps o : Prim A — X (which have dense
range).
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Co(X )-algebras as fields/bundles

This setup, o: Prim A — X, is very close to what we saw before, but
we no longer have that o is open.
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Co(X )-algebras as fields/bundles

This setup, o: Prim A — X, is very close to what we saw before, but
we no longer have that o is open.

This corresponds to fields/bundles which are only upper
Semicontinuous

limsup ||z < [|zol|.
T—T
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Co(X )-algebras as fields/bundles

This setup, o: Prim A — X, is very close to what we saw before, but
we no longer have that o is open.

This corresponds to fields/bundles which are only upper
Semicontinuous

lim sup [|z[| < |zol|.
T—T

The benefit is that Cy(X )-algebras are better behaved with respect to
tensor products and so forth.
References:

o Williams “Crossed products of C*-algebras”, esp. Appendix C.
o Blanchard, “Déformations de C*-algebres de Hopf”.

Matthew Daws (UCLan) Bundles and Fields Istanbul, August 2019 19 /28



Banach Cy(X )-algebras: remove?

A Banach Cy(X)-algebra is a Banach algebra A which is an essential
(left) Co(X )-module with

f-lab)=a(f-0)=(f-a)b (feCo(X) abeA).

(This is also the same as the definition using the multiplier algebra of
A).
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Banach Cy(X )-algebras: remove?

A Banach Cy(X)-algebra is a Banach algebra A which is an essential
(left) Co(X )-module with

f-lab)=al(f-b)=(f-a)b  (f € Co(X),a,beA).
(This is also the same as the definition using the multiplier algebra of
A).
@ For z € X let C,(X) = Co(X \ {z}) which is identified with
{f € Co(X): f(z) =0} a subalgebra of Cy(X).
o Let N, = C,(X) - A which by Cohen-Hewitt factorisation is a

closed subspace of A. The above conditions show that it is an
ideal in A.
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Banach Cy(X )-algebras: remove?

A Banach Cy(X)-algebra is a Banach algebra A which is an essential
(left) Co(X )-module with

f-lab)=al(f-b)=(f-a)b  (f € Co(X),a,beA).
(This is also the same as the definition using the multiplier algebra of
A).
@ For z € X let C,(X) = Co(X \ {z}) which is identified with
{f € Co(X): f(z) =0} a subalgebra of Cy(X).
o Let N, = C,(X) - A which by Cohen-Hewitt factorisation is a

closed subspace of A. The above conditions show that it is an
ideal in A.

o Define A® = A/N,, the fibre at z. Let m*: A — A® be the
quotient map.

Contrasting to the C*-case, we no longer have, for example,
la| = sup [|[7*(a)].
T
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Representations: Hilbert C*-modules

C*-algebras are naturally represented on Hilbert spaces. The analogue
for a Cy(X)-algebra is a Hilbert C*-module over Cy(X).
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for a Cy(X)-algebra is a Hilbert C*-module over Cy(X).

This is a Banach space E which is a right Cy(X ) module, and which
has an “inner-product” which is Cp(X )-valued.

Such objects behave much like Hilbert spaces. A big difference is that
bounded linear maps do not automatically have adjoints; this needs to

be an axiom, leading to L(E).
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genuine Hilbert space.
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Representations: Hilbert C*-modules

C*-algebras are naturally represented on Hilbert spaces. The analogue
for a Cy(X)-algebra is a Hilbert C*-module over Cy(X).

This is a Banach space E which is a right Cy(X ) module, and which
has an “inner-product” which is Cp(X )-valued.

Such objects behave much like Hilbert spaces. A big difference is that
bounded linear maps do not automatically have adjoints; this needs to
be an axiom, leading to L(E).

We can form N, in the same way as before, and then E® turns into a
genuine Hilbert space.

A representation of a Cy(X)-algebra A on F is a Cy(X )-module map
n: A — L(E). This fibres to give genuine x-homomorphisms
n*: A, — B(E®).
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Outline

e Quantum groups
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SU(2)

Let G = SU(2) the group of 2 x 2 complex valued unitary matrices
with unit determinant.
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Let G = SU(2) the group of 2 x 2 complex valued unitary matrices
with unit determinant.

Any member of G is of the form

with a,b € C with |a|?> + |b]* = 1.
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SU(2)

Let G = SU(2) the group of 2 x 2 complex valued unitary matrices
with unit determinant.

Any member of G is of the form

with a,b € C with |a|?> + |b]* = 1.

Consider C(G) the continuous functions on G. Define

Then the matrix

is unitary.
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SU(2) as a Hopf C*-algebra

Set G =SU(2) and A = C(G). We have the “coordinates” «,y € A

with
x —Y*
Yy &

a unitary in M>(A).
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Set G =SU(2) and A = C(G). We have the “coordinates” «,y € A

with
x —y*
Yy &

a unitary in M>(A). By Stone-Weierstrauss, «,y generate A.

Of course, A tells us nothing about the group SU(2). We can encode
the group product G x G — G as a x-homomorphism
A:A=C(G)—- C(GxG)=AR®A.
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SU(2) as a Hopf C*-algebra
Set G =SU(2) and A = C(G). We have the “coordinates” «,y € A

with
x —y*
Yy o

a unitary in M>(A). By Stone-Weierstrauss, «,y generate A.

Of course, A tells us nothing about the group SU(2). We can encode
the group product G x G — G as a x-homomorphism
A:A=C(G)—- C(GxG)=AR®A.

Then, if s = <Z _ab) and t = (2 _Cd>, then
A(x)(s,t) = «(st) = ac — bd = a(s)x(t) — y*(s)y(t).

SoAla) = ® o« —y* ®7y. Similarly Aly) =y R a+ o* ®y.

Matthew Daws (UCLan) Bundles and Fields Istanbul, August 2019 24 /28



Quantum SU(2)

Woronowicz introduced a “deformation” of SU(2) as follows. Let
0 < g <1 and let A be the C*-algebra generated by elements «,y such

that
x —qy”
Yy o

is unitary in M>(4).
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Quantum SU(2)

Woronowicz introduced a “deformation” of SU(2) as follows. Let
0 < g <1 and let A be the C*-algebra generated by elements «,y such

that
x —qy”
Yy o

@ Such a C'*-algebra does exist. It is non-commutative; for

0 < g < 1, it is isomorphic to a C*-algebra related to the Toeplitz
algebra.

is unitary in M>(4).
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that
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Yy o

@ Such a C'*-algebra does exist. It is non-commutative; for

0 < g < 1, it is isomorphic to a C*-algebra related to the Toeplitz
algebra.

is unitary in M>(4).

o Ifwedefine Alx) =ax®@ax—gqy*"@vand Aly) =vya+a*®vy
then we obtain a x-homomorphism
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Quantum SU(2)

Woronowicz introduced a “deformation” of SU(2) as follows. Let
0 < g <1 and let A be the C*-algebra generated by elements «,y such

that
x —qy”
Yy o

@ Such a C'*-algebra does exist. It is non-commutative; for

0 < g < 1, it is isomorphic to a C*-algebra related to the Toeplitz
algebra.

is unitary in M>(4).

o Ifwedefine Alx) =ax®@ax—gqy*"@vand Aly) =vya+a*®vy
then we obtain a x-homomorphism

@ This is the analogue of the group product.
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Quantum SU(2) continued
AA— AR A (A®id)A = (Id®A)A.

The pair (4,A) is a compact quantum group, objects which have
remarkable similarities to compact groups:
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Quantum SU(2) continued

A:A— AR A, (A®id)A = (Id®A)A.
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remarkable similarities to compact groups:

@ Subject to “quantum cancellation”, that lin{(a ® 1)A(b) : a,b € A}
is dense in A ® A (and (1 ® a)A(b)), we get. ..

o A “Haar measure”, a state @ € A* which is invariant,
(p ®id)A(a) = (iId®@)A(a) = @(a)l.
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Quantum SU(2) continued

A:A— AR A, (A®id)A = (Id®A)A.
The pair (4,A) is a compact quantum group, objects which have
remarkable similarities to compact groups:
@ Subject to “quantum cancellation”, that lin{(a ® 1)A(b) : a,b € A}
is dense in A ® A (and (1 ® a)A(b)), we get. ..
o A “Haar measure”, a state @ € A* which is invariant,
(p ®id)A(a) = (id®@)A(a) = @(a)l.
o Have a notion of a “corepresentation”, and all unitary
corepresentations split into direct sums of finite dimensionals.
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@ Subject to “quantum cancellation”, that lin{(a ® 1)A(b) : a,b € A}
is dense in A ® A (and (1 ® a)A(b)), we get. ..

o A “Haar measure”, a state @ € A* which is invariant,
(p ®id)A(a) = (id®@)A(a) = @(a)l.

o Have a notion of a “corepresentation”, and all unitary
corepresentations split into direct sums of finite dimensionals.

o Analogue of the Peter-Weyl theory.
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Quantum SU(2) continued

A:A— AR A, (A®id)A = (Id®A)A.
The pair (4,A) is a compact quantum group, objects which have
remarkable similarities to compact groups:
@ Subject to “quantum cancellation”, that lin{(a ® 1)A(b) : a,b € A}
is dense in A ® A (and (1 ® a)A(b)), we get. ..
o A “Haar measure”, a state @ € A* which is invariant,
(p ®id)A(a) = (id®@)A(a) = @(a)l.
o Have a notion of a “corepresentation”, and all unitary
corepresentations split into direct sums of finite dimensionals.
o Analogue of the Peter-Weyl theory.

o Lots of operator-algebraic structure appears: for example, ¢ is a
KMS state. So there is automatic interaction with von Neumann
algebra theory.
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A field of SU,(2)

Following Bauval and Blanchard, let A be the C'*-algebra generated by
«,v,f such that:

o f commutes with «,;
e f = f* >0 has spectrum [0, 1];

o u= <oc _fz/ ) is unitary in M>(A).
Y o«
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Functional calculus, applied to f, provides a *x-homomorphism
C([0,1]) — A, so turning A into C([0, 1])-algebra.
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A field of SU,(2)

Following Bauval and Blanchard, let A be the C'*-algebra generated by
«,v,f such that:

o f commutes with «,;
e f = f* >0 has spectrum [0, 1];

o u= (oc _fz/ ) is unitary in M>(A).
Y o«

Functional calculus, applied to f, provides a *x-homomorphism
C([0,1]) — A, so turning A into C([0, 1])-algebra.

By restriction, A becomes a Cy((0, 1])-algebra.

Theorem

A becomes a continuous field over (0, 1] with fibres A, where Ag 1s
the C*-algebra representing SU,(2). The Haar states vary
continuously.
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Questions

If we have a continuous family of Haar states, then there should be a
von Neumann algebra picture lurking here. But we somehow want to
mix continuity and “measurability”: jumping straight to measurable
fields of von Neumann algebras seems to lose too much information.

What can one say about actions?

What about the locally compact case? Is there a nice source of
examples, beyond the “classical” deformation examples?
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