Fields of algebras

Matthew Daws

UCLan

Istanbul, August 2019

Matthew Daws (UCLan)

Bundles and Fields

Istanbul, August 2019 1 / 28

Outline

Bundles and sections

2 Links with representation theory

3 $C_0(X)$ -algebras

Matthew Daws (UCLan)

- The "trivial bundle" with fibre F is $B = X \times F$ with p(x, f) = x.
- A Mobius Strip is a bundle over the circle, where each fibre is a copy of the interval, but the global topology is not trivial.
- Typically our fibres will vary, and we do not assume any form of "local triviality", so we are far from the setting of "fibre bundles".

David Benbennick, CC BY-SA 3.0, Wikipedia

- The "trivial bundle" with fibre Fis $B = X \times F$ with p(x, f) = x.
- A Mobius Strip is a bundle over the circle, where each fibre is a copy of the interval, but the global topology is not trivial.
- Typically our fibres will vary, and we do not assume any form of "local triviality", so we are far from the setting of "fibre bundles".

David Benbennick, CC BY-SA 3.0, Wikipedia

- The "trivial bundle" with fibre F is B = X × F with p(x, f) = x.
- A Mobius Strip is a bundle over the circle, where each fibre is a copy of the interval, but the global topology is not trivial.
- Typically our fibres will vary, and we do not assume any form of "local triviality", so we are far from the setting of "fibre bundles".

David Benbennick, CC BY-SA 3.0, Wikipedia

- The "trivial bundle" with fibre F is B = X × F with p(x, f) = x.
- A Mobius Strip is a bundle over the circle, where each fibre is a copy of the interval, but the global topology is not trivial.
- Typically our fibres will vary, and we do not assume any form of "local triviality", so we are far from the setting of "fibre bundles".

David Benbennick, CC BY-SA 3.0, Wikipedia

A *bundle of Banach spaces* is a bundle where each fibre has the structure of a Banach space, and:

- $B \to [0,\infty); b \mapsto \|b\|$ is continuous (where we use the norm on the fibre at $p(b) \in X$);
- addition is jointly continuous as a map +: $\{(b_1, b_2) \in B \times B : p(b_1) = p(b_2)\} \rightarrow B;$
- for each $\lambda \in \mathbb{C}$ the map $B \to B; b \mapsto \lambda B$ is continuous;
- if (b_i) is a net in B with $p(b_i) \to x$ and $||b_i|| \to 0$ then $b_i \to 0_x$ (the zero vector in the fibre over x).

A *bundle of Banach spaces* is a bundle where each fibre has the structure of a Banach space, and:

- $B \to [0,\infty); b \mapsto \|b\|$ is continuous (where we use the norm on the fibre at $p(b) \in X$);
- addition is jointly continuous as a map +: $\{(b_1, b_2) \in B \times B : p(b_1) = p(b_2)\} \rightarrow B;$
- for each $\lambda \in \mathbb{C}$ the map $B \to B; b \mapsto \lambda B$ is continuous;
- if (b_i) is a net in B with $p(b_i) \to x$ and $||b_i|| \to 0$ then $b_i \to 0_x$ (the zero vector in the fibre over x).

A *bundle of Banach spaces* is a bundle where each fibre has the structure of a Banach space, and:

- $B \to [0,\infty); b \mapsto \|b\|$ is continuous (where we use the norm on the fibre at $p(b) \in X$);
- addition is jointly continuous as a map +: $\{(b_1, b_2) \in B \times B : p(b_1) = p(b_2)\} \rightarrow B;$
- for each $\lambda \in \mathbb{C}$ the map $B \to B$; $b \mapsto \lambda B$ is continuous;
- if (b_i) is a net in B with $p(b_i) \to x$ and $||b_i|| \to 0$ then $b_i \to 0_x$ (the zero vector in the fibre over x).

A *bundle of Banach spaces* is a bundle where each fibre has the structure of a Banach space, and:

- $B \to [0,\infty); b \mapsto \|b\|$ is continuous (where we use the norm on the fibre at $p(b) \in X$);
- addition is jointly continuous as a map +: $\{(b_1, b_2) \in B \times B : p(b_1) = p(b_2)\} \rightarrow B;$
- for each $\lambda \in \mathbb{C}$ the map $B \to B; b \mapsto \lambda B$ is continuous;
- if (b_i) is a net in B with $p(b_i) \to x$ and $||b_i|| \to 0$ then $b_i \to 0_x$ (the zero vector in the fibre over x).

A *bundle of Banach spaces* is a bundle where each fibre has the structure of a Banach space, and:

- $B \to [0,\infty); b \mapsto \|b\|$ is continuous (where we use the norm on the fibre at $p(b) \in X$);
- addition is jointly continuous as a map +: $\{(b_1, b_2) \in B \times B : p(b_1) = p(b_2)\} \rightarrow B;$
- for each $\lambda \in \mathbb{C}$ the map $B \to B; b \mapsto \lambda B$ is continuous;
- if (b_i) is a net in B with $p(b_i) \to x$ and $||b_i|| \to 0$ then $b_i \to 0_x$ (the zero vector in the fibre over x).

A *bundle of Banach spaces* is a bundle where each fibre has the structure of a Banach space, and:

- $B \to [0,\infty); b \mapsto \|b\|$ is continuous (where we use the norm on the fibre at $p(b) \in X$);
- addition is jointly continuous as a map +: $\{(b_1, b_2) \in B \times B : p(b_1) = p(b_2)\} \rightarrow B;$
- for each $\lambda \in \mathbb{C}$ the map $B \to B; b \mapsto \lambda B$ is continuous;
- if (b_i) is a net in B with $p(b_i) \to x$ and $||b_i|| \to 0$ then $b_i \to 0_x$ (the zero vector in the fibre over x).

A section is a function $f: X \to B$ with p(f(x)) = x for each $x \in X$. We say that B has sufficiently many continuous (cross-) sections if for each $b \in B$ there is a continuous section f with f(x) = b for x = p(b).

• Notice that the axioms imply that the zero section, $x \mapsto 0_x$, is continuous;

Theorem (Douady, Dal Soglio-Hérault)

Let X be locally compact. A bundle of Banach spaces over X has sufficiently many continuous sections.

A section is a function $f: X \to B$ with p(f(x)) = x for each $x \in X$. We say that B has sufficiently many continuous (cross-) sections if for each $b \in B$ there is a continuous section f with f(x) = b for x = p(b).

• Notice that the axioms imply that the zero section, $x \mapsto 0_x$, is continuous;

Theorem (Douady, Dal Soglio-Hérault)

Let X be locally compact. A bundle of Banach spaces over X has sufficiently many continuous sections.

A section is a function $f: X \to B$ with p(f(x)) = x for each $x \in X$. We say that B has sufficiently many continuous (cross-) sections if for each $b \in B$ there is a continuous section f with f(x) = b for x = p(b).

• Notice that the axioms imply that the zero section, $x \mapsto 0_x$, is continuous;

Theorem (Douady, Dal Soglio-Hérault)

Let X be locally compact. A bundle of Banach spaces over X has sufficiently many continuous sections.

A section is a function $f: X \to B$ with p(f(x)) = x for each $x \in X$. We say that B has sufficiently many continuous (cross-) sections if for each $b \in B$ there is a continuous section f with f(x) = b for x = p(b).

• Notice that the axioms imply that the zero section, $x \mapsto 0_x$, is continuous;

Theorem (Douady, Dal Soglio-Hérault)

Let X be locally compact. A bundle of Banach spaces over X has sufficiently many continuous sections.

Some notation: write E(x) for the fibre at $x \in X$, which is a Banach space.

Let Γ be the collection of continuous sections.

- Γ is a closed subspace of $\prod_x E(x)$ for the supremum norm $\|f\| = \sup_x \|f(x)\|_{E(x)}.$
- If $f \in \Gamma$ and $a: X \to \mathbb{C}$ is continuous, then $af: x \mapsto a(x)f(x)$ is also in Γ .
- So Γ is a module over $C^{b}(X)$;

A bundle of Banach algebras is such that each E(x) is a Banach algebra, and the multiplication map $\{(b_1, b_2) : p(b_1) = p(b_2)\} \rightarrow B$ is continuous. Similarly, for a bundle of C^* -algebras, the involution needs to be continuous.

Some notation: write E(x) for the fibre at $x \in X$, which is a Banach space.

Let Γ be the collection of continuous sections.

- Γ is a closed subspace of $\prod_x E(x)$ for the supremum norm $\|f\| = \sup_x \|f(x)\|_{E(x)}.$
- If $f \in \Gamma$ and $a: X \to \mathbb{C}$ is continuous, then $af: x \mapsto a(x)f(x)$ is also in Γ .
- So Γ is a module over $C^{b}(X)$;

A bundle of Banach algebras is such that each E(x) is a Banach algebra, and the multiplication map $\{(b_1, b_2) : p(b_1) = p(b_2)\} \rightarrow B$ is continuous. Similarly, for a bundle of C^* -algebras, the involution needs to be continuous.

Some notation: write E(x) for the fibre at $x \in X$, which is a Banach space.

Let Γ be the collection of continuous sections.

- Γ is a closed subspace of $\prod_x E(x)$ for the supremum norm $\|f\| = \sup_x \|f(x)\|_{E(x)}.$
- If $f \in \Gamma$ and $a: X \to \mathbb{C}$ is continuous, then $af: x \mapsto a(x)f(x)$ is also in Γ .
- So Γ is a module over $C^{b}(X)$;

A bundle of Banach algebras is such that each E(x) is a Banach algebra, and the multiplication map $\{(b_1, b_2) : p(b_1) = p(b_2)\} \rightarrow B$ is continuous. Similarly, for a bundle of C^* -algebras, the involution needs to be continuous.

Some notation: write E(x) for the fibre at $x \in X$, which is a Banach space.

Let Γ be the collection of continuous sections.

- Γ is a closed subspace of $\prod_x E(x)$ for the supremum norm $\|f\| = \sup_x \|f(x)\|_{E(x)}.$
- If $f \in \Gamma$ and $a: X \to \mathbb{C}$ is continuous, then $af: x \mapsto a(x)f(x)$ is also in Γ .

• So Γ is a module over $C^{b}(X)$;

A bundle of Banach algebras is such that each E(x) is a Banach algebra, and the multiplication map $\{(b_1, b_2) : p(b_1) = p(b_2)\} \rightarrow B$ is continuous. Similarly, for a bundle of C^* -algebras, the involution needs to be continuous.

Some notation: write E(x) for the fibre at $x \in X$, which is a Banach space.

Let Γ be the collection of continuous sections.

- Γ is a closed subspace of $\prod_x E(x)$ for the supremum norm $\|f\| = \sup_x \|f(x)\|_{E(x)}.$
- If $f \in \Gamma$ and $a: X \to \mathbb{C}$ is continuous, then $af: x \mapsto a(x)f(x)$ is also in Γ .
- So Γ is a module over $C^{b}(X)$;

A bundle of Banach algebras is such that each E(x) is a Banach algebra, and the multiplication map $\{(b_1, b_2) : p(b_1) = p(b_2)\} \rightarrow B$ is continuous. Similarly, for a bundle of C^* -algebras, the involution needs to be continuous.

Some notation: write E(x) for the fibre at $x \in X$, which is a Banach space.

Let Γ be the collection of continuous sections.

- Γ is a closed subspace of $\prod_x E(x)$ for the supremum norm $\|f\| = \sup_x \|f(x)\|_{E(x)}.$
- If $f \in \Gamma$ and $a: X \to \mathbb{C}$ is continuous, then $af: x \mapsto a(x)f(x)$ is also in Γ .
- So Γ is a module over $C^{b}(X)$;

A bundle of Banach algebras is such that each E(x) is a Banach algebra, and the multiplication map $\{(b_1, b_2) : p(b_1) = p(b_2)\} \rightarrow B$ is continuous. Similarly, for a bundle of C^* -algebras, the involution needs to be continuous.

Constructing bundles

Let $(E(x))_{x\in X}$ be a family of Banach spaces and let A be their disjoint union (without topology) together with the obvious map $p: A \to X$.

Suppose we have Γ a set of sections with:

- under pointwise operations, Γ is a vector space;
- for each $f \in \Gamma$, the map $x \mapsto \|f(x)\|$ is continuous;
- for each $x \in X$, the set $\{f(x) : f \in \Gamma\}$ is dense in E(x).

Theorem (Dauns, Hofmann?)

There is a unique topology on A turning it into a Banach bundle such that each $f \in \Gamma$ becomes a continuous section.

Constructing bundles

Let $(E(x))_{x\in X}$ be a family of Banach spaces and let A be their disjoint union (without topology) together with the obvious map $p: A \to X$.

Suppose we have Γ a set of sections with:

- under pointwise operations, Γ is a vector space;
- for each $f \in \Gamma$, the map $x \mapsto \|f(x)\|$ is continuous;
- for each $x \in X$, the set $\{f(x) : f \in \Gamma\}$ is dense in E(x).

Theorem (Dauns, Hofmann?)

There is a unique topology on A turning it into a Banach bundle such that each $f\in \Gamma$ becomes a continuous section.

Constructing bundles

Let $(E(x))_{x\in X}$ be a family of Banach spaces and let A be their disjoint union (without topology) together with the obvious map $p: A \to X$.

Suppose we have Γ a set of sections with:

- under pointwise operations, Γ is a vector space;
- for each $f \in \Gamma$, the map $x \mapsto \|f(x)\|$ is continuous;
- for each $x \in X$, the set $\{f(x) : f \in \Gamma\}$ is dense in E(x).

Theorem (Dauns, Hofmann?)

There is a unique topology on A turning it into a Banach bundle such that each $f \in \Gamma$ becomes a continuous section.

Moral

We can also axiomatise the notion of a section, which is called a "field" in the literature.

Bundles and fields are essentially the same thing.

- A bundle gives rise to continuous sections, which form a field.
- A field defines a topology which allows us to "glue together" the spaces into a bundle.

References:

- Dixmier "Les C*-algèbres et leurs représentations"
- Fell, Doran, "Representations of *-algebras, locally compact groups, and Banach *-algebraic bundles".

Outline

1 Bundles and sections

2 Links with representation theory

3 $C_0(X)$ -algebras

Matthew Daws (UCLan)

Bundles and Fields

Istanbul, August 2019 9/28

We setup some notation:

- Let A be a C^* -algebra and \widehat{A} its dual space, the set of unitary equivalence classes of irreducible representations, given the hull-kernel topology.
- Let Prim A be the space of primitive ideals of A, with the hull-kernel topology. For $I \in \text{Prim } A$ let $\pi_I : A \to A/I$ be the quotient map.
- We could then consider the "field" of C^* -algebras given by $(\pi_I(A))_{I \in \operatorname{Prim} A} = (A/I)_{I \in \operatorname{Prim} A}$ and vector fields of the form $\pi \mapsto \pi_I(a) = a + I$ for $a \in A$.
- However, a → ||π_I(a)|| may fail to be continuous. And Prim A is often a "nasty" topological space.

We setup some notation:

- Let A be a C^* -algebra and \widehat{A} its dual space, the set of unitary equivalence classes of irreducible representations, given the hull-kernel topology.
- Let Prim A be the space of primitive ideals of A, with the hull-kernel topology. For $I \in \text{Prim } A$ let $\pi_I : A \to A/I$ be the quotient map.
- We could then consider the "field" of C^* -algebras given by $(\pi_I(A))_{I \in \operatorname{Prim} A} = (A/I)_{I \in \operatorname{Prim} A}$ and vector fields of the form $\pi \mapsto \pi_I(a) = a + I$ for $a \in A$.
- However, a → ||π_I(a)|| may fail to be continuous. And Prim A is often a "nasty" topological space.

We setup some notation:

- Let A be a C^* -algebra and \widehat{A} its dual space, the set of unitary equivalence classes of irreducible representations, given the hull-kernel topology.
- Let Prim A be the space of primitive ideals of A, with the hull-kernel topology. For $I \in \text{Prim } A$ let $\pi_I : A \to A/I$ be the quotient map.
- We could then consider the "field" of C^* -algebras given by $(\pi_I(A))_{I \in \operatorname{Prim} A} = (A/I)_{I \in \operatorname{Prim} A}$ and vector fields of the form $\pi \mapsto \pi_I(a) = a + I$ for $a \in A$.
- However, a → ||π_I(a)|| may fail to be continuous. And Prim A is often a "nasty" topological space.

We setup some notation:

- Let A be a C^* -algebra and \widehat{A} its dual space, the set of unitary equivalence classes of irreducible representations, given the hull-kernel topology.
- Let Prim A be the space of primitive ideals of A, with the hull-kernel topology. For $I \in \text{Prim } A$ let $\pi_I : A \to A/I$ be the quotient map.
- We could then consider the "field" of C^* -algebras given by $(\pi_I(A))_{I \in \operatorname{Prim} A} = (A/I)_{I \in \operatorname{Prim} A}$ and vector fields of the form $\pi \mapsto \pi_I(a) = a + I$ for $a \in A$.
- However, a → ||π_I(a)|| may fail to be continuous. And Prim A is often a "nasty" topological space.

Hausdorff to the rescue

Theorem (Lee, Tomiyama)

Let $f : \operatorname{Prim} A \to X$ be an open, continuous, surjective map onto a locally compact (Hausdorff) X. Let A_x be A quotiented by $\bigcap f^{-1}(\{x\})$. Then (A_x) is a continuous field, and the C^{*}-algebra of this field is (isomorphic to) A.

Recall that if $I \subseteq A$ is a closed (two-sided) ideal then $Prim(A/I) = \{P \in Prim A : I \subset P\}$. Thus if $E \subseteq Prim A$ is a subset and $I = \bigcap E = \bigcap_{P \in E} P$, then Prim(A/I) = E. A detailed example: the Heisenberg group

$$\mathbb{H}=\left\{egin{pmatrix}1&x&z\0&1&y\0&0&1\end{pmatrix}:x,y,z\in\mathbb{R}
ight\}.$$

Some notes on the structure:

• Can think of as triples (x, y, z) with product $(x, y, z) \cdot (x', y', z') = (x + x', y + y', z + z' + x \cdot y').$

• The centre is $Z = \{(0, 0, z) : z \in \mathbb{R}\}$ and $\mathbb{H}/Z \cong \mathbb{R}^2$.

- $N = \{(0, y, z)\}$ is a closed normal subgroup, isomorphic to \mathbb{R}^2 ,
- and $A = \{(x, 0, 0)\}$ is a closed group, isomorphic to \mathbb{R} ,
- with $NA = \mathbb{H}$ and $N \cap A = \{0\}$, so $\mathbb{H} \cong \mathbb{R}^2 \rtimes_{\alpha} \mathbb{R}$ where $\alpha_x(y, z) = (y, z + x \cdot y)$

A detailed example: the Heisenberg group

$$\mathbb{H}=\left\{egin{pmatrix}1&x&z\0&1&y\0&0&1\end{pmatrix}:x,y,z\in\mathbb{R}
ight\}.$$

Some notes on the structure:

- Can think of as triples (x, y, z) with product $(x, y, z) \cdot (x', y', z') = (x + x', y + y', z + z' + x \cdot y').$
- The centre is $Z = \{(0,0,z) : z \in \mathbb{R}\}$ and $\mathbb{H}/Z \cong \mathbb{R}^2$.

• $N = \{(0, y, z)\}$ is a closed normal subgroup, isomorphic to \mathbb{R}^2 ,

- and $A = \{(x, 0, 0)\}$ is a closed group, isomorphic to \mathbb{R} ,
- with $NA = \mathbb{H}$ and $N \cap A = \{0\}$, so $\mathbb{H} \cong \mathbb{R}^2 \rtimes_{\alpha} \mathbb{R}$ where $\alpha_x(y, z) = (y, z + x \cdot y)$

A detailed example: the Heisenberg group

$$\mathbb{H}=\left\{egin{pmatrix}1&x&z\0&1&y\0&0&1\end{pmatrix}:x,y,z\in\mathbb{R}
ight\}.$$

Some notes on the structure:

- Can think of as triples (x, y, z) with product $(x, y, z) \cdot (x', y', z') = (x + x', y + y', z + z' + x \cdot y').$
- The centre is $Z = \{(0,0,z) : z \in \mathbb{R}\}$ and $\mathbb{H}/Z \cong \mathbb{R}^2$.
- $N = \{(0, y, z)\}$ is a closed normal subgroup, isomorphic to \mathbb{R}^2 ,
- and $A = \{(x, 0, 0)\}$ is a closed group, isomorphic to \mathbb{R} ,
- with $NA = \mathbb{H}$ and $N \cap A = \{0\}$, so $\mathbb{H} \cong \mathbb{R}^2 \rtimes_{\alpha} \mathbb{R}$ where $\alpha_x(y, z) = (y, z + x \cdot y)$

Representation theory

The irreducible representations fall into two classes:

- characters $\{\chi_{\xi,\lambda}:\xi,\lambda\in\mathbb{R}\}$ acting on x, y via $\chi_{\xi,\lambda}(x, y, z) = e^{i(\xi\cdot x + \lambda\cdot y)};$
- infinite dimensional representations U^{λ} , for $\lambda \neq 0$, on $L^{2}(\mathbb{R})$ given by $U^{\lambda}(x, y, z)f(t) = e^{i\lambda(z-y\cdot t)}f(t-x)$
- So as a set, $\widehat{\mathbb{H}}=\mathbb{R}^2\cup\mathbb{R}^*$ where $\mathbb{R}^*=\mathbb{R}\setminus\{0\}.$
 - $\mathbb{R}^2 \to \widehat{\mathbb{H}}$ is a homeomorphism onto a closed set, and $\mathbb{R}^* \to \widehat{\mathbb{H}}$ is a homeomorphism onto an open set.
 - $T \subseteq \widehat{\mathbb{H}}$ is closed if and only if:
 - $T \cap \mathbb{R}^2$ and $T \cap \mathbb{R}^*$ are both closed;
 - if $T \cap \mathbb{R}^*$ contains 0 as a limit point, then $\mathbb{R}^2 \subseteq T$.

So $\tilde{\mathbb{T}}$ is far from Hausdorff!
The irreducible representations fall into two classes:

- characters $\{\chi_{\xi,\lambda}:\xi,\lambda\in\mathbb{R}\}$ acting on x, y via $\chi_{\xi,\lambda}(x, y, z) = e^{i(\xi\cdot x + \lambda\cdot y)};$
- infinite dimensional representations U^{λ} , for $\lambda \neq 0$, on $L^{2}(\mathbb{R})$ given by $U^{\lambda}(x, y, z)f(t) = e^{i\lambda(z-y\cdot t)}f(t-x)$
- So as a set, $\widehat{\mathbb{H}}=\mathbb{R}^2\cup\mathbb{R}^*$ where $\mathbb{R}^*=\mathbb{R}\setminus\{0\}.$
 - $\mathbb{R}^2 \to \widehat{\mathbb{H}}$ is a homeomorphism onto a closed set, and $\mathbb{R}^* \to \widehat{\mathbb{H}}$ is a homeomorphism onto an open set.
 - $T \subseteq \widehat{\mathbb{H}}$ is closed if and only if:
 - $T \cap \mathbb{R}^2$ and $T \cap \mathbb{R}^*$ are both closed;
 - if $T \cap \mathbb{R}^*$ contains 0 as a limit point, then $\mathbb{R}^2 \subseteq T$.

So $\widehat{\mathbb{T}}$ is far from Hausdorff!

The irreducible representations fall into two classes:

- characters $\{\chi_{\xi,\lambda}:\xi,\lambda\in\mathbb{R}\}$ acting on x, y via $\chi_{\xi,\lambda}(x, y, z) = e^{i(\xi\cdot x + \lambda\cdot y)};$
- infinite dimensional representations U^{λ} , for $\lambda \neq 0$, on $L^{2}(\mathbb{R})$ given by $U^{\lambda}(x, y, z)f(t) = e^{i\lambda(z-y\cdot t)}f(t-x)$
- So as a set, $\widehat{\mathbb{H}} = \mathbb{R}^2 \cup \mathbb{R}^*$ where $\mathbb{R}^* = \mathbb{R} \setminus \{0\}$.
 - $\mathbb{R}^2 \to \widehat{\mathbb{H}}$ is a homeomorphism onto a closed set, and $\mathbb{R}^* \to \widehat{\mathbb{H}}$ is a homeomorphism onto an open set.
 - $T \subseteq \widehat{\mathbb{H}}$ is closed if and only if:
 - $T \cap \mathbb{R}^2$ and $T \cap \mathbb{R}^*$ are both closed;
 - if $T \cap \mathbb{R}^*$ contains 0 as a limit point, then $\mathbb{R}^2 \subseteq T$.

So $\widehat{\mathbb{T}}$ is far from Hausdorff!

The irreducible representations fall into two classes:

- characters $\{\chi_{\xi,\lambda}:\xi,\lambda\in\mathbb{R}\}$ acting on x, y via $\chi_{\xi,\lambda}(x, y, z) = e^{i(\xi\cdot x + \lambda\cdot y)};$
- infinite dimensional representations U^{λ} , for $\lambda \neq 0$, on $L^{2}(\mathbb{R})$ given by $U^{\lambda}(x, y, z)f(t) = e^{i\lambda(z-y\cdot t)}f(t-x)$

So as a set, $\widehat{\mathbb{H}} = \mathbb{R}^2 \cup \mathbb{R}^*$ where $\mathbb{R}^* = \mathbb{R} \setminus \{0\}$.

- $\mathbb{R}^2 \to \widehat{\mathbb{H}}$ is a homeomorphism onto a closed set, and $\mathbb{R}^* \to \widehat{\mathbb{H}}$ is a homeomorphism onto an open set.
- $T \subseteq \widehat{\mathbb{H}}$ is closed if and only if:
 - $T \cap \mathbb{R}^2$ and $T \cap \mathbb{R}^*$ are both closed;
 - if $T \cap \mathbb{R}^*$ contains 0 as a limit point, then $\mathbb{R}^2 \subseteq T$.

So \mathbb{T} is far from Hausdorff!

The irreducible representations fall into two classes:

- characters $\{\chi_{\xi,\lambda}:\xi,\lambda\in\mathbb{R}\}$ acting on x, y via $\chi_{\xi,\lambda}(x, y, z) = e^{i(\xi\cdot x + \lambda\cdot y)};$
- infinite dimensional representations U^{λ} , for $\lambda \neq 0$, on $L^{2}(\mathbb{R})$ given by $U^{\lambda}(x, y, z)f(t) = e^{i\lambda(z-y\cdot t)}f(t-x)$

So as a set, $\widehat{\mathbb{H}} = \mathbb{R}^2 \cup \mathbb{R}^*$ where $\mathbb{R}^* = \mathbb{R} \setminus \{0\}$.

- $\mathbb{R}^2 \to \widehat{\mathbb{H}}$ is a homeomorphism onto a closed set, and $\mathbb{R}^* \to \widehat{\mathbb{H}}$ is a homeomorphism onto an open set.
- $T\subseteq \widehat{\mathbb{H}}$ is closed if and only if:
 - $T \cap \mathbb{R}^2$ and $T \cap \mathbb{R}^*$ are both closed;
 - if $T \cap \mathbb{R}^*$ contains 0 as a limit point, then $\mathbb{R}^2 \subseteq T$.

So \mathbb{T} is far from Hausdorff!

The irreducible representations fall into two classes:

- characters $\{\chi_{\xi,\lambda}:\xi,\lambda\in\mathbb{R}\}$ acting on x, y via $\chi_{\xi,\lambda}(x, y, z) = e^{i(\xi\cdot x + \lambda\cdot y)};$
- infinite dimensional representations U^{λ} , for $\lambda \neq 0$, on $L^2(\mathbb{R})$ given by $U^{\lambda}(x, y, z)f(t) = e^{i\lambda(z-y\cdot t)}f(t-x)$

So as a set, $\widehat{\mathbb{H}} = \mathbb{R}^2 \cup \mathbb{R}^*$ where $\mathbb{R}^* = \mathbb{R} \setminus \{0\}$.

- $\mathbb{R}^2 \to \widehat{\mathbb{H}}$ is a homeomorphism onto a closed set, and $\mathbb{R}^* \to \widehat{\mathbb{H}}$ is a homeomorphism onto an open set.
- $T\subseteq \widehat{\mathbb{H}}$ is closed if and only if:
 - $T \cap \mathbb{R}^2$ and $T \cap \mathbb{R}^*$ are both closed;
 - if $T \cap \mathbb{R}^*$ contains 0 as a limit point, then $\mathbb{R}^2 \subseteq T$.

So $\widehat{\mathbb{T}}$ is far from Hausdorff!

Set $A = C^*(\mathbb{H})$. It is not hard to check that $\widehat{\mathbb{H}} = \widehat{A} = \operatorname{Prim} A$.

The map $\theta: \widehat{\mathbb{H}} \to \mathbb{R}$ which is the identity of \mathbb{R}^* and which sends \mathbb{R}^2 to 0, is surjective, continuous, and open.

Thus we obtain that A is (isomorphic to) a continuous field over $\mathbb R$ with fibres:

- For $\lambda \neq 0$ we have the irreducible $U^{\lambda}: C^*(\mathbb{H}) \to \mathcal{K}(L^2(\mathbb{R}));$
- For $\lambda = 0$ we have the C^* -algebra whose spectrum is the characters $\chi_{\xi,\lambda}$, that is, $C_0(\mathbb{R}^2)$.
- The bundle over (0, 1] is trivial.

However, what are the vector fields? However, this can be powerful tool, see Elliott, Natsume, Nest, "The Heisenberg Group and *K*-Theory".

For a complete study of $C^*(\mathbb{H})$ see Ludwig, Turowska, "The C^* -algebras of the Heisenberg group and of thread-like Lie group

Matthew Daws (UCLan)

Bundles and Fields

Set $A = C^*(\mathbb{H})$. It is not hard to check that $\widehat{\mathbb{H}} = \widehat{A} = \operatorname{Prim} A$.

The map $\theta : \widehat{\mathbb{H}} \to \mathbb{R}$ which is the identity of \mathbb{R}^* and which sends \mathbb{R}^2 to 0, is surjective, continuous, and open.

Thus we obtain that A is (isomorphic to) a continuous field over \mathbb{R} with fibres:

- For $\lambda \neq 0$ we have the irreducible $U^{\lambda}: C^*(\mathbb{H}) \to \mathcal{K}(L^2(\mathbb{R}));$
- For λ = 0 we have the C*-algebra whose spectrum is the characters χ_{ξ,λ}, that is, C₀(ℝ²).

• The bundle over (0, 1] is trivial.

However, what are the vector fields? However, this can be powerful tool, see Elliott, Natsume, Nest, "The Heisenberg Group and *K*-Theory".

For a complete study of $C^*(\mathbb{H})$ see Ludwig, Turowska, "The C^* -algebras of the Heisenberg group and of thread-like Lie gro

Matthew Daws (UCLan)

Bundles and Fields

Set $A = C^*(\mathbb{H})$. It is not hard to check that $\widehat{\mathbb{H}} = \widehat{A} = \operatorname{Prim} A$.

The map $\theta : \widehat{\mathbb{H}} \to \mathbb{R}$ which is the identity of \mathbb{R}^* and which sends \mathbb{R}^2 to 0, is surjective, continuous, and open.

Thus we obtain that A is (isomorphic to) a continuous field over \mathbb{R} with fibres:

- For $\lambda \neq 0$ we have the irreducible $U^{\lambda}: C^*(\mathbb{H}) \to \mathcal{K}(L^2(\mathbb{R}));$
- For $\lambda = 0$ we have the C*-algebra whose spectrum is the characters $\chi_{\xi,\lambda}$, that is, $C_0(\mathbb{R}^2)$.
- The bundle over (0, 1] is trivial.

However, what are the vector fields? However, this can be powerful tool, see Elliott, Natsume, Nest, "The Heisenberg Group and K-Theory".

For a complete study of $C^*(\mathbb{H})$ see Ludwig, Turowska, "The C^* -algebras of the Heisenberg group and of thread-like Lie group

Matthew Daws (UCLan)

Bundles and Fields

Set $A = C^*(\mathbb{H})$. It is not hard to check that $\widehat{\mathbb{H}} = \widehat{A} = \operatorname{Prim} A$.

The map $\theta : \widehat{\mathbb{H}} \to \mathbb{R}$ which is the identity of \mathbb{R}^* and which sends \mathbb{R}^2 to 0, is surjective, continuous, and open.

Thus we obtain that A is (isomorphic to) a continuous field over \mathbb{R} with fibres:

- For $\lambda \neq 0$ we have the irreducible $U^{\lambda}: C^*(\mathbb{H}) \to \mathcal{K}(L^2(\mathbb{R}));$
- For $\lambda = 0$ we have the C*-algebra whose spectrum is the characters $\chi_{\xi,\lambda}$, that is, $C_0(\mathbb{R}^2)$.
- The bundle over (0, 1] is trivial.

However, what are the vector fields? However, this can be powerful tool, see Elliott, Natsume, Nest, "The Heisenberg Group and K-Theory".

For a complete study of $C^*(\mathbb{H})$ see Ludwig, Turowska, "The C^* -algebras of the Heisenberg group and of thread-like Lie groups".

Outline

Bundles and sections

2 Links with representation theory

3 $C_0(X)$ -algebras

🕘 Quantum groups

Drawbacks

Continuous fields of C^* -algebras are an attractive tool, but it does not interact well with other operations.

Theorem (Kirchberg, Wassermann)

Let B be a C^{*}-algebra. Consider continuous fields over the base space \mathbb{N}_{∞} . Tensoring each fibre against B gives a continuous field if and only if B is exact.

There is a similar criteria for nuclearity (using the maximal tensor product). Similar results for crossed-products (characterising exactness of the group) hold.

For a C^* -algebra A, the *multiplier* algebra of A is the largest C^* -algebra M such that A embeds as a closed ideal of M which is *essential*, that is, $x \in M$ and $xA = \{0\}$ imply x = 0. Write M(A) for the multiplier algebra.

- Various well-known constructions: double centralisers, bidual picture, etc.
- If A is unital then $M(A) \cong A$.
- If $A = C_0(X)$ then $M(A) \cong C^b(X) \cong C(\beta X)$

For $P \in \operatorname{Prim} A$ let $\pi_P : A \to A/P$ be the quotient map.

Theorem

There is an isomorphism $\phi: C^b(\operatorname{Prim} A) \to ZM(A),$ the centre of M(A), with

 $\pi_P(\phi(f)a) = f(P)\pi_P(a) \qquad (a \in A, P \in \operatorname{Prim} A, f \in C^b(\operatorname{Prim} A)).$

For a C^* -algebra A, the *multiplier* algebra of A is the largest C^* -algebra M such that A embeds as a closed ideal of M which is *essential*, that is, $x \in M$ and $xA = \{0\}$ imply x = 0. Write M(A) for the multiplier algebra.

• Various well-known constructions: double centralisers, bidual picture, etc.

• If A is unital then $M(A) \cong A$.

• If $A = C_0(X)$ then $M(A) \cong C^b(X) \cong C(\beta X)$

For $P\in\operatorname{Prim} A$ let $\pi_P:A o A/P$ be the quotient map.

Theorem

There is an isomorphism $\phi: C^b(\operatorname{Prim} A) o ZM(A),$ the centre of M(A), with

 $\pi_P(\phi(f)a) = f(P)\pi_P(a) \qquad (a \in A, P \in \operatorname{Prim} A, f \in C^b(\operatorname{Prim} A)).$

For a C^* -algebra A, the *multiplier* algebra of A is the largest C^* -algebra M such that A embeds as a closed ideal of M which is *essential*, that is, $x \in M$ and $xA = \{0\}$ imply x = 0. Write M(A) for the multiplier algebra.

- Various well-known constructions: double centralisers, bidual picture, etc.
- If A is unital then $M(A) \cong A$.
- If $A = C_0(X)$ then $M(A) \cong C^b(X) \cong C(\beta X)$

For $P \in \operatorname{Prim} A$ let $\pi_P : A \to A/P$ be the quotient map.

Theorem

There is an isomorphism $\phi: C^b(\operatorname{Prim} A) o ZM(A),$ the centre of M(A), with

 $\pi_P(\phi(f)a) = f(P)\pi_P(a) \qquad (a \in A, P \in \operatorname{Prim} A, f \in C^b(\operatorname{Prim} A)).$

For a C^* -algebra A, the *multiplier* algebra of A is the largest C^* -algebra M such that A embeds as a closed ideal of M which is *essential*, that is, $x \in M$ and $xA = \{0\}$ imply x = 0. Write M(A) for the multiplier algebra.

- Various well-known constructions: double centralisers, bidual picture, etc.
- If A is unital then $M(A) \cong A$.
- If $A = C_0(X)$ then $M(A) \cong C^b(X) \cong C(\beta X)$

For $P \in \operatorname{Prim} A$ let $\pi_P : A \to A/P$ be the quotient map.

Theorem

There is an isomorphism $\phi: C^b(\operatorname{Prim} A) o ZM(A),$ the centre of M(A), with

 $\pi_P(\phi(f)a) = f(P)\pi_P(a) \qquad (a \in A, P \in \operatorname{Prim} A, f \in C^b(\operatorname{Prim} A)).$

For a C^* -algebra A, the *multiplier* algebra of A is the largest C^* -algebra M such that A embeds as a closed ideal of M which is *essential*, that is, $x \in M$ and $xA = \{0\}$ imply x = 0. Write M(A) for the multiplier algebra.

- Various well-known constructions: double centralisers, bidual picture, etc.
- If A is unital then $M(A) \cong A$.
- If $A = C_0(X)$ then $M(A) \cong C^b(X) \cong C(\beta X)$

For $P \in \operatorname{Prim} A$ let $\pi_P : A \to A/P$ be the quotient map.

Theorem

There is an isomorphism $\phi: C^b(\operatorname{Prim} A) \to ZM(A)$, the centre of M(A), with

 $\pi_P(\phi(f)a) = f(P)\pi_P(a)$ $(a \in A, P \in \operatorname{Prim} A, f \in C^b(\operatorname{Prim} A)).$

A $C_0(X)$ -algebra is a C^* -algebra A together with a *-homomorphism $\Phi_A: C_0(X) \to ZM(A)$ which is non-degenerate:

 $\Phi_A(C_0(X))A = \lim\{\Phi_A(f)a : f \in C_0(X), a \in A\}$ is dense in A.

- A non-degenerate *-homomorphism $\Phi: C_0(X) \to C^b(Y)$ is always of the form $\Phi(f) = f \circ \sigma$ with $\sigma: Y \to X$ continuous.
- And any σ gives rise to a Φ .
- We typically assume Φ_A is injective, which is equivalent to σ having dense range.

A $C_0(X)$ -algebra is a C^* -algebra A together with a *-homomorphism $\Phi_A: C_0(X) \to ZM(A)$ which is non-degenerate:

 $\Phi_A(C_0(X))A = \lim\{\Phi_A(f)a : f \in C_0(X), a \in A\}$ is dense in A.

- A non-degenerate *-homomorphism $\Phi: C_0(X) \to C^b(Y)$ is always of the form $\Phi(f) = f \circ \sigma$ with $\sigma: Y \to X$ continuous.
- And any σ gives rise to a Φ .
- We typically assume Φ_A is injective, which is equivalent to σ having dense range.

A $C_0(X)$ -algebra is a C^* -algebra A together with a *-homomorphism $\Phi_A: C_0(X) \to ZM(A)$ which is non-degenerate:

 $\Phi_A(C_0(X))A = \lim\{\Phi_A(f)a : f \in C_0(X), a \in A\}$ is dense in A.

- A non-degenerate *-homomorphism $\Phi: C_0(X) \to C^b(Y)$ is always of the form $\Phi(f) = f \circ \sigma$ with $\sigma: Y \to X$ continuous.
- And any σ gives rise to a Φ .
- We typically assume Φ_A is injective, which is equivalent to σ having dense range.

A $C_0(X)$ -algebra is a C^* -algebra A together with a *-homomorphism $\Phi_A: C_0(X) \to ZM(A)$ which is non-degenerate:

 $\Phi_A(C_0(X))A = \lim\{\Phi_A(f)a : f \in C_0(X), a \in A\}$ is dense in A.

- A non-degenerate *-homomorphism $\Phi: C_0(X) \to C^b(Y)$ is always of the form $\Phi(f) = f \circ \sigma$ with $\sigma: Y \to X$ continuous.
- And any σ gives rise to a Φ.
- We typically assume Φ_A is injective, which is equivalent to σ having dense range.

$C_0(X)$ -algebras as fields/bundles

This setup, σ : Prim $A \to X$, is very close to what we saw before, but we no longer have that σ is *open*.

This corresponds to fields/bundles which are only *upper* semicontinuous

 $\limsup_{x\to x_0}\|x\|\leq \|x_0\|.$

The benefit is that $C_0(X)$ -algebras are better behaved with respect to tensor products and so forth. References:

- Williams "Crossed products of C^* -algebras", esp. Appendix C.
- Blanchard, "Déformations de C*-algèbres de Hopf".

$C_0(X)$ -algebras as fields/bundles

This setup, σ : Prim $A \to X$, is very close to what we saw before, but we no longer have that σ is *open*.

This corresponds to fields/bundles which are only upper semicontinuous

 $\limsup_{x\to x_0}\|x\|\leq \|x_0\|.$

The benefit is that $C_0(X)$ -algebras are better behaved with respect to tensor products and so forth. References:

- Williams "Crossed products of C^* -algebras", esp. Appendix C.
- Blanchard, "Déformations de C*-algèbres de Hopf".

$C_0(X)$ -algebras as fields/bundles

This setup, σ : Prim $A \to X$, is very close to what we saw before, but we no longer have that σ is *open*.

This corresponds to fields/bundles which are only upper semicontinuous

 $\limsup_{x\to x_0}\|x\|\leq \|x_0\|.$

The benefit is that $C_0(X)$ -algebras are better behaved with respect to tensor products and so forth. References:

- Williams "Crossed products of C^* -algebras", esp. Appendix C.
- Blanchard, "Déformations de C*-algèbres de Hopf".

A Banach $C_0(X)$ -algebra is a Banach algebra A which is an essential (left) $C_0(X)$ -module with

 $f \cdot (ab) = a(f \cdot b) = (f \cdot a)b$ $(f \in C_0(X), a, b \in A).$

(This is also the same as the definition using the multiplier algebra of A).

- For $x \in X$ let $C_x(X) = C_0(X \setminus \{x\})$ which is identified with $\{f \in C_0(X) : f(x) = 0\}$ a subalgebra of $C_0(X)$.
- Let $N_x = C_x(X) \cdot A$ which by Cohen-Hewitt factorisation is a closed subspace of A. The above conditions show that it is an ideal in A.
- Define $A^x = A/N_x$, the fibre at x. Let $\pi^x : A \to A^x$ be the quotient map.

$$\|a\| = \sup_{x} \|\pi^x(a)\|.$$

A Banach $C_0(X)$ -algebra is a Banach algebra A which is an essential (left) $C_0(X)$ -module with

$$f \cdot (ab) = a(f \cdot b) = (f \cdot a)b$$
 $(f \in C_0(X), a, b \in A).$

(This is also the same as the definition using the multiplier algebra of A).

- For $x \in X$ let $C_x(X) = C_0(X \setminus \{x\})$ which is identified with $\{f \in C_0(X) : f(x) = 0\}$ a subalgebra of $C_0(X)$.
- Let $N_x = C_x(X) \cdot A$ which by Cohen-Hewitt factorisation is a closed subspace of A. The above conditions show that it is an ideal in A.
- Define $A^x = A/N_x$, the *fibre* at x. Let $\pi^x : A \to A^x$ be the quotient map.

$$\|a\|=\sup_{x}\|\pi^{x}(a)\|.$$

A Banach $C_0(X)$ -algebra is a Banach algebra A which is an essential (left) $C_0(X)$ -module with

$$f \cdot (ab) = a(f \cdot b) = (f \cdot a)b$$
 $(f \in C_0(X), a, b \in A).$

(This is also the same as the definition using the multiplier algebra of A).

- For $x \in X$ let $C_x(X) = C_0(X \setminus \{x\})$ which is identified with $\{f \in C_0(X) : f(x) = 0\}$ a subalgebra of $C_0(X)$.
- Let $N_x = C_x(X) \cdot A$ which by Cohen-Hewitt factorisation is a closed subspace of A. The above conditions show that it is an ideal in A.
- Define $A^x = A/N_x$, the *fibre* at x. Let $\pi^x : A \to A^x$ be the quotient map.

$$\|a\| = \sup_{x} \|\pi^x(a)\|.$$

A Banach $C_0(X)$ -algebra is a Banach algebra A which is an essential (left) $C_0(X)$ -module with

$$f \cdot (ab) = a(f \cdot b) = (f \cdot a)b$$
 $(f \in C_0(X), a, b \in A).$

(This is also the same as the definition using the multiplier algebra of A).

- For $x \in X$ let $C_x(X) = C_0(X \setminus \{x\})$ which is identified with $\{f \in C_0(X) : f(x) = 0\}$ a subalgebra of $C_0(X)$.
- Let $N_x = C_x(X) \cdot A$ which by Cohen-Hewitt factorisation is a closed subspace of A. The above conditions show that it is an ideal in A.
- Define $A^x = A/N_x$, the *fibre* at x. Let $\pi^x : A \to A^x$ be the quotient map.

$$\|a\|=\sup_{x}\|\pi^{x}(a)\|.$$

 C^* -algebras are naturally represented on Hilbert spaces. The analogue for a $C_0(X)$ -algebra is a *Hilbert* C^* -module over $C_0(X)$.

This is a Banach space E which is a right $C_0(X)$ module, and which has an "inner-product" which is $C_0(X)$ -valued.

Such objects behave much like Hilbert spaces. A big difference is that bounded linear maps do not automatically have adjoints; this needs to be an axiom, leading to $\mathcal{L}(E)$.

We can form N_x in the same way as before, and then E^x turns into a genuine Hilbert space.

 C^* -algebras are naturally represented on Hilbert spaces. The analogue for a $C_0(X)$ -algebra is a *Hilbert* C^* -module over $C_0(X)$.

This is a Banach space E which is a right $C_0(X)$ module, and which has an "inner-product" which is $C_0(X)$ -valued.

Such objects behave much like Hilbert spaces. A big difference is that bounded linear maps do not automatically have adjoints; this needs to be an axiom, leading to $\mathcal{L}(E)$.

We can form N_x in the same way as before, and then E^x turns into a genuine Hilbert space.

 C^* -algebras are naturally represented on Hilbert spaces. The analogue for a $C_0(X)$ -algebra is a *Hilbert* C^* -module over $C_0(X)$.

This is a Banach space E which is a right $C_0(X)$ module, and which has an "inner-product" which is $C_0(X)$ -valued.

Such objects behave much like Hilbert spaces. A big difference is that bounded linear maps do not automatically have adjoints; this needs to be an axiom, leading to $\mathcal{L}(E)$.

We can form N_x in the same way as before, and then E^x turns into a genuine Hilbert space.

 C^* -algebras are naturally represented on Hilbert spaces. The analogue for a $C_0(X)$ -algebra is a *Hilbert* C^* -module over $C_0(X)$.

This is a Banach space E which is a right $C_0(X)$ module, and which has an "inner-product" which is $C_0(X)$ -valued.

Such objects behave much like Hilbert spaces. A big difference is that bounded linear maps do not automatically have adjoints; this needs to be an axiom, leading to $\mathcal{L}(E)$.

We can form N_x in the same way as before, and then E^x turns into a genuine Hilbert space.

 C^* -algebras are naturally represented on Hilbert spaces. The analogue for a $C_0(X)$ -algebra is a *Hilbert* C^* -module over $C_0(X)$.

This is a Banach space E which is a right $C_0(X)$ module, and which has an "inner-product" which is $C_0(X)$ -valued.

Such objects behave much like Hilbert spaces. A big difference is that bounded linear maps do not automatically have adjoints; this needs to be an axiom, leading to $\mathcal{L}(E)$.

We can form N_x in the same way as before, and then E^x turns into a genuine Hilbert space.

Outline

Bundles and sections

2 Links with representation theory

3 $C_0(X)$ -algebras

SU(2)

Let G = SU(2) the group of 2×2 complex valued unitary matrices with unit determinant.

Any member of G is of the form

$$s = \begin{pmatrix} a & -\overline{b} \\ b & \overline{a} \end{pmatrix}$$

with $a, b \in \mathbb{C}$ with $|a|^2 + |b|^2 = 1$.

Consider C(G) the continuous functions on G. Define

$$\alpha(s) = a, \quad \gamma(s) = b.$$

Then the matrix

$$egin{pmatrix} lpha & -\gamma^* \ \gamma & lpha^* \end{pmatrix} \in M_2ig(C(G)ig)$$

is unitary.

SU(2)

Let G = SU(2) the group of 2×2 complex valued unitary matrices with unit determinant.

Any member of G is of the form

$$s = \begin{pmatrix} a & -\overline{b} \\ b & \overline{a} \end{pmatrix}$$

with $a, b \in \mathbb{C}$ with $|a|^2 + |b|^2 = 1$.

Consider C(G) the continuous functions on G. Define

$$\alpha(s) = a, \quad \gamma(s) = b.$$

Then the matrix

$$egin{pmatrix} lpha & -\gamma^* \ \gamma & lpha^* \end{pmatrix} \in M_2ig(C(G)ig)$$

is unitary.

SU(2)

Let G = SU(2) the group of 2×2 complex valued unitary matrices with unit determinant.

Any member of G is of the form

$$s = \begin{pmatrix} a & -\overline{b} \\ b & \overline{a} \end{pmatrix}$$

with $a, b \in \mathbb{C}$ with $|a|^2 + |b|^2 = 1$.

Consider C(G) the continuous functions on G. Define

$$\alpha(s) = a, \quad \gamma(s) = b.$$

Then the matrix

$$egin{pmatrix} lpha & -\gamma^* \ \gamma & lpha^* \end{pmatrix} \in M_2ig(C(G)ig)$$

is unitary.
Set G = SU(2) and A = C(G). We have the "coordinates" $\alpha, \gamma \in A$ with

$$egin{pmatrix} lpha & -\gamma^* \ \gamma & lpha^* \end{pmatrix}$$

a unitary in $M_2(A)$. By Stone-Weierstrauss, α, γ generate A.

Of course, A tells us nothing about the group SU(2). We can encode the group product $G \times G \to G$ as a *-homomorphism $\Delta: A = C(G) \to C(G \times G) = A \otimes A$.

Then, if
$$s = \begin{pmatrix} a & -\overline{b} \\ b & \overline{a} \end{pmatrix}$$
 and $t = \begin{pmatrix} c & -\overline{d} \\ d & \overline{c} \end{pmatrix}$, then

 $\Delta(\alpha)(s,t) = \alpha(st) = ac - \overline{b}d = \alpha(s)\alpha(t) - \gamma^*(s)\gamma(t).$

So $\Delta(\alpha) = \alpha \otimes \alpha - \gamma^* \otimes \gamma$. Similarly $\Delta(\gamma) = \gamma \otimes \alpha + \alpha^* \otimes \gamma$.

Set G = SU(2) and A = C(G). We have the "coordinates" $\alpha, \gamma \in A$ with

a unitary in $M_2(A)$. By Stone-Weierstrauss, α, γ generate A.

Of course, A tells us nothing about the group SU(2). We can encode the group product $G \times G \to G$ as a *-homomorphism $\Delta: A = C(G) \to C(G \times G) = A \otimes A$.

Then, if
$$s = \begin{pmatrix} a & -\overline{b} \\ b & \overline{a} \end{pmatrix}$$
 and $t = \begin{pmatrix} c & -\overline{d} \\ d & \overline{c} \end{pmatrix}$, then

 $\Delta(\alpha)(s,t) = \alpha(st) = ac - \overline{b}d = \alpha(s)\alpha(t) - \gamma^*(s)\gamma(t).$

So $\Delta(lpha) = lpha \otimes lpha - \gamma^* \otimes \gamma$. Similarly $\Delta(\gamma) = \gamma \otimes lpha + lpha^* \otimes \gamma$.

Set G = SU(2) and A = C(G). We have the "coordinates" $\alpha, \gamma \in A$ with

$$egin{pmatrix} lpha & -\gamma^* \ \gamma & lpha^* \end{pmatrix}$$

a unitary in $M_2(A)$. By Stone-Weierstrauss, α, γ generate A.

Of course, A tells us nothing about the group SU(2). We can encode the group product $G \times G \to G$ as a *-homomorphism $\Delta: A = C(G) \to C(G \times G) = A \otimes A$.

Then, if
$$s = \begin{pmatrix} a & -\overline{b} \\ b & \overline{a} \end{pmatrix}$$
 and $t = \begin{pmatrix} c & -\overline{d} \\ d & \overline{c} \end{pmatrix}$, then

 $\Delta(\alpha)(s,t) = \alpha(st) = ac - \overline{b}d = \alpha(s)\alpha(t) - \gamma^*(s)\gamma(t).$

So $\Delta(\alpha) = \alpha \otimes \alpha - \gamma^* \otimes \gamma$. Similarly $\Delta(\gamma) = \gamma \otimes \alpha + \alpha^* \otimes \gamma$.

Set G = SU(2) and A = C(G). We have the "coordinates" $\alpha, \gamma \in A$ with

$$egin{pmatrix} lpha & -\gamma^* \ \gamma & lpha^* \end{pmatrix}$$

a unitary in $M_2(A)$. By Stone-Weierstrauss, α, γ generate A.

Of course, A tells us nothing about the group SU(2). We can encode the group product $G \times G \to G$ as a *-homomorphism $\Delta: A = C(G) \to C(G \times G) = A \otimes A$.

Then, if
$$s = \begin{pmatrix} a & -\overline{b} \\ b & \overline{a} \end{pmatrix}$$
 and $t = \begin{pmatrix} c & -\overline{d} \\ d & \overline{c} \end{pmatrix}$, then

$$\Delta(\alpha)(s,t) = \alpha(st) = ac - \overline{b}d = \alpha(s)\alpha(t) - \gamma^*(s)\gamma(t).$$

So $\Delta(\alpha) = \alpha \otimes \alpha - \gamma^* \otimes \gamma$. Similarly $\Delta(\gamma) = \gamma \otimes \alpha + \alpha^* \otimes \gamma$.

Woronowicz introduced a "deformation" of SU(2) as follows. Let $0 \le q \le 1$ and let A be the C*-algebra generated by elements α, γ such that

$$egin{pmatrix} lpha & -q\gamma^* \ \gamma & lpha^* \end{pmatrix}$$

- Such a C^* -algebra does exist. It is non-commutative; for 0 < q < 1, it is isomorphic to a C^* -algebra related to the Toeplitz algebra.
- If we define $\Delta(\alpha) = \alpha \otimes \alpha q\gamma^* \otimes \gamma$ and $\Delta(\gamma) = \gamma \otimes \alpha + \alpha^* \otimes \gamma$ then we obtain a *-homomorphism
- This is the analogue of the group product.

Woronowicz introduced a "deformation" of SU(2) as follows. Let $0 \le q \le 1$ and let A be the C*-algebra generated by elements α, γ such that

$$egin{pmatrix} lpha & -q\gamma^* \ \gamma & lpha^* \end{pmatrix}$$

- Such a C^* -algebra does exist. It is non-commutative; for 0 < q < 1, it is isomorphic to a C^* -algebra related to the Toeplitz algebra.
- If we define $\Delta(\alpha) = \alpha \otimes \alpha q\gamma^* \otimes \gamma$ and $\Delta(\gamma) = \gamma \otimes \alpha + \alpha^* \otimes \gamma$ then we obtain a *-homomorphism
- This is the analogue of the group product.

Woronowicz introduced a "deformation" of SU(2) as follows. Let $0 \le q \le 1$ and let A be the C*-algebra generated by elements α, γ such that

$$egin{pmatrix} lpha & -q\gamma^* \ \gamma & lpha^* \end{pmatrix}$$

- Such a C^* -algebra does exist. It is non-commutative; for 0 < q < 1, it is isomorphic to a C^* -algebra related to the Toeplitz algebra.
- If we define $\Delta(\alpha) = \alpha \otimes \alpha q\gamma^* \otimes \gamma$ and $\Delta(\gamma) = \gamma \otimes \alpha + \alpha^* \otimes \gamma$ then we obtain a *-homomorphism
- This is the analogue of the group product.

Woronowicz introduced a "deformation" of SU(2) as follows. Let $0 \le q \le 1$ and let A be the C*-algebra generated by elements α, γ such that

$$egin{pmatrix} lpha & -q\gamma^* \ \gamma & lpha^* \end{pmatrix}$$

- Such a C^* -algebra does exist. It is non-commutative; for 0 < q < 1, it is isomorphic to a C^* -algebra related to the Toeplitz algebra.
- If we define $\Delta(\alpha) = \alpha \otimes \alpha q\gamma^* \otimes \gamma$ and $\Delta(\gamma) = \gamma \otimes \alpha + \alpha^* \otimes \gamma$ then we obtain a *-homomorphism
- This is the analogue of the group product.

 $\Delta: A \to A \otimes A; \quad (\Delta \otimes \mathrm{id})\Delta = (\mathrm{id} \otimes \Delta)\Delta.$

The pair (A, Δ) is a *compact quantum group*, objects which have remarkable similarities to compact groups:

- Subject to "quantum cancellation", that lin{(a ⊗ 1)∆(b) : a, b ∈ A} is dense in A ⊗ A (and (1 ⊗ a)∆(b)), we get...
- A "Haar measure", a state $\varphi \in A^*$ which is invariant, $(\varphi \otimes id)\Delta(a) = (id \otimes \varphi)\Delta(a) = \varphi(a)1.$
- Have a notion of a "corepresentation", and all unitary corepresentations split into direct sums of finite dimensionals.
- Analogue of the Peter-Weyl theory.
- Lots of operator-algebraic structure appears: for example, φ is a KMS state. So there is automatic interaction with von Neumann algebra theory.

 $\Delta: A \to A \otimes A; \quad (\Delta \otimes \mathrm{id})\Delta = (\mathrm{id} \otimes \Delta)\Delta.$

The pair (A, Δ) is a *compact quantum group*, objects which have remarkable similarities to compact groups:

- Subject to "quantum cancellation", that lin{(a ⊗ 1)Δ(b) : a, b ∈ A} is dense in A ⊗ A (and (1 ⊗ a)Δ(b)), we get...
- A "Haar measure", a state $\varphi \in A^*$ which is invariant, $(\varphi \otimes id)\Delta(a) = (id \otimes \varphi)\Delta(a) = \varphi(a)1.$
- Have a notion of a "corepresentation", and all unitary corepresentations split into direct sums of finite dimensionals.
- Analogue of the Peter-Weyl theory.
- Lots of operator-algebraic structure appears: for example, φ is a KMS state. So there is automatic interaction with von Neumann algebra theory.

Matthew Daws (UCLan)

Bundles and Fields

 $\Delta: A \to A \otimes A; \quad (\Delta \otimes \mathrm{id})\Delta = (\mathrm{id} \otimes \Delta)\Delta.$

The pair (A, Δ) is a *compact quantum group*, objects which have remarkable similarities to compact groups:

- Subject to "quantum cancellation", that lin{(a ⊗ 1)Δ(b) : a, b ∈ A} is dense in A ⊗ A (and (1 ⊗ a)Δ(b)), we get...
- A "Haar measure", a state $\varphi \in A^*$ which is invariant, $(\varphi \otimes id)\Delta(a) = (id \otimes \varphi)\Delta(a) = \varphi(a)1.$
- Have a notion of a "corepresentation", and all unitary corepresentations split into direct sums of finite dimensionals.
- Analogue of the Peter-Weyl theory.
- Lots of operator-algebraic structure appears: for example, φ is a KMS state. So there is automatic interaction with von Neumann algebra theory.

Matthew Daws (UCLan)

 $\Delta: A \to A \otimes A; \quad (\Delta \otimes \mathrm{id})\Delta = (\mathrm{id} \otimes \Delta)\Delta.$

The pair (A, Δ) is a *compact quantum group*, objects which have remarkable similarities to compact groups:

- Subject to "quantum cancellation", that lin{(a ⊗ 1)Δ(b) : a, b ∈ A} is dense in A ⊗ A (and (1 ⊗ a)Δ(b)), we get...
- A "Haar measure", a state $\varphi \in A^*$ which is invariant, $(\varphi \otimes id)\Delta(a) = (id \otimes \varphi)\Delta(a) = \varphi(a)1.$
- Have a notion of a "corepresentation", and all unitary corepresentations split into direct sums of finite dimensionals.
- Analogue of the Peter-Weyl theory.
- Lots of operator-algebraic structure appears: for example, φ is a KMS state. So there is automatic interaction with von Neumann algebra theory.

Matthew Daws (UCLan)

 $\Delta: A \to A \otimes A; \quad (\Delta \otimes \mathrm{id})\Delta = (\mathrm{id} \otimes \Delta)\Delta.$

The pair (A, Δ) is a *compact quantum group*, objects which have remarkable similarities to compact groups:

- Subject to "quantum cancellation", that lin{(a ⊗ 1)Δ(b) : a, b ∈ A} is dense in A ⊗ A (and (1 ⊗ a)Δ(b)), we get...
- A "Haar measure", a state $\varphi \in A^*$ which is invariant, $(\varphi \otimes id)\Delta(a) = (id \otimes \varphi)\Delta(a) = \varphi(a)1.$
- Have a notion of a "corepresentation", and all unitary corepresentations split into direct sums of finite dimensionals.
- Analogue of the Peter-Weyl theory.
- Lots of operator-algebraic structure appears: for example, φ is a KMS state. So there is automatic interaction with von Neumann algebra theory.

Matthew Daws (UCLan)

 $\Delta: A \to A \otimes A; \quad (\Delta \otimes \mathrm{id})\Delta = (\mathrm{id} \otimes \Delta)\Delta.$

The pair (A, Δ) is a *compact quantum group*, objects which have remarkable similarities to compact groups:

- Subject to "quantum cancellation", that lin{(a ⊗ 1)Δ(b) : a, b ∈ A} is dense in A ⊗ A (and (1 ⊗ a)Δ(b)), we get...
- A "Haar measure", a state $\varphi \in A^*$ which is invariant, $(\varphi \otimes id)\Delta(a) = (id \otimes \varphi)\Delta(a) = \varphi(a)1.$
- Have a notion of a "corepresentation", and all unitary corepresentations split into direct sums of finite dimensionals.
- Analogue of the Peter-Weyl theory.
- Lots of operator-algebraic structure appears: for example, φ is a KMS state. So there is automatic interaction with von Neumann algebra theory.

Following Bauval and Blanchard, let A be the C^* -algebra generated by α, γ, f such that:

• f commutes with α, γ ;

•
$$f = f^* \ge 0$$
 has spectrum $[0, 1];$
• $u = \begin{pmatrix} \alpha & -f\gamma^* \\ \gamma & \alpha^* \end{pmatrix}$ is unitary in $M_2(A).$

Functional calculus, applied to f, provides a *-homomorphism $C([0,1]) \rightarrow A$, so turning A into C([0,1])-algebra.

By restriction, A becomes a $C_0((0, 1])$ -algebra.

Theorem

A becomes a continuous field over (0,1] with fibres A_q where A_q is the C^* -algebra representing $SU_q(2)$. The Haar states vary continuously.

Following Bauval and Blanchard, let A be the C^* -algebra generated by α, γ, f such that:

• f commutes with α, γ ;

•
$$f = f^* \ge 0$$
 has spectrum $[0, 1];$
• $u = \begin{pmatrix} \alpha & -f\gamma^* \\ \gamma & \alpha^* \end{pmatrix}$ is unitary in $M_2(A).$

Functional calculus, applied to f, provides a *-homomorphism $C([0,1]) \rightarrow A$, so turning A into C([0,1])-algebra.

By restriction, A becomes a $C_0((0, 1])$ -algebra.

Theorem

A becomes a continuous field over (0,1] with fibres A_q where A_q is the C^{*}-algebra representing $SU_q(2)$. The Haar states vary continuously.

Following Bauval and Blanchard, let A be the C^* -algebra generated by α, γ, f such that:

• f commutes with α, γ ;

•
$$f = f^* \ge 0$$
 has spectrum $[0, 1];$
• $u = \begin{pmatrix} \alpha & -f\gamma^* \\ \gamma & \alpha^* \end{pmatrix}$ is unitary in $M_2(A).$

Functional calculus, applied to f, provides a *-homomorphism $C([0,1]) \rightarrow A$, so turning A into C([0,1])-algebra.

By restriction, A becomes a $C_0((0, 1])$ -algebra.

Theorem

A becomes a continuous field over (0,1] with fibres A_q where A_q is the C^* -algebra representing $SU_q(2)$. The Haar states vary continuously.

Following Bauval and Blanchard, let A be the C^* -algebra generated by α, γ, f such that:

• f commutes with α, γ ;

•
$$f = f^* \ge 0$$
 has spectrum $[0, 1];$
• $u = \begin{pmatrix} \alpha & -f\gamma^* \\ \gamma & \alpha^* \end{pmatrix}$ is unitary in $M_2(A).$

Functional calculus, applied to f, provides a *-homomorphism $C([0,1]) \rightarrow A$, so turning A into C([0,1])-algebra.

By restriction, A becomes a $C_0((0, 1])$ -algebra.

Theorem

A becomes a continuous field over (0,1] with fibres A_q where A_q is the C^{*}-algebra representing $SU_q(2)$. The Haar states vary continuously.

Questions

If we have a continuous family of Haar states, then there should be a von Neumann algebra picture lurking here. But we somehow want to mix continuity and "measurability": jumping straight to measurable fields of von Neumann algebras seems to lose too much information.

What can one say about actions?

What about the locally compact case? Is there a nice source of examples, beyond the "classical" deformation examples?