# Fields of algebras 

Matthew Daws

UCLan

Istanbul, August 2019

## Outline

(1) Bundles and sections
(2) Links with representation theory
(3) $C_{0}(X)$-algebras

4 Quantum groups

## Bundles

A bundle over a topological space $X$ is a topological space $B$ together with $p: B \rightarrow X$ a continuous, open, surjective map. The fibre at $x \in X$ is $p^{-1}(\{x\}) \subseteq B$.

- The "trivial bundle" with fibre $F$ is $B=X \times F$ with $p(x, f)=x$.
- A Mobius Strip is a bundle over the circle, where each fibre is a copy of the interval, but the global topology is not trivial.
- Typically our fibres will vary, and we do not assume any form
 of "local triviality", so we are far from the setting of "fibre bundles"


## Bundles

A bundle over a topological space $X$ is a topological space $B$ together with $p: B \rightarrow X$ a continuous, open, surjective map. The fibre at $x \in X$ is $p^{-1}(\{x\}) \subseteq B$.

- The "trivial bundle" with fibre $F$ is $B=X \times F$ with $p(x, f)=x$.
- A Mobius Strip is a bundle over the circle, where each fibre is a copy of the interval, but the global topology is not trivial.
- Typically our fibres will vary, and we do not assume any form
 of "local triviality", so we are far from the setting of "fibre bundles"


## Bundles

A bundle over a topological space $X$ is a topological space $B$ together with $p: B \rightarrow X$ a continuous, open, surjective map. The fibre at $x \in X$ is $p^{-1}(\{x\}) \subseteq B$.

- The "trivial bundle" with fibre $F$ is $B=X \times F$ with $p(x, f)=x$.
- A Mobius Strip is a bundle over the circle, where each fibre is a copy of the interval, but the global topology is not trivial.
- Typically our fibres will vary, and we do not assume any form
 of "local triviality", so we are far from the setting of "fibre bundles"


## Bundles

A bundle over a topological space $X$ is a topological space $B$ together with $p: B \rightarrow X$ a continuous, open, surjective map. The fibre at $x \in X$ is $p^{-1}(\{x\}) \subseteq B$.

- The "trivial bundle" with fibre $F$ is $B=X \times F$ with $p(x, f)=x$.
- A Mobius Strip is a bundle over the circle, where each fibre is a copy of the interval, but the global topology is not trivial.
- Typically our fibres will vary, and we do not assume any form
 of "local triviality", so we are far

David Benbennick, CC BY-SA 3.0, Wikipedia from the setting of "fibre bundles".

## Banach bundles

A bundle of Banach spaces is a bundle where each fibre has the structure of a Banach space, and:

- $B \rightarrow[0, \infty) ; b \mapsto\|b\|$ is continuous (where we use the norm on the fibre at $p(b) \in X)$;
- addition is jointly continuous as a map

- for each $\lambda \in \mathbb{C}$ the map $B \rightarrow B ; b \mapsto \lambda B$ is continuous;
- if $\left(b_{i}\right)$ is a net in $B$ with $p\left(b_{i}\right) \rightarrow x$ and $\left\|b_{i}\right\| \rightarrow 0$ then $b_{i} \rightarrow 0_{x}$ (the zero vector in the fibre over $x$ ).

Each fibre could be a Hilbert space; the Polarisation Identity shows the inner product is continuous.

## Banach bundles

A bundle of Banach spaces is a bundle where each fibre has the structure of a Banach space, and:

- $B \rightarrow[0, \infty) ; b \mapsto\|b\|$ is continuous (where we use the norm on the fibre at $p(b) \in X$;
- addition is jointly continuous as a map

- if $\left(b_{i}\right)$ is a net in $B$ with $p\left(b_{i}\right) \rightarrow x$ and $\left\|b_{i}\right\| \rightarrow 0$ then $b_{i} \rightarrow 0_{x}$ (the zero vector in the fibre over $x$ ).


## Banach bundles

A bundle of Banach spaces is a bundle where each fibre has the structure of a Banach space, and:

- $B \rightarrow[0, \infty) ; b \mapsto\|b\|$ is continuous (where we use the norm on the fibre at $p(b) \in X$ );
- addition is jointly continuous as a map
$+:\left\{\left(b_{1}, b_{2}\right) \in B \times B: p\left(b_{1}\right)=p\left(b_{2}\right)\right\} \rightarrow B ;$
- for each $\lambda \in \mathbb{C}$ the map $B \rightarrow B ; b \mapsto \lambda B$ is continuous;
- if $\left(b_{i}\right)$ is a net in $B$ with $p\left(b_{i}\right) \rightarrow x$ and $\left\|b_{i}\right\| \rightarrow 0$ then $b_{i} \rightarrow 0_{x}$ (the zero vector in the fibre over $x$ ).
Each fibre could be a Hilbert space; the Polarisation Identity shows the


## Banach bundles

A bundle of Banach spaces is a bundle where each fibre has the structure of a Banach space, and:

- $B \rightarrow[0, \infty) ; b \mapsto\|b\|$ is continuous (where we use the norm on the fibre at $p(b) \in X)$;
- addition is jointly continuous as a map
$+:\left\{\left(b_{1}, b_{2}\right) \in B \times B: p\left(b_{1}\right)=p\left(b_{2}\right)\right\} \rightarrow B ;$
- for each $\lambda \in \mathbb{C}$ the map $B \rightarrow B ; b \mapsto \lambda B$ is continuous;
(the zero vector in the fibre over $x$ ).
Each fibre could be a Hilbert space; the Polarisation Identity shows the


## Banach bundles

A bundle of Banach spaces is a bundle where each fibre has the structure of a Banach space, and:

- $B \rightarrow[0, \infty) ; b \mapsto\|b\|$ is continuous (where we use the norm on the fibre at $p(b) \in X)$;
- addition is jointly continuous as a map
$+:\left\{\left(b_{1}, b_{2}\right) \in B \times B: p\left(b_{1}\right)=p\left(b_{2}\right)\right\} \rightarrow B ;$
- for each $\lambda \in \mathbb{C}$ the map $B \rightarrow B ; b \mapsto \lambda B$ is continuous;
- if $\left(b_{i}\right)$ is a net in $B$ with $p\left(b_{i}\right) \rightarrow x$ and $\left\|b_{i}\right\| \rightarrow 0$ then $b_{i} \rightarrow 0_{x}$ (the zero vector in the fibre over $x$ ).
Each fibre could be a Hilbert space; the Polarisation Identity shows the


## Banach bundles

A bundle of Banach spaces is a bundle where each fibre has the structure of a Banach space, and:

- $B \rightarrow[0, \infty) ; b \mapsto\|b\|$ is continuous (where we use the norm on the fibre at $p(b) \in X)$;
- addition is jointly continuous as a map
$+:\left\{\left(b_{1}, b_{2}\right) \in B \times B: p\left(b_{1}\right)=p\left(b_{2}\right)\right\} \rightarrow B ;$
- for each $\lambda \in \mathbb{C}$ the map $B \rightarrow B ; b \mapsto \lambda B$ is continuous;
- if $\left(b_{i}\right)$ is a net in $B$ with $p\left(b_{i}\right) \rightarrow x$ and $\left\|b_{i}\right\| \rightarrow 0$ then $b_{i} \rightarrow 0_{x}$ (the zero vector in the fibre over $x$ ).
Each fibre could be a Hilbert space; the Polarisation Identity shows the inner product is continuous.


## Sections

A section is a function $f: X \rightarrow B$ with $p(f(x))=x$ for each $x \in X$. We say that $B$ has sufficiently many continuous (cross-) sections if for each $b \in B$ there is a continuous section $f$ with $f(x)=b$ for $x=p(b)$.

- Notice that the axioms imply that the zero section, $x \mapsto 0_{x}$, is continuous;
$\square$ (Douady, Dal Soglio-Hérault) Let X be locally compact. A bundle of Banach spaces over $X$ has sufficiently many continuous sections.

The topology on $B$, restricted to the fibre at $x$, is just the norm topology on the Banach space at $x$. So the bundle "glues together" the Banach spaces.

## Sections

A section is a function $f: X \rightarrow B$ with $p(f(x))=x$ for each $x \in X$. We say that $B$ has sufficiently many continuous (cross-) sections if for each $b \in B$ there is a continuous section $f$ with $f(x)=b$ for $x=p(b)$.

- Notice that the axioms imply that the zero section, $x \mapsto 0_{x}$, is continuous;

> Theorem
> Let X be locally compact. A bundle of Banach spaces over X has sufficiently many continuous sections.

The topology on $B$, restricted to the fibre at $x$, is just the norm topology on the Banach space at $x$. So the bundle "glues together" the Banach spaces.

## Sections

A section is a function $f: X \rightarrow B$ with $p(f(x))=x$ for each $x \in X$. We say that $B$ has sufficiently many continuous (cross-) sections if for each $b \in B$ there is a continuous section $f$ with $f(x)=b$ for $x=p(b)$.

- Notice that the axioms imply that the zero section, $x \mapsto 0_{x}$, is continuous;


## Theorem (Douady, Dal Soglio-Hérault)

Let X be locally compact. A bundle of Banach spaces over $X$ has sufficiently many continuous sections.
> topology on the Banach space at $x$. So the bundle "glues together" the

## Sections

A section is a function $f: X \rightarrow B$ with $p(f(x))=x$ for each $x \in X$. We say that $B$ has sufficiently many continuous (cross-) sections if for each $b \in B$ there is a continuous section $f$ with $f(x)=b$ for $x=p(b)$.

- Notice that the axioms imply that the zero section, $x \mapsto 0_{x}$, is continuous;


## Theorem (Douady, Dal Soglio-Hérault)

Let $X$ be locally compact. A bundle of Banach spaces over $X$ has sufficiently many continuous sections.

The topology on $B$, restricted to the fibre at $x$, is just the norm topology on the Banach space at $x$. So the bundle "glues together" the Banach spaces.

## Properties of sections

Some notation: write $E(x)$ for the fibre at $x \in X$, which is a Banach space.
Let $\Gamma$ be the collection of continuous sections.

- $\Gamma$ is a closed subspace of $\prod_{x} E(x)$ for the supremum norm $\|f\|=\sup _{x}\|f(x)\|_{E(x)}$.
- If $f \in \Gamma$ and $a: X \rightarrow \mathbb{C}$ is continuous, then $a f: x \mapsto a(x) f(x)$ is also in $\Gamma$.
- So $\Gamma$ is a module over $C^{b}(X)$;

A bundle of Banach algebras is such that each $E(x)$ is a Banach algebra, and the multiplication map $\left\{\left(b_{1}, b_{2}\right): p\left(b_{1}\right)=p\left(b_{2}\right)\right\} \rightarrow B$ is continuous. Similarly, for a bundle of $C^{*}$-algebras, the involution needs to be continuous.

- If each $E(x)$ is a $C^{*}$-algebra, then the $C^{*}$-algebra of the bundle is $\left\{a f: a \in \Gamma, f \in C_{0}(X)\right\}$.


## Properties of sections

Some notation: write $E(x)$ for the fibre at $x \in X$, which is a Banach space.
Let $\Gamma$ be the collection of continuous sections.

- $\Gamma$ is a closed subspace of $\prod_{x} E(x)$ for the supremum norm $\|f\|=\sup _{x}\|f(x)\|_{E(x)}$.
- If $f \in \Gamma$ and $a: X \rightarrow \mathbb{C}$ is continuous, then $a f: x \mapsto a(x) f(x)$ is also in $\Gamma$.
- $S o \Gamma$ is a module over $C^{b}(X)$;

A bundle of Banach algebras is such that each $E(x)$ is a Banach algebra, and the multiplication map $\left\{\left(b_{1}, b_{2}\right): p\left(b_{1}\right)=p\left(b_{2}\right)\right\} \rightarrow B$ is continuous. Similarly, for a bundle of $C^{*}$-algebras, the involution needs to be continuous.

- If each $E(x)$ is a $C^{*}$-algebra, then the $C^{*}$-algebra of the bundle is $\left\{a f: a \in \Gamma, f \in C_{0}(X)\right\}$.


## Properties of sections

Some notation: write $E(x)$ for the fibre at $x \in X$, which is a Banach space.
Let $\Gamma$ be the collection of continuous sections.

- $\Gamma$ is a closed subspace of $\prod_{x} E(x)$ for the supremum norm $\|f\|=\sup _{x}\|f(x)\|_{E(x)}$.
- If $f \in \Gamma$ and $a: X \rightarrow \mathbb{C}$ is continuous, then $a f: x \mapsto a(x) f(x)$ is also in $\Gamma$.
- So $\Gamma$ is a module over $C^{b}(X)$;

A bundle of Banach algebras is such that each $E(x)$ is a Banach algebra, and the multiplication map $\left\{\left(b_{1}, b_{2}\right): p\left(b_{1}\right)=p\left(b_{2}\right)\right\} \rightarrow B$ is continuous. Similarly, for a bundle of $C^{*}$-algebras, the involution needs to be continuous.

- If each $\underset{F}{ }(x)$ is a $C^{*}$-algebra, then the $C^{*}$-algebra of the bundle is $\left\{a f: a \in \Gamma, f \in C_{0}(X)\right\}$.


## Properties of sections

Some notation: write $E(x)$ for the fibre at $x \in X$, which is a Banach space.
Let $\Gamma$ be the collection of continuous sections.

- $\Gamma$ is a closed subspace of $\prod_{x} E(x)$ for the supremum norm

$$
\|f\|=\sup _{x}\|f(x)\|_{E(x)} .
$$

- If $f \in \Gamma$ and $a: X \rightarrow \mathbb{C}$ is continuous, then $a f: x \mapsto a(x) f(x)$ is also in $\Gamma$.
- So $\Gamma$ is a module over $C^{b}(X)$;

to be continuous.
- If each $E(x)$ is a $C^{*}$-algebra, then the $C^{*}$-algebra of the bundle


## Properties of sections

Some notation: write $E(x)$ for the fibre at $x \in X$, which is a Banach space.
Let $\Gamma$ be the collection of continuous sections.

- $\Gamma$ is a closed subspace of $\prod_{x} E(x)$ for the supremum norm

$$
\|f\|=\sup _{x}\|f(x)\|_{E(x)} .
$$

- If $f \in \Gamma$ and $a: X \rightarrow \mathbb{C}$ is continuous, then $a f: x \mapsto a(x) f(x)$ is also in $\Gamma$.
- So $\Gamma$ is a module over $C^{b}(X)$;

A bundle of Banach algebras is such that each $E(x)$ is a Banach algebra, and the multiplication map $\left\{\left(b_{1}, b_{2}\right): p\left(b_{1}\right)=p\left(b_{2}\right)\right\} \rightarrow B$ is continuous. Similarly, for a bundle of $C^{*}$-algebras, the involution needs to be continuous.

## Properties of sections

Some notation: write $E(x)$ for the fibre at $x \in X$, which is a Banach space.
Let $\Gamma$ be the collection of continuous sections.

- $\Gamma$ is a closed subspace of $\prod_{x} E(x)$ for the supremum norm

$$
\|f\|=\sup _{x}\|f(x)\|_{E(x)} .
$$

- If $f \in \Gamma$ and $a: X \rightarrow \mathbb{C}$ is continuous, then $a f: x \mapsto a(x) f(x)$ is also in $\Gamma$.
- So $\Gamma$ is a module over $C^{b}(X)$;

A bundle of Banach algebras is such that each $E(x)$ is a Banach algebra, and the multiplication map $\left\{\left(b_{1}, b_{2}\right): p\left(b_{1}\right)=p\left(b_{2}\right)\right\} \rightarrow B$ is continuous. Similarly, for a bundle of $C^{*}$-algebras, the involution needs to be continuous.

- If each $E(x)$ is a $C^{*}$-algebra, then the $C^{*}$-algebra of the bundle is $\left\{a f: a \in \Gamma, f \in C_{0}(X)\right\}$.


## Constructing bundles

Let $(E(x))_{x \in X}$ be a family of Banach spaces and let $A$ be their disjoint union (without topology) together with the obvious map $p: A \rightarrow X$.

Suppose we have $\Gamma$ a set of sections with:

- under pointwise operations, $\Gamma$ is a vector space;
- for each $f \in \Gamma$, the map $x \longmapsto\|f(x)\|$ is continuous;
- for each $x \in X$, the $\operatorname{set}\{f(x): f \in \Gamma\}$ is dense in $H(x)$

Theorem (Dauns, Hofmann?)
Theme is a umiqnie tomologn on 1 turning it into a Banach bundle such that each $f \in \Gamma$ becomes a continuous section.

## Constructing bundles

Let $(E(x))_{x \in X}$ be a family of Banach spaces and let $A$ be their disjoint union (without topology) together with the obvious map $p: A \rightarrow X$.

Suppose we have $\Gamma$ a set of sections with:

- under pointwise operations, $\Gamma$ is a vector space;
- for each $f \in \Gamma$, the map $x \mapsto\|f(x)\|$ is continuous;
- for each $x \in X$, the set $\{f(x): f \in \Gamma\}$ is dense in $E(x)$.

> Theorem (Dauns, Hofmann?)
> There is a uniaue tonology on $A$ turning it into a Banach bundle such that each $f \in \Gamma$ becomes a continuous section.

## Constructing bundles

Let $(E(x))_{x \in X}$ be a family of Banach spaces and let $A$ be their disjoint union (without topology) together with the obvious map $p: A \rightarrow X$.

Suppose we have $\Gamma$ a set of sections with:

- under pointwise operations, $\Gamma$ is a vector space;
- for each $f \in \Gamma$, the map $x \mapsto\|f(x)\|$ is continuous;
- for each $x \in X$, the set $\{f(x): f \in \Gamma\}$ is dense in $E(x)$.


## Theorem (Dauns, Hofmann?)

There is a unique topology on A turning it into a Banach bundle such that each $f \in \Gamma$ becomes a continuous section.

## Moral

We can also axiomatise the notion of a section, which is called a "field" in the literature.
Bundles and fields are essentially the same thing.

- A bundle gives rise to continuous sections, which form a field.
- A field defines a topology which allows us to "glue together" the spaces into a bundle.
References:
- Dixmier "Les $C^{*}$-algèbres et leurs représentations"
- Fell, Doran, "Representations of *-algebras, locally compact groups, and Banach $*$-algebraic bundles".


## Outline

## (1) Bundles and sections

(2) Links with representation theory
(3) $C_{0}(X)$-algebras

4 Quantum groups

## Representation theory of $C^{*}$-algebras

We setup some notation:

- Let $A$ be a $C^{*}$-algebra and $\widehat{A}$ its dual space, the set of unitary equivalence classes of irreducible representations, given the hull-kernel topology.
- Let Prim $A$ be the space of primitive ideals of $A$, with the hull-kernel topology. For $I \in \operatorname{Prim} A$ let $\pi_{I}: A \rightarrow A / I$ be the quotient map.
- We could then consider the "field" of $C^{*}$-algebras given by $\left(\pi_{I}(A)\right)_{I \in \operatorname{Prim} A}=(A / I)_{I \in \operatorname{Prim} A}$ and vector fields of the form $\pi \mapsto \pi_{I}(a)=a+I$ for $a \in A$.
- However, $a \mapsto\left\|\pi_{I}(a)\right\|$ may fail to be continuous. And Prim $A$ is often a "nasty" topological space.


## Representation theory of $C^{*}$-algebras

We setup some notation:

- Let $A$ be a $C^{*}$-algebra and $\widehat{A}$ its dual space, the set of unitary equivalence classes of irreducible representations, given the hull-kernel topology.
- Let $\operatorname{Prim} A$ be the space of primitive ideals of $A$, with the hull-kernel topology. For $I \in \operatorname{Prim} A$ let $\pi_{I}: A \rightarrow A / I$ be the quotient map.
- We could then consider the "field" of $C^{*}$-algebras given by $\left(\pi_{I}(A)\right)_{I \in \operatorname{Prim} A}=(A / I)_{I \in \operatorname{Prim} A}$ and vector fields of the form
- However, $a \mapsto\left\|\pi_{I}(a)\right\|$ may fail to be continuous. And $\operatorname{Prim} A$ is often a "nasty" topological space.


## Representation theory of $C^{*}$-algebras

We setup some notation:

- Let $A$ be a $C^{*}$-algebra and $\widehat{A}$ its dual space, the set of unitary equivalence classes of irreducible representations, given the hull-kernel topology.
- Let $\operatorname{Prim} A$ be the space of primitive ideals of $A$, with the hull-kernel topology. For $I \in \operatorname{Prim} A$ let $\pi_{I}: A \rightarrow A / I$ be the quotient map.
- We could then consider the "field" of $C^{*}$-algebras given by $\left(\pi_{I}(A)\right)_{I \in \operatorname{Prim} A}=(A / I)_{I \in \operatorname{Prim} A}$ and vector fields of the form $\pi \mapsto \pi_{I}(a)=a+I$ for $a \in A$.
- However, $a \mapsto\left\|\pi_{I}(a)\right\|$ may fail to be continuous. And Prim $A$ is often a "nasty" topological space.


## Representation theory of $C^{*}$-algebras

We setup some notation:

- Let $A$ be a $C^{*}$-algebra and $\widehat{A}$ its dual space, the set of unitary equivalence classes of irreducible representations, given the hull-kernel topology.
- Let $\operatorname{Prim} A$ be the space of primitive ideals of $A$, with the hull-kernel topology. For $I \in \operatorname{Prim} A$ let $\pi_{I}: A \rightarrow A / I$ be the quotient map.
- We could then consider the "field" of $C^{*}$-algebras given by $\left(\pi_{I}(A)\right)_{I \in \operatorname{Prim} A}=(A / I)_{I \in \operatorname{Prim} A}$ and vector fields of the form $\pi \mapsto \pi_{I}(a)=a+I$ for $a \in A$.
- However, $a \mapsto\left\|\pi_{I}(a)\right\|$ may fail to be continuous. And $\operatorname{Prim} A$ is often a "nasty" topological space.


## Hausdorff to the rescue

## Theorem (Lee, Tomiyama)

Let $f: \operatorname{Prim} A \rightarrow X$ be an open, continuous, surjective map onto a locally compact (Hausdorff) $X$. Let $A_{x}$ be $A$ quotiented by $\bigcap f^{-1}(\{x\})$. Then $\left(A_{x}\right)$ is a continuous field, and the $C^{*}$-algebra of this field is (isomorphic to) A.

Recall that if $I \subseteq A$ is a closed (two-sided) ideal then $\operatorname{Prim}(A / I)=\{P \in \operatorname{Prim} A: I \subset P\}$. Thus if $E \subseteq \operatorname{Prim} A$ is a subset and $I=\bigcap E=\bigcap_{P \in E} P$, then $\operatorname{Prim}(A / I)=E$.

## A detailed example: the Heisenberg group

$$
\mathbb{H}=\left\{\left(\begin{array}{lll}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right): x, y, z \in \mathbb{R}\right\} .
$$

Some notes on the structure:

- Can think of as triples $(x, y, z)$ with product

$$
(x, y, z) \cdot\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}, z+z^{\prime}+x \cdot y^{\prime}\right)
$$

- The centre is $Z=\{(0,0, z): z \in \mathbb{R}\}$ and $\mathbb{H} / Z \cong \mathbb{R}^{2}$.
- $N=\{(0, y, z)\}$ is a closed normal subgroup, isomorphic to $\mathbb{R}^{2}$,
- and $A=\{(x, 0,0)\}$ is a closed group, isomorphic to $\mathbb{R}$,
- with $N A=\mathbb{H}$ and $N \cap A=\{0\}$, so $\mathbb{H} \cong \mathbb{R}^{2} \rtimes \alpha \mathbb{R}$ where $\alpha_{x}(y, z)=(y, z+x \cdot y)$


## A detailed example: the Heisenberg group

$$
\mathbb{H}=\left\{\left(\begin{array}{lll}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right): x, y, z \in \mathbb{R}\right\} .
$$

Some notes on the structure:

- Can think of as triples $(x, y, z)$ with product

$$
(x, y, z) \cdot\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}, z+z^{\prime}+x \cdot y^{\prime}\right)
$$

- The centre is $Z=\{(0,0, z): z \in \mathbb{R}\}$ and $\mathbb{H} / Z \cong \mathbb{R}^{2}$.
- $N=\{(0, y, z)\}$ is a closed normal subgroup, isomorphic to $\mathbb{R}^{2}$,
- and $A=\{(x, 0,0)\}$ is a closed group, isomorphic to $\mathbb{R}$,
- with $N A=\mathbb{H}$ and $N \cap A=\{0\}$, so $\mathbb{H} \cong \mathbb{R}^{2} \rtimes_{\alpha} \mathbb{R}$ where


## A detailed example: the Heisenberg group

$$
\mathbb{H}=\left\{\left(\begin{array}{lll}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right): x, y, z \in \mathbb{R}\right\} .
$$

Some notes on the structure:

- Can think of as triples $(x, y, z)$ with product

$$
(x, y, z) \cdot\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}, z+z^{\prime}+x \cdot y^{\prime}\right)
$$

- The centre is $Z=\{(0,0, z): z \in \mathbb{R}\}$ and $\mathbb{H} / Z \cong \mathbb{R}^{2}$.
- $N=\{(0, y, z)\}$ is a closed normal subgroup, isomorphic to $\mathbb{R}^{2}$,
- and $A=\{(x, 0,0)\}$ is a closed group, isomorphic to $\mathbb{R}$,
- with $N A=\mathbb{H}$ and $N \cap A=\{0\}$, so $\mathbb{H} \cong \mathbb{R}^{2} \rtimes_{\alpha} \mathbb{R}$ where

$$
\alpha_{x}(y, z)=(y, z+x \cdot y)
$$

## Representation theory

The irreducible representations fall into two classes:

- characters $\{\chi \xi, \lambda: \xi, \lambda \in \mathbb{R}\}$ acting on $x, y$ via $\chi_{\xi, \lambda}(x, y, z)=e^{i(\xi \cdot x+\lambda \cdot y)} ;$
- infinite dimensional representations $U^{\lambda}$, for $\lambda \neq 0$, on $L^{2}(\mathbb{R})$ given by $U^{\lambda}(x, y, z) f(t)=e^{i \lambda(z-y \cdot t)} f(t-x)$
So as a set, $\widehat{\mathbb{H}}=\mathbb{R}^{2} \cup \mathbb{R}^{*}$ where $\mathbb{R}^{*}=\mathbb{R} \backslash\{0\}$.
- $\mathbb{R}^{2} \rightarrow \widehat{\mathbb{H}}$ is a homeomorphism onto a closed set, and $\mathbb{R}^{*} \rightarrow \widehat{\mathbb{H}}$ is a homeomorphism onto an open set.
- $T \subseteq \widehat{\mathbb{H}}$ is closed if and only if:
- $T \cap \mathbb{R}^{2}$ and $T \cap \mathbb{R}^{*}$ are both closed;
- if $T \cap \mathbb{R}^{*}$ contains 0 as a limit point, then $\mathbb{R}^{2} \subseteq T$.

So $\widehat{\mathbb{T}}$ is far from Hausdorff!

## Representation theory

The irreducible representations fall into two classes:

- characters $\{\chi \xi, \lambda: \xi, \lambda \in \mathbb{R}\}$ acting on $x, y$ via

$$
\chi_{\xi, \lambda}(x, y, z)=e^{i(\xi \cdot x+\lambda \cdot y)} ;
$$

- infinite dimensional representations $U^{\lambda}$, for $\lambda \neq 0$, on $L^{2}(\mathbb{R})$ given by $U^{\lambda}(x, y, z) f(t)=e^{i \lambda(z-y \cdot t)} f(t-x)$

$\square$


## Representation theory

The irreducible representations fall into two classes:

- characters $\left\{\chi_{\xi, \lambda}: \xi, \lambda \in \mathbb{R}\right\}$ acting on $x, y$ via

$$
\chi_{\xi, \lambda}(x, y, z)=e^{i(\xi \cdot x+\lambda \cdot y)} ;
$$

- infinite dimensional representations $U^{\lambda}$, for $\lambda \neq 0$, on $L^{2}(\mathbb{R})$ given by $U^{\lambda}(x, y, z) f(t)=e^{i \lambda(z-y \cdot t)} f(t-x)$
So as a set, $\widehat{H}=\mathbb{R}^{2} \cup \mathbb{R}^{*}$ where $\mathbb{R}^{*}=\mathbb{R} \backslash\{0\}$.
- $\mathbb{R}^{2} \rightarrow \widehat{\mathbb{H}}$ is a homeomorphism onto a closed set, and $\mathbb{R}^{*} \rightarrow \widehat{\mathbb{H}}$ is a homeomorphism onto an open set.

- $T \cap \mathbb{R}^{2}$ and $T \cap \mathbb{R}^{*}$ are both closed; - if $T \cap \mathbb{R}^{*}$ contains 0 as a limit point, then $\mathbb{R}^{2} \subseteq T$.


## Representation theory

The irreducible representations fall into two classes:

- characters $\left\{\chi_{\xi, \lambda}: \xi, \lambda \in \mathbb{R}\right\}$ acting on $x, y$ via

$$
\chi_{\xi, \lambda}(x, y, z)=e^{i(\xi \cdot x+\lambda \cdot y)} ;
$$

- infinite dimensional representations $U^{\lambda}$, for $\lambda \neq 0$, on $L^{2}(\mathbb{R})$ given by $U^{\lambda}(x, y, z) f(t)=e^{i \lambda(z-y \cdot t)} f(t-x)$
So as a set, $\widehat{H}=\mathbb{R}^{2} \cup \mathbb{R}^{*}$ where $\mathbb{R}^{*}=\mathbb{R} \backslash\{0\}$.
- $\mathbb{R}^{2} \rightarrow \widehat{\mathbb{H}}$ is a homeomorphism onto a closed set, and $\mathbb{R}^{*} \rightarrow \widehat{\mathbb{H}}$ is a homeomorphism onto an open set.
- $T \cap \mathbb{R}^{2}$ and $T \cap \mathbb{R}^{*}$ are both closed;
- if $T \cap \mathbb{R}^{*}$ contains 0 as a limit point, then $\mathbb{R}^{2} \subseteq T$. So $\widehat{\mathbb{T}}$ is far from Hausdorff!


## Representation theory

The irreducible representations fall into two classes:

- characters $\{\chi \xi, \lambda: \xi, \lambda \in \mathbb{R}\}$ acting on $x, y$ via

$$
\chi_{\xi, \lambda}(x, y, z)=e^{i(\xi \cdot x+\lambda \cdot y)} ;
$$

- infinite dimensional representations $U^{\lambda}$, for $\lambda \neq 0$, on $L^{2}(\mathbb{R})$ given by $U^{\lambda}(x, y, z) f(t)=e^{i \lambda(z-y \cdot t)} f(t-x)$
So as a set, $\widehat{H}=\mathbb{R}^{2} \cup \mathbb{R}^{*}$ where $\mathbb{R}^{*}=\mathbb{R} \backslash\{0\}$.
- $\mathbb{R}^{2} \rightarrow \widehat{\mathbb{H}}$ is a homeomorphism onto a closed set, and $\mathbb{R}^{*} \rightarrow \widehat{\mathbb{H}}$ is a homeomorphism onto an open set.
- $T \subseteq \widehat{\mathbb{H}}$ is closed if and only if:
- $T \cap \mathbb{R}^{2}$ and $T \cap \mathbb{R}^{*}$ are both closed;
- if $T \cap \mathbb{R}^{*}$ contains 0 as a limit point, then $\mathbb{R}^{2} \subseteq T$.


## Representation theory

The irreducible representations fall into two classes:

- characters $\left\{\chi_{\xi, \lambda}: \xi, \lambda \in \mathbb{R}\right\}$ acting on $x, y$ via

$$
\chi_{\xi, \lambda}(x, y, z)=e^{i(\xi \cdot x+\lambda \cdot y)}
$$

- infinite dimensional representations $U^{\lambda}$, for $\lambda \neq 0$, on $L^{2}(\mathbb{R})$ given by $U^{\lambda}(x, y, z) f(t)=e^{i \lambda(z-y \cdot t)} f(t-x)$
So as a set, $\widehat{H}=\mathbb{R}^{2} \cup \mathbb{R}^{*}$ where $\mathbb{R}^{*}=\mathbb{R} \backslash\{0\}$.
- $\mathbb{R}^{2} \rightarrow \widehat{\mathbb{H}}$ is a homeomorphism onto a closed set, and $\mathbb{R}^{*} \rightarrow \widehat{\mathbb{H}}$ is a homeomorphism onto an open set.
- $T \subseteq \widehat{\mathbb{H}}$ is closed if and only if:
- $T \cap \mathbb{R}^{2}$ and $T \cap \mathbb{R}^{*}$ are both closed;
- if $T \cap \mathbb{R}^{*}$ contains 0 as a limit point, then $\mathbb{R}^{2} \subseteq T$.

So $\widehat{\mathbb{T}}$ is far from Hausdorff!
$C^{*}(\mathbb{H})$ as a bundle
Set $A=C^{*}(\mathbb{H})$. It is not hard to check that $\widehat{\mathbb{H}}=\widehat{A}=\operatorname{Prim} A$. The map $\theta: \widehat{\mathbb{H}} \rightarrow \mathbb{R}$ which is the identity of $\mathbb{R}^{*}$ and which sends $\mathbb{R}^{2}$ to 0 , is surjective, continuous, and open.

Thus we obtain that $A$ is (isomorphic to) a continuous field over $\mathbb{R}$ with fibres:

- For $\lambda \neq 0$ we have the irreducible $U^{\lambda}: C^{*}(\mathbb{H}) \rightarrow \mathcal{C}\left(L^{2}(\mathbb{R})\right)$;
- For $\lambda=0$ we have the $C^{*}$-algebra whose spectrum is the characters $\chi_{\xi, \lambda}$, that is, $C_{0}\left(\mathbb{R}^{2}\right)$.
- The bundle over $(0,1)$ is trivial.

However, what are the vector fields? However, this can be powerful tool, see Elliott, Natsume, Nest, "The Heisenberg Group and K-Theory"
For a complete study of $C^{*}(\mathbb{H})$ see Ludwig, Turowska, "The $C^{*}$-algebras of the Heisenberg group and of thread-like Lie groups"
$C^{*}(\mathbb{H})$ as a bundle
Set $A=C^{*}(\mathbb{H})$. It is not hard to check that $\widehat{\mathbb{H}}=\widehat{A}=\operatorname{Prim} A$. The map $\theta: \widehat{\mathbb{H}} \rightarrow \mathbb{R}$ which is the identity of $\mathbb{R}^{*}$ and which sends $\mathbb{R}^{2}$ to 0 , is surjective, continuous, and open.

Thus we obtain that $A$ is (isomorphic to) a continuous field over $\mathbb{R}$ with fibres:

- For $\lambda \neq 0$ we have the irreducible $U^{\lambda}: C^{*}(\mathbb{H}) \rightarrow \mathcal{K}\left(L^{2}(\mathbb{R})\right)$;
- For $\lambda=0$ we have the $C^{*}$-algebra whose spectrum is the characters $\chi_{\xi, \lambda}$, that is, $C_{0}\left(\mathbb{R}^{2}\right)$.

However, what are the vector fields? However, this can be powerful tool, see Elliott, Natsume, Nest, "The Heisenberg Group and K-Theory"
For a complete study of $C^{*}(\mathbb{H})$ see Ludwig, Turowska, "The
$C^{*}(\mathbb{H})$ as a bundle
Set $A=C^{*}(\mathbb{H})$. It is not hard to check that $\widehat{\mathbb{H}}=\widehat{A}=\operatorname{Prim} A$. The $\operatorname{map} \theta: \widehat{\mathbb{H}} \rightarrow \mathbb{R}$ which is the identity of $\mathbb{R}^{*}$ and which sends $\mathbb{R}^{2}$ to 0 , is surjective, continuous, and open.

Thus we obtain that $A$ is (isomorphic to) a continuous field over $\mathbb{R}$ with fibres:

- For $\lambda \neq 0$ we have the irreducible $U^{\lambda}: C^{*}(\mathbb{H}) \rightarrow \mathcal{K}\left(L^{2}(\mathbb{R})\right)$;
- For $\lambda=0$ we have the $C^{*}$-algebra whose spectrum is the characters $\chi_{\xi, \lambda}$, that is, $C_{0}\left(\mathbb{R}^{2}\right)$.
- The bundle over $(0,1]$ is trivial.


Set $A=C^{*}(\mathbb{H})$. It is not hard to check that $\widehat{\mathbb{H}}=\widehat{A}=\operatorname{Prim} A$. The map $\theta: \widehat{\mathbb{H}} \rightarrow \mathbb{R}$ which is the identity of $\mathbb{R}^{*}$ and which sends $\mathbb{R}^{2}$ to 0 , is surjective, continuous, and open.

Thus we obtain that $A$ is (isomorphic to) a continuous field over $\mathbb{R}$ with fibres:

- For $\lambda \neq 0$ we have the irreducible $U^{\lambda}: C^{*}(\mathbb{H}) \rightarrow \mathcal{K}\left(L^{2}(\mathbb{R})\right)$;
- For $\lambda=0$ we have the $C^{*}$-algebra whose spectrum is the characters $\chi \overline{\xi, \lambda}$, that is, $C_{0}\left(\mathbb{R}^{2}\right)$.
- The bundle over $(0,1]$ is trivial.

However, what are the vector fields? However, this can be powerful tool, see Elliott, Natsume, Nest, "The Heisenberg Group and $K$-Theory".
For a complete study of $C^{*}(\mathbb{H})$ see Ludwig, Turowska, "The $C^{*}$-algebras of the Heisenberg group and of thread-like Lie groups".

## Outline

## (1) Bundles and sections

(2) Links with representation theory
(3) $C_{0}(X)$-algebras

4 Quantum groups

## Drawbacks

Continuous fields of $C^{*}$-algebras are an attractive tool, but it does not interact well with other operations.

## Theorem (Kirchberg, Wassermann)

Let $B$ be a $C^{*}$-algebra. Consider continuous fields over the base space $\mathbb{N}_{\infty}$. Tensoring each fibre against $B$ gives a continuous field if and only if $B$ is exact.

There is a similar criteria for nuclearity (using the maximal tensor product). Similar results for crossed-products (characterising exactness of the group) hold.

## The Dauns-Hoffman Theorem

For a $C^{*}$-algebra $A$, the multiplier algebra of $A$ is the largest $C^{*}$-algebra $M$ such that $A$ embeds as a closed ideal of $M$ which is essential, that is, $x \in M$ and $x A=\{0\}$ imply $x=0$. Write $M(A)$ for the multiplier algebra.


## The Dauns-Hoffman Theorem

For a $C^{*}$-algebra $A$, the multiplier algebra of $A$ is the largest $C^{*}$-algebra $M$ such that $A$ embeds as a closed ideal of $M$ which is essential, that is, $x \in M$ and $x A=\{0\}$ imply $x=0$. Write $M(A)$ for the multiplier algebra.

- Various well-known constructions: double centralisers, bidual picture, etc.



## The Dauns-Hoffman Theorem

For a $C^{*}$-algebra $A$, the multiplier algebra of $A$ is the largest $C^{*}$-algebra $M$ such that $A$ embeds as a closed ideal of $M$ which is essential, that is, $x \in M$ and $x A=\{0\}$ imply $x=0$. Write $M(A)$ for the multiplier algebra.

- Various well-known constructions: double centralisers, bidual picture, etc.
- If $A$ is unital then $M(A) \cong A$.

For $P \in \operatorname{Prim} A$ let $\pi_{P}: A \rightarrow A / P$ be the quotient map.

There is an isomorphism $\phi: C^{b}(\operatorname{Prim} A) \rightarrow Z M(A)$, the centre of

## The Dauns-Hoffman Theorem

For a $C^{*}$-algebra $A$, the multiplier algebra of $A$ is the largest $C^{*}$-algebra $M$ such that $A$ embeds as a closed ideal of $M$ which is essential, that is, $x \in M$ and $x A=\{0\}$ imply $x=0$. Write $M(A)$ for the multiplier algebra.

- Various well-known constructions: double centralisers, bidual picture, etc.
- If $A$ is unital then $M(A) \cong A$.
- If $A=C_{0}(X)$ then $M(A) \cong C^{b}(X) \cong C(\beta X)$

For $P \in \operatorname{Prim} A$ let $\pi_{P}: A \rightarrow A / P$ be the quotient map.

## The Dauns-Hoffman Theorem

For a $C^{*}$-algebra $A$, the multiplier algebra of $A$ is the largest $C^{*}$-algebra $M$ such that $A$ embeds as a closed ideal of $M$ which is essential, that is, $x \in M$ and $x A=\{0\}$ imply $x=0$. Write $M(A)$ for the multiplier algebra.

- Various well-known constructions: double centralisers, bidual picture, etc.
- If $A$ is unital then $M(A) \cong A$.
- If $A=C_{0}(X)$ then $M(A) \cong C^{b}(X) \cong C(\beta X)$

For $P \in \operatorname{Prim} A$ let $\pi_{P}: A \rightarrow A / P$ be the quotient map.

## Theorem

There is an isomorphism $\phi: C^{b}(\operatorname{Prim} A) \rightarrow Z M(A)$, the centre of $M(A)$, with

$$
\pi_{P}(\phi(f) a)=f(P) \pi_{P}(a) \quad\left(a \in A, P \in \operatorname{Prim} A, f \in C^{b}(\operatorname{Prim} A)\right)
$$

## Corollary: $C_{0}(X)$-algebras

A $C_{0}(X)$-algebra is a $C^{*}$-algebra $A$ together with a $*$-homomorphism $\Phi_{A}: C_{0}(X) \rightarrow Z M(A)$ which is non-degenerate:

$$
\Phi_{A}\left(C_{0}(X)\right) A=\operatorname{lin}\left\{\Phi_{A}(f) a: f \in C_{0}(X), a \in A\right\} \text { is dense in } A
$$

- A non-degenerate $*$-homomorphism $\Phi: C_{0}(X) \rightarrow C^{b}(Y)$ is always of the form $\Phi(f)=f \circ \sigma$ with $\sigma: Y \rightarrow X$ continuous.
- And any $\sigma$ gives rise to a $\Phi$.
- We typically assume $\Phi_{A}$ is injective, which is equivalent to $\sigma$ having dense range.
As $Z M(A) \cong C^{b}(\operatorname{Prim} A)$ we see that $C_{0}(X)$-algebras can also be described by continuous maps $\sigma: \operatorname{Prim} A \rightarrow X$ (which have dense range).


## Corollary: $C_{0}(X)$-algebras

A $C_{0}(X)$-algebra is a $C^{*}$-algebra $A$ together with a $*$-homomorphism $\Phi_{A}: C_{0}(X) \rightarrow Z M(A)$ which is non-degenerate:

$$
\Phi_{A}\left(C_{0}(X)\right) A=\operatorname{lin}\left\{\Phi_{A}(f) a: f \in C_{0}(X), a \in A\right\} \text { is dense in } A
$$

- A non-degenerate $*$-homomorphism $\Phi: C_{0}(X) \rightarrow C^{b}(Y)$ is always of the form $\Phi(f)=f \circ \sigma$ with $\sigma: Y \rightarrow X$ continuous.
- And any $\sigma$ gives rise to a $\Phi$.
- We typically assume $\Phi_{A}$ is injective, which is equivalent to $\sigma$ having dense range.

As $Z M(A) \cong C^{b}(\operatorname{Prim} A)$ we see that $C_{0}(X)$-algebras can also be described by continuous maps $\sigma: \operatorname{Prim} A \rightarrow X$ (which have dense range).

## Corollary: $C_{0}(X)$-algebras

A $C_{0}(X)$-algebra is a $C^{*}$-algebra $A$ together with a $*$-homomorphism $\Phi_{A}: C_{0}(X) \rightarrow Z M(A)$ which is non-degenerate:

$$
\Phi_{A}\left(C_{0}(X)\right) A=\operatorname{lin}\left\{\Phi_{A}(f) a: f \in C_{0}(X), a \in A\right\} \text { is dense in } A
$$

- A non-degenerate $*$-homomorphism $\Phi: C_{0}(X) \rightarrow C^{b}(Y)$ is always of the form $\Phi(f)=f \circ \sigma$ with $\sigma: Y \rightarrow X$ continuous.
- And any $\sigma$ gives rise to a $Ф$.

We typically assume $\Phi_{A}$ is injective, which is equivalent to $\sigma$ having dense range.
As $Z M(A) \cong C^{b}(\operatorname{Prim} A)$ we see that $C_{0}(X)$-algebras can also be described by continuous maps $\sigma: \operatorname{Prim} A \rightarrow X$ (which have dense range).

## Corollary: $C_{0}(X)$-algebras

A $C_{0}(X)$-algebra is a $C^{*}$-algebra $A$ together with a $*$-homomorphism $\Phi_{A}: C_{0}(X) \rightarrow Z M(A)$ which is non-degenerate:

$$
\Phi_{A}\left(C_{0}(X)\right) A=\operatorname{lin}\left\{\Phi_{A}(f) a: f \in C_{0}(X), a \in A\right\} \text { is dense in } A
$$

- A non-degenerate $*$-homomorphism $\Phi: C_{0}(X) \rightarrow C^{b}(Y)$ is always of the form $\Phi(f)=f \circ \sigma$ with $\sigma: Y \rightarrow X$ continuous.
- And any $\sigma$ gives rise to a $\Phi$.
- We typically assume $\Phi_{A}$ is injective, which is equivalent to $\sigma$ having dense range.
As $Z M(A) \cong C^{b}(\operatorname{Prim} A)$ we see that $C_{0}(X)$-algebras can also be described by continuous maps $\sigma: \operatorname{Prim} A \rightarrow X$ (which have dense range).


## $C_{0}(X)$-algebras as fields/bundles

This setup, $\sigma: \operatorname{Prim} A \rightarrow X$, is very close to what we saw before, but we no longer have that $\sigma$ is open.

This corresponds to fields/bundles which are only upper
semicontinuous

$$
\limsup _{x \rightarrow x_{0}}\|x\| \leq\left\|x_{0}\right\|
$$

The benefit is that $C_{0}(X)$-algebras are better behaved with respect to tensor products and so forth.

## References:

- Williams "Crossed products of $C^{*}$-algebras", esp. Appendix C.
- Blanchard, "Déformations de $C^{*}$-algèbres de Hopf"


## $C_{0}(X)$-algebras as fields/bundles

This setup, $\sigma: \operatorname{Prim} A \rightarrow X$, is very close to what we saw before, but we no longer have that $\sigma$ is open.

This corresponds to fields/bundles which are only upper semicontinuous

$$
\limsup _{x \rightarrow x_{0}}\|x\| \leq\left\|x_{0}\right\| .
$$

The benefit is that $C_{0}(X)$-algebras are better behaved with respect to tensor products and so forth.

## References:

- Williams "Crossed products of $C^{*}$-algebras", esp. Appendix C.
- Blanchard, "Déformations de $C^{*}$-algèbres de Hopf"


## $C_{0}(X)$-algebras as fields/bundles

This setup, $\sigma: \operatorname{Prim} A \rightarrow X$, is very close to what we saw before, but we no longer have that $\sigma$ is open.

This corresponds to fields/bundles which are only upper semicontinuous

$$
\limsup _{x \rightarrow x_{0}}\|x\| \leq\left\|x_{0}\right\| .
$$

The benefit is that $C_{0}(X)$-algebras are better behaved with respect to tensor products and so forth. References:

- Williams "Crossed products of $C^{*}$-algebras", esp. Appendix C.
- Blanchard, "Déformations de $C^{*}$-algèbres de Hopf".


## Banach $C_{0}(X)$-algebras: remove?

A Banach $C_{0}(X)$-algebra is a Banach algebra $A$ which is an essential (left) $C_{0}(X)$-module with

$$
f \cdot(a b)=a(f \cdot b)=(f \cdot a) b \quad\left(f \in C_{0}(X), a, b \in A\right) .
$$

(This is also the same as the definition using the multiplier algebra of A).

- For $x \in X$ let $C_{x}(X)=C_{0}(X \backslash\{x\})$ which is identified with
- Let $N_{x}=C_{x}(X) \cdot A$ which by Cohen-Hewitt factorisation is a closed subspace of $A$. The above conditions show that it is an ideal in $A$.
- Define $A^{x}=A / N_{x}$, the fibre at $x$. Let $\pi^{x}: A \rightarrow A^{x}$ be the quotient map.
Contrasting to the $C^{*}$-case, we no longer have, for example,
$\mid a\|=\sup \| \pi^{x}(a) \|$.


## Banach $C_{0}(X)$-algebras: remove?

A Banach $C_{0}(X)$-algebra is a Banach algebra $A$ which is an essential (left) $C_{0}(X)$-module with

$$
f \cdot(a b)=a(f \cdot b)=(f \cdot a) b \quad\left(f \in C_{0}(X), a, b \in A\right) .
$$

(This is also the same as the definition using the multiplier algebra of $A)$.

- For $x \in X$ let $C_{x}(X)=C_{0}(X \backslash\{x\})$ which is identified with $\left\{f \in C_{0}(X): f(x)=0\right\}$ a subalgebra of $C_{0}(X)$.
quotient map.
Contrasting to the $C^{*}$-case, we no longer have, for example,


## Banach $C_{0}(X)$-algebras: remove?

A Banach $C_{0}(X)$-algebra is a Banach algebra $A$ which is an essential (left) $C_{0}(X)$-module with

$$
f \cdot(a b)=a(f \cdot b)=(f \cdot a) b \quad\left(f \in C_{0}(X), a, b \in A\right) .
$$

(This is also the same as the definition using the multiplier algebra of $A)$.

- For $x \in X$ let $C_{x}(X)=C_{0}(X \backslash\{x\})$ which is identified with $\left\{f \in C_{0}(X): f(x)=0\right\}$ a subalgebra of $C_{0}(X)$.
- Let $N_{x}=C_{x}(X) \cdot A$ which by Cohen-Hewitt factorisation is a closed subspace of $A$. The above conditions show that it is an ideal in $A$.
quotient map.
Contrasting to the $C^{*}$-case, we no longer have, for example,


## Banach $C_{0}(X)$-algebras: remove?

A Banach $C_{0}(X)$-algebra is a Banach algebra $A$ which is an essential (left) $C_{0}(X)$-module with

$$
f \cdot(a b)=a(f \cdot b)=(f \cdot a) b \quad\left(f \in C_{0}(X), a, b \in A\right)
$$

(This is also the same as the definition using the multiplier algebra of $A)$.

- For $x \in X$ let $C_{x}(X)=C_{0}(X \backslash\{x\})$ which is identified with $\left\{f \in C_{0}(X): f(x)=0\right\}$ a subalgebra of $C_{0}(X)$.
- Let $N_{x}=C_{x}(X) \cdot A$ which by Cohen-Hewitt factorisation is a closed subspace of $A$. The above conditions show that it is an ideal in $A$.
- Define $A^{x}=A / N_{x}$, the fibre at $x$. Let $\pi^{x}: A \rightarrow A^{x}$ be the quotient map.
Contrasting to the $C^{*}$-case, we no longer have, for example,

$$
\|a\|=\sup _{x}\left\|\pi^{x}(a)\right\| .
$$

## Representations: Hilbert $C^{*}$-modules

$C^{*}$-algebras are naturally represented on Hilbert spaces. The analogue for a $C_{0}(X)$-algebra is a Hilbert $C^{*}$-module over $C_{0}(X)$.

```
This is a Banach space E which is a right }\mp@subsup{C}{0}{}(X)\mathrm{ module, and which
has an "inner-product" which is }\mp@subsup{C}{0}{}(X)\mathrm{ -valued.
Such objects behave much lite Y:1bert spaces. A big difference is that
bounded linear maps do not automatically have adjoints; this needs to
be an axiom, leading to }\mathcal{L}(E)\mathrm{ .
We can form NT}\mathrm{ in the same way as before, and then E* turns into a
genuine Hilbert space.
A representation of a C}\mp@subsup{C}{0}{}(X)\mathrm{ -algebra }A\mathrm{ on }E\mathrm{ is a }\mp@subsup{C}{0}{}(X)\mathrm{ -module map
\pi:A->\mathcal{L}(E).This fibres to give genuine *-homomorphisms
\pi
```


## Representations: Hilbert $C^{*}$-modules

$C^{*}$-algebras are naturally represented on Hilbert spaces. The analogue for a $C_{0}(X)$-algebra is a Hilbert $C^{*}$-module over $C_{0}(X)$.

This is a Banach space $E$ which is a right $C_{0}(X)$ module, and which has an "inner-product" which is $C_{0}(X)$-valued.

Such objects behave much like Hilbert spaces. A big difference is that bounded linear maps do not automatically have adjoints; this needs to be an axiom, leading to $\mathcal{L}(E)$.

We can form $N_{x}$ in the same way as before, and then $E^{x}$ turns into a genuine Hilbert space.

A representation of a $C_{0}(X)$-algebra $A$ on $E$ is a $C_{0}(X)$-module map $\pi: A \rightarrow \mathcal{L}(E)$. This fibres to give genuine $*$-homomorphisms
$\square$

## Representations: Hilbert $C^{*}$-modules

$C^{*}$-algebras are naturally represented on Hilbert spaces. The analogue for a $C_{0}(X)$-algebra is a Hilbert $C^{*}$-module over $C_{0}(X)$.

This is a Banach space $E$ which is a right $C_{0}(X)$ module, and which has an "inner-product" which is $C_{0}(X)$-valued.

Such objects behave much like Hilbert spaces. A big difference is that bounded linear maps do not automatically have adjoints; this needs to be an axiom, leading to $\mathcal{L}(E)$.


## Representations: Hilbert $C^{*}$-modules

$C^{*}$-algebras are naturally represented on Hilbert spaces. The analogue for a $C_{0}(X)$-algebra is a Hilbert $C^{*}$-module over $C_{0}(X)$.

This is a Banach space $E$ which is a right $C_{0}(X)$ module, and which has an "inner-product" which is $C_{0}(X)$-valued.

Such objects behave much like Hilbert spaces. A big difference is that bounded linear maps do not automatically have adjoints; this needs to be an axiom, leading to $\mathcal{L}(E)$.

We can form $N_{x}$ in the same way as before, and then $E^{x}$ turns into a genuine Hilbert space.

A representation of a $C_{0}(X)$-algebra $A$ on $E$ is a $C_{0}(X)$-module map

## Representations: Hilbert $C^{*}$-modules

$C^{*}$-algebras are naturally represented on Hilbert spaces. The analogue for a $C_{0}(X)$-algebra is a Hilbert $C^{*}$-module over $C_{0}(X)$.

This is a Banach space $E$ which is a right $C_{0}(X)$ module, and which has an "inner-product" which is $C_{0}(X)$-valued.

Such objects behave much like Hilbert spaces. A big difference is that bounded linear maps do not automatically have adjoints; this needs to be an axiom, leading to $\mathcal{L}(E)$.

We can form $N_{x}$ in the same way as before, and then $E^{x}$ turns into a genuine Hilbert space.

A representation of a $C_{0}(X)$-algebra $A$ on $E$ is a $C_{0}(X)$-module map $\pi: A \rightarrow \mathcal{L}(E)$. This fibres to give genuine $*$-homomorphisms $\pi^{x}: A_{x} \rightarrow \mathcal{B}\left(E^{x}\right)$.

## Outline

## (1) Bundles and sections

(2) Links with representation theory
(3) $C_{0}(X)$-algebras

4 Quantum groups
$S U(2)$
Let $G=S U(2)$ the group of $2 \times 2$ complex valued unitary matrices with unit determinant.

Any member of $G$ is of the form

with $a, b \in \mathbb{C}$ with $|a|^{2}+|b|^{2}=1$.
Consider $C(G)$ the continuous functions on $G$. Define

$$
\alpha(s)=a, \quad \gamma(s)=b
$$

Then the matrix

$$
\left(\begin{array}{cc}
\alpha & -\gamma^{*} \\
\gamma & \alpha^{*}
\end{array}\right) \in M_{2}(C(G))
$$

is unitary.
$S U(2)$
Let $G=S U(2)$ the group of $2 \times 2$ complex valued unitary matrices with unit determinant.

Any member of $G$ is of the form

$$
s=\left(\begin{array}{cc}
a & -\bar{b} \\
b & \bar{a}
\end{array}\right)
$$

with $a, b \in \mathbb{C}$ with $|a|^{2}+|b|^{2}=1$.
Consider $C(G)$ the continuous functions on $G$. Define

$$
\alpha(s)=a, \quad \gamma(s)=b
$$

Then the matrix

$$
\left(\begin{array}{cc}
\alpha & -\gamma^{*} \\
\gamma & \alpha^{*}
\end{array}\right) \in M_{2}(C(G))
$$

is unitary.
$S U(2)$
Let $G=S U(2)$ the group of $2 \times 2$ complex valued unitary matrices with unit determinant.

Any member of $G$ is of the form

$$
s=\left(\begin{array}{cc}
a & -\bar{b} \\
b & \bar{a}
\end{array}\right)
$$

with $a, b \in \mathbb{C}$ with $|a|^{2}+|b|^{2}=1$.
Consider $C(G)$ the continuous functions on $G$. Define

$$
\alpha(s)=a, \quad \gamma(s)=b
$$

Then the matrix

$$
\left(\begin{array}{cc}
\alpha & -\gamma^{*} \\
\gamma & \alpha^{*}
\end{array}\right) \in M_{2}(C(G))
$$

is unitary.
$S U(2)$ as a Hopf $C^{*}$-algebra
Set $G=S U(2)$ and $A=C(G)$. We have the "coordinates" $\alpha, \gamma \in A$ with

$$
\left(\begin{array}{cc}
\alpha & -\gamma^{*} \\
\gamma & \alpha^{*}
\end{array}\right)
$$

a unitary in $M_{2}(A)$. By Stone-Weierstrauss, $\alpha, \gamma$ generate $A$.
Of course, $A$ tells us nothing about the group $S U(2)$. We can encode the group product $G \times G \rightarrow G$ as a $*$-homomorphism $\Delta: A=C(G) \rightarrow C(G \times G)=A \otimes A$.


$$
\Delta(\alpha)(s, t)=\alpha(s t)=a c-\bar{b} d=\alpha(s) \alpha(t)-\gamma^{*}(s) \gamma(t) .
$$

So $\Delta(\alpha)=\alpha \otimes \alpha-\gamma^{*} \otimes \gamma$. Similarly $\Delta(\gamma)=\gamma \otimes \alpha+\alpha^{*} \otimes \gamma$.
$S U(2)$ as a Hopf $C^{*}$-algebra
Set $G=S U(2)$ and $A=C(G)$. We have the "coordinates" $\alpha, \gamma \in A$ with

$$
\left(\begin{array}{cc}
\alpha & -\gamma^{*} \\
\gamma & \alpha^{*}
\end{array}\right)
$$

a unitary in $M_{2}(A)$. By Stone-Weierstrauss, $\alpha, \gamma$ generate $A$.
Of course, $A$ tells us nothing about the group $S U(2)$. We can encode the group product $G \times G \rightarrow G$ as a $*$-homomorphism $\Delta: A=C(G) \rightarrow C(G \times G)=A \otimes A$.


$$
\Delta(\alpha)(s, t)=\alpha(s t)=a c-\bar{b} d=\alpha(s) \alpha(t)-\gamma^{*}(s) \gamma(t) .
$$

$S U(2)$ as a Hopf $C^{*}$-algebra
Set $G=S U(2)$ and $A=C(G)$. We have the "coordinates" $\alpha, \gamma \in A$ with

$$
\left(\begin{array}{cc}
\alpha & -\gamma^{*} \\
\gamma & \alpha^{*}
\end{array}\right)
$$

a unitary in $M_{2}(A)$. By Stone-Weierstrauss, $\alpha, \gamma$ generate $A$.
Of course, $A$ tells us nothing about the group $S U(2)$. We can encode the group product $G \times G \rightarrow G$ as a $*$-homomorphism $\Delta: A=C(G) \rightarrow C(G \times G)=A \otimes A$.


## $S U(2)$ as a Hopf $C^{*}$-algebra

Set $G=S U(2)$ and $A=C(G)$. We have the "coordinates" $\alpha, \gamma \in A$ with

$$
\left(\begin{array}{cc}
\alpha & -\gamma^{*} \\
\gamma & \alpha^{*}
\end{array}\right)
$$

a unitary in $M_{2}(A)$. By Stone-Weierstrauss, $\alpha, \gamma$ generate $A$.
Of course, $A$ tells us nothing about the group $S U(2)$. We can encode the group product $G \times G \rightarrow G$ as a $*$-homomorphism
$\Delta: A=C(G) \rightarrow C(G \times G)=A \otimes A$.
Then, if $s=\left(\begin{array}{cc}a & -\bar{b} \\ b & \bar{a}\end{array}\right)$ and $t=\left(\begin{array}{cc}c & -\bar{d} \\ d & \bar{c}\end{array}\right)$, then

$$
\Delta(\alpha)(s, t)=\alpha(s t)=a c-\bar{b} d=\alpha(s) \alpha(t)-\gamma^{*}(s) \gamma(t)
$$

So $\Delta(\alpha)=\alpha \otimes \alpha-\gamma^{*} \otimes \gamma$. Similarly $\Delta(\gamma)=\gamma \otimes \alpha+\alpha^{*} \otimes \gamma$.

## Quantum $S U(2)$

Woronowicz introduced a "deformation" of $S U(2)$ as follows. Let $0 \leq q \leq 1$ and let $A$ be the $C^{*}$-algebra generated by elements $\alpha, \gamma$ such that

$$
\left(\begin{array}{cc}
\alpha & -q \gamma^{*} \\
\gamma & \alpha^{*}
\end{array}\right)
$$

is unitary in $M_{2}(A)$.

- Such a $C^{*}$-algebra does exist. It is non-commutative; for
$0<q<1$, it is isomorphic to a $C^{*}$-algebra related to the Toeplitz
algebra.
- If we define $\Delta(\alpha)=\alpha \otimes \alpha-q \gamma^{*} \otimes \gamma$ and $\Delta(\gamma)=\gamma \otimes \alpha+\alpha^{*} \otimes \gamma$
then we obtain a $*$-homomorphism
- This is the analogue of the group product.


## Quantum $S U(2)$

Woronowicz introduced a "deformation" of $S U(2)$ as follows. Let $0 \leq q \leq 1$ and let $A$ be the $C^{*}$-algebra generated by elements $\alpha, \gamma$ such that

$$
\left(\begin{array}{cc}
\alpha & -q \gamma^{*} \\
\gamma & \alpha^{*}
\end{array}\right)
$$

is unitary in $M_{2}(A)$.

- Such a $C^{*}$-algebra does exist. It is non-commutative; for $0<q<1$, it is isomorphic to a $C^{*}$-algebra related to the Toeplitz algebra.
- If we define $\Delta(\alpha)=\alpha \otimes \alpha-q \gamma^{*} \otimes \gamma$ and $\Delta(\gamma)=\gamma \otimes \alpha+\alpha^{*} \otimes \gamma$
then we obtain a $*$-homomorphism
- This is the analogue of the groun procuct.


## Quantum $S U(2)$

Woronowicz introduced a "deformation" of $S U(2)$ as follows. Let $0 \leq q \leq 1$ and let $A$ be the $C^{*}$-algebra generated by elements $\alpha, \gamma$ such that

$$
\left(\begin{array}{cc}
\alpha & -q \gamma^{*} \\
\gamma & \alpha^{*}
\end{array}\right)
$$

is unitary in $M_{2}(A)$.

- Such a $C^{*}$-algebra does exist. It is non-commutative; for $0<q<1$, it is isomorphic to a $C^{*}$-algebra related to the Toeplitz algebra.
- If we define $\Delta(\alpha)=\alpha \otimes \alpha-q \gamma^{*} \otimes \gamma$ and $\Delta(\gamma)=\gamma \otimes \alpha+\alpha^{*} \otimes \gamma$ then we obtain a $*$-homomorphism
- This is the analogue of the group product.


## Quantum $S U(2)$

Woronowicz introduced a "deformation" of $S U(2)$ as follows. Let $0 \leq q \leq 1$ and let $A$ be the $C^{*}$-algebra generated by elements $\alpha, \gamma$ such that

$$
\left(\begin{array}{cc}
\alpha & -q \gamma^{*} \\
\gamma & \alpha^{*}
\end{array}\right)
$$

is unitary in $M_{2}(A)$.

- Such a $C^{*}$-algebra does exist. It is non-commutative; for $0<q<1$, it is isomorphic to a $C^{*}$-algebra related to the Toeplitz algebra.
- If we define $\Delta(\alpha)=\alpha \otimes \alpha-q \gamma^{*} \otimes \gamma$ and $\Delta(\gamma)=\gamma \otimes \alpha+\alpha^{*} \otimes \gamma$ then we obtain a $*$-homomorphism
- This is the analogue of the group product.


## Quantum $S U(2)$ continued

$$
\Delta: A \rightarrow A \otimes A ; \quad(\Delta \otimes \mathrm{id}) \Delta=(\mathrm{id} \otimes \Delta) \Delta .
$$

The pair $(A, \Delta)$ is a compact quantum group, objects which have remarkable similarities to compact groups:

```
- Subject to "quantum cancellation",
    is dense in }A\otimesA(\mathrm{ and (1&a)}|(b)),\mathrm{ we get.
- A "Haar measure", a state }\infty\in\mp@subsup{A}{}{*}\mathrm{ which is invariant,
    (\varphi\otimesid)\Delta(a)=(id \otimes\varphi)\Delta(a)=\varphi(a)1.
- Have a notion of a "corepresentation", and all unitary
corepresentations split into direct sums of finite dimensionals.
- Analogue of the Peter-Weyl theory.
- Lots of operator-algebraic structure appears: for example, }\varphi\mathrm{ is a
KMS state. So there is automatic interaction with von Neumann
algebra theory.
```


## Quantum $S U(2)$ continued

$$
\Delta: A \rightarrow A \otimes A ; \quad(\Delta \otimes \mathrm{id}) \Delta=(\mathrm{id} \otimes \Delta) \Delta
$$

The pair $(A, \Delta)$ is a compact quantum group, objects which have remarkable similarities to compact groups:

- Subject to "quantum cancellation", that $\operatorname{lin}\{(a \otimes 1) \Delta(b): a, b \in A\}$ is dense in $A \otimes A$ (and $(1 \otimes a) \Delta(b))$, we get...
- A "Haar measure", a state $\varphi \in A^{*}$ which is invariant,
- Have a notion of a "corepresentation", and all unitary corepresentations split into direct sums of finite dimensionals.
- Analogue of the Peter-Weyl theory.
- Lots of operator-algebraic structure appears: for example, $\varphi$ is a KMS state. So there is automatic interaction with von Neumann algebra theory.


## Quantum $S U(2)$ continued

$$
\Delta: A \rightarrow A \otimes A ; \quad(\Delta \otimes \mathrm{id}) \Delta=(\mathrm{id} \otimes \Delta) \Delta
$$

The pair $(A, \Delta)$ is a compact quantum group, objects which have remarkable similarities to compact groups:

- Subject to "quantum cancellation", that $\operatorname{lin}\{(a \otimes 1) \Delta(b): a, b \in A\}$ is dense in $A \otimes A$ (and $(1 \otimes a) \Delta(b)$ ), we get...
- A "Haar measure", a state $\varphi \in A^{*}$ which is invariant, $(\varphi \otimes \mathrm{id}) \Delta(a)=(\mathrm{id} \otimes \varphi) \Delta(a)=\varphi(a) 1$.
- Have a notion of a "corepresentation", and all unitary corepresentations split into direct sums of finite dimensionals.
- Analogue of the Peter-Weyl theory.
- Lots of operator-algebraic structure appears: for example, $\varphi$ is a KMS state. So there is automatic interaction with von Neumann algebra theory.


## Quantum $S U(2)$ continued

$$
\Delta: A \rightarrow A \otimes A ; \quad(\Delta \otimes \mathrm{id}) \Delta=(\mathrm{id} \otimes \Delta) \Delta
$$

The pair $(A, \Delta)$ is a compact quantum group, objects which have remarkable similarities to compact groups:

- Subject to "quantum cancellation", that $\operatorname{lin}\{(a \otimes 1) \Delta(b): a, b \in A\}$ is dense in $A \otimes A$ (and $(1 \otimes a) \Delta(b))$, we get...
- A "Haar measure", a state $\varphi \in A^{*}$ which is invariant, $(\varphi \otimes \mathrm{id}) \Delta(a)=(\mathrm{id} \otimes \varphi) \Delta(a)=\varphi(a) 1$.
- Have a notion of a "corepresentation", and all unitary corepresentations split into direct sums of finite dimensionals.
- Analogue of the Peter-Weyl theory.
- Lots of operator-algebraic structure appears: for example, $\varphi$ is a KMS state. So there is automatic interaction with von Neumann algebra theory.


## Quantum $S U(2)$ continued

$$
\Delta: A \rightarrow A \otimes A ; \quad(\Delta \otimes \mathrm{id}) \Delta=(\mathrm{id} \otimes \Delta) \Delta
$$

The pair $(A, \Delta)$ is a compact quantum group, objects which have remarkable similarities to compact groups:

- Subject to "quantum cancellation", that $\operatorname{lin}\{(a \otimes 1) \Delta(b): a, b \in A\}$ is dense in $A \otimes A$ (and $(1 \otimes a) \Delta(b))$, we get...
- A "Haar measure", a state $\varphi \in A^{*}$ which is invariant, $(\varphi \otimes \mathrm{id}) \Delta(a)=(\mathrm{id} \otimes \varphi) \Delta(a)=\varphi(a) 1$.
- Have a notion of a "corepresentation", and all unitary corepresentations split into direct sums of finite dimensionals.
- Analogue of the Peter-Weyl theory.
- Lots of operator-algebraic structure appears: for example, $\varphi$ is a KMS state. So there is automatic interaction with von Neumann algebra theory.


## Quantum $S U(2)$ continued

$$
\Delta: A \rightarrow A \otimes A ; \quad(\Delta \otimes \mathrm{id}) \Delta=(\mathrm{id} \otimes \Delta) \Delta
$$

The pair $(A, \Delta)$ is a compact quantum group, objects which have remarkable similarities to compact groups:

- Subject to "quantum cancellation", that $\operatorname{lin}\{(a \otimes 1) \Delta(b): a, b \in A\}$ is dense in $A \otimes A$ (and $(1 \otimes a) \Delta(b))$, we get...
- A "Haar measure", a state $\varphi \in A^{*}$ which is invariant, $(\varphi \otimes \mathrm{id}) \Delta(a)=(\mathrm{id} \otimes \varphi) \Delta(a)=\varphi(a) 1$.
- Have a notion of a "corepresentation", and all unitary corepresentations split into direct sums of finite dimensionals.
- Analogue of the Peter-Weyl theory.
- Lots of operator-algebraic structure appears: for example, $\varphi$ is a KMS state. So there is automatic interaction with von Neumann algebra theory.


## A field of $S U_{q}(2)$

Following Bauval and Blanchard, let $A$ be the $C^{*}$-algebra generated by $\alpha, \gamma, f$ such that:

- $f$ commutes with $\alpha, \gamma$;
- $f=f^{*} \geq 0$ has spectrum $[0,1]$;
- $u=\left(\begin{array}{cc}\alpha & -f \gamma^{*} \\ \gamma & \alpha^{*}\end{array}\right)$ is unitary in $M_{2}(A)$.

Functional calculus, applied to $f$, provides a $*$-homomorphism $C([0,1]) \rightarrow A$, so turning $A$ into $C([0,1])$-algebra.

By restriction, $A$ becomes a $C_{0}((0,1])$-algebra.
Theorem
A becomes a continuous field over $(0,1]$ with fibres $A_{q}$ where $A_{q}$ is the $C^{*}$-algebra representing $S U_{q}(2)$. The Haar states vary
continuously.

## A field of $S U_{q}(2)$

Following Bauval and Blanchard, let $A$ be the $C^{*}$-algebra generated by $\alpha, \gamma, f$ such that:

- $f$ commutes with $\alpha, \gamma$;
- $f=f^{*} \geq 0$ has spectrum $[0,1]$;
- $u=\left(\begin{array}{cc}\alpha & -f \gamma^{*} \\ \gamma & \alpha^{*}\end{array}\right)$ is unitary in $M_{2}(A)$.

Functional calculus, applied to $f$, provides a $*$-homomorphism $C([0,1]) \rightarrow A$, so turning $A$ into $C([0,1])$-algebra.

By restriction, $A$ becomes a $C_{0}((0,1])$-algebra.
Theorem
$A$ becomes a continuous field over $(0,1]$ with fibres $A_{q}$ where $A_{q}$ is the $C^{*}$-algebra representing $S U_{q}(2)$. The Haar states vary continuously.

## A field of $S U_{q}(2)$

Following Bauval and Blanchard, let $A$ be the $C^{*}$-algebra generated by $\alpha, \gamma, f$ such that:

- $f$ commutes with $\alpha, \gamma$;
- $f=f^{*} \geq 0$ has spectrum $[0,1]$;
- $u=\left(\begin{array}{cc}\alpha & -f \gamma^{*} \\ \gamma & \alpha^{*}\end{array}\right)$ is unitary in $M_{2}(A)$.

Functional calculus, applied to $f$, provides a $*$-homomorphism $C([0,1]) \rightarrow A$, so turning $A$ into $C([0,1])$-algebra.

By restriction, $A$ becomes a $C_{0}((0,1])$-algebra.
Theorem
$A$ becomes a continuous field over $(0,1]$ with fibres $A_{q}$ where $A_{q}$ is the $C^{*}$-algebra representing $S U_{q}(2)$. The Haar states vary continuously.

## A field of $S U_{q}(2)$

Following Bauval and Blanchard, let $A$ be the $C^{*}$-algebra generated by $\alpha, \gamma, f$ such that:

- $f$ commutes with $\alpha, \gamma$;
- $f=f^{*} \geq 0$ has spectrum $[0,1]$;
- $u=\left(\begin{array}{cc}\alpha & -f \gamma^{*} \\ \gamma & \alpha^{*}\end{array}\right)$ is unitary in $M_{2}(A)$.

Functional calculus, applied to $f$, provides a $*$-homomorphism $C([0,1]) \rightarrow A$, so turning $A$ into $C([0,1])$-algebra.

By restriction, $A$ becomes a $C_{0}((0,1])$-algebra.

## Theorem

A becomes a continuous field over $(0,1]$ with fibres $A_{q}$ where $A_{q}$ is the $C^{*}$-algebra representing $S U_{q}(2)$. The Haar states vary continuously.

## Questions

If we have a continuous family of Haar states, then there should be a von Neumann algebra picture lurking here. But we somehow want to mix continuity and "measurability": jumping straight to measurable fields of von Neumann algebras seems to lose too much information.

What can one say about actions?
What about the locally compact case? Is there a nice source of examples, beyond the "classical" deformation examples?

