The Fourier Algebra

Matthew Daws
Leeds

Kent, Jan 2012

Colloquium talk

- In this month's Notices of the AMS, we have articles by Peller, suggesting that one should not give a computer presentation in a talk; and an article by Kra suggesting one should spend about half the talk on your own work.
- I shall break both these rules!
- I'm going to try just to give a survey talk about a particular area at the interface between algebra and analysis.
- Please ask questions!

Circle group

Let's look at the group \mathbb{T}, which can be thought of as:

- The interval $[0,1)$ with addition modulo 1;
- The quotient group \mathbb{R} / \mathbb{Z};
- The complex numbers $\{z \in \mathbb{C}:|z|=1\}$ with multiplication.

We can think of functions on \mathbb{T} as being the same as functions on \mathbb{R} which are periodic.
A character on \mathbb{T} is a group homomorphism from \mathbb{T} to \mathbb{T}. There are lots of these!
The continuous characters are precisely the maps

$$
\hat{n}: e^{i \theta} \mapsto e^{i n \theta}
$$

where $n \in \mathbb{Z}$.

Fourier series

Given a periodic function $f: \mathbb{R} \rightarrow \mathbb{C}$ the Fourier series of f is $(\hat{f}(n))_{n \in \mathbb{Z}}$ where

$$
\hat{f}(n)=\int_{0}^{1} f(\theta) e^{-2 \pi i n \theta} d \theta
$$

We have the well-known "reconstruction":

$$
f(\theta)=\sum_{n=-\infty}^{\infty} \hat{f}(n) e^{2 \pi i n \theta}
$$

Of course, a great deal of classical analysis is concerned with the question of in what sense does this sum actually converge?

Convergence

$$
f(\theta)=\sum_{n=-\infty}^{\infty} \hat{f}(n) e^{2 \pi i n \theta} .
$$

- If f is twice continuously differentiable, then the sum converges uniformly to f (that is, $\lim _{N \rightarrow \infty} \sum_{n=-N}^{N}$).
- (Kolmogorov) There is a (Lebesgue integrable) function f such that the sum diverges everywhere.
- (Carleson) If f is continuous then the sum converges almost everywhere.
If $f \in L^{2}(\mathbb{T})$ (so $\int_{0}^{1}|f|^{2}<\infty$) then the sum always converges in the Banach space $L^{2}(\mathbb{T})$.

Banach spaces

So thinking more abstractly, Parseval's Theorem,

$$
\int_{0}^{1}|f|^{2}=\sum_{n=-\infty}^{\infty}|\hat{f}(n)|^{2}
$$

implies that the Fourier transform $\mathcal{F}: f \mapsto \hat{f}$ is a linear, isometric bijection

$$
\mathcal{F}: L^{2}([0,1]) \rightarrow \ell^{2}(\mathbb{Z})
$$

The Riemann-Lebesgue Lemma shows that

$$
\mathcal{F}: L^{1}([0,1]) \rightarrow c_{0}(\mathbb{Z})
$$

is a linear contraction. That is, if $\int_{0}^{1}|f|<\infty$, then

$$
\lim _{n \rightarrow \pm \infty} \hat{f}(n)=0, \quad \max |\hat{f}(n)| \leq \int_{0}^{1}|f|
$$

Banach algebras

We turn $L^{1}([0,1])$ into a Banach algebra for the convolution product

$$
(f * g)(t)=\int_{0}^{1} f(s) g(t-s) d s
$$

where all addition is modulo 1 . Turn $c_{0}(\mathbb{Z})$ into a Banach algebra for the pointwise product. Then

$$
\mathcal{F}: L^{1}([0,1]) \rightarrow c_{0}(\mathbb{Z})
$$

is an algebra homomorphism.

- The image is denoted $A(\mathbb{Z})$, the Fourier algebra of \mathbb{Z}. We give $A(\mathbb{Z})$ the norm coming from $L^{1}([0,1])$.
- So in one sense $A(\mathbb{Z})$ is just a different way to view $L^{1}([0,1])$.
- But $A(\mathbb{Z})$ is an interesting algebra of functions on \mathbb{Z} : if $K \subseteq \mathbb{Z}$ finite and $F \subseteq \mathbb{Z}$ disjoint from K then there is $a \in A(\mathbb{Z})$ with $a \equiv 1$ on K and $a \equiv 0$ on F.

Generalisation one

Given a locally compact abelian group G, let \hat{G} be the collection of continuous characters on G, that is, group homomorphisms $\phi: G \rightarrow \mathbb{T}$.

- We turn \hat{G} into a group by pointwise multiplication: $\phi \psi: G \rightarrow \mathbb{T} ; g \mapsto \phi(g) \psi(g)$.
- We turn \hat{G} into a locally compact space for the topology of uniform convergence on compact sets.
- Then \hat{G} is a locally compact abelian group.
- We have that $\hat{\hat{G}} \cong G$ in a canonical way: $g \in G$ induces $\hat{\hat{g}} \in \hat{\hat{G}}$ by

$$
\hat{\hat{g}}: \phi \mapsto \phi(g) .
$$

Then $g \mapsto \hat{g}$ is a homeomorphism.

- This is reminiscent of the fact that $V \cong V^{* *}$ for a finite-dimensional vector space V.

Generalisation one cont.

The other key fact about locally compact groups is that they admit a Haar measure: a Radon measure μ such that

$$
\mu(A)=\mu(t A) \text { where } t A=\{t s: s \in A\}
$$

for any measurable set A.

- On \mathbb{R} this is the Lebesgue measure;
- On \mathbb{Z} this is just the counting measure.

For a suitably normalised Haar measure $\hat{\mu}$ on \hat{G} we have a Fourier transform

$$
L^{1}(G) \rightarrow C_{0}(\hat{G}) ; \quad f \mapsto \hat{f}, \quad \hat{f}(\phi)=\int_{G} f(s) \overline{\phi(s)} d \mu(s) .
$$

Again, this induces an isometry $L^{2}(G) \rightarrow L^{2}(\hat{G})$.

Generalisation two

If G is abelian, we define the Fourier algebra on G to be the image of $\mathcal{F}: L^{1}(\hat{G}) \rightarrow C_{0}(G)$ (recalling that $\hat{\hat{G}}=G$). Denote this $A(G)$:

- so this is some collection of functions on G, which vanish at infinity;
- given the norm from $L^{1}(\hat{G})$, we get a Banach algebra;
- it's "regular": given disjoint K, F with K compact and F closed, there is $a \in A(G)$ with $a \equiv 1$ on K and $a \equiv 0$ on F;
- functions of compact support are dense in $A(G)$;
- a character on $A(G)$, a non-zero multiplicative continuous map $A(G) \rightarrow \mathbb{C}$, is always given by "evaluation at a point of G".

It turns out that for any G we can find an algebra $A(G) \subseteq C_{0}(G)$ which behaves "as if" it is $\mathcal{F}\left(L^{1}(\hat{G})\right)$, even though \hat{G} might not exist.

Restart- think about algebras

For now, let G be a finite (not assumed abelian) group. Let V be the \mathbb{C}-vector space which has G as a basis- so V is formal linear combinations of the elements of G.

- We can think of V as being functions from G to \mathbb{C}, written \mathbb{C}^{G}, turned into an algebra for the pointwise operations:

$$
(f \cdot g)(s)=f(s) g(s) \quad\left(f, g \in \mathbb{C}^{G}\right)
$$

- We can think of V as being the \mathbb{C} group ring of G, written $\mathbb{C}[G]$, with multiplication now given by "convolution":

$$
\left(\sum_{g \in G} a_{g} g\right)\left(\sum_{h \in G} b_{h} h\right)=\sum_{g, h \in G} a_{g} b_{h} g h=\sum_{g \in G}\left(\sum_{h \in G} a_{h} b_{h^{-1} g}\right) g
$$

Hopf algebras

I can't resist pointing out that these algebras have extra structure.
On \mathbb{C}^{G} we define a "coproduct"

$$
\Delta: \mathbb{C}^{G} \rightarrow \mathbb{C}^{G} \otimes \mathbb{C}^{G}=\mathbb{C}^{G \times G} ; \quad \Delta(f)(g, h)=f(g h)
$$

Also define a "counit", and "coinverse"

$$
\epsilon: \mathbb{C}^{G} \rightarrow \mathbb{C} ; \epsilon(f)=f(e), \quad S: \mathbb{C}^{G} \rightarrow \mathbb{C}^{G} ; S(f)(g)=f\left(g^{-1}\right)
$$

These interact in a "dual way" to how multiplication, identity and inverse work for algebras. For example, Δ is "coassociative" meaning that $(\Delta \otimes \mathrm{id}) \Delta=(\mathrm{id} \otimes \Delta) \Delta$. Notice that Δ and ϵ are homomorphisms, and S is an anti-homomorphism.

Duality

Similarly such maps exist on $\mathbb{C}[G]$; for $g \in G$ define

$$
\begin{aligned}
& \Delta: \mathbb{C}[G] \rightarrow \mathbb{C}[G] \otimes \mathbb{C}[G]=\mathbb{C}[G \times G] ; \quad \Delta(g)=g \otimes g, \\
& \epsilon: \mathbb{C}[G] \rightarrow \mathbb{C} ; \epsilon(g)=1, \quad S: \mathbb{C}[G] \rightarrow \mathbb{C}[G] ; S(g)=g^{-1} .
\end{aligned}
$$

and extend by linearity. Again, these are all algebra homomorphisms.
Then $\mathbb{C}[G]$ and \mathbb{C}^{G} are naturally dual vector spaces to each other, for the dual pairing

$$
\left\langle f, \sum_{g} a_{g} g\right\rangle=\sum_{g} a_{g} f(g) \quad\left(f \in \mathbb{C}^{G}, \sum_{g} a_{g} g \in \mathbb{C}[G]\right) .
$$

This is "canonical" as then the counit for one algebra becomes the unit for the other, and the coproduct gives the product. (The coinverse doesn't quite fit here- l'm really talking about bialgebras at this point).

Some analysis: norms

Recall that V was our underlying vector space- turn this into a Euclidean space (a Hilbert space) for the canonical inner-product:

$$
\left(\sum_{g} a_{g} g \mid \sum_{h} b_{h} h\right)=\sum_{g} a_{g} \overline{b_{h}}
$$

Then $\mathbb{C}[G]$ acts on V by the (left) regular representation. Then we can give $\mathbb{C}[G]$ the induced operator norm:

$$
\|a\|=\max \left\{\|a v\| v: v \in V,\|v\| v=(v \mid v)^{1 / 2} \leq 1\right\}
$$

Then this is an algebra norm: $\|a b\| \leq\|a\|\|b\|$.

- For example, if $a=\sum_{g} a_{g} g$ with $a_{g} \geq 0$ for all g, then

$$
\|a\|=\sum_{g} a_{g}
$$

- Proof: " \leq " is easy inequality; let $v=|G|^{-1 / 2} \sum_{g} g \in V$ so

$$
\|v\| v=1 \text { and } a v=\left(\sum_{g} a_{g}\right) v
$$

- Other cases are (much) harder to calculate!

The coinverse appears!

Recall the coinverse of $\mathbb{C}^{G}: S(f)(t)=f\left(t^{-1}\right)$.

- As V is a Hilbert space, for each $a \in \mathbb{C}[G]$ there is a linear map $a^{*}: V \rightarrow V$ given by

$$
\left(a^{*} v \mid u\right)=(v \mid a u) \quad(u, v \in V)
$$

- A calculation shows that

$$
\left(\sum_{g} \mathrm{a}_{g} g\right)^{*}=\sum_{g} \overline{\mathrm{a}_{g}} g^{-1}
$$

- The converse plays a role here; for $f \in \mathbb{C}^{G}$,

$$
\left\langle f, a^{*}\right\rangle=\sum_{g} f\left(g^{-1}\right) \overline{a_{g}}=\overline{\left\langle S(f)^{*}, a\right\rangle}
$$

- So again, we can argue that this *-structure is canonical.

C*-algebras and duality again

As V is a Hilbert space, and we have now identified $\mathbb{C}[G]$ as a *-subalgebra of $\operatorname{Hom}(V)$, we find that $\mathbb{C}[G]$ is a C^{*}-algebra.

- Such algebras can be characterised as those Banach algebras which satisfy the C^{*}-condition: $\left\|a^{*} a\right\|=\|a\|^{2}$.
We now use the duality between $\mathbb{C}[G]$ and \mathbb{C}^{G} to induce the dual norm on \mathbb{C}^{G} :

$$
\|f\|=\sup \{|\langle f, a\rangle|: a \in \mathbb{C}[G],\|a\| \leq 1\}
$$

- This is an algebra norm on \mathbb{C}^{G}.
- Actually the coproduct on $\mathbb{C}[G]$, being an injective *-homomorphism, is an isometry.
- Then $|\langle f g, a\rangle|=|\langle f \otimes g, \Delta(a)\rangle| \leq\|f\|\|g\|\|a\|$ so $\|f g\| \leq\|f\|\|g\|$.

The Fourier algebra

If G is abelian, then \mathbb{C}^{G}, with this norm, is precisely $A(G) \cong L^{1}(\hat{G})$, the Fourier algebra.

- The Fourier transform converts convolution to pointwise actions, and a bit of calculation shows that it establishes an isomorphism between $\mathbb{C}[G]$ and $C(\hat{G})$, the continuous functions on \hat{G} with the max norm.
- Routine calculations show that $C(\hat{G})^{*}=L^{1}(\hat{G})$. And so $A(G)=\mathbb{C}[G]^{*} \cong L^{1}(\hat{G})$.
This then forms our definition of $A(G)$ for non-abelian G.

Infinite groups

Given a locally compact group G with the left invariant Haar measure, our analogue of V is $L^{2}(G)$, the square-integrable functions on G :

$$
(f \mid h)=\int_{G} f(g) \overline{h(g)} d g .
$$

- Let $C_{c}(G)$ be the space of compactly supported, continuous functions. This acts on $L^{2}(G)$ by left convolution, and forms a $*$-subalgebra of $\operatorname{Hom}\left(L^{2}(G)\right)$.
- The closure is $C_{r}^{*}(G)$, the reduced group C^{*}-algebra. This is our analogue of $\mathbb{C}[G]$.
- Reduced because we could have taken the supremum over all C^{*}-norms. This gives $C^{*}(G)$, which if G is not amenable is larger.
- Sadly we're not quite done...

Infinite groups continued

The dual of $C_{r}^{*}(G)$ is somewhat "too large". Instead we use a different topology on $C_{r}^{*}(G)$:

- The strong operator topology on $\operatorname{Hom}\left(L^{2}(G)\right)$ is such that a net $\left(T_{i}\right)$ converges to T if and only if $\left\|T_{i}(f)-T(f)\right\| \rightarrow 0$ for all $f \in L^{2}(G)$.
- This is "locally convex" and metrisable if G is separable, but is not given by a norm unless G is finite.
- What you gain: the unit ball is now compact.
- We then define $A(G)$ to be the collection of linear functionals $C_{r}^{*}(G) \rightarrow \mathbb{C}$ which are continuous for the strong operator topology.
- Functional Analysis arguments show that $A(G)$ is then a closed subspace of the dual of $C_{r}^{*}(G)$ and hence a Banach space.

Why an algebra?

If we take the strong operator closure of $C_{r}^{*}(G)$ we get another, larger C^{*}-algebra, $V N(G)$.

- This is a von Neumann algebra (as it's strongly closed!)
- von Neumann bicommutant theorem: $V N(G)=C_{r}^{*}(G)^{\prime \prime}$ where

$$
X^{\prime}=\left\{T \in \operatorname{Hom}\left(L^{2}(G)\right): T R=R T(R \in X)\right\} .
$$

- Then $A(G)^{*}=V N(G)$.
- $\operatorname{VN}(G)$ is also equal to the von Neumann algebra generated by the left translation operators given by group elements $g \in G$.
- As before, the coproduct $\Delta(g)=g \otimes g$ is well-defined and strongly continuous as a map $V N(G) \rightarrow V N(G) \bar{\otimes} V N(G)$.
- This then shows that $A(G)$ is an algebra, just as in the finite-group case.

Philosophy

A large number of constructions which one can do in pure algebra for a "finite structure" can be carried out for an infinite structure which has a topology by use of operator-algebraic (C^{*} or von Neumann algebra techniques).
When G is an infinite discrete group, then G might not have any topology, but the "infinite" nature makes operator-algebraic methods useful (e.g. the "abstract" side of geometric group theory).

As a function algebra

For a finite group G, we saw that $A(G)$ is just \mathbb{C}^{G} but with a different norm. In general:

- We use that $A(G)^{*}=V N(G)$.
- The map $G \rightarrow V N(G) ; g \mapsto g$ is continuous, and so for $a \in A(G)$ the map $g \mapsto\langle g, a\rangle$ is continuous.
- If $\langle g, a\rangle=0$ for all g, then as G generates $V N(G)$, we see that $a=0$.
- So we identify $a \in A(G)$ with a continuous function $G \rightarrow \mathbb{C}$.
- By getting your hands dirty, you can show that functions of the form $f_{1} * f_{2}$, for $f_{i} \in C_{C}(G)$, are dense in $A(G)$.
- So $A(G)$ is a dense subalgebra of $C_{0}(G)$.
- The character space of $A(G)$ is G.

What you get

If G is finite, then the isomorphism class of \mathbb{C}^{G} just depends on |G|.

- [Walter] If $A(G)$ is isometrically isomorphic to $A(H)$, then G is isomorphic to either H or $H^{\text {op }}$ (and one can describe very concretely the isomorphism $A(G) \cong A(H)$).
- That is, with the norm, \mathbb{C}^{G} completely determines G or $G^{o p}$.
- Philosophical point: I don't know of any "algorithm" that takes $A(G)$ and gives the group structure on G and/or $G^{o p}$.

Approximation properties

Recall that G is amenable if and only if $C_{r}^{*}(G)=C^{*}(G)$.

- G is amenable if it has certain "averaging" properties: compact groups are amenable, but \mathbb{F}_{2} is not. This is related to "paradoxical decompositions".
- $A(G)$ has an identity (is unital) if and only if G is compact.
- G is amenable if and only if $A(G)$ has a bounded approximate identity: a bounded net (a_{i}) with $a_{i} a \rightarrow a$ for all $a \in A(G)$.
- There are various weaker notions of "amenability" which can be defined using weaker forms of "bounded".
- Related properties (e.g. the Haagerup approximation property) have links to e.g. the Baum-Connes conjecture in K-Theory.

Example: compact groups

Let G be a compact group (in particular, finite!)

- Let Γ be a set of representatives for the classes of irreducible representations of G. For $\pi \in \Gamma$ let n_{π} be the dimension.
- Then the Peter-Weyl theorem tells us that as a left G-module,

$$
L^{2}(G) \cong \bigoplus_{\pi \in \Gamma} n_{\pi} \mathbb{C}^{n_{\pi}}
$$

- Then $C_{r}^{*}(G)$ decomposes as

$$
C_{r}^{*}(G) \cong \bigoplus_{\pi \in \Gamma} \mathbb{M}_{n_{\pi}}
$$

- We get $V N(G)$ by taking the ℓ^{∞} direct sum, instead of the c_{0} direct sum. Then

$$
A(G) \cong \ell^{1}-\bigoplus_{\pi \in \Gamma} \mathbb{M}_{n_{\pi}}^{*}
$$

Example: compact groups cont.

$$
A(G) \cong \ell^{1}-\bigoplus_{\pi \in \Gamma} \mathbb{M}_{n_{\pi}}^{*}, \quad \Delta(g)=g \otimes g
$$

- Let $\pi_{1}, \pi_{2} \in \Gamma$ and consider the irreducible decomposition:

$$
\pi_{1} \otimes \pi_{2} \cong \pi_{k_{1}} \oplus \pi_{k_{2}} \oplus \cdots \oplus \pi_{k_{n}} .
$$

- So if $a=\left(a_{\pi}\right), b=\left(b_{\pi}\right), c=\left(c_{\pi}\right) \in A(G)$ with $a b=c$, then

$$
c_{\pi}=\sum_{\pi_{1}, \pi_{2}}\left\{\text { The } \pi \text { component of } a_{\pi_{1}} \otimes b_{\pi_{2}}\right\} .
$$

- If G is abelian then each π is a character and Γ is a (discrete) group, and the above becomes

$$
c_{\pi}=\sum_{\phi, \psi}\left\{a_{\phi} b_{\psi}: \phi \psi=\pi\right\} .
$$

That is, convolution, as we expect given $A(G) \cong L^{1}(\Gamma)$.

Takesaki operator

Consider the operator W on $L^{2}(G \times G)$

$$
W f(g, h)=f\left(h^{-1} g, h\right) \quad(g, h \in G) .
$$

As the Haar measure is left invariant, W is an isometry, with obvious inverse, so W is unitary.
We can "slice" W : given $\xi, \eta \in L^{2}(G)$, consider the operator

$$
\left(\text { id } \otimes \omega_{\xi, \eta}\right)(W)=T \quad \Leftrightarrow \quad(T f \mid g)=(W(f \otimes \xi) \mid g \otimes \eta) .
$$

If we do the calculation, then

$$
T=\text { left convolution by } \xi \bar{\eta} \in L^{1}(G) \text {. }
$$

So $C_{r}^{*}(G)(V N(G))$ is the norm (strong) closure of such slices. We can recover Δ via the map

$$
\Delta(x)=W(1 \otimes x) W^{*} \quad\left(x \in V N(G) \subseteq \operatorname{Hom}\left(L^{2}(G)\right)\right) .
$$

Towards (locally compact) quantum groups

So the single operator W allows us to reconstruct
$C_{r}^{*}(G), V N(G), \Delta$ and hence $A(G)$.

- By taking slices of the other side, we can reconstruct $C_{0}(G), L^{\infty}(G), L^{1}(G)$.
- That Δ is coassociative is reflected in the "Pentagonal equation":

$$
W_{12} W_{13} W_{23}=W_{23} W_{12} .
$$

- Slicing W might not give a reasonable algebra. But under various extra conditions:
- W is (semi)-regular, [Baaj-Skandalis]
- W is manageable [Woronowicz-Sołtan] we get a C*-algebra A, a von Neumann algebra M, a coproduct $\Delta: M \rightarrow M \otimes M$ and (perhaps unbounded) counit and coinverse.
- By starting with algebras, one can write down some axioms to get the notion of a "locally compact quantum group" [Kustermans-Vaes].

One result

So we get a quantum group \mathbb{G} :

- An "abstract" object represented by various operator algebras: $C_{r}^{*}(\mathbb{G})$ and $V N(\mathbb{G})$.
- (This is "non-commutative topology".)
- Can get a Banach algebra $A(\mathbb{G})$: if \mathbb{G} is a genuine group (or dual) then we get $A(G)$ (or $L^{1}(G)$).
- [D., Le Pham] If $A(\mathbb{G})$ and $A(\mathbb{H})$ are isometrically isomorphic, then \mathbb{G} is isomorphic to \mathbb{H} (or its opposite).

