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Colloquium talk

I In this month’s Notices of the AMS, we have articles by
Peller, suggesting that one should not give a computer
presentation in a talk; and an article by Kra suggesting one
should spend about half the talk on your own work.

I I shall break both these rules!
I I’m going to try just to give a survey talk about a particular

area at the interface between algebra and analysis.
I Please ask questions!



Circle group

Let’s look at the group T, which can be thought of as:
I The interval [0,1) with addition modulo 1;
I The quotient group R/Z;
I The complex numbers {z ∈ C : |z| = 1} with multiplication.

We can think of functions on T as being the same as functions
on R which are periodic.
A character on T is a group homomorphism from T to T. There
are lots of these!
The continuous characters are precisely the maps

n̂ : eiθ 7→ einθ

where n ∈ Z.



Fourier series

Given a periodic function f : R→ C the Fourier series of f is
(f̂ (n))n∈Z where

f̂ (n) =

∫ 1

0
f (θ)e−2πinθ dθ.

We have the well-known “reconstruction”:

f (θ) =
∞∑

n=−∞
f̂ (n)e2πinθ.

Of course, a great deal of classical analysis is concerned with
the question of in what sense does this sum actually converge?



Convergence

f (θ) =
∞∑

n=−∞
f̂ (n)e2πinθ.

I If f is twice continuously differentiable, then the sum
converges uniformly to f (that is, limN→∞

∑N
n=−N ).

I (Kolmogorov) There is a (Lebesgue integrable) function f
such that the sum diverges everywhere.

I (Carleson) If f is continuous then the sum converges
almost everywhere.

If f ∈ L2(T) (so
∫ 1

0 |f |
2 <∞) then the sum always converges in

the Banach space L2(T).



Banach spaces
So thinking more abstractly, Parseval’s Theorem,∫ 1

0
|f |2 =

∞∑
n=−∞

|̂f (n)|2,

implies that the Fourier transform F : f 7→ f̂ is a linear, isometric
bijection

F : L2([0,1])→ `2(Z).

The Riemann-Lebesgue Lemma shows that

F : L1([0,1])→ c0(Z)

is a linear contraction. That is, if
∫ 1

0 |f | <∞, then

lim
n→±∞

f̂ (n) = 0, max |̂f (n)| ≤
∫ 1

0
|f |.



Banach algebras
We turn L1([0,1]) into a Banach algebra for the convolution
product

(f ∗ g)(t) =

∫ 1

0
f (s)g(t − s) ds,

where all addition is modulo 1. Turn c0(Z) into a Banach
algebra for the pointwise product. Then

F : L1([0,1])→ c0(Z)

is an algebra homomorphism.

I The image is denoted A(Z), the Fourier algebra of Z. We
give A(Z) the norm coming from L1([0,1]).

I So in one sense A(Z) is just a different way to view
L1([0,1]).

I But A(Z) is an interesting algebra of functions on Z: if
K ⊆ Z finite and F ⊆ Z disjoint from K then there is
a ∈ A(Z) with a ≡ 1 on K and a ≡ 0 on F .



Generalisation one
Given a locally compact abelian group G, let Ĝ be the collection
of continuous characters on G, that is, group homomorphisms
φ : G→ T.

I We turn Ĝ into a group by pointwise multiplication:
φψ : G→ T; g 7→ φ(g)ψ(g).

I We turn Ĝ into a locally compact space for the topology of
uniform convergence on compact sets.

I Then Ĝ is a locally compact abelian group.

I We have that ˆ̂G ∼= G in a canonical way: g ∈ G induces
ˆ̂g ∈ ˆ̂G by

ˆ̂g : φ 7→ φ(g).

Then g 7→ ˆ̂g is a homeomorphism.
I This is reminiscent of the fact that V ∼= V ∗∗ for a

finite-dimensional vector space V .



Generalisation one cont.

The other key fact about locally compact groups is that they
admit a Haar measure: a Radon measure µ such that

µ(A) = µ(tA) where tA = {ts : s ∈ A}

for any measurable set A.

I On R this is the Lebesgue measure;
I On Z this is just the counting measure.

For a suitably normalised Haar measure µ̂ on Ĝ we have a
Fourier transform

L1(G)→ C0(Ĝ); f 7→ f̂ , f̂ (φ) =

∫
G

f (s)φ(s) dµ(s).

Again, this induces an isometry L2(G)→ L2(Ĝ).



Generalisation two
If G is abelian, we define the Fourier algebra on G to be the

image of F : L1(Ĝ)→ C0(G) (recalling that ˆ̂G = G). Denote
this A(G):

I so this is some collection of functions on G, which vanish
at infinity;

I given the norm from L1(Ĝ), we get a Banach algebra;
I it’s “regular”: given disjoint K ,F with K compact and F

closed, there is a ∈ A(G) with a ≡ 1 on K and a ≡ 0 on F ;
I functions of compact support are dense in A(G);
I a character on A(G), a non-zero multiplicative continuous

map A(G)→ C, is always given by “evaluation at a point of
G”.

It turns out that for any G we can find an algebra A(G) ⊆ C0(G)
which behaves “as if” it is F(L1(Ĝ)), even though Ĝ might not
exist.



Restart– think about algebras

For now, let G be a finite (not assumed abelian) group. Let V
be the C-vector space which has G as a basis– so V is formal
linear combinations of the elements of G.

I We can think of V as being functions from G to C, written
CG, turned into an algebra for the pointwise operations:

(f · g)(s) = f (s)g(s) (f ,g ∈ CG).

I We can think of V as being the C group ring of G, written
C[G], with multiplication now given by “convolution”:(∑

g∈G

ag g
)(∑

h∈G

bh h
)

=
∑

g,h∈G

agbh gh =
∑
g∈G

(∑
h∈G

ahbh−1g

)
g.



Hopf algebras

I can’t resist pointing out that these algebras have extra
structure.
On CG we define a “coproduct”

∆ : CG → CG ⊗ CG = CG×G; ∆(f )(g,h) = f (gh).

Also define a “counit”, and “coinverse”

ε : CG → C; ε(f ) = f (e), S : CG → CG; S(f )(g) = f (g−1).

These interact in a “dual way” to how multiplication, identity and
inverse work for algebras. For example, ∆ is “coassociative”
meaning that (∆⊗ id)∆ = (id⊗∆)∆.
Notice that ∆ and ε are homomorphisms, and S is an
anti-homomorphism.



Duality
Similarly such maps exist on C[G]; for g ∈ G define

∆ : C[G]→ C[G]⊗ C[G] = C[G ×G]; ∆(g) = g ⊗ g,

ε : C[G]→ C; ε(g) = 1, S : C[G]→ C[G]; S(g) = g−1.

and extend by linearity. Again, these are all algebra
homomorphisms.

Then C[G] and CG are naturally dual vector spaces to each
other, for the dual pairing

〈f ,
∑

g

ag g〉 =
∑

g

ag f (g) (f ∈ CG,
∑

g

ag g ∈ C[G]).

This is “canonical” as then the counit for one algebra becomes
the unit for the other, and the coproduct gives the product. (The
coinverse doesn’t quite fit here– I’m really talking about
bialgebras at this point).



Some analysis: norms
Recall that V was our underlying vector space– turn this into a
Euclidean space (a Hilbert space) for the canonical
inner-product: (∑

g

ag g
∣∣∑

h

bh h
)

=
∑

g

agbh.

Then C[G] acts on V by the (left) regular representation. Then
we can give C[G] the induced operator norm:

‖a‖ = max
{
‖av‖V : v ∈ V , ‖v‖V = (v |v)1/2 ≤ 1

}
Then this is an algebra norm: ‖ab‖ ≤ ‖a‖‖b‖.

I For example, if a =
∑

g ag g with ag ≥ 0 for all g, then
‖a‖ =

∑
g ag .

I Proof: “≤” is easy inequality; let v = |G|−1/2∑
g g ∈ V so

‖v‖V = 1 and av =
(∑

g ag
)
v .

I Other cases are (much) harder to calculate!



The coinverse appears!

Recall the coinverse of CG: S(f )(t) = f (t−1).

I As V is a Hilbert space, for each a ∈ C[G] there is a linear
map a∗ : V → V given by

(a∗v |u) = (v |au) (u, v ∈ V ).

I A calculation shows that(∑
g

ag g
)∗

=
∑

g

ag g−1.

I The converse plays a role here; for f ∈ CG,

〈f ,a∗〉 =
∑

g

f (g−1)ag = 〈S(f )∗,a〉.

I So again, we can argue that this *-structure is canonical.



C∗-algebras and duality again

As V is a Hilbert space, and we have now identified C[G] as a
∗-subalgebra of Hom(V ), we find that C[G] is a C∗-algebra.

I Such algebras can be characterised as those Banach
algebras which satisfy the C∗-condition: ‖a∗a‖ = ‖a‖2.

We now use the duality between C[G] and CG to induce the
dual norm on CG:

‖f‖ = sup
{
|〈f ,a〉| : a ∈ C[G], ‖a‖ ≤ 1

}
.

I This is an algebra norm on CG.
I Actually the coproduct on C[G], being an injective
∗-homomorphism, is an isometry.

I Then |〈fg,a〉| = |〈f ⊗ g,∆(a)〉| ≤ ‖f‖‖g‖‖a‖ so
‖fg‖ ≤ ‖f‖‖g‖.



The Fourier algebra

If G is abelian, then CG, with this norm, is precisely
A(G) ∼= L1(Ĝ), the Fourier algebra.

I The Fourier transform converts convolution to pointwise
actions, and a bit of calculation shows that it establishes an
isomorphism between C[G] and C(Ĝ), the continuous
functions on Ĝ with the max norm.

I Routine calculations show that C(Ĝ)∗ = L1(Ĝ). And so
A(G) = C[G]∗ ∼= L1(Ĝ).

This then forms our definition of A(G) for non-abelian G.



Infinite groups

Given a locally compact group G with the left invariant Haar
measure, our analogue of V is L2(G), the square-integrable
functions on G:

(f |h) =

∫
G

f (g)h(g) dg.

I Let Cc(G) be the space of compactly supported,
continuous functions. This acts on L2(G) by left
convolution, and forms a ∗-subalgebra of Hom(L2(G)).

I The closure is C∗r (G), the reduced group C∗-algebra. This
is our analogue of C[G].

I Reduced because we could have taken the supremum
over all C∗-norms. This gives C∗(G), which if G is not
amenable is larger.

I Sadly we’re not quite done. . .



Infinite groups continued

The dual of C∗r (G) is somewhat “too large”. Instead we use a
different topology on C∗r (G):

I The strong operator topology on Hom(L2(G)) is such that a
net (Ti) converges to T if and only if ‖Ti(f )− T (f )‖ → 0 for
all f ∈ L2(G).

I This is “locally convex” and metrisable if G is separable,
but is not given by a norm unless G is finite.

I What you gain: the unit ball is now compact.
I We then define A(G) to be the collection of linear

functionals C∗r (G)→ C which are continuous for the strong
operator topology.

I Functional Analysis arguments show that A(G) is then a
closed subspace of the dual of C∗r (G) and hence a Banach
space.



Why an algebra?
If we take the strong operator closure of C∗r (G) we get another,
larger C∗-algebra, VN(G).

I This is a von Neumann algebra (as it’s strongly closed!)
I von Neumann bicommutant theorem: VN(G) = C∗r (G)′′

where

X ′ = {T ∈ Hom(L2(G)) : TR = RT (R ∈ X )}.

I Then A(G)∗ = VN(G).
I VN(G) is also equal to the von Neumann algebra

generated by the left translation operators given by group
elements g ∈ G.

I As before, the coproduct ∆(g) = g ⊗ g is well-defined and
strongly continuous as a map VN(G)→ VN(G)⊗VN(G).

I This then shows that A(G) is an algebra, just as in the
finite-group case.



Philosophy

A large number of constructions which one can do in pure
algebra for a “finite structure” can be carried out for an infinite
structure which has a topology by use of operator-algebraic (C∗

or von Neumann algebra techniques).
When G is an infinite discrete group, then G might not have any
topology, but the “infinite” nature makes operator-algebraic
methods useful (e.g. the “abstract” side of geometric group
theory).



As a function algebra

For a finite group G, we saw that A(G) is just CG but with a
different norm. In general:

I We use that A(G)∗ = VN(G).
I The map G→ VN(G); g 7→ g is continuous, and so for

a ∈ A(G) the map g 7→ 〈g,a〉 is continuous.
I If 〈g,a〉 = 0 for all g, then as G generates VN(G), we see

that a = 0.
I So we identify a ∈ A(G) with a continuous function G→ C.
I By getting your hands dirty, you can show that functions of

the form f1 ∗ f2, for fi ∈ Cc(G), are dense in A(G).
I So A(G) is a dense subalgebra of C0(G).
I The character space of A(G) is G.



What you get

If G is finite, then the isomorphism class of CG just depends on
|G|.

I [Walter] If A(G) is isometrically isomorphic to A(H), then G
is isomorphic to either H or Hop (and one can describe
very concretely the isomorphism A(G) ∼= A(H)).

I That is, with the norm, CG completely determines G or Gop.
I Philosophical point: I don’t know of any “algorithm” that

takes A(G) and gives the group structure on G and/or Gop.



Approximation properties

Recall that G is amenable if and only if C∗r (G) = C∗(G).

I G is amenable if it has certain “averaging” properties:
compact groups are amenable, but F2 is not. This is
related to “paradoxical decompositions”.

I A(G) has an identity (is unital) if and only if G is compact.
I G is amenable if and only if A(G) has a bounded

approximate identity: a bounded net (ai) with aia→ a for
all a ∈ A(G).

I There are various weaker notions of “amenability” which
can be defined using weaker forms of “bounded”.

I Related properties (e.g. the Haagerup approximation
property) have links to e.g. the Baum–Connes conjecture
in K-Theory.



Example: compact groups
Let G be a compact group (in particular, finite!)

I Let Γ be a set of representatives for the classes of
irreducible representations of G. For π ∈ Γ let nπ be the
dimension.

I Then the Peter-Weyl theorem tells us that as a left
G-module,

L2(G) ∼=
⊕
π∈Γ

nπCnπ .

I Then C∗r (G) decomposes as

C∗r (G) ∼=
⊕
π∈Γ

Mnπ .

I We get VN(G) by taking the `∞ direct sum, instead of the
c0 direct sum. Then

A(G) ∼= `1 −
⊕
π∈Γ

M∗nπ
.



Example: compact groups cont.

A(G) ∼= `1 −
⊕
π∈Γ

M∗nπ
, ∆(g) = g ⊗ g.

I Let π1, π2 ∈ Γ and consider the irreducible decomposition:

π1 ⊗ π2
∼= πk1 ⊕ πk2 ⊕ · · · ⊕ πkn .

I So if a = (aπ),b = (bπ), c = (cπ) ∈ A(G) with ab = c, then

cπ =
∑
π1,π2

{The π component of aπ1 ⊗ bπ2}.

I If G is abelian then each π is a character and Γ is a
(discrete) group, and the above becomes

cπ =
∑
φ,ψ

{aφbψ : φψ = π}.

That is, convolution, as we expect given A(G) ∼= L1(Γ).



Takesaki operator
Consider the operator W on L2(G ×G)

Wf (g,h) = f (h−1g,h) (g,h ∈ G).

As the Haar measure is left invariant, W is an isometry, with
obvious inverse, so W is unitary.
We can “slice” W : given ξ, η ∈ L2(G), consider the operator

(id⊗ωξ,η)(W ) = T ⇔ (Tf |g) = (W (f ⊗ ξ)|g ⊗ η).

If we do the calculation, then

T = left convolution by ξη ∈ L1(G).

So C∗r (G) (VN(G)) is the norm (strong) closure of such slices.
We can recover ∆ via the map

∆(x) = W (1⊗ x)W ∗ (x ∈ VN(G) ⊆ Hom(L2(G))).



Towards (locally compact) quantum groups
So the single operator W allows us to reconstruct
C∗r (G),VN(G),∆ and hence A(G).

I By taking slices of the other side, we can reconstruct
C0(G),L∞(G),L1(G).

I That ∆ is coassociative is reflected in the “Pentagonal
equation”:

W12W13W23 = W23W12.

I Slicing W might not give a reasonable algebra. But under
various extra conditions:

I W is (semi)-regular, [Baaj-Skandalis]
I W is manageable [Woronowicz-Sołtan]

we get a C∗-algebra A, a von Neumann algebra M, a
coproduct ∆ : M → M⊗M and (perhaps unbounded)
counit and coinverse.

I By starting with algebras, one can write down some
axioms to get the notion of a “locally compact quantum
group” [Kustermans-Vaes].



One result

So we get a quantum group G:
I An “abstract” object represented by various operator

algebras: C∗r (G) and VN(G).
I (This is “non-commutative topology”.)
I Can get a Banach algebra A(G): if G is a genuine group

(or dual) then we get A(G) (or L1(G)).
I [D., Le Pham] If A(G) and A(H) are isometrically

isomorphic, then G is isomorphic to H (or its opposite).
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