Multipliers of Quantum groups from Hilbert C*-modules

Matthew Daws

Leeds

March 2010

Multipliers

Suppose that A is an algebra: how might we embed A into a unital algebra B ?

- Could use the unitisation: $A \oplus \mathbb{C} 1$.
- Natural to ask that A is an ideal in B.
- But we don't want B to be too large: the natural condition is that A should be essential in B : if $I \subseteq B$ is an ideal then $A \cap I \neq\{0\}$.
- For faithful A, this is equivalent to: if $b \in B$ and $a b a^{\prime}=0$ for all $a, a^{\prime} \in A$, then $b=0$.
- Turns out there is a maximal such B, called the multiplier algebra of A, written $M(A)$. Maximal in the sense that if $A \unlhd B$, then $B \rightarrow M(A)$. Clearly $M(A)$ is unique.

Multipliers

Suppose that A is an algebra: how might we embed A into a unital algebra B ?

- Could use the unitisation: $\boldsymbol{A} \oplus \mathbb{C} 1$.
- Natural to ask that A is an ideal in B.
- But we don't want B to be too large: the natural condition is that A should be essential in B : if $I \subseteq B$ is an ideal then $A \cap I \neq\{0\}$.
- For faithful A this is equivalent to: if $b \in B$ and aba' $=0$ for all $a, a^{\prime} \in A$, then $b=0$.
- Turns out there is a maximal such B, called the multiplier algebra of A, written $M(A)$. Maximal in the sense that if $A \unlhd B$, then $B \rightarrow M(A)$. Clearly $M(A)$ is unique.

Multipliers

Suppose that A is an algebra: how might we embed A into a unital algebra B ?

- Could use the unitisation: $\boldsymbol{A} \oplus \mathbb{C} 1$.
- Natural to ask that A is an ideal in B.
- But we don't want B to be too large: the natural condition is that A should be essential in B : if $I \subseteq B$ is an ideal then $A \cap I \neq\{0\}$. $a, a^{\prime} \in A$, then $b=0$.
- Turns out there is a maximal such B, called the multiplier algebra of A, written $M(A)$. Maximal in the sense that if $A \unlhd B$, then $B \rightarrow M(A)$. Clearly $M(A)$ is unique.

Multipliers

Suppose that A is an algebra: how might we embed A into a unital algebra B ?

- Could use the unitisation: $\boldsymbol{A} \oplus \mathbb{C} 1$.
- Natural to ask that A is an ideal in B.
- But we don't want B to be too large: the natural condition is that A should be essential in B : if $I \subseteq B$ is an ideal then $A \cap I \neq\{0\}$.
- For faithful A, this is equivalent to: if $b \in B$ and $a b a^{\prime}=0$ for all $a, a^{\prime} \in A$, then $b=0$.
of A, written $M(A)$. Maximal in the sense that if $A \unlhd B$, then $B \rightarrow M(A)$. Clearly $M(A)$ is unique.

Multipliers

Suppose that A is an algebra: how might we embed A into a unital algebra B ?

- Could use the unitisation: $\boldsymbol{A} \oplus \mathbb{C} 1$.
- Natural to ask that A is an ideal in B.
- But we don't want B to be too large: the natural condition is that A should be essential in B : if $I \subseteq B$ is an ideal then $A \cap I \neq\{0\}$.
- For faithful A, this is equivalent to: if $b \in B$ and $a b a^{\prime}=0$ for all $a, a^{\prime} \in A$, then $b=0$.
- Turns out there is a maximal such B, called the multiplier algebra of A, written $M(A)$. Maximal in the sense that if $A \unlhd B$, then $B \rightarrow M(A)$. Clearly $M(A)$ is unique.

How to build $M(A)$

We define $M(A)$ to be the collection of maps $L, R: A \rightarrow A$ with

$$
L(a b)=L(a) b, \quad R(a b)=a R(b), \quad a L(b)=R(a) b \quad(a, b \in A) .
$$

- If A is faithful (which we shall assume from now on) then we only need the third condition.
- $M(A)$ is a vector space, and an algebra for the product $(L, R)\left(L^{\prime}, R^{\prime}\right)=\left(L L^{\prime}, R^{\prime} R\right)$.
- Each $\boldsymbol{a} \in A$ defines a pair $\left(L_{a}, R_{a}\right) \in M(A)$ by $L_{a}(b)=a b$ and $R_{a}(b)=b a$.
- The homomorphism $A \rightarrow M(A) ; a \mapsto\left(L_{a}, R_{a}\right)$ identifies A with an essential ideal in $M(A)$.
- If A is a Banach algebra, then natural to ask that L and R are bounded; but this is automatic by using the Closed Graph
Theorem.

How to build $M(A)$

We define $M(A)$ to be the collection of maps $L, R: A \rightarrow A$ with

$$
L(a b)=L(a) b, \quad R(a b)=a R(b), \quad a L(b)=R(a) b \quad(a, b \in A) .
$$

- If A is faithful (which we shall assume from now on) then we only need the third condition.
- $M(A)$ is a vector space, and an algebra for the product
$(L, R)\left(L^{\prime}, R^{\prime}\right)=\left(L L^{\prime}, R^{\prime} R\right)$.
- Each $\boldsymbol{a} \in A$ defines a pair $\left(L_{a}, R_{a}\right) \in M(A)$ by $L_{a}(b)=a b$ and $R_{a}(b)=b a$.
- The homomorphism $A \rightarrow M(A)$; $a \mapsto\left(L_{a}, R_{a}\right)$ identifies A with an essential ideal in $M(A)$.
- If A is a Banach algebra, then natural to ask that L and R are bounded; but this is automatic by using the Closed Graph
Theorem.

How to build $M(A)$

We define $M(A)$ to be the collection of maps $L, R: A \rightarrow A$ with

$$
L(a b)=L(a) b, \quad R(a b)=a R(b), \quad a L(b)=R(a) b \quad(a, b \in A) .
$$

- If A is faithful (which we shall assume from now on) then we only need the third condition.
- $M(A)$ is a vector space, and an algebra for the product $(L, R)\left(L^{\prime}, R^{\prime}\right)=\left(L L^{\prime}, R^{\prime} R\right)$.
$R_{a}(b)=b a$.
essential ideal in $M(A)$.
- If A is a Banach algebra, then natural to ask that L and R are bounded; but this is automatic by using the Closed Graph
Theorem.

How to build $M(A)$

We define $M(A)$ to be the collection of maps $L, R: A \rightarrow A$ with

$$
L(a b)=L(a) b, \quad R(a b)=a R(b), \quad a L(b)=R(a) b \quad(a, b \in A) .
$$

- If A is faithful (which we shall assume from now on) then we only need the third condition.
- $M(A)$ is a vector space, and an algebra for the product $(L, R)\left(L^{\prime}, R^{\prime}\right)=\left(L L^{\prime}, R^{\prime} R\right)$.
- Each $a \in A$ defines a pair $\left(L_{a}, R_{a}\right) \in M(A)$ by $L_{a}(b)=a b$ and $R_{a}(b)=b a$.
essential ideal in $M(A)$.
- If A is a Banach algebra, then natural to ask that L and R are bounded; but this is automatic by using the Closed Graph

How to build $M(A)$

We define $M(A)$ to be the collection of maps $L, R: A \rightarrow A$ with

$$
L(a b)=L(a) b, \quad R(a b)=a R(b), \quad a L(b)=R(a) b \quad(a, b \in A) .
$$

- If A is faithful (which we shall assume from now on) then we only need the third condition.
- $M(A)$ is a vector space, and an algebra for the product $(L, R)\left(L^{\prime}, R^{\prime}\right)=\left(L L^{\prime}, R^{\prime} R\right)$.
- Each $a \in A$ defines a pair $\left(L_{a}, R_{a}\right) \in M(A)$ by $L_{a}(b)=a b$ and $R_{a}(b)=b a$.
- The homomorphism $A \rightarrow M(A) ; a \mapsto\left(L_{a}, R_{a}\right)$ identifies A with an essential ideal in $M(A)$.

How to build $M(A)$

We define $M(A)$ to be the collection of maps $L, R: A \rightarrow A$ with

$$
L(a b)=L(a) b, \quad R(a b)=a R(b), \quad a L(b)=R(a) b \quad(a, b \in A)
$$

- If A is faithful (which we shall assume from now on) then we only need the third condition.
- $M(A)$ is a vector space, and an algebra for the product $(L, R)\left(L^{\prime}, R^{\prime}\right)=\left(L L^{\prime}, R^{\prime} R\right)$.
- Each $a \in A$ defines a pair $\left(L_{a}, R_{a}\right) \in M(A)$ by $L_{a}(b)=a b$ and $R_{a}(b)=b a$.
- The homomorphism $A \rightarrow M(A) ; a \mapsto\left(L_{a}, R_{a}\right)$ identifies A with an essential ideal in $M(A)$.
- If A is a Banach algebra, then natural to ask that L and R are bounded; but this is automatic by using the Closed Graph Theorem.

Multipliers of C*-algebras

Let A be a C*-algebra acting non-degenerately on a Hilbert space H. Then we have that

$$
M(A)=\{T \in \mathcal{B}(H): T a, a T \in A(a \in A)\}
$$

- Each such T does define a multiplier in the previous sense.
- Conversely, a bounded approximate identity argument allows you to build $T \in \mathcal{B}(H)$ given $(L, R) \in M(A)$.
- If $A=C_{0}(X)$ then $M(A)=C^{b}(X)=C(\beta X)$, so $M(A)$ is a
non-commutative Stone-Čech compactification.

Multipliers of C*-algebras

Let A be a C^{*}-algebra acting non-degenerately on a Hilbert space H. Then we have that

$$
M(A)=\{T \in \mathcal{B}(H): T a, a T \in A(a \in A)\}
$$

- Each such T does define a multiplier in the previous sense.

Multipliers of C*-algebras

Let A be a C^{*}-algebra acting non-degenerately on a Hilbert space H. Then we have that

$$
M(A)=\{T \in \mathcal{B}(H): T a, a T \in A(a \in A)\}
$$

- Each such T does define a multiplier in the previous sense.
- Conversely, a bounded approximate identity argument allows you to build $T \in \mathcal{B}(H)$ given $(L, R) \in M(A)$.
non-commutative Stone-Čech compactification.

Multipliers of C*-algebras

Let A be a C^{*}-algebra acting non-degenerately on a Hilbert space H. Then we have that

$$
M(A)=\{T \in \mathcal{B}(H): T a, a T \in A(a \in A)\}
$$

- Each such T does define a multiplier in the previous sense.
- Conversely, a bounded approximate identity argument allows you to build $T \in \mathcal{B}(H)$ given $(L, R) \in M(A)$.
- If $A=C_{0}(X)$ then $M(A)=C^{b}(X)=C(\beta X)$, so $M(A)$ is a non-commutative Stone-Čech compactification.

Locally compact groups

Let G be a locally compact group, equipped with a left invariant Haar measure. Examples include:

- Any discrete group with the counting measure.
- Any compact group, where the Haar measure is normalised to be a probability measure.
- The real line \mathbb{R} with Lebesgue measure.
- Various non-compact Lie groups give interesting examples.

Locally compact groups

Let G be a locally compact group, equipped with a left invariant Haar measure. Examples include:

- Any discrete group with the counting measure.
- Any compact group, where the Haar measure is normalised to be a probability measure.
- The real line \mathbb{R} with Lebesgue measure.
- Various non-compact Lie groups give interesting examples.

Locally compact groups

Let G be a locally compact group, equipped with a left invariant Haar measure. Examples include:

- Any discrete group with the counting measure.
- Any compact group, where the Haar measure is normalised to be a probability measure.
- The real line \mathbb{R} with Lebesgue measure.
- Various non-compact Lie groups give interesting examples.

Locally compact groups

Let G be a locally compact group, equipped with a left invariant Haar measure. Examples include:

- Any discrete group with the counting measure.
- Any compact group, where the Haar measure is normalised to be a probability measure.
- The real line \mathbb{R} with Lebesgue measure.
- Various non-compact Lie groups give interesting examples.

Locally compact groups

Let G be a locally compact group, equipped with a left invariant Haar measure. Examples include:

- Any discrete group with the counting measure.
- Any compact group, where the Haar measure is normalised to be a probability measure.
- The real line \mathbb{R} with Lebesgue measure.
- Various non-compact Lie groups give interesting examples.

Group algebras

Turn $L^{1}(G)$ into a Banach algebra by using the convolution product:

$$
(f * g)(s)=\int_{G} f(t) g\left(t^{-1} s\right) d t
$$

- We can also convolve finite measures.
- Identify $M(G)$ with $C_{0}(G)^{*}$, then
$\langle\mu * \lambda, F\rangle=\iint F(s t) d \mu(s) d \lambda(t) \quad\left(\mu, \lambda \in M(G), F \in C_{0}(G)\right)$.
- [Wendel] Then we have that

$$
M^{\prime}\left(L^{1}(G)\right)=M(G)
$$

where for each $(L, R) \in M\left(L^{1}(G)\right)$, there exists $\mu \in M(G)$, $L^{\prime}(a)=\mu * a, \quad R^{\prime}(a)=a * \mu \quad\left(a \in L^{1}(G)\right)$

Group algebras

Turn $L^{1}(G)$ into a Banach algebra by using the convolution product:

$$
(f * g)(s)=\int_{G} f(t) g\left(t^{-1} s\right) d t
$$

- We can also convolve finite measures.
- Identify $M(G)$ with $C_{0}(G)^{*}$, then

- [Wendel] Then we have that

$$
\left.M M^{\left(L^{1}\right.}(G)\right)=M(G)
$$

where for each $(L, R) \in M\left(L^{1}(G)\right)$, there exists $\mu \in M(G)$, $L^{\prime}(a)=\mu * a, \quad R^{\prime}(a)=a * \mu \quad\left(a \in L^{1}(G)\right)$

Group algebras

Turn $L^{1}(G)$ into a Banach algebra by using the convolution product:

$$
(f * g)(s)=\int_{G} f(t) g\left(t^{-1} s\right) d t
$$

- We can also convolve finite measures.
- Identify $M(G)$ with $C_{0}(G)^{*}$, then
$\langle\mu * \lambda, F\rangle=\iint F(s t) d \mu(s) d \lambda(t) \quad\left(\mu, \lambda \in M(G), F \in C_{0}(G)\right)$.
- [Wendel] Then we have that

$$
M\left(L^{1}(G)\right)=M(G)
$$

where for each $(L, R) \in M\left(L^{1}(G)\right)$, there exists $\mu \in M(G)$, $L^{\prime}(a)=\mu * a, \quad R^{\prime}(a)=a * \mu \quad\left(a \in L^{1}(G)\right)$

Group algebras

Turn $L^{1}(G)$ into a Banach algebra by using the convolution product:

$$
(f * g)(s)=\int_{G} f(t) g\left(t^{-1} s\right) d t
$$

- We can also convolve finite measures.
- Identify $M(G)$ with $C_{0}(G)^{*}$, then

$$
\langle\mu * \lambda, F\rangle=\iint F(s t) d \mu(s) d \lambda(t) \quad\left(\mu, \lambda \in M(G), F \in C_{0}(G)\right) .
$$

- [Wendel] Then we have that

$$
M\left(L^{1}(G)\right)=M(G),
$$

where for each $(L, R) \in M\left(L^{1}(G)\right)$, there exists $\mu \in M(G)$,

$$
L(a)=\mu * a, \quad R(a)=a * \mu \quad\left(a \in L^{1}(G)\right) .
$$

The Fourier transform

If G is abelian, then we have the dual group

$$
\hat{G}=\{\chi: G \rightarrow \mathbb{T} \text { a continuous homomorphism }\}
$$

Also we have the Fourier Transform

$$
\mathcal{F}: L^{1}(G) \rightarrow C_{0}(\hat{G}) \quad \text { also } \quad L^{2}(G) \cong L^{2}(\hat{G})
$$

- The image $\mathcal{F}\left(L^{1}(G)\right)$ is the Fourier algebra $A(\hat{G})$.
- As $L^{1}(G)=L^{2}(G) \cdot L^{2}(G)$ (pointwise product) we see that $A(\hat{G})=L^{2}(G) * L^{2}(G)=L^{2}(\hat{G}) * L^{2}(\hat{G})$ (convolution).
- \mathcal{F} extends to $M(G)$, and the image is $B(\hat{G}) \subseteq C^{b}(G)$, the Fourier-Stieltjes algebra.

The Fourier transform

If G is abelian, then we have the dual group

$$
\hat{G}=\{\chi: G \rightarrow \mathbb{T} \text { a continuous homomorphism }\} .
$$

Also we have the Fourier Transform

$$
\mathcal{F}: L^{1}(G) \rightarrow C_{0}(\hat{G}) \quad \text { also } \quad L^{2}(G) \cong L^{2}(\hat{G})
$$

- The image $\mathcal{F}\left(L^{1}(G)\right)$ is the Fourier algebra $A(\hat{G})$.
- As $L^{1}(G)=L^{2}(G) \cdot L^{2}(G)$ (pointwise product) we see that $A(\hat{G})=L^{2}(G) * L^{2}(G)=L^{2}(\hat{G}) * L^{2}(\hat{G})$ (convolution).
- \mathcal{F} extends to $M(G)$, and the image is $B(\hat{G}) \subseteq C^{b}(G)$, the Fourier-Stieltjes algebra.

The Fourier transform

If G is abelian, then we have the dual group

$$
\hat{G}=\{\chi: G \rightarrow \mathbb{T} \text { a continuous homomorphism }\} .
$$

Also we have the Fourier Transform

$$
\mathcal{F}: L^{1}(G) \rightarrow C_{0}(\hat{G}) \quad \text { also } \quad L^{2}(G) \cong L^{2}(\hat{G})
$$

- The image $\mathcal{F}\left(L^{1}(G)\right)$ is the Fourier algebra $A(\hat{G})$.
- As $L^{1}(G)=L^{2}(G) \cdot L^{2}(G)$ (pointwise product) we see that $A(\hat{G})=L^{2}(G) * L^{2}(G)=L^{2}(\hat{G}) * L^{2}(\hat{G})$ (convolution).
- \mathcal{F} extends to $M(G)$, and the image is $B(\hat{G}) \subseteq C^{b}(G)$, the Fourier-Stieltjes algebra.

The Fourier transform

If G is abelian, then we have the dual group

$$
\hat{G}=\{\chi: G \rightarrow \mathbb{T} \text { a continuous homomorphism }\} .
$$

Also we have the Fourier Transform

$$
\mathcal{F}: L^{1}(G) \rightarrow C_{0}(\hat{G}) \quad \text { also } \quad L^{2}(G) \cong L^{2}(\hat{G}) .
$$

- The image $\mathcal{F}\left(L^{1}(G)\right)$ is the Fourier algebra $A(\hat{G})$.
- As $L^{1}(G)=L^{2}(G) \cdot L^{2}(G)$ (pointwise product) we see that $A(\hat{G})=L^{2}(G) * L^{2}(G)=L^{2}(\hat{G}) * L^{2}(\hat{G})$ (convolution).

The Fourier transform

If G is abelian, then we have the dual group

$$
\hat{G}=\{\chi: G \rightarrow \mathbb{T} \text { a continuous homomorphism }\} .
$$

Also we have the Fourier Transform

$$
\mathcal{F}: L^{1}(G) \rightarrow C_{0}(\hat{G}) \quad \text { also } \quad L^{2}(G) \cong L^{2}(\hat{G}) .
$$

- The image $\mathcal{F}\left(L^{1}(G)\right)$ is the Fourier algebra $A(\hat{G})$.
- As $L^{1}(G)=L^{2}(G) \cdot L^{2}(G)$ (pointwise product) we see that $A(\hat{G})=L^{2}(G) * L^{2}(G)=L^{2}(\hat{G}) * L^{2}(\hat{G})$ (convolution).
- \mathcal{F} extends to $M(G)$, and the image is $B(\hat{G}) \subseteq C^{b}(G)$, the Fourier-Stieltjes algebra.

Operator algebras

The Fourier transform similarly sets up isomorphisms

$$
C_{0}(G) \cong C_{r}^{*}(\hat{G}) \quad L^{\infty}(G) \cong V N(\hat{G}) .
$$

Let $\lambda: G \rightarrow \mathcal{B}\left(L^{2}(G)\right)$ be the left-regular representation,

$$
\lambda(s): f \mapsto g \quad g(t)=f\left(s^{-1} t\right) \quad\left(f \in L^{2}(G), s, t \in G\right)
$$

Integrate this to get a homomorphism $\lambda: L^{1}(G) \rightarrow \mathcal{B}\left(L^{2}(G)\right)$.

Operator algebras

The Fourier transform similarly sets up isomorphisms

$$
C_{0}(G) \cong C_{r}^{*}(\hat{G}) \quad L^{\infty}(G) \cong V N(\hat{G}) .
$$

Let $\lambda: G \rightarrow \mathcal{B}\left(L^{2}(G)\right)$ be the left-regular representation,

$$
\lambda(s): f \mapsto g \quad g(t)=f\left(s^{-1} t\right) \quad\left(f \in L^{2}(G), s, t \in G\right)
$$

Integrate this to get a homomorphism $\lambda: L^{1}(G) \rightarrow \mathcal{B}\left(L^{2}(G)\right)$.

- $C_{r}^{*}(G)$ is the closure of $\lambda\left(L^{1}(G)\right)$.
- $C^{*}(G)$ is the enveloping C^{*}-algebra of $L^{1}(G)$: agrees with $C_{r}^{*}(G)$
is G is abelian, compact, amenable.
- $V N(G)$ is the WOT closure of $\lambda\left(L^{1}(G)\right)$ (or of $\lambda(G)$).
- So, $A(\hat{G})$ is the predual of $\operatorname{VN(})(\hat{G})$ and $B(\hat{G})$ is the dual of $C^{*}(\hat{G})$.

Operator algebras

The Fourier transform similarly sets up isomorphisms

$$
C_{0}(G) \cong C_{r}^{*}(\hat{G}) \quad L^{\infty}(G) \cong V N(\hat{G}) .
$$

Let $\lambda: G \rightarrow \mathcal{B}\left(L^{2}(G)\right)$ be the left-regular representation,

$$
\lambda(s): f \mapsto g \quad g(t)=f\left(s^{-1} t\right) \quad\left(f \in L^{2}(G), s, t \in G\right)
$$

Integrate this to get a homomorphism $\lambda: L^{1}(G) \rightarrow \mathcal{B}\left(L^{2}(G)\right)$.

- $C_{r}^{*}(G)$ is the closure of $\lambda\left(L^{1}(G)\right)$.
- $C^{*}(G)$ is the enveloping C^{*}-algebra of $L^{1}(G)$: agrees with $C_{r}^{*}(G)$ is G is abelian, compact, amenable.

Operator algebras

The Fourier transform similarly sets up isomorphisms

$$
C_{0}(G) \cong C_{r}^{*}(\hat{G}) \quad L^{\infty}(G) \cong V N(\hat{G})
$$

Let $\lambda: G \rightarrow \mathcal{B}\left(L^{2}(G)\right)$ be the left-regular representation,

$$
\lambda(s): f \mapsto g \quad g(t)=f\left(s^{-1} t\right) \quad\left(f \in L^{2}(G), s, t \in G\right)
$$

Integrate this to get a homomorphism $\lambda: L^{1}(G) \rightarrow \mathcal{B}\left(L^{2}(G)\right)$.

- $C_{r}^{*}(G)$ is the closure of $\lambda\left(L^{1}(G)\right)$.
- $C^{*}(G)$ is the enveloping C^{*}-algebra of $L^{1}(G)$: agrees with $C_{r}^{*}(G)$ is G is abelian, compact, amenable.
- $\operatorname{VN}(G)$ is the WOT closure of $\lambda\left(L^{1}(G)\right.$) (or of $\lambda(G)$).

Operator algebras

The Fourier transform similarly sets up isomorphisms

$$
C_{0}(G) \cong C_{r}^{*}(\hat{G}) \quad L^{\infty}(G) \cong V N(\hat{G})
$$

Let $\lambda: G \rightarrow \mathcal{B}\left(L^{2}(G)\right)$ be the left-regular representation,

$$
\lambda(s): f \mapsto g \quad g(t)=f\left(s^{-1} t\right) \quad\left(f \in L^{2}(G), s, t \in G\right)
$$

Integrate this to get a homomorphism $\lambda: L^{1}(G) \rightarrow \mathcal{B}\left(L^{2}(G)\right)$.

- $C_{r}^{*}(G)$ is the closure of $\lambda\left(L^{1}(G)\right)$.
- $C^{*}(G)$ is the enveloping C^{*}-algebra of $L^{1}(G)$: agrees with $C_{r}^{*}(G)$ is G is abelian, compact, amenable.
- $\operatorname{VN}(G)$ is the WOT closure of $\lambda\left(L^{1}(G)\right.$) (or of $\lambda(G)$).
- So, $A(\hat{G})$ is the predual of $V N(\hat{G})$ and $B(\hat{G})$ is the dual of $C^{*}(\hat{G})$.

The Fourier algebra

For a general G, we could hence define $A(G)$ to be:

- the predual of $V N(G)$.
- $\operatorname{Or} A(G)=L^{2}(G) * L^{2}(G)$.
- We hope that these agree and that $A(G)$ is an algebra for the pointwise product.
Remember that a von Neumann algebra always has a predual: the space of normal functionals.
As $V N(G) \subseteq B\left(L^{2}(G)\right)$, and $B\left(L^{2}(G)\right)$ is the dual of $\mathcal{T}\left(L^{2}(G)\right)$, the trace-class operators on $L^{2}(G)$, we have a quotient map

$$
\mathcal{T}\left(L^{2}(G)\right) \rightarrow V N(G)_{*} .
$$

The Fourier algebra

For a general G, we could hence define $A(G)$ to be:

- the predual of $V N(G)$.
- Or $A(G)=L^{2}(G) * L^{2}(G)$.
- We hope that these agree and that $A(G)$ is an algebra for the pointwise product.
Remember that a von Neumann algebra always has a predual: the space of normal functionals.
As $V N(G) \subseteq \mathcal{B}\left(L^{2}(G)\right)$, and $\mathcal{B}\left(L^{2}(G)\right)$ is the dual of $\mathcal{T}\left(L^{2}(G)\right)$, the trace-class operators on $L^{2}(G)$, we have a quotient map

$$
\mathcal{T}\left(L^{2}(G)\right) \rightarrow V N(G)_{*}
$$

The Fourier algebra

For a general G, we could hence define $A(G)$ to be:

- the predual of $V N(G)$.
- $\operatorname{Or} A(G)=L^{2}(G) * L^{2}(G)$.
- We hope that these agree and that $A(G)$ is an algebra for the pointwise product.
Remember that a von Neumann algebra always has a predual: the space of normal functionals.
As $V N(G) \subseteq \mathcal{B}\left(L^{2}(G)\right)$, and $\mathcal{B}\left(L^{2}(G)\right)$ is the dual of $\mathcal{T}\left(L^{2}(G)\right)$, the trace-class operators on $L^{2}(G)$, we have a quotient map

The Fourier algebra

For a general G, we could hence define $A(G)$ to be:

- the predual of $V N(G)$.
- $\operatorname{Or} A(G)=L^{2}(G) * L^{2}(G)$.
- We hope that these agree and that $A(G)$ is an algebra for the pointwise product.
Remember that a von Neumann algebra always has a predual: the space of normal functionals.
As $V N(G) \subseteq \mathcal{B}\left(L^{2}(G)\right)$, and $\mathcal{B}\left(L^{2}(G)\right)$ is the dual of $\mathcal{T}\left(L^{2}(G)\right)$, the trace-class operators on $L^{2}(G)$, we have a quotient map
$\mathcal{T}\left(L^{2}(G)\right) \rightarrow V N(G)_{*}$

The Fourier algebra

For a general G, we could hence define $A(G)$ to be:

- the predual of $V N(G)$.
- $\operatorname{Or} A(G)=L^{2}(G) * L^{2}(G)$.
- We hope that these agree and that $A(G)$ is an algebra for the pointwise product.
Remember that a von Neumann algebra always has a predual: the space of normal functionals.
As $V N(G) \subseteq B\left(L^{2}(G)\right)$, and $B\left(L^{2}(G)\right)$ is the dual of $T\left(L^{2}(G)\right)$, the
$\mathcal{T}\left(L^{2}(G)\right) \rightarrow V N(G)_{*}$.

The Fourier algebra

For a general G, we could hence define $A(G)$ to be:

- the predual of $V N(G)$.
- $\operatorname{Or} A(G)=L^{2}(G) * L^{2}(G)$.
- We hope that these agree and that $A(G)$ is an algebra for the pointwise product.
Remember that a von Neumann algebra always has a predual: the space of normal functionals.
As $V N(G) \subseteq \mathcal{B}\left(L^{2}(G)\right)$, and $\mathcal{B}\left(L^{2}(G)\right)$ is the dual of $\mathcal{T}\left(L^{2}(G)\right)$, the trace-class operators on $L^{2}(G)$, we have a quotient map

$$
\mathcal{T}\left(L^{2}(G)\right) \rightarrow V N(G)_{*} .
$$

What is the Fourier algebra? [Eymard]
We do have that $A(G)=V N(G)_{*}=L^{2}(G) * L^{2}(G) \subseteq C_{0}(G)$:
\bullet (Big Machine \Rightarrow) $V N(G)$ is in standard position, so any normal functional ω on $\operatorname{VN}(G)$ is of the form $\omega=\omega_{\xi, \eta}$ for some $\xi, \eta \in L^{2}(G)$,

- As $\{\lambda(s): s \in G\}$ generates $V N(G)$, for $\omega \in \operatorname{VN}(G)_{*}$, if we know what $\left\langle\lambda\left(s^{-1}\right), \omega\right\rangle$ is for all s, then we know ω.
- Observe that

- Here $\check{\eta}(s)=\eta\left(s^{-1}\right)$ (so I lied in the first line!.)

What is the Fourier algebra? [Eymard]
We do have that $A(G)=V N(G)_{*}=L^{2}(G) * L^{2}(G) \subseteq C_{0}(G)$:

- (Big Machine $\Rightarrow) V N(G)$ is in standard position, so any normal functional ω on $\operatorname{VN}(G)$ is of the form $\omega=\omega_{\xi, \eta}$ for some $\xi, \eta \in L^{2}(G)$,

$$
\langle x, \omega\rangle=(x(\xi) \mid \eta) \quad\left(x \in V N(G), \xi, \eta \in L^{2}(G)\right)
$$

- As $\{\lambda(s): s \in G\}$ generates $V N(G)$, for $\omega \in \operatorname{VN}(G)_{*}$, if we know what $\left\langle\lambda\left(s^{-1}\right), \omega\right\rangle$ is for all s, then we know ω.
- Observe that

- Here $\check{\eta}(s)=\eta\left(s^{-1}\right)$ (so I lied in the first line!)

What is the Fourier algebra? [Eymard] We do have that $A(G)=V N(G)_{*}=L^{2}(G) * L^{2}(G) \subseteq C_{0}(G)$:

- (Big Machine $\Rightarrow) V N(G)$ is in standard position, so any normal functional ω on $\operatorname{VN}(G)$ is of the form $\omega=\omega_{\xi, \eta}$ for some $\xi, \eta \in L^{2}(G)$,

$$
\langle x, \omega\rangle=(x(\xi) \mid \eta) \quad\left(x \in V N(G), \xi, \eta \in L^{2}(G)\right) .
$$

- As $\{\lambda(s): s \in G\}$ generates $V N(G)$, for $\omega \in V N(G)_{*}$, if we know what $\left\langle\lambda\left(s^{-1}\right), \omega\right\rangle$ is for all s, then we know ω.
- Observe that

What is the Fourier algebra? [Eymard]
We do have that $A(G)=V N(G)_{*}=L^{2}(G) * L^{2}(G) \subseteq C_{0}(G)$:

- (Big Machine $\Rightarrow) V N(G)$ is in standard position, so any normal functional ω on $\operatorname{VN}(G)$ is of the form $\omega=\omega_{\xi, \eta}$ for some $\xi, \eta \in L^{2}(G)$,

$$
\langle x, \omega\rangle=(x(\xi) \mid \eta) \quad\left(x \in V N(G), \xi, \eta \in L^{2}(G)\right)
$$

- As $\{\lambda(s): s \in G\}$ generates $V N(G)$, for $\omega \in V N(G)_{*}$, if we know what $\left\langle\lambda\left(s^{-1}\right), \omega\right\rangle$ is for all s, then we know ω.
- Observe that

$$
\begin{aligned}
\left\langle\lambda\left(s^{-1}\right), \omega_{\xi, \eta}\right\rangle & =\int_{G} \lambda\left(s^{-1}\right)(\xi)(t) \overline{\eta(t)} d t=\int_{G} \xi(s t) \overline{\eta(t)} d t \\
& =\int_{G} \xi(t) \bar{\eta}\left(t^{-1} s\right) d t=(\xi * \bar{\eta})(s) .
\end{aligned}
$$

- Here $\check{\eta}(s)=\eta\left(s^{-1}\right)$ (so I lied in the first line!)

Why an algebra? [Takesaki-Tatsumma]

There is a normal $*$-homomorphsm
$\Delta: V N(G) \rightarrow V N(G) \bar{\otimes} V N(G)=V N(G \times G)$ which satisfies

$$
\Delta(\lambda(s))=\lambda(\boldsymbol{s}) \otimes \lambda(\boldsymbol{s})=\lambda(\boldsymbol{s}, \boldsymbol{s})
$$

- As Δ is normal, we get a (completely) contractive map $\Delta_{*}: A(G) \times A(G) \rightarrow A(G)$.
- Turns out that Δ_{*} is associative, because Δ is coassociative. - This obviously induces the pointwise product on $A(G)$, as for $\omega, \sigma \in A(G)$ and $s \in G$,

- Δ exists as $\Delta(x)=W^{*}(1 \otimes x) W$ for some unitary $W \in \mathcal{B}\left(L^{2}(G \times G)\right)$; given by $W \xi(s, t)=\xi(t s, t)$.

Why an algebra? [Takesaki-Tatsumma]

There is a normal $*$-homomorphsm
$\Delta: V N(G) \rightarrow V N(G) \bar{\otimes} V N(G)=V N(G \times G)$ which satisfies

$$
\Delta(\lambda(s))=\lambda(s) \otimes \lambda(s)=\lambda(s, s)
$$

- As Δ is normal, we get a (completely) contractive map $\Delta_{*}: A(G) \times A(G) \rightarrow A(G)$.
- Turns out that Δ_{*} is associative, because Δ is coassociative. - This obviously induces the pointwise product on $A(G)$, as for $\omega, \sigma \in A(G)$ and $s \in G$,

- Δ exists as $\Delta(x)=W^{*}(1 \otimes x) W$ for some unitary $W \in \mathcal{B}\left(L^{2}(G \times G)\right)$; given by $W \xi(s, t)=\xi(t s, t)$.

Why an algebra? [Takesaki-Tatsumma]

There is a normal $*$-homomorphsm
$\Delta: V N(G) \rightarrow V N(G) \bar{\otimes} V N(G)=V N(G \times G)$ which satisfies

$$
\Delta(\lambda(s))=\lambda(s) \otimes \lambda(s)=\lambda(s, s)
$$

- As Δ is normal, we get a (completely) contractive map $\Delta_{*}: A(G) \times A(G) \rightarrow A(G)$.
- Turns out that Δ_{*} is associative, because Δ is coassociative.

- Δ exists as $\Delta(x)=W^{*}(1 \otimes x) W$ for some unitary $W \in \mathcal{B}\left(L^{2}(G \times G)\right)$; given by $W \xi(s, t)=\xi(t s, t)$.

Why an algebra? [Takesaki-Tatsumma]

There is a normal $*$-homomorphsm
$\Delta: V N(G) \rightarrow V N(G) \bar{\otimes} V N(G)=V N(G \times G)$ which satisfies

$$
\Delta(\lambda(s))=\lambda(s) \otimes \lambda(s)=\lambda(s, s)
$$

- As Δ is normal, we get a (completely) contractive map $\Delta_{*}: A(G) \times A(G) \rightarrow A(G)$.
- Turns out that Δ_{*} is associative, because Δ is coassociative.
- This obviously induces the pointwise product on $A(G)$, as for $\omega, \sigma \in A(G)$ and $s \in G$,

$$
(\omega \sigma)(s)=\left\langle\lambda\left(s^{-1}\right), \Delta_{*}(\omega \otimes \sigma)\right\rangle=\left\langle\lambda\left(s^{-1}, s^{-1}\right), \omega \otimes \sigma\right\rangle=\omega(s) \sigma(s)
$$

Why an algebra? [Takesaki-Tatsumma]

There is a normal $*$-homomorphsm
$\Delta: V N(G) \rightarrow V N(G) \bar{\otimes} V N(G)=V N(G \times G)$ which satisfies

$$
\Delta(\lambda(s))=\lambda(s) \otimes \lambda(s)=\lambda(s, s)
$$

- As Δ is normal, we get a (completely) contractive map $\Delta_{*}: A(G) \times A(G) \rightarrow A(G)$.
- Turns out that Δ_{*} is associative, because Δ is coassociative.
- This obviously induces the pointwise product on $A(G)$, as for $\omega, \sigma \in A(G)$ and $s \in G$,

$$
(\omega \sigma)(s)=\left\langle\lambda\left(s^{-1}\right), \Delta_{*}(\omega \otimes \sigma)\right\rangle=\left\langle\lambda\left(s^{-1}, s^{-1}\right), \omega \otimes \sigma\right\rangle=\omega(s) \sigma(s)
$$

- Δ exists as $\Delta(x)=W^{*}(1 \otimes x) W$ for some unitary $W \in \mathcal{B}\left(L^{2}(G \times G)\right)$; given by $W \xi(s, t)=\xi(t s, t)$.

Multipliers of the Fourier algebra

- As $A(G)$ is commutative, multipliers of $A(G)$ are simply maps T on $A(G)$ with $T(a b)=T(a) b$.
- As we consider $A(G) \subseteq C_{0}(G)$, we find that every $T \in M A(G)$ is given by some $f \in C^{b}(G)$:

$$
M A(G)=\left\{f \in C^{b}(G): f a \in A(G)(a \in A(G))\right\} .
$$

- By duality, each $T \in M A(G)$ induces a map $T^{*}: V N(G) \rightarrow V N(G)$.
- If this is completely bounded- that is gives uniformly (in n) bounded maps $1 \otimes T^{*}$ on $\mathbb{M}_{n} \otimes V N(G)$ - then $T \in M_{c b} A(G)$.
- [Haagerup, DeCanniere] For $f \in M A(G)$, we have that $f \in M_{c b} A(G)$ if and only if $f \otimes 1_{K} \in M A(G \times K)$ for all compact K (or just $K=S U(2)$).

Multipliers of the Fourier algebra

- As $A(G)$ is commutative, multipliers of $A(G)$ are simply maps T on $A(G)$ with $T(a b)=T(a) b$.
- As we consider $A(G) \subseteq C_{0}(G)$, we find that every $T \in M A(G)$ is given by some $f \in C^{b}(G)$:

$$
M A(G)=\left\{f \in C^{b}(G): f a \in A(G)(a \in A(G))\right\}
$$

- By duality, each $T \in M A(G)$ induces a map $T^{*}: V N(G) \rightarrow V N(G)$.
- If this is completely bounded that is gives uniformly (in n) bounded maps $1 \otimes T^{*}$ on $\mathbb{M}_{n} \otimes V /(G)-$ then $T \in M_{c b} A(G)$.
- [Haagerup, DeCanniere] For $f \in M A(G)$, we have that (or just $K=S U(2)$).

Multipliers of the Fourier algebra

- As $A(G)$ is commutative, multipliers of $A(G)$ are simply maps T on $A(G)$ with $T(a b)=T(a) b$.
- As we consider $A(G) \subseteq C_{0}(G)$, we find that every $T \in M A(G)$ is given by some $f \in C^{b}(G)$:

$$
M A(G)=\left\{f \in C^{b}(G): f a \in A(G)(a \in A(G))\right\}
$$

- By duality, each $T \in M A(G)$ induces a map $T^{*}: V N(G) \rightarrow V N(G)$.
- If this is completely bounded- that is gives uniformly (in n) bounded maps $1 \otimes T^{*}$ on $\mathbb{M}_{n} \otimes V N(G)$ - then $T \in M_{c b} A(G)$.
- [Haagerup, DeCanniere] For $f \in M A(G)$, we have that

Multipliers of the Fourier algebra

- As $A(G)$ is commutative, multipliers of $A(G)$ are simply maps T on $A(G)$ with $T(a b)=T(a) b$.
- As we consider $A(G) \subseteq C_{0}(G)$, we find that every $T \in M A(G)$ is given by some $f \in C^{b}(G)$:

$$
M A(G)=\left\{f \in C^{b}(G): f a \in A(G)(a \in A(G))\right\}
$$

- By duality, each $T \in M A(G)$ induces a map $T^{*}: V N(G) \rightarrow V N(G)$.
- If this is completely bounded- that is gives uniformly (in n) bounded maps $1 \otimes T^{*}$ on $\mathbb{M}_{n} \otimes V N(G)$ - then $T \in M_{c b} A(G)$.

Multipliers of the Fourier algebra

- As $A(G)$ is commutative, multipliers of $A(G)$ are simply maps T on $A(G)$ with $T(a b)=T(a) b$.
- As we consider $A(G) \subseteq C_{0}(G)$, we find that every $T \in M A(G)$ is given by some $f \in C^{b}(G)$:

$$
M A(G)=\left\{f \in C^{b}(G): f a \in A(G)(a \in A(G))\right\}
$$

- By duality, each $T \in M A(G)$ induces a map $T^{*}: V N(G) \rightarrow V N(G)$.
- If this is completely bounded- that is gives uniformly (in n) bounded maps $1 \otimes T^{*}$ on $\mathbb{M}_{n} \otimes V N(G)$ - then $T \in M_{c b} A(G)$.
- [Haagerup, DeCanniere] For $f \in M A(G)$, we have that $f \in M_{c b} A(G)$ if and only if $f \otimes 1_{K} \in M A(G \times K)$ for all compact K (or just $K=S U(2)$).

Properties of groups via multipliers

Lots of interesting properties of groups are related to how $A(G)$ sits in $M_{c b} A(G)$:

- $A(G)$ has a bounded approximate identity if and only if G is amenable.
- If $A(G)$ has an approximate identity, bounded in $M_{c b} A(G)$, then G is weakly amenable.
- For example, this is true for $S O(1, n)$ and $S U(1, n)$.
- Let Λ_{G} be the minimal bounded (in $M_{c b} A(G)$) for such an approximate identity.
- Then, for $G=\operatorname{Sp}(1, n)$, then $\Lambda_{G}=2 n-1$.
- [Ozawa] All hyperbolic groups are weakly amenable.

Properties of groups via multipliers

Lots of interesting properties of groups are related to how $A(G)$ sits in $M_{c b} A(G)$:

- $A(G)$ has a bounded approximate identity if and only if G is amenable.
- If $A(G)$ has an approximate identity, bounded in $M_{c b} A(G)$, then G
is weakly amenable.
- For example, this is true for $S O(1, n)$ and $S U(1, n)$.
- Let Λ_{G} be the minimal bounded (in $M_{c b} A(G)$) for such an approximate identity.
- Then, for $G=\operatorname{Sp}(1, n)$, then $\wedge_{G}=2 n-1$
- [Ozawa] All hyperbolic groups are weakly amenable.

Properties of groups via multipliers

Lots of interesting properties of groups are related to how $A(G)$ sits in $M_{c b} A(G)$:

- $A(G)$ has a bounded approximate identity if and only if G is amenable.
- If $A(G)$ has an approximate identity, bounded in $M_{c b} A(G)$, then G is weakly amenable.
- For example, this is true for $S O(1, n)$ and $S U(1, n)$.
- Let Λ_{G} be the minimal bounded (in $M_{c b} A(G)$) for such an approximate identity.
- Then, for $G=\operatorname{Sp}(1, n)$, then $\wedge_{G}=2 n-1$
- [Ozawa] All hyperbolic groups are weakly amenable.

Properties of groups via multipliers

Lots of interesting properties of groups are related to how $A(G)$ sits in $M_{c b} A(G)$:

- $A(G)$ has a bounded approximate identity if and only if G is amenable.
- If $A(G)$ has an approximate identity, bounded in $M_{c b} A(G)$, then G is weakly amenable.
- For example, this is true for $S O(1, n)$ and $S U(1, n)$.
- Let Λ_{G} be the minimal bounded (in $M_{c b} A(G)$) for such an approximate identity.
- Then, for $G=\operatorname{Sp}(1, n)$, then $\wedge_{G}=2 n-1$
- [Ozawa] All hyperbolic groups are weakly amenable.

Properties of groups via multipliers

Lots of interesting properties of groups are related to how $A(G)$ sits in $M_{c b} A(G)$:

- $A(G)$ has a bounded approximate identity if and only if G is amenable.
- If $A(G)$ has an approximate identity, bounded in $M_{c b} A(G)$, then G is weakly amenable.
- For example, this is true for $S O(1, n)$ and $S U(1, n)$.
- Let Λ_{G} be the minimal bounded (in $M_{c b} A(G)$) for such an approximate identity.
- Then, for $G=\operatorname{Sp}(1, n)$, then $\wedge_{G}=2 n-1$
- [Ozawa] All hyperbolic groups are weakly amenable.

Properties of groups via multipliers

Lots of interesting properties of groups are related to how $A(G)$ sits in $M_{c b} A(G)$:

- $A(G)$ has a bounded approximate identity if and only if G is amenable.
- If $A(G)$ has an approximate identity, bounded in $M_{c b} A(G)$, then G is weakly amenable.
- For example, this is true for $S O(1, n)$ and $S U(1, n)$.
- Let Λ_{G} be the minimal bounded (in $M_{c b} A(G)$) for such an approximate identity.
- Then, for $G=S p(1, n)$, then $\Lambda_{G}=2 n-1$.
- [Ozawa] All hyperbolic groups are weakly amenable.

Properties of groups via multipliers

Lots of interesting properties of groups are related to how $A(G)$ sits in $M_{c b} A(G)$:

- $A(G)$ has a bounded approximate identity if and only if G is amenable.
- If $A(G)$ has an approximate identity, bounded in $M_{c b} A(G)$, then G is weakly amenable.
- For example, this is true for $S O(1, n)$ and $S U(1, n)$.
- Let Λ_{G} be the minimal bounded (in $M_{c b} A(G)$) for such an approximate identity.
- Then, for $G=S p(1, n)$, then $\Lambda_{G}=2 n-1$.
- [Ozawa] All hyperbolic groups are weakly amenable.

Gilbert's view on $M_{c b} A(G)$

Theorem (Gilbert, Jolissaint)
For $f \in C^{b}(G)$, we have that $f \in M_{c b} A(G)$ if and only if there is a Hilbert space K and continuous bounded maps $\alpha, \beta: G \rightarrow K$ with $f\left(s t^{-1}\right)=(\beta(t) \mid \alpha(s))$ for $s, t \in G$.

Hilbert C*-modules

Given a C^{*}-algebra A, let X be a right module over A. Suppose that X has an A-valued inner-product:

$$
(x \mid y)=\left(G \rightarrow \mathbb{C} ; s \mapsto(x(s) \mid y(s))_{K}\right) \quad\left(x, y \in C_{0}(G, K)\right)
$$

Hilbert C*-modules

Given a C^{*}-algebra A, let X be a right module over A. Suppose that X has an A-valued inner-product:

- $(x \mid x) \geq 0$ (in the C^{*}-algebra sense) and $(x \mid x)=0$ if and only if $x=0$,
- $(x \mid y \cdot a)=(x \mid y) a$ for $x, y \in X, a \in A$.

Then X carries a norm: $\|x\|=\|(x \mid x)\|^{1 / 2}$. If X is complete, we say that X is a Hilbert C*-module over A.
Example: $A=C_{0}(G)$ and $X=C_{0}(G, K)$ for a Hilbert space K. The module action is obvious; the inner-product is

$$
(x \mid y)=(G \rightarrow \mathbb{C} ; s \mapsto(x(s) \mid y(s)) k) \quad\left(x, y \in C_{0}(G, K)\right)
$$

Hilbert C*-modules

Given a C^{*}-algebra A, let X be a right module over A. Suppose that X has an A-valued inner-product:

- $(x \mid x) \geq 0$ (in the C^{*}-algebra sense) and $(x \mid x)=0$ if and only if $x=0$,
- $(x \mid y)=(y \mid x)^{*}$,

Hilbert C*-modules

Given a C^{*}-algebra A, let X be a right module over A. Suppose that X has an A-valued inner-product:

- $(x \mid x) \geq 0$ (in the C^{*}-algebra sense) and $(x \mid x)=0$ if and only if $x=0$,
- $(x \mid y)=(y \mid x)^{*}$,
- $(x \mid y \cdot a)=(x \mid y) a$ for $x, y \in X, a \in A$.

Then X carries a norm: $\|x\|=\|(x \mid x)\|^{1 / 2}$. If X is complete, we say that X is a Hilbert C^{*}-module over A.
Example: $A=C_{0}(G)$ and $X=C_{0}(G, K)$ for a Hilbert space K. The module action is obvious; the inner-product is

Hilbert C*-modules

Given a C^{*}-algebra A, let X be a right module over A. Suppose that X has an A-valued inner-product:

- $(x \mid x) \geq 0$ (in the C^{*}-algebra sense) and $(x \mid x)=0$ if and only if $x=0$,
- $(x \mid y)=(y \mid x)^{*}$,
- $(x \mid y \cdot a)=(x \mid y) a$ for $x, y \in X, a \in A$.

Then X carries a norm: $\|x\|=\|(x \mid x)\|^{1 / 2}$. If X is complete, we say that X is a Hilbert C^{*}-module over A.
module action is obvious; the inner-product is

Hilbert C*-modules

Given a C^{*}-algebra A, let X be a right module over A. Suppose that X has an A-valued inner-product:

- $(x \mid x) \geq 0$ (in the C^{*}-algebra sense) and $(x \mid x)=0$ if and only if $x=0$,
- $(x \mid y)=(y \mid x)^{*}$,
- $(x \mid y \cdot a)=(x \mid y) a$ for $x, y \in X, a \in A$.

Then X carries a norm: $\|x\|=\|(x \mid x)\|^{1 / 2}$. If X is complete, we say that X is a Hilbert C*-module over A.
Example: $A=C_{0}(G)$ and $X=C_{0}(G, K)$ for a Hilbert space K. The module action is obvious; the inner-product is

$$
(x \mid y)=\left(G \rightarrow \mathbb{C} ; s \mapsto(x(s) \mid y(s))_{K}\right) \quad\left(x, y \in C_{0}(G, K)\right) .
$$

Abstracting $C_{0}(G, K)$

For any C^{*}-algebra A and Hilbert space K, we consider the algebraic tensor product $A \odot K$, with:

$$
(a \otimes \xi) \cdot b=a b \otimes \xi, \quad(a \otimes \xi \mid b \otimes \eta)=a^{*} b(\xi \mid \eta) .
$$

Let $A \otimes K$ be the completion.
 density.
We're interested in $C^{b}(G, K)$: how can we abstract this? Any $a \in C^{b}(G, K)$ defines a map

Abstracting $C_{0}(G, K)$

For any C^{*}-algebra A and Hilbert space K, we consider the algebraic tensor product $A \odot K$, with:

$$
(a \otimes \xi) \cdot b=a b \otimes \xi, \quad(a \otimes \xi \mid b \otimes \eta)=a^{*} b(\xi \mid \eta)
$$

Let $A \otimes K$ be the completion.
Then $C_{0}(G) \otimes K \cong C_{0}(G, K)$: somewhat clear that
$C_{0}(G) \odot K \subseteq C_{0}(G, K)$, and use a partition of unity argument to show density.
We're interested in $C^{b}(G, K)$: how can we abstract this?
Any $\alpha \in C^{b}(G, K)$ defines a map
$C_{0}(G) \rightarrow C_{0}(G, K) ; \quad a \mapsto(G \rightarrow \mathbb{C} ; s \mapsto a(s) \alpha(s))$

Abstracting $C_{0}(G, K)$

For any C^{*}-algebra A and Hilbert space K, we consider the algebraic tensor product $A \odot K$, with:

$$
(a \otimes \xi) \cdot b=a b \otimes \xi, \quad(a \otimes \xi \mid b \otimes \eta)=a^{*} b(\xi \mid \eta)
$$

Let $A \otimes K$ be the completion.
Then $C_{0}(G) \otimes K \cong C_{0}(G, K)$: somewhat clear that
$C_{0}(G) \odot K \subseteq C_{0}(G, K)$, and use a partition of unity argument to show density.
We're interested in $C^{b}(G, K)$: how can we abstract this?
$C_{0}(G) \rightarrow C_{0}(G, K) ; \quad a \mapsto(G \rightarrow \mathbb{C} ; s \mapsto a(s) \alpha(s))$

Abstracting $C_{0}(G, K)$

For any C^{*}-algebra A and Hilbert space K, we consider the algebraic tensor product $A \odot K$, with:

$$
(a \otimes \xi) \cdot b=a b \otimes \xi, \quad(a \otimes \xi \mid b \otimes \eta)=a^{*} b(\xi \mid \eta) .
$$

Let $A \otimes K$ be the completion.
Then $C_{0}(G) \otimes K \cong C_{0}(G, K)$: somewhat clear that
$C_{0}(G) \odot K \subseteq C_{0}(G, K)$, and use a partition of unity argument to show density.
We're interested in $C^{b}(G, K)$: how can we abstract this?
Any $\alpha \in C^{b}(G, K)$ defines a map

$$
C_{0}(G) \rightarrow C_{0}(G, K) ; \quad a \mapsto(G \rightarrow \mathbb{C} ; s \mapsto a(s) \alpha(s)) .
$$

Adjointable maps

Actually, given $\alpha \in C^{b}(G, K)$, not only do we get a map
$T: C_{0}(G) \rightarrow C_{0}(G, K)$, we get an "adjoint" $T^{*}: C_{0}(G, K) \rightarrow C_{0}(G)$ given by

$$
T^{*}(x)=\left(G \rightarrow \mathbb{C} ; s \mapsto(\alpha(s) \mid x(s))_{K}\right)
$$

This satisfies $\left(T^{*}(x) \mid a\right)=(x \mid T(a))$ for $x \in C_{0}(G, K)$ and $a \in C_{0}(G)$.

- Unlike for Hilbert spaces, not all maps between Hilbert C*-modules have adjoints.
- But, if a map is adjointable, it's automatically bounded and a module homomorphism.
- Write $\mathcal{L}(X, Y)$ for the space of maps which do have adjoints.
- Can show that $\mathcal{L}\left(C_{0}(G), C_{0}(G) \otimes K\right) \cong C^{b}(G, K)$.

Adjointable maps

Actually, given $\alpha \in C^{b}(G, K)$, not only do we get a map
$T: C_{0}(G) \rightarrow C_{0}(G, K)$, we get an "adjoint" $T^{*}: C_{0}(G, K) \rightarrow C_{0}(G)$ given by

$$
T^{*}(x)=\left(G \rightarrow \mathbb{C} ; s \mapsto(\alpha(s) \mid x(s))_{K}\right)
$$

This satisfies $\left(T^{*}(x) \mid a\right)=(x \mid T(a))$ for $x \in C_{0}(G, K)$ and $a \in C_{0}(G)$.

- Unlike for Hilbert spaces, not all maps between Hilbert C*-modules have adjoints.
- But, if a map is adjointable, it's automatically bounded and a module homomorphism.
- Write $\mathcal{L}(X, Y)$ for the space of maps which do have adjoints.
- Can show that $\mathcal{L}\left(C_{0}(G), C_{0}(G) \otimes K\right) \cong C^{b}(G, K)$.

Adjointable maps

Actually, given $\alpha \in C^{b}(G, K)$, not only do we get a map
$T: C_{0}(G) \rightarrow C_{0}(G, K)$, we get an "adjoint" $T^{*}: C_{0}(G, K) \rightarrow C_{0}(G)$ given by

$$
T^{*}(x)=\left(G \rightarrow \mathbb{C} ; s \mapsto(\alpha(s) \mid x(s))_{K}\right)
$$

This satisfies $\left(T^{*}(x) \mid a\right)=(x \mid T(a))$ for $x \in C_{0}(G, K)$ and $a \in C_{0}(G)$.

- Unlike for Hilbert spaces, not all maps between Hilbert C^{*}-modules have adjoints.
- But, if a map is adjointable, it's automatically bounded and a module homomorphism.
- Write $\mathcal{L}(X, Y)$ for the space of maps which do have adjoints.
- Can show that $\mathcal{L}\left(C_{0}(G), C_{0}(G) \otimes K\right) \cong C^{b}(G, K)$.

Adjointable maps

Actually, given $\alpha \in C^{b}(G, K)$, not only do we get a map $T: C_{0}(G) \rightarrow C_{0}(G, K)$, we get an "adjoint" $T^{*}: C_{0}(G, K) \rightarrow C_{0}(G)$ given by

$$
T^{*}(x)=\left(G \rightarrow \mathbb{C} ; s \mapsto(\alpha(s) \mid x(s))_{K}\right)
$$

This satisfies $\left(T^{*}(x) \mid a\right)=(x \mid T(a))$ for $x \in C_{0}(G, K)$ and $a \in C_{0}(G)$.

- Unlike for Hilbert spaces, not all maps between Hilbert C^{*}-modules have adjoints.
- But, if a map is adjointable, it's automatically bounded and a module homomorphism.
- Write $\mathcal{L}(X, Y)$ for the space of maps which do have adjoints.
- Can show that $\mathcal{L}\left(C_{0}(G), C_{0}(G) \otimes K\right) \cong C^{b}(G, K)$.

Adjointable maps

Actually, given $\alpha \in C^{b}(G, K)$, not only do we get a map $T: C_{0}(G) \rightarrow C_{0}(G, K)$, we get an "adjoint" $T^{*}: C_{0}(G, K) \rightarrow C_{0}(G)$ given by

$$
T^{*}(x)=\left(G \rightarrow \mathbb{C} ; s \mapsto(\alpha(s) \mid x(s))_{K}\right)
$$

This satisfies $\left(T^{*}(x) \mid a\right)=(x \mid T(a))$ for $x \in C_{0}(G, K)$ and $a \in C_{0}(G)$.

- Unlike for Hilbert spaces, not all maps between Hilbert C^{*}-modules have adjoints.
- But, if a map is adjointable, it's automatically bounded and a module homomorphism.
- Write $\mathcal{L}(X, Y)$ for the space of maps which do have adjoints.
- Can show that $\mathcal{L}\left(C_{0}(G), C_{0}(G) \otimes K\right) \cong C^{b}(G, K)$.

Adjointable maps

Actually, given $\alpha \in C^{b}(G, K)$, not only do we get a map $T: C_{0}(G) \rightarrow C_{0}(G, K)$, we get an "adjoint" $T^{*}: C_{0}(G, K) \rightarrow C_{0}(G)$ given by

$$
T^{*}(x)=\left(G \rightarrow \mathbb{C} ; s \mapsto(\alpha(s) \mid x(s))_{K}\right)
$$

This satisfies $\left(T^{*}(x) \mid a\right)=(x \mid T(a))$ for $x \in C_{0}(G, K)$ and $a \in C_{0}(G)$.

- Unlike for Hilbert spaces, not all maps between Hilbert C^{*}-modules have adjoints.
- But, if a map is adjointable, it's automatically bounded and a module homomorphism.
- Write $\mathcal{L}(X, Y)$ for the space of maps which do have adjoints.
- Can show that $\mathcal{L}\left(C_{0}(G), C_{0}(G) \otimes K\right) \cong C^{b}(G, K)$.

Abstract duality theory: Locally Compact Quantum Groups

A locally compact quantum group is a von Neumann algebra M which is equipped with a normal $*$-homomorphism $\Delta: M \rightarrow M \otimes M$ such that is coassociative: $(\Delta \otimes \iota) \Delta=(\iota \otimes \Delta) \Delta$.

Abstract duality theory: Locally Compact Quantum Groups

A locally compact quantum group is a von Neumann algebra M which is equipped with a normal $*$-homomorphism $\Delta: M \rightarrow M \otimes M$ such that is coassociative: $(\Delta \otimes \iota) \Delta=(\iota \otimes \Delta) \Delta$.

- We also assume that M carries left and right invariant weights: I'll ignore these here: they are very important for the theory (but, if they exist, are unique, so in sense are intrinsic).
- We've seen one example: $V N(G)$ and $A(G)$
- Another example: $L^{\infty}(G)$ with $\Delta: L^{\infty}(G) \rightarrow L^{\infty}(G \times G)$ given by $\Delta(F)(s, t)=F(s t)$.
- This induces the usual convolution product on $L^{1}(G)$
\square

Abstract duality theory: Locally Compact Quantum Groups

A locally compact quantum group is a von Neumann algebra M which is equipped with a normal $*$-homomorphism $\Delta: M \rightarrow M \otimes M$ such that is coassociative: $(\Delta \otimes \iota) \Delta=(\iota \otimes \Delta) \Delta$.

- We also assume that M carries left and right invariant weights: I'll ignore these here: they are very important for the theory (but, if they exist, are unique, so in sense are intrinsic).
- As Δ is normal, we get an associative product on the predual M_{*}.

Abstract duality theory: Locally Compact Quantum Groups

A locally compact quantum group is a von Neumann algebra M which is equipped with a normal $*$-homomorphism $\Delta: M \rightarrow M \otimes M$ such that is coassociative: $(\Delta \otimes \iota) \Delta=(\iota \otimes \Delta) \Delta$.

- We also assume that M carries left and right invariant weights: I'll ignore these here: they are very important for the theory (but, if they exist, are unique, so in sense are intrinsic).
- As Δ is normal, we get an associative product on the predual M_{*}.
- We've seen one example: $V N(G)$ and $A(G)$.

Abstract duality theory: Locally Compact Quantum Groups

A locally compact quantum group is a von Neumann algebra M which is equipped with a normal $*$-homomorphism $\Delta: M \rightarrow M \otimes M$ such that is coassociative: $(\Delta \otimes \iota) \Delta=(\iota \otimes \Delta) \Delta$.

- We also assume that M carries left and right invariant weights: I'll ignore these here: they are very important for the theory (but, if they exist, are unique, so in sense are intrinsic).
- As Δ is normal, we get an associative product on the predual M_{*}.
- We've seen one example: $\operatorname{VN}(G)$ and $A(G)$.
- Another example: $L^{\infty}(G)$ with $\Delta: L^{\infty}(G) \rightarrow L^{\infty}(G \times G)$ given by $\Delta(F)(s, t)=F(s t)$.

Abstract duality theory: Locally Compact Quantum Groups

A locally compact quantum group is a von Neumann algebra M which is equipped with a normal $*$-homomorphism $\Delta: M \rightarrow M \otimes M$ such that is coassociative: $(\Delta \otimes \iota) \Delta=(\iota \otimes \Delta) \Delta$.

- We also assume that M carries left and right invariant weights: I'll ignore these here: they are very important for the theory (but, if they exist, are unique, so in sense are intrinsic).
- As Δ is normal, we get an associative product on the predual M_{*}.
- We've seen one example: $V N(G)$ and $A(G)$.
- Another example: $L^{\infty}(G)$ with $\Delta: L^{\infty}(G) \rightarrow L^{\infty}(G \times G)$ given by $\Delta(F)(s, t)=F(s t)$.
- This induces the usual convolution product on $L^{1}(G)$.

Abstract duality theory: Locally Compact Quantum Groups

A locally compact quantum group is a von Neumann algebra M which is equipped with a normal $*$-homomorphism $\Delta: M \rightarrow M \otimes M$ such that is coassociative: $(\Delta \otimes \iota) \Delta=(\iota \otimes \Delta) \Delta$.

- We also assume that M carries left and right invariant weights: I'll ignore these here: they are very important for the theory (but, if they exist, are unique, so in sense are intrinsic).
- As Δ is normal, we get an associative product on the predual M_{*}.
- We've seen one example: $V N(G)$ and $A(G)$.
- Another example: $L^{\infty}(G)$ with $\Delta: L^{\infty}(G) \rightarrow L^{\infty}(G \times G)$ given by $\Delta(F)(s, t)=F(s t)$.
- This induces the usual convolution product on $L^{1}(G)$.
- Again, we have W a unitary on $L^{2}(G \times G)$ which induces Δ by $\Delta(F)=W^{*}(1 \otimes F) W$. Indeed, $W \xi(s, t)=\xi\left(s, s^{-1} t\right)$.

C*-algebras and duality

Inside M is a C^{*}-algebra A, and Δ restricts to a map
$\Delta: A \rightarrow M(A \otimes A)$.

- For $L^{\infty}(G)$, we get $C_{0}(G)$ (mapping into $C^{b}(G \times G)$).
- For $V N(G)$, we get $C_{r}^{*}(G)$.

Given M, we can form a "dual group" ($\hat{M}, \hat{\Delta}$), and we have that

- The dual of $L^{\infty}(G)$ is $V N(G)$, so in some sense, this generalises Pontryagin duality.
- Very roughly, we build a Hibert space H from M. Then M_{*} acts on H; the WOT closure is then \hat{M}; the norm closure is \hat{A}.

C*-algebras and duality

Inside M is a C^{*}-algebra A, and Δ restricts to a map
$\Delta: A \rightarrow M(A \otimes A)$.

- For $L^{\infty}(G)$, we get $C_{0}(G)$ (mapping into $C^{b}(G \times G)$).
- For VN(G), we get $C_{r}^{*}(G)$.

Given M, we can form a "dual group" $(\hat{M}, \hat{\Delta})$, and we have that

- The dual of $L^{\infty}(G)$ is $V N(G)$, so in some sense, this generalises Pontryagin duality.
- Very roughly, we build a Hilbert space H from M. Then M* acts on H; the WOT closure is then \hat{M}; the norm closure is \hat{A}.

C*-algebras and duality

Inside M is a C^{*}-algebra A, and Δ restricts to a map
$\Delta: A \rightarrow M(A \otimes A)$.

- For $L^{\infty}(G)$, we get $C_{0}(G)$ (mapping into $C^{b}(G \times G)$).
- For $\operatorname{VN}(G)$, we get $C_{r}^{*}(G)$.

C*-algebras and duality

Inside M is a C^{*}-algebra A, and Δ restricts to a map
$\Delta: A \rightarrow M(A \otimes A)$.

- For $L^{\infty}(G)$, we get $C_{0}(G)$ (mapping into $C^{b}(G \times G)$).
- For $\operatorname{VN}(G)$, we get $C_{r}^{*}(G)$.

Given M, we can form a "dual group" $(\hat{M}, \hat{\Delta})$, and we have that $(M, \Delta) \cong(\hat{\hat{M}}, \hat{\hat{\Delta}})$.

- The dual of $L^{\infty}(G)$ is $V N(G)$, so in some sense, this generalises Pontryagin duality.
- Very roughly, we build a Hilbert space H from M. Then M* acts on H; the WOT closure is then \hat{M}; the norm closure is \hat{A}.

C*-algebras and duality

Inside M is a C^{*}-algebra A, and Δ restricts to a map
$\Delta: A \rightarrow M(A \otimes A)$.

- For $L^{\infty}(G)$, we get $C_{0}(G)$ (mapping into $C^{b}(G \times G)$).
- For $\operatorname{VN}(G)$, we get $C_{r}^{*}(G)$.

Given M, we can form a "dual group" $(\hat{M}, \hat{\Delta})$, and we have that $(M, \Delta) \cong(\hat{\hat{M}}, \hat{\hat{\Delta}})$.

- The dual of $L^{\infty}(G)$ is $V N(G)$, so in some sense, this generalises Pontryagin duality.

C*-algebras and duality

Inside M is a C^{*}-algebra A, and Δ restricts to a map
$\Delta: A \rightarrow M(A \otimes A)$.

- For $L^{\infty}(G)$, we get $C_{0}(G)$ (mapping into $C^{b}(G \times G)$).
- For $V N(G)$, we get $C_{r}^{*}(G)$.

Given M, we can form a "dual group" $(\hat{M}, \hat{\Delta})$, and we have that $(M, \Delta) \cong(\hat{\hat{M}}, \hat{\hat{\Delta}})$.

- The dual of $L^{\infty}(G)$ is $V N(G)$, so in some sense, this generalises Pontryagin duality.
- Very roughly, we build a Hilbert space H from M. Then M_{*} acts on H; the WOT closure is then \hat{M}; the norm closure is \hat{A}.

C*-algebras and duality

- In the "classical" setup, we have that
$M\left(L^{1}(G)\right)=M(G) \rightarrow M\left(C_{r}^{*}(G)\right)$. This is just the extension of $\lambda: L^{1}(G) \rightarrow \mathcal{B}\left(L^{2}(G)\right)$.
- Similarly, $M_{c b} A(G) \rightarrow C^{b}(G)=M\left(C_{0}(G)\right)$.
- The duality framework gives a map $\hat{\lambda}: \hat{M}_{*} \rightarrow A$.
- [Daws], building heavily on work of [Kraus, Ruan]. This does indeed extend to a homomorphism $\hat{\Lambda}: M_{c b}\left(\hat{M}_{*}\right) \rightarrow M(A)$.
- This satisfies, for $(L, R) \in M_{c b}\left(\hat{M}_{*}\right), \hat{\omega} \in \hat{M}_{*}$,

$$
\hat{\Lambda}((L, R)) \hat{\lambda}(\hat{\omega})=\hat{\lambda}(L(\hat{\omega})), \quad \hat{\lambda}(\hat{\omega}) \hat{\Lambda}((L, R))=\hat{\lambda}(R(\hat{\omega}))
$$

C*-algebras and duality

- In the "classical" setup, we have that
$M\left(L^{1}(G)\right)=M(G) \rightarrow M\left(C_{r}^{*}(G)\right)$. This is just the extension of $\lambda: L^{1}(G) \rightarrow \mathcal{B}\left(L^{2}(G)\right)$.
- Similarly, $M_{c b} A(G) \rightarrow C^{b}(G)=M\left(C_{0}(G)\right)$.
- The duality framework gives a map $\hat{\lambda}: \hat{M}_{*} \rightarrow A$.
- [Daws], building heavily on work of [Kraus, Ruan]. This does indeed extend to a homomorphism $\hat{\Lambda}: M_{c b}\left(\hat{M}_{*}\right) \rightarrow M(A)$.
- This satisfies, for $(L, R) \in M_{c b}\left(\hat{M}_{*}\right), \hat{\omega} \in \hat{M}_{*}$,

C*-algebras and duality

- In the "classical" setup, we have that $M\left(L^{1}(G)\right)=M(G) \rightarrow M\left(C_{r}^{*}(G)\right)$. This is just the extension of $\lambda: L^{1}(G) \rightarrow \mathcal{B}\left(L^{2}(G)\right)$.
- Similarly, $M_{c b} A(G) \rightarrow C^{b}(G)=M\left(C_{0}(G)\right)$.
- The duality framework gives a map $\hat{\lambda}: \hat{M}_{*} \rightarrow A$.
- [Daws], building heavily on work of [Kraus, Ruan]. This does indeed extend to a homomorphism $\hat{\Lambda}: M_{c b}\left(\hat{M}_{*}\right) \rightarrow M(A)$.
- This satisfies, for $(L, R) \in M_{c b}\left(\hat{M}_{*}\right), \hat{\omega} \in \hat{M}_{*}$,

C*-algebras and duality

- In the "classical" setup, we have that $M\left(L^{1}(G)\right)=M(G) \rightarrow M\left(C_{r}^{*}(G)\right)$. This is just the extension of $\lambda: L^{1}(G) \rightarrow \mathcal{B}\left(L^{2}(G)\right)$.
- Similarly, $M_{c b} A(G) \rightarrow C^{b}(G)=M\left(C_{0}(G)\right)$.
- The duality framework gives a map $\hat{\lambda}: \hat{M}_{*} \rightarrow A$.
- [Daws], building heavily on work of [Kraus, Ruan]. This does indeed extend to a homomorphism $\hat{\Lambda}: M_{c b}\left(\hat{M}_{*}\right) \rightarrow M(A)$.

C*-algebras and duality

- In the "classical" setup, we have that $M\left(L^{1}(G)\right)=M(G) \rightarrow M\left(C_{r}^{*}(G)\right)$. This is just the extension of $\lambda: L^{1}(G) \rightarrow \mathcal{B}\left(L^{2}(G)\right)$.
- Similarly, $M_{c b} A(G) \rightarrow C^{b}(G)=M\left(C_{0}(G)\right)$.
- The duality framework gives a map $\hat{\lambda}: \hat{M}_{*} \rightarrow A$.
- [Daws], building heavily on work of [Kraus, Ruan]. This does indeed extend to a homomorphism $\hat{\Lambda}: M_{c b}\left(\hat{M}_{*}\right) \rightarrow M(A)$.
- This satisfies, for $(L, R) \in M_{c b}\left(\hat{M}_{*}\right), \hat{\omega} \in \hat{M}_{*}$,

$$
\hat{\Lambda}((L, R)) \hat{\lambda}(\hat{\omega})=\hat{\lambda}(L(\hat{\omega})), \quad \hat{\lambda}(\hat{\omega}) \hat{\Lambda}((L, R))=\hat{\lambda}(R(\hat{\omega})) .
$$

Representing multipliers using Hilbert C*-modules

- We replace $C^{b}(G, K)$ by $\mathcal{L}(A, A \otimes K)$.
- Given $\alpha \in \mathcal{L}(A, A \otimes K)$, there is a way to define
$\Delta * \alpha \in \mathcal{L}(A \otimes A, A \otimes A \otimes K)$. This generalises the map
$C^{h}(G, K) \rightarrow C^{h}(G \times G, K) ; \quad f \mapsto(G \times G \rightarrow K ;(s, t) \mapsto f(s t))$.
- We say that a pair of maps $\alpha, \beta \in \mathcal{L}(A, A \otimes K)$ is "invariant" if

$$
\left(1 \otimes \beta^{*}\right)(\Delta * \alpha) \in M(A) \otimes 1 .
$$

(This is always in $\mathcal{L}(A \otimes A) \cong M(A \otimes A)$). This generalises the possibility of finding $f \in C^{b}(G)$ with

$$
f\left(s t^{-1}\right)=(\beta(t) \mid \alpha(s)) \Leftrightarrow(\beta(t) \mid \alpha(s t)) \text { constant in } t .
$$

Representing multipliers using Hilbert C*-modules

- We replace $C^{b}(G, K)$ by $\mathcal{L}(A, A \otimes K)$.
- Given $\alpha \in \mathcal{L}(A, A \otimes K)$, there is a way to define $\Delta * \alpha \in \mathcal{L}(\boldsymbol{A} \otimes \boldsymbol{A}, \boldsymbol{A} \otimes \boldsymbol{A} \otimes K)$. This generalises the map

$$
C^{b}(G, K) \rightarrow C^{b}(G \times G, K) ; \quad f \mapsto(G \times G \rightarrow K ;(s, t) \mapsto f(s t))
$$

- We say that a pair of maps $\alpha, \beta \in \mathcal{L}(A, A \otimes K)$ is "invariant" if

$$
\left(1 \otimes \beta^{*}\right)(\Delta * \alpha) \in M(A) \otimes 1
$$

(This is always in $\mathcal{L}(A \otimes A) \cong M(A \otimes A)$). This generalises the possibility of finding $f \in C^{b}(G)$ with

$$
f\left(s t^{-1}\right)=(\beta(t) \mid \alpha(s)) \Leftrightarrow(\beta(t) \mid \alpha(s t)) \text { constant in } t \text {. }
$$

Representing multipliers using Hilbert C*-modules

- We replace $C^{b}(G, K)$ by $\mathcal{L}(A, A \otimes K)$.
- Given $\alpha \in \mathcal{L}(\boldsymbol{A}, \boldsymbol{A} \otimes K)$, there is a way to define $\Delta * \alpha \in \mathcal{L}(\boldsymbol{A} \otimes \boldsymbol{A}, \boldsymbol{A} \otimes \boldsymbol{A} \otimes K)$. This generalises the map

$$
C^{b}(G, K) \rightarrow C^{b}(G \times G, K) ; \quad f \mapsto(G \times G \rightarrow K ;(s, t) \mapsto f(s t)) .
$$

- We say that a pair of maps $\alpha, \beta \in \mathcal{L}(\boldsymbol{A}, \boldsymbol{A} \otimes K)$ is "invariant" if

$$
\left(1 \otimes \beta^{*}\right)(\Delta * \alpha) \in M(A) \otimes 1 .
$$

(This is always in $\mathcal{L}(A \otimes A) \cong M(A \otimes A)$).

$$
f\left(s t^{-1}\right)=(\beta(t) \mid \alpha(s)) \Leftrightarrow(\beta(t) \mid \alpha(s t)) \text { constant in } t \text {. }
$$

Representing multipliers using Hilbert C*-modules

- We replace $C^{b}(G, K)$ by $\mathcal{L}(A, A \otimes K)$.
- Given $\alpha \in \mathcal{L}(\boldsymbol{A}, \boldsymbol{A} \otimes K)$, there is a way to define $\Delta * \alpha \in \mathcal{L}(\boldsymbol{A} \otimes \boldsymbol{A}, \boldsymbol{A} \otimes \boldsymbol{A} \otimes K)$. This generalises the map

$$
C^{b}(G, K) \rightarrow C^{b}(G \times G, K) ; \quad f \mapsto(G \times G \rightarrow K ;(s, t) \mapsto f(s t)) .
$$

- We say that a pair of maps $\alpha, \beta \in \mathcal{L}(\boldsymbol{A}, \boldsymbol{A} \otimes K)$ is "invariant" if

$$
\left(1 \otimes \beta^{*}\right)(\Delta * \alpha) \in M(A) \otimes 1 .
$$

(This is always in $\mathcal{L}(A \otimes A) \cong M(A \otimes A)$). This generalises the possibility of finding $f \in C^{b}(G)$ with

$$
f\left(s t^{-1}\right)=(\beta(t) \mid \alpha(s)) \Leftrightarrow(\beta(t) \mid \alpha(s t)) \text { constant in } t .
$$

Representing multipliers

There is a bijection between:
© "Represented" completely bounded left multipliers L. That is, cb maps $L: \hat{M}_{*} \rightarrow \hat{M}_{*}$ with $L(\hat{\omega} \hat{\sigma})=L(\hat{\omega}) \hat{\sigma}$, and such that there is $x \in M(A)$ with $x \hat{\lambda}(\hat{\omega})=\hat{\lambda}(L(\hat{\omega}))$. (Notice that this is always true for the "left half" of a cb multiplier $(L, R))$.
(2) Invariant pairs (α, β) in $\mathcal{L}(A, A \otimes K)$ with $\left(1 \otimes \beta^{*}\right)(\Delta * \alpha)=x \otimes 1$.

In this case, the map $L^{*}: \hat{M} \rightarrow \hat{M}$ is given by

$$
L^{*}=\tilde{\beta}^{*}(x \otimes 1) \tilde{\alpha} \quad(x \in \hat{M}) .
$$

Here $\tilde{\alpha}: H \rightarrow H \otimes K$ is built from α, where H is the canonical Hilbert space given by M.

Representing multipliers

There is a bijection between:
(1) "Represented" completely bounded left multipliers L. That is, cb maps $L: \hat{M}_{*} \rightarrow \hat{M}_{*}$ with $L(\hat{\omega} \hat{\sigma})=L(\hat{\omega}) \hat{\sigma}$, and such that there is $x \in M(A)$ with $x \hat{\lambda}(\hat{\omega})=\hat{\lambda}(L(\hat{\omega}))$. (Notice that this is always true for the "left half" of a cb multiplier $(L, R))$.

In this case, the map $L^{*}: \hat{M} \rightarrow \hat{M}$ is given by

Here $\tilde{\alpha}: H \rightarrow H \otimes K$ is built from α, where H is the canonical Hilbert space given by M.

Representing multipliers

There is a bijection between:
(1) "Represented" completely bounded left multipliers L. That is, cb maps $L: \hat{M}_{*} \rightarrow \hat{M}_{*}$ with $L(\hat{\omega} \hat{\sigma})=L(\hat{\omega}) \hat{\sigma}$, and such that there is $x \in M(A)$ with $x \hat{\lambda}(\hat{\omega})=\hat{\lambda}(L(\hat{\omega}))$. (Notice that this is always true for the "left half" of a cb multiplier (L, R)).
(2) Invariant pairs (α, β) in $\mathcal{L}(A, A \otimes K)$ with $\left(1 \otimes \beta^{*}\right)(\Delta * \alpha)=x \otimes 1$.

Here $\tilde{\alpha}: H \rightarrow H \otimes K$ is built from α, where H is the canonical Hilbert

Representing multipliers

There is a bijection between:
(1) "Represented" completely bounded left multipliers L. That is, cb maps $L: \hat{M}_{*} \rightarrow \hat{M}_{*}$ with $L(\hat{\omega} \hat{\sigma})=L(\hat{\omega}) \hat{\sigma}$, and such that there is $x \in M(A)$ with $x \hat{\lambda}(\hat{\omega})=\hat{\lambda}(L(\hat{\omega}))$. (Notice that this is always true for the "left half" of a cb multiplier (L, R)).
(2) Invariant pairs (α, β) in $\mathcal{L}(A, A \otimes K)$ with $\left(1 \otimes \beta^{*}\right)(\Delta * \alpha)=x \otimes 1$. In this case, the map $L^{*}: \hat{M} \rightarrow \hat{M}$ is given by

$$
L^{*}=\tilde{\beta}^{*}(x \otimes 1) \tilde{\alpha} \quad(x \in \hat{M})
$$

Here $\tilde{\alpha}: H \rightarrow H \otimes K$ is built from α, where H is the canonical Hilbert space given by M.

