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Multipliers

Suppose that A is an algebra: how might we embed A into a unital
algebra B?

Could use the unitisation: A⊕ C1.
Natural to ask that A is an ideal in B.
But we don’t want B to be too large: the natural condition is that A
should be essential in B: if I ⊆ B is an ideal then A ∩ I 6= {0}.
For faithful A, this is equivalent to: if b ∈ B and aba′ = 0 for all
a,a′ ∈ A, then b = 0.
Turns out there is a maximal such B, called the multiplier algebra
of A, written M(A). Maximal in the sense that if AE B, then
B → M(A). Clearly M(A) is unique.
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How to build M(A)

We define M(A) to be the collection of maps L,R : A→ A with

L(ab) = L(a)b, R(ab) = aR(b), aL(b) = R(a)b (a,b ∈ A).

If A is faithful (which we shall assume from now on) then we only
need the third condition.
M(A) is a vector space, and an algebra for the product
(L,R)(L′,R′) = (LL′,R′R).
Each a ∈ A defines a pair (La,Ra) ∈ M(A) by La(b) = ab and
Ra(b) = ba.
The homomorphism A→ M(A); a 7→ (La,Ra) identifies A with an
essential ideal in M(A).
If A is a Banach algebra, then natural to ask that L and R are
bounded; but this is automatic by using the Closed Graph
Theorem.
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Multipliers of C∗-algebras

Let A be a C∗-algebra acting non-degenerately on a Hilbert space H.
Then we have that

M(A) = {T ∈ B(H) : Ta,aT ∈ A (a ∈ A)}.

Each such T does define a multiplier in the previous sense.
Conversely, a bounded approximate identity argument allows you
to build T ∈ B(H) given (L,R) ∈ M(A).
If A = C0(X ) then M(A) = Cb(X ) = C(βX ), so M(A) is a
non-commutative Stone-Čech compactification.
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Locally compact groups

Let G be a locally compact group, equipped with a left invariant Haar
measure. Examples include:

Any discrete group with the counting measure.
Any compact group, where the Haar measure is normalised to be
a probability measure.
The real line R with Lebesgue measure.
Various non-compact Lie groups give interesting examples.
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Group algebras
Turn L1(G) into a Banach algebra by using the convolution product:

(f ∗ g)(s) =

∫
G

f (t)g(t−1s) dt .

We can also convolve finite measures.
Identify M(G) with C0(G)∗, then

〈µ ∗ λ,F 〉 =

∫ ∫
F (st) dµ(s) dλ(t) (µ, λ ∈ M(G),F ∈ C0(G)).

[Wendel] Then we have that

M(L1(G)) = M(G),

where for each (L,R) ∈ M(L1(G)), there exists µ ∈ M(G),

L(a) = µ ∗ a, R(a) = a ∗ µ (a ∈ L1(G)).

Matthew Daws (Leeds) Multipliers and Hilbert modules March 2010 6 / 22



Group algebras
Turn L1(G) into a Banach algebra by using the convolution product:

(f ∗ g)(s) =

∫
G

f (t)g(t−1s) dt .

We can also convolve finite measures.
Identify M(G) with C0(G)∗, then

〈µ ∗ λ,F 〉 =

∫ ∫
F (st) dµ(s) dλ(t) (µ, λ ∈ M(G),F ∈ C0(G)).

[Wendel] Then we have that

M(L1(G)) = M(G),

where for each (L,R) ∈ M(L1(G)), there exists µ ∈ M(G),

L(a) = µ ∗ a, R(a) = a ∗ µ (a ∈ L1(G)).

Matthew Daws (Leeds) Multipliers and Hilbert modules March 2010 6 / 22



Group algebras
Turn L1(G) into a Banach algebra by using the convolution product:

(f ∗ g)(s) =

∫
G

f (t)g(t−1s) dt .

We can also convolve finite measures.
Identify M(G) with C0(G)∗, then

〈µ ∗ λ,F 〉 =

∫ ∫
F (st) dµ(s) dλ(t) (µ, λ ∈ M(G),F ∈ C0(G)).

[Wendel] Then we have that

M(L1(G)) = M(G),

where for each (L,R) ∈ M(L1(G)), there exists µ ∈ M(G),

L(a) = µ ∗ a, R(a) = a ∗ µ (a ∈ L1(G)).

Matthew Daws (Leeds) Multipliers and Hilbert modules March 2010 6 / 22



Group algebras
Turn L1(G) into a Banach algebra by using the convolution product:

(f ∗ g)(s) =

∫
G

f (t)g(t−1s) dt .

We can also convolve finite measures.
Identify M(G) with C0(G)∗, then

〈µ ∗ λ,F 〉 =

∫ ∫
F (st) dµ(s) dλ(t) (µ, λ ∈ M(G),F ∈ C0(G)).

[Wendel] Then we have that

M(L1(G)) = M(G),

where for each (L,R) ∈ M(L1(G)), there exists µ ∈ M(G),

L(a) = µ ∗ a, R(a) = a ∗ µ (a ∈ L1(G)).

Matthew Daws (Leeds) Multipliers and Hilbert modules March 2010 6 / 22



The Fourier transform

If G is abelian, then we have the dual group

Ĝ = {χ : G→ T a continuous homomorphism}.

Also we have the Fourier Transform

F : L1(G)→ C0(Ĝ) also L2(G) ∼= L2(Ĝ).

The image F(L1(G)) is the Fourier algebra A(Ĝ).
As L1(G) = L2(G) · L2(G) (pointwise product) we see that
A(Ĝ) = L2(G) ∗ L2(G) = L2(Ĝ) ∗ L2(Ĝ) (convolution).
F extends to M(G), and the image is B(Ĝ) ⊆ Cb(G), the
Fourier-Stieltjes algebra.
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Operator algebras

The Fourier transform similarly sets up isomorphisms

C0(G) ∼= C∗r (Ĝ) L∞(G) ∼= VN(Ĝ).

Let λ : G→ B(L2(G)) be the left-regular representation,

λ(s) : f 7→ g g(t) = f (s−1t) (f ∈ L2(G), s, t ∈ G).

Integrate this to get a homomorphism λ : L1(G)→ B(L2(G)).

C∗r (G) is the closure of λ(L1(G)).
C∗(G) is the enveloping C∗-algebra of L1(G): agrees with C∗r (G)
is G is abelian, compact, amenable.
VN(G) is the WOT closure of λ(L1(G)) (or of λ(G)).
So, A(Ĝ) is the predual of VN(Ĝ) and B(Ĝ) is the dual of C∗(Ĝ).
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The Fourier algebra

For a general G, we could hence define A(G) to be:
the predual of VN(G).
Or A(G) = L2(G) ∗ L2(G).
We hope that these agree and that A(G) is an algebra for the
pointwise product.

Remember that a von Neumann algebra always has a predual: the
space of normal functionals.
As VN(G) ⊆ B(L2(G)), and B(L2(G)) is the dual of T (L2(G)), the
trace-class operators on L2(G), we have a quotient map

T (L2(G))� VN(G)∗.
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What is the Fourier algebra? [Eymard]
We do have that A(G) = VN(G)∗ = L2(G) ∗ L2(G) ⊆ C0(G):

(Big Machine⇒) VN(G) is in standard position, so any normal
functional ω on VN(G) is of the form ω = ωξ,η for some
ξ, η ∈ L2(G),

〈x , ω〉 =
(
x(ξ)

∣∣η) (x ∈ VN(G), ξ, η ∈ L2(G)).

As {λ(s) : s ∈ G} generates VN(G), for ω ∈ VN(G)∗, if we know
what 〈λ(s−1), ω〉 is for all s, then we know ω.
Observe that

〈λ(s−1), ωξ,η〉 =

∫
G
λ(s−1)(ξ)(t)η(t) dt =

∫
G
ξ(st)η(t) dt

=

∫
G
ξ(t)η̌(t−1s) dt = (ξ ∗ η̌)(s).

Here η̌(s) = η(s−1) (so I lied in the first line!)
Matthew Daws (Leeds) Multipliers and Hilbert modules March 2010 10 / 22



What is the Fourier algebra? [Eymard]
We do have that A(G) = VN(G)∗ = L2(G) ∗ L2(G) ⊆ C0(G):

(Big Machine⇒) VN(G) is in standard position, so any normal
functional ω on VN(G) is of the form ω = ωξ,η for some
ξ, η ∈ L2(G),

〈x , ω〉 =
(
x(ξ)

∣∣η) (x ∈ VN(G), ξ, η ∈ L2(G)).

As {λ(s) : s ∈ G} generates VN(G), for ω ∈ VN(G)∗, if we know
what 〈λ(s−1), ω〉 is for all s, then we know ω.
Observe that

〈λ(s−1), ωξ,η〉 =

∫
G
λ(s−1)(ξ)(t)η(t) dt =

∫
G
ξ(st)η(t) dt

=

∫
G
ξ(t)η̌(t−1s) dt = (ξ ∗ η̌)(s).

Here η̌(s) = η(s−1) (so I lied in the first line!)
Matthew Daws (Leeds) Multipliers and Hilbert modules March 2010 10 / 22



What is the Fourier algebra? [Eymard]
We do have that A(G) = VN(G)∗ = L2(G) ∗ L2(G) ⊆ C0(G):

(Big Machine⇒) VN(G) is in standard position, so any normal
functional ω on VN(G) is of the form ω = ωξ,η for some
ξ, η ∈ L2(G),

〈x , ω〉 =
(
x(ξ)

∣∣η) (x ∈ VN(G), ξ, η ∈ L2(G)).

As {λ(s) : s ∈ G} generates VN(G), for ω ∈ VN(G)∗, if we know
what 〈λ(s−1), ω〉 is for all s, then we know ω.
Observe that

〈λ(s−1), ωξ,η〉 =

∫
G
λ(s−1)(ξ)(t)η(t) dt =

∫
G
ξ(st)η(t) dt

=

∫
G
ξ(t)η̌(t−1s) dt = (ξ ∗ η̌)(s).

Here η̌(s) = η(s−1) (so I lied in the first line!)
Matthew Daws (Leeds) Multipliers and Hilbert modules March 2010 10 / 22



What is the Fourier algebra? [Eymard]
We do have that A(G) = VN(G)∗ = L2(G) ∗ L2(G) ⊆ C0(G):

(Big Machine⇒) VN(G) is in standard position, so any normal
functional ω on VN(G) is of the form ω = ωξ,η for some
ξ, η ∈ L2(G),

〈x , ω〉 =
(
x(ξ)

∣∣η) (x ∈ VN(G), ξ, η ∈ L2(G)).

As {λ(s) : s ∈ G} generates VN(G), for ω ∈ VN(G)∗, if we know
what 〈λ(s−1), ω〉 is for all s, then we know ω.
Observe that

〈λ(s−1), ωξ,η〉 =

∫
G
λ(s−1)(ξ)(t)η(t) dt =

∫
G
ξ(st)η(t) dt

=

∫
G
ξ(t)η̌(t−1s) dt = (ξ ∗ η̌)(s).

Here η̌(s) = η(s−1) (so I lied in the first line!)
Matthew Daws (Leeds) Multipliers and Hilbert modules March 2010 10 / 22



Why an algebra? [Takesaki-Tatsumma]
There is a normal ∗-homomorphsm
∆ : VN(G)→ VN(G)⊗VN(G) = VN(G ×G) which satisfies

∆(λ(s)) = λ(s)⊗ λ(s) = λ(s, s).

As ∆ is normal, we get a (completely) contractive map
∆∗ : A(G)× A(G)→ A(G).
Turns out that ∆∗ is associative, because ∆ is coassociative.
This obviously induces the pointwise product on A(G), as for
ω, σ ∈ A(G) and s ∈ G,

(ωσ)(s) = 〈λ(s−1),∆∗(ω ⊗ σ)〉 = 〈λ(s−1, s−1), ω ⊗ σ〉 = ω(s)σ(s).

∆ exists as ∆(x) = W ∗(1⊗ x)W for some unitary
W ∈ B(L2(G ×G)); given by W ξ(s, t) = ξ(ts, t).
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Multipliers of the Fourier algebra

As A(G) is commutative, multipliers of A(G) are simply maps T on
A(G) with T (ab) = T (a)b.
As we consider A(G) ⊆ C0(G), we find that every T ∈ MA(G) is
given by some f ∈ Cb(G):

MA(G) = {f ∈ Cb(G) : fa ∈ A(G) (a ∈ A(G))}.

By duality, each T ∈ MA(G) induces a map T ∗ : VN(G)→ VN(G).
If this is completely bounded– that is gives uniformly (in n)
bounded maps 1⊗ T ∗ on Mn ⊗ VN(G)– then T ∈ McbA(G).
[Haagerup, DeCanniere] For f ∈ MA(G), we have that
f ∈ McbA(G) if and only if f ⊗ 1K ∈ MA(G × K ) for all compact K
(or just K = SU(2)).
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Properties of groups via multipliers

Lots of interesting properties of groups are related to how A(G) sits in
McbA(G):

A(G) has a bounded approximate identity if and only if G is
amenable.
If A(G) has an approximate identity, bounded in McbA(G), then G
is weakly amenable.
For example, this is true for SO(1,n) and SU(1,n).
Let ΛG be the minimal bounded (in McbA(G)) for such an
approximate identity.
Then, for G = Sp(1,n), then ΛG = 2n − 1.
[Ozawa] All hyperbolic groups are weakly amenable.
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Gilbert’s view on McbA(G)

Theorem (Gilbert, Jolissaint)

For f ∈ Cb(G), we have that f ∈ McbA(G) if and only if there is a
Hilbert space K and continuous bounded maps α, β : G→ K with
f (st−1) = (β(t)|α(s)) for s, t ∈ G.
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Hilbert C∗-modules

Given a C∗-algebra A, let X be a right module over A. Suppose that X
has an A-valued inner-product:

(x |x) ≥ 0 (in the C∗-algebra sense) and (x |x) = 0 if and only if
x = 0,
(x |y) = (y |x)∗,
(x |y · a) = (x |y)a for x , y ∈ X ,a ∈ A.

Then X carries a norm: ‖x‖ = ‖(x |x)‖1/2. If X is complete, we say that
X is a Hilbert C∗-module over A.
Example: A = C0(G) and X = C0(G,K ) for a Hilbert space K . The
module action is obvious; the inner-product is

(x |y) =
(
G→ C; s 7→ (x(s)|y(s))K

)
(x , y ∈ C0(G,K )).
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Abstracting C0(G, K )

For any C∗-algebra A and Hilbert space K , we consider the algebraic
tensor product A� K , with:

(a⊗ ξ) · b = ab ⊗ ξ,
(
a⊗ ξ

∣∣b ⊗ η) = a∗b(ξ|η).

Let A⊗ K be the completion.
Then C0(G)⊗ K ∼= C0(G,K ): somewhat clear that
C0(G)� K ⊆ C0(G,K ), and use a partition of unity argument to show
density.
We’re interested in Cb(G,K ): how can we abstract this?
Any α ∈ Cb(G,K ) defines a map

C0(G)→ C0(G,K ); a 7→
(
G→ C; s 7→ a(s)α(s)

)
.
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Adjointable maps

Actually, given α ∈ Cb(G,K ), not only do we get a map
T : C0(G)→ C0(G,K ), we get an “adjoint” T ∗ : C0(G,K )→ C0(G)
given by

T ∗(x) =
(
G→ C; s 7→ (α(s)|x(s))K

)
.

This satisfies (T ∗(x)|a) = (x |T (a)) for x ∈ C0(G,K ) and a ∈ C0(G).

Unlike for Hilbert spaces, not all maps between Hilbert
C∗-modules have adjoints.
But, if a map is adjointable, it’s automatically bounded and a
module homomorphism.
Write L(X ,Y ) for the space of maps which do have adjoints.
Can show that L(C0(G),C0(G)⊗ K ) ∼= Cb(G,K ).
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Abstract duality theory: Locally Compact Quantum
Groups
A locally compact quantum group is a von Neumann algebra M which
is equipped with a normal ∗-homomorphism ∆ : M → M⊗M such that
is coassociative: (∆⊗ ι)∆ = (ι⊗∆)∆.

We also assume that M carries left and right invariant weights: I’ll
ignore these here: they are very important for the theory (but, if
they exist, are unique, so in sense are intrinsic).
As ∆ is normal, we get an associative product on the predual M∗.
We’ve seen one example: VN(G) and A(G).
Another example: L∞(G) with ∆ : L∞(G)→ L∞(G ×G) given by
∆(F )(s, t) = F (st).
This induces the usual convolution product on L1(G).
Again, we have W a unitary on L2(G ×G) which induces ∆ by
∆(F ) = W ∗(1⊗ F )W . Indeed, W ξ(s, t) = ξ(s, s−1t).
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C∗-algebras and duality

Inside M is a C∗-algebra A, and ∆ restricts to a map
∆ : A→ M(A⊗ A).

For L∞(G), we get C0(G) (mapping into Cb(G ×G)).
For VN(G), we get C∗r (G).

Given M, we can form a “dual group” (M̂, ∆̂), and we have that

(M,∆) ∼= (
ˆ̂M,

ˆ̂∆).
The dual of L∞(G) is VN(G), so in some sense, this generalises
Pontryagin duality.
Very roughly, we build a Hilbert space H from M. Then M∗ acts on
H; the WOT closure is then M̂; the norm closure is Â.
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Matthew Daws (Leeds) Multipliers and Hilbert modules March 2010 19 / 22



C∗-algebras and duality

Inside M is a C∗-algebra A, and ∆ restricts to a map
∆ : A→ M(A⊗ A).

For L∞(G), we get C0(G) (mapping into Cb(G ×G)).
For VN(G), we get C∗r (G).

Given M, we can form a “dual group” (M̂, ∆̂), and we have that

(M,∆) ∼= (
ˆ̂M,

ˆ̂∆).
The dual of L∞(G) is VN(G), so in some sense, this generalises
Pontryagin duality.
Very roughly, we build a Hilbert space H from M. Then M∗ acts on
H; the WOT closure is then M̂; the norm closure is Â.
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C∗-algebras and duality

In the “classical” setup, we have that
M(L1(G)) = M(G)→ M(C∗r (G)). This is just the extension of
λ : L1(G)→ B(L2(G)).
Similarly, McbA(G)→ Cb(G) = M(C0(G)).
The duality framework gives a map λ̂ : M̂∗ → A.
[Daws], building heavily on work of [Kraus, Ruan]. This does
indeed extend to a homomorphism Λ̂ : Mcb(M̂∗)→ M(A).
This satisfies, for (L,R) ∈ Mcb(M̂∗), ω̂ ∈ M̂∗,

Λ̂
(
(L,R)

)
λ̂(ω̂) = λ̂

(
L(ω̂)

)
, λ̂(ω̂)Λ̂

(
(L,R)

)
= λ̂

(
R(ω̂)

)
.
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Representing multipliers using Hilbert C∗-modules

We replace Cb(G,K ) by L(A,A⊗ K ).
Given α ∈ L(A,A⊗ K ), there is a way to define
∆ ∗ α ∈ L(A⊗ A,A⊗ A⊗ K ). This generalises the map

Cb(G,K )→ Cb(G ×G,K ); f 7→
(
G ×G→ K ; (s, t) 7→ f (st)

)
.

We say that a pair of maps α, β ∈ L(A,A⊗ K ) is “invariant” if

(1⊗ β∗)(∆ ∗ α) ∈ M(A)⊗ 1.

(This is always in L(A⊗ A) ∼= M(A⊗ A)). This generalises the
possibility of finding f ∈ Cb(G) with

f (st−1) = (β(t)|α(s))⇔ (β(t)|α(st)) constant in t .

Matthew Daws (Leeds) Multipliers and Hilbert modules March 2010 21 / 22



Representing multipliers using Hilbert C∗-modules

We replace Cb(G,K ) by L(A,A⊗ K ).
Given α ∈ L(A,A⊗ K ), there is a way to define
∆ ∗ α ∈ L(A⊗ A,A⊗ A⊗ K ). This generalises the map

Cb(G,K )→ Cb(G ×G,K ); f 7→
(
G ×G→ K ; (s, t) 7→ f (st)

)
.

We say that a pair of maps α, β ∈ L(A,A⊗ K ) is “invariant” if

(1⊗ β∗)(∆ ∗ α) ∈ M(A)⊗ 1.

(This is always in L(A⊗ A) ∼= M(A⊗ A)). This generalises the
possibility of finding f ∈ Cb(G) with

f (st−1) = (β(t)|α(s))⇔ (β(t)|α(st)) constant in t .

Matthew Daws (Leeds) Multipliers and Hilbert modules March 2010 21 / 22



Representing multipliers using Hilbert C∗-modules

We replace Cb(G,K ) by L(A,A⊗ K ).
Given α ∈ L(A,A⊗ K ), there is a way to define
∆ ∗ α ∈ L(A⊗ A,A⊗ A⊗ K ). This generalises the map

Cb(G,K )→ Cb(G ×G,K ); f 7→
(
G ×G→ K ; (s, t) 7→ f (st)

)
.

We say that a pair of maps α, β ∈ L(A,A⊗ K ) is “invariant” if

(1⊗ β∗)(∆ ∗ α) ∈ M(A)⊗ 1.

(This is always in L(A⊗ A) ∼= M(A⊗ A)). This generalises the
possibility of finding f ∈ Cb(G) with

f (st−1) = (β(t)|α(s))⇔ (β(t)|α(st)) constant in t .

Matthew Daws (Leeds) Multipliers and Hilbert modules March 2010 21 / 22



Representing multipliers using Hilbert C∗-modules

We replace Cb(G,K ) by L(A,A⊗ K ).
Given α ∈ L(A,A⊗ K ), there is a way to define
∆ ∗ α ∈ L(A⊗ A,A⊗ A⊗ K ). This generalises the map

Cb(G,K )→ Cb(G ×G,K ); f 7→
(
G ×G→ K ; (s, t) 7→ f (st)

)
.

We say that a pair of maps α, β ∈ L(A,A⊗ K ) is “invariant” if

(1⊗ β∗)(∆ ∗ α) ∈ M(A)⊗ 1.

(This is always in L(A⊗ A) ∼= M(A⊗ A)). This generalises the
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Representing multipliers

There is a bijection between:
1 “Represented” completely bounded left multipliers L. That is, cb

maps L : M̂∗ → M̂∗ with L(ω̂σ̂) = L(ω̂)σ̂, and such that there is
x ∈ M(A) with x λ̂(ω̂) = λ̂(L(ω̂)). (Notice that this is always true for
the “left half” of a cb multiplier (L,R)).

2 Invariant pairs (α, β) in L(A,A⊗ K ) with (1⊗ β∗)(∆ ∗ α) = x ⊗ 1.
In this case, the map L∗ : M̂ → M̂ is given by

L∗ = β̃∗(x ⊗ 1)α̃ (x ∈ M̂).

Here α̃ : H → H ⊗ K is built from α, where H is the canonical Hilbert
space given by M.
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