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Suppose that A is an algebra: how might we embed A into a unital
algebra B?

@ Could use the unitisation: A& C1.
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Multipliers

Suppose that A is an algebra: how might we embed A into a unital
algebra B?

@ Could use the unitisation: A C1.

@ Natural to ask that Ais an idealin B.

@ But we don’t want B to be too large: the natural condition is that A
should be essential in B: if | C Bis an ideal then An [ # {0}.

e For faithful A, this is equivalent to: if b € B and aba = 0 for all
a,a € A, then b=0.

@ Turns out there is a maximal such B, called the multiplier algebra
of A, written M(A). Maximal in the sense that if A < B, then
B — M(A). Clearly M(A) is unique.
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How to build M(A)
We define M(A) to be the collection of maps L, R: A — A with

L(ab) = L(a)b, R(ab)=aR(b), aL(b)= R(a)b (a,bec A).
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How to build M(A)

We

define M(A) to be the collection of maps L, R: A — A with

L(ab) = L(a)b, R(ab)=aR(b), aL(b)= R(a)b (a,b e A).

If Ais faithful (which we shall assume from now on) then we only
need the third condition.

M(A) is a vector space, and an algebra for the product
(L,R)(L',R) = (LL,R'R).

Each a € A defines a pair (Lg, Ra) € M(A) by La(b) = ab and
Ra(b) = ba.

The homomorphism A — M(A); a — (La, Ra) identifies A with an
essential ideal in M(A).

If Ais a Banach algebra, then natural to ask that L and R are
bounded; but this is automatic by using the Closed Graph
Theorem.
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Multipliers of C*-algebras

Let A be a C*-algebra acting non-degenerately on a Hilbert space H.
Then we have that

M(A) ={T € B(H) : Ta,aT ¢ A(ac A)}.
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Let A be a C*-algebra acting non-degenerately on a Hilbert space H.
Then we have that

M(A) ={T € B(H): Ta,aT € A(ac A)}.
@ Each such T does define a multiplier in the previous sense.

@ Conversely, a bounded approximate identity argument allows you
to build T € B(H) given (L, R) € M(A).
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Multipliers of C*-algebras

Let A be a C*-algebra acting non-degenerately on a Hilbert space H.
Then we have that

M(A) ={T € B(H): Ta,aT € A(ac A)}.

@ Each such T does define a multiplier in the previous sense.

@ Conversely, a bounded approximate identity argument allows you
to build T € B(H) given (L, R) € M(A).

o If A= Co(X) then M(A) = CP(X) = C(X), so M(A) is a
non-commutative Stone-Cech compactification.
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Locally compact groups

Let G be a locally compact group, equipped with a left invariant Haar
measure. Examples include:
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Locally compact groups

Let G be a locally compact group, equipped with a left invariant Haar
measure. Examples include:
@ Any discrete group with the counting measure.

@ Any compact group, where the Haar measure is normalised to be
a probability measure.
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Locally compact groups

Let G be a locally compact group, equipped with a left invariant Haar
measure. Examples include:
@ Any discrete group with the counting measure.

@ Any compact group, where the Haar measure is normalised to be
a probability measure.

@ The real line R with Lebesgue measure.
@ Various non-compact Lie groups give interesting examples.
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Group algebras
Turn L'(G) into a Banach algebra by using the convolution product:

(F g)(s) = /G f(Hg(t's) ot.
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Group algebras
Turn L'(G) into a Banach algebra by using the convolution product:
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@ We can also convolve finite measures.
@ Identify M(G) with Cy(G)*, then

(A, F) = //F(st du(s) A1) (1) € M(G), F € Co(G)).
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Group algebras
Turn L'(G) into a Banach algebra by using the convolution product:

(f = g)(s /f(t)gt1

@ We can also convolve finite measures.
@ Identify M(G) with Cy(G)*, then

(A, F) = //F(st du(s) A1) (1) € M(G), F € Co(G)).
@ [Wendel] Then we have that
M(L'(G)) = M(G),
where for each (L, R) € M(L'(G)), there exists ;. € M(G),
L(a)=puxa R@@=axp (acl'(G)).
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The Fourier transform

If G is abelian, then we have the dual group

G = {x : G — T a continuous homomorphism}.

Matthew Daws (Leeds) Multipliers and Hilbert modules March 2010 7/22



The Fourier transform

If G is abelian, then we have the dual group
G = {x : G — T a continuous homomorphism}.
Also we have the Fourier Transform

F:LY(G) — Co(G) also L3(G) = L3(G).

Matthew Daws (Leeds) Multipliers and Hilbert modules March 2010 7/22



The Fourier transform

If G is abelian, then we have the dual group
G = {x : G — T a continuous homomorphism}.
Also we have the Fourier Transform

F:L'(G) = Co(G) also L3%(G) = L?(G).

@ The image F(L'(G)) is the Fourier algebra A(G).

Matthew Daws (Leeds) Multipliers and Hilbert modules March 2010

7/22



The Fourier transform

If G is abelian, then we have the dual group
G = {x : G — T a continuous homomorphism}.
Also we have the Fourier Transform
F:L'(G)— Co(G) also [%(G)=L3(G).
@ The image F(L'(G)) is the Fourier algebra A(G).

@ As L'(G) = L*(G) - L*(G) (pointwise product) we see that
A(G) = L2(G) * L?(G) = L?(G) * L2(G) (convolution).
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The Fourier transform

If G is abelian, then we have the dual group
G = {x : G — T a continuous homomorphism}.
Also we have the Fourier Transform
F:L'(G)— Co(G) also [%(G)=L3(G).
@ The image F(L'(G)) is the Fourier algebra A(G).
@ As L'(G) = L*(G) - L*(G) (pointwise product) we see that
A(G) = L%(G) * L3(G) = L?(G) * L?(G) (convolution).

@ F extends to M(G), and the image is B(G) C C?(G), the
Fourier-Stieltjes algebra.
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Operator algebras

The Fourier transform similarly sets up isomorphisms

A

Co(G) = CHB)  L®(G) = VN(G).
Let \ : G — B(L?(G)) be the left-regular representation,
Ns):f—g g(ty=f(sT"t) (fel?G),s teq).

Integrate this to get a homomorphism X : L'(G) — B(L%(G)).
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Operator algebras

The Fourier transform similarly sets up isomorphisms

A

Co(G) = CHB)  L®(G) = VN(G).
Let A : G — B(L?(G)) be the left-regular representation,

Ns):f—g g(ty=f(sT"t) (fel?G),s teq).

Integrate this to get a homomorphism X : L'(G) — B(L2(G)).
@ C;(G) is the closure of A(L'(G)).

@ C*(G) is the enveloping C*-algebra of L'(G): agrees with C’(G)
is G is abelian, compact, amenable.

@ VN(G) is the WOT closure of A\(L'(G)) (or of A\(G)).
@ So, A(G) is the predual of VN(G) and B(G) is the dual of C*(G).
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The Fourier algebra

For a general G, we could hence define A(G) to be:
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The Fourier algebra

For a general G, we could hence define A(G) to be:
@ the predual of VN(G).
@ Or A(G) = L3(G)  L3(G).
@ We hope that these agree and that A(G) is an algebra for the
pointwise product.
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For a general G, we could hence define A(G) to be:
@ the predual of VN(G).
@ Or A(G) = L3(G)  L3(G).
@ We hope that these agree and that A(G) is an algebra for the
pointwise product.

Remember that a von Neumann algebra always has a predual: the
space of normal functionals.
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The Fourier algebra

For a general G, we could hence define A(G) to be:
@ the predual of VN(G).
@ Or A(G) = L2(G) * L%(G).
@ We hope that these agree and that A(G) is an algebra for the
pointwise product.
Remember that a von Neumann algebra always has a predual: the

space of normal functionals.
As VN(G) C B(L?(G)), and B(L?(G)) is the dual of T(L?(G)), the
trace-class operators on L?(G), we have a quotient map

T(L2(G)) - VN(G)..
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What is the Fourier algebra? [Eymard]
We do have that A(G) = VN(G). = L?(G) * L3(G) C Cy(G):
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What is the Fourier algebra? [Eymard]
We do have that A(G) = VN(G). = L?(G) * L?(G) C Co(G):
@ (Big Machine =) VN(G) is in standard position, so any normal

functional w on VN(G) is of the form w = w¢ ,, for some
¢&n € L3(G),

(x,w)=(x(On)  (x € VN(G),&n € L3(G)).
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functional w on VN(G) is of the form w = w¢ ,, for some
¢&n € L3(G),

(x,w)=(x(On)  (x € VN(G),&n € L3(G)).

@ As {\(s) : s € G} generates VN(G), for w € VN(G)., if we know
what (\(s™1),w) is for all s, then we know w.

Matthew Daws (Leeds) Multipliers and Hilbert modules March 2010 10/22



What is the Fourier algebra? [Eymard]
We do have that A(G) = VN(G). = L?(G) * L?(G) C Co(G):
@ (Big Machine =) VN(G) is in standard position, so any normal

functional w on VN(G) is of the form w = w¢ ,, for some
&n € L3(G),

(x,w)=(x(On)  (x € VN(G),&n € L3(G)).

@ As {\(s) : s € G} generates VN(G), for w € VN(G)., if we know
what (\(s™1),w) is for all s, then we know w.

@ Observe that
(81w ) = /G A(s™)(E)((E) ot = / &(styn(D)
— /G (s dt = (€ 5 T)(S).

@ Here 7j(s) = n(s~") (so | lied in the first line!)
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Why an algebra? [Takesaki- Tatsumma]

There is a normal x-homomorphsm
A VN(G) — VN(G)®VN(G) = VN(G x G) which satisfies

A(N(8)) = A(S) @ A(S) = A(s, 8).
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@ As A is normal, we get a (completely) contractive map
A, A(G) x A(G) — A(G).
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Why an algebra? [Takesaki- Tatsumma]

There is a normal x-homomorphsm
A : VN(G) — VN(G)®VN(G) = VN(G x Q) which satisfies

A(N(8)) = A(S) @ A(S) = A(s, 8).

@ As A is normal, we get a (completely) contractive map
A, A(G) x A(G) — A(G).
@ Turns out that A, is associative, because A is coassociative.

@ This obviously induces the pointwise product on A(G), as for
w,o0 € A(G) and s € G,

(wo)(8) = AN, Av(w®0)) = (A, s71),w®0) = w(s)o(s).
@ A exists as A(x) = W*(1 ® x) W for some unitary
W < B(L?(G x G)); given by W¢(s, t) = &(ts, t).
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Multipliers of the Fourier algebra

@ As A(G) is commutative, multipliers of A(G) are simply maps T on
A(G) with T(ab) = T(a)b.
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Multipliers of the Fourier algebra

@ As A(G) is commutative, multipliers of A(G) are simply maps T on
A(G) with T(ab) = T(a)b.

@ As we consider A(G) C Cy(G), we find that every T € MA(G) is
given by some f € C?(G):

MA(G) = {f € C°(G) : fac A(G) (ac A(G))}.
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Multipliers of the Fourier algebra

@ As A(G) is commutative, multipliers of A(G) are simply maps T on
A(G) with T(ab) = T(a)b.

@ As we consider A(G) C Cy(G), we find that every T € MA(G) is
given by some f € C?(G):

MA(G) = {f € C°(G) : fac A(G) (a € A(G))}.

@ By duality, each T € MA(G) induces amap T*: VN(G) — VN(G).

@ If this is completely bounded- that is gives uniformly (in n)
bounded maps 1 ® T* on M, ® VN(G)—then T € MA(G).
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Multipliers of the Fourier algebra

@ As A(G) is commutative, multipliers of A(G) are simply maps T on
A(G) with T(ab) = T(a)b.

@ As we consider A(G) C Cy(G), we find that every T € MA(G) is
given by some f € C?(G):

MA(G) = {f € C°(G) : fac A(G) (a € A(G))}.

@ By duality, each T € MA(G) induces a map T* : VN(G) — VN(G).

@ If this is completely bounded- that is gives uniformly (in n)
bounded maps 1 ® T* on M, ® VN(G)—then T € MA(G).

@ [Haagerup, DeCanniere] For f € MA(G), we have that
f e MxpA(G) ifand only if f ® 1x € MA(G x K) for all compact K
(or just K = SU(2)).
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Properties of groups via multipliers

Lots of interesting properties of groups are related to how A(G) sits in
M A(G):
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Lots of interesting properties of groups are related to how A(G) sits in
M A(G):
@ A(G) has a bounded approximate identity if and only if G is
amenable.

@ If A(G) has an approximate identity, bounded in M, A(G), then G
is weakly amenable.

@ For example, this is true for SO(1, n) and SU(1, n).
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Lots of interesting properties of groups are related to how A(G) sits in
M A(G):

@ A(G) has a bounded approximate identity if and only if G is
amenable.

@ If A(G) has an approximate identity, bounded in M, A(G), then G
is weakly amenable.

@ For example, this is true for SO(1, n) and SU(1, n).

@ Let Ag be the minimal bounded (in My, A(G)) for such an
approximate identity.
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Properties of groups via multipliers

Lots of interesting properties of groups are related to how A(G) sits in
M A(G):
@ A(G) has a bounded approximate identity if and only if G is
amenable.

@ If A(G) has an approximate identity, bounded in M, A(G), then G
is weakly amenable.

@ For example, this is true for SO(1, n) and SU(1, n).

@ Let Ag be the minimal bounded (in My, A(G)) for such an
approximate identity.

@ Then, for G = Sp(1, n), then Ag =2n— 1.
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Properties of groups via multipliers

Lots of interesting properties of groups are related to how A(G) sits in
M A(G):
@ A(G) has a bounded approximate identity if and only if G is
amenable.

@ If A(G) has an approximate identity, bounded in M, A(G), then G
is weakly amenable.

@ For example, this is true for SO(1, n) and SU(1, n).

@ Let Ag be the minimal bounded (in My, A(G)) for such an
approximate identity.

@ Then, for G = Sp(1, n), then Ag =2n— 1.
@ [Ozawa] All hyperbolic groups are weakly amenable.
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Gilbert’s view on MA(G)

Theorem (Gilbert, Jolissaint)

For f € C°(G), we have that f € My,A(G) if and only if there is a
Hilbert space K and continuous bounded maps o, 3 : G — K with
f(st™") = (B(t)|a(8)) for s, t € G.
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Hilbert C*-modules

Given a C*-algebra A, let X be a right module over A. Suppose that X
has an A-valued inner-product:
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Hilbert C*-modules

Given a C*-algebra A, let X be a right module over A. Suppose that X
has an A-valued inner-product:

@ (x|x) > 0 (in the C*-algebra sense) and (x|x) = 0 if and only if
x=0,

o (xly) = (yIx)",

@ (x|ly-a)= (x|ly)aforx,y € X,ae A

Then X carries a norm: ||x|| = ||(x|x)||'/2. If X is complete, we say that
X is a Hilbert C*-module over A.
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Hilbert C*-modules

Given a C*-algebra A, let X be a right module over A. Suppose that X
has an A-valued inner-product:

@ (x|x) > 0 (in the C*-algebra sense) and (x|x) = 0 if and only if
x=0,

o (xly) = (yIx)",

@ (x|ly-a)= (x|ly)aforx,y € X,ae A

Then X carries a norm: || x|| = ||(x|x)||'/2. If X is complete, we say that
X is a Hilbert C*-module over A.

Example: A= Cy(G) and X = Cy(G, K) for a Hilbert space K. The
module action is obvious; the inner-product is

(xly) = (G- Cis— (x(9)ly(s))k)  (x,y € Co(G.K)).
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Abstracting Co(G, K)

For any C*-algebra A and Hilbert space K, we consider the algebraic
tensor product A ® K, with:
(awg)-b=ab®t¢, (awélben) =abn).

Let A® K be the completion.
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Abstracting Co(G, K)

For any C*-algebra A and Hilbert space K, we consider the algebraic
tensor product A ® K, with:

(@a®f)-b=ab®(, (awi|ben)=a‘bn).

Let A® K be the completion.

Then Cy(G) ® K = Cy(G, K): somewhat clear that

Co(G) ® K C Cy(G, K), and use a partition of unity argument to show
density.
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Let A® K be the completion.
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Abstracting Co(G, K)

For any C*-algebra A and Hilbert space K, we consider the algebraic
tensor product A ® K, with:

(@a®f)-b=ab®(, (awi|ben)=a‘bn).

Let A® K be the completion.

Then Cy(G) ® K = Cy(G, K): somewhat clear that

Co(G) ® K C Cy(G, K), and use a partition of unity argument to show
density.

We're interested in C°(G, K): how can we abstract this?

Any a € C?(G, K) defines a map

Co(G) — Co(G,K); ar (G— C;s— a(s)a(s)).
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Adjointable maps

Actually, given a € C?(G, K), not only do we get a map
T : Cy(G) — Co(G, K), we get an “adjoint” T* : Co(G, K) — Co(Q)
given by

T*(x) = (G —C;8+— (oz(S)|X(3))K)'
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given by

T*(x) = (G — C; s — (a(s)|x(s))k).
This satisfies (T*(x)|a) = (x| T(a)) for x € Co(G, K) and a € Cy(G).

@ Unlike for Hilbert spaces, not all maps between Hilbert
C*-modules have adjoints.
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Adjointable maps

Actually, given a € C?(G, K), not only do we get a map
T : Cy(G) — Co(G, K), we get an “adjoint” T* : Co(G, K) — Co(Q)
given by
T*(x) = (G — C; s — (a(s)|x(s))k).
This satisfies (T*(x)|a) = (x| T(a)) for x € Co(G, K) and a € Cy(G).
@ Unlike for Hilbert spaces, not all maps between Hilbert
C*-modules have adjoints.

@ But, if a map is adjointable, it's automatically bounded and a
module homomorphism.

@ Write L(X, Y) for the space of maps which do have adjoints.
@ Can show that £(Cy(G), Co(G) @ K) = C(G, K).
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Abstract duality theory: Locally Compact Quantum
Groups

A locally compact quantum group is a von Neumann algebra M which

is equipped with a normal x-homomorphism A : M — M&M such that
is coassociative: (A ® 1)A = (1 ® A)A.
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Abstract duality theory: Locally Compact Quantum
Groups

A locally compact quantum group is a von Neumann algebra M which

is equipped with a normal x-homomorphism A : M — M&M such that
is coassociative: (A ® )A = (1 ® A)A.

@ We also assume that M carries left and right invariant weights: I'll

ignore these here: they are very important for the theory (but, if
they exist, are unique, so in sense are intrinsic).
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Abstract duality theory: Locally Compact Quantum
Groups

A locally compact quantum group is a von Neumann algebra M which
is equipped with a normal x-homomorphism A : M — M&M such that
is coassociative: (A ® )A = (1 ® A)A.

@ We also assume that M carries left and right invariant weights: I'll
ignore these here: they are very important for the theory (but, if
they exist, are unique, so in sense are intrinsic).

@ As A is normal, we get an associative product on the predual M,.
@ We've seen one example: VN(G) and A(G).

@ Another example: L>°(G) with A : L*°(G) — L*(G x G) given by
A(F)(s,t) = F(st).

@ This induces the usual convolution product on L'(G).

@ Again, we have W a unitary on L2(G x G) which induces A by
A(F) = W*(1 ® F)W. Indeed, W¢(s, t) = £(s, s Mt).
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C*-algebras and duality

Inside M is a C*-algebra A, and A restricts to a map
A:A—- MARA).
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C*-algebras and duality

Inside M is a C*-algebra A, and A restricts to a map
A:A— MA®A).
@ For L=(G), we get Co(G) (mapping into C?(G x G)).
@ For VN(G), we get C;(G).
Given M, we can form a “dual group” (M, A), and we have that
(M, A) = (M, A).
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C*-algebras and duality

Inside M is a C*-algebra A, and A restricts to a map
A:A— MA®A).
@ For L>°(G), we get Cy(G) (mapping into C°(G x G)).
@ For VN(G), we get C;(G).
Given M, we can form a “dual group” (M, A), and we have that
(M, A) = (M, A).
@ The dual of L*°(G) is VN(G), so in some sense, this generalises
Pontryagin duality.
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C*-algebras and duality

Inside M is a C*-algebra A, and A restricts to a map
A:A—- MARA).
@ For L>°(G), we get Cy(G) (mapping into C°(G x G)).
@ For VN(G), we get C;(G).
Given M, we can form a “dual group” (M, A), and we have that
(M, A) = (M, A).
@ The dual of L*°(G) is VN(G), so in some sense, this generalises
Pontryagin duality.
@ Very roughly, we build a Hilbert space H from M. Then M, acts on
H; the WOT closure is then M; the norm closure is A.
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C*-algebras and duality

@ In the “classical” setup, we have that
M(L'(G)) = M(G) — M(C;(G)). This is just the extension of
M L'(G) — B(L2(G)).
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C*-algebras and duality

@ In the “classical” setup, we have that
M(L'(G)) = M(G) — M(C;(G)). This is just the extension of
M L'(G) — B(L2(G)).

@ Similarly, M, A(G) — CP(G) = M(Cy(G)).

@ The duality framework gives a map A : M, — A.

@ [Daws], building heavily on work of [Kraus, Ruan]. This does
indeed extend to a homomorphism A : Mgy (M) — M(A).
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C*-algebras and duality

@ In the “classical” setup, we have that
M(L'(G)) = M(G) — M(C;(G)). This is just the extension of
M L'(G) — B(L2(G)).

@ Similarly, M, A(G) — CP(G) = M(Cy(G)).

@ The duality framework gives a map A : M, — A.

@ [Daws], building heavily on work of [Kraus, Ruan]. This does
indeed extend to a homomorphism A : Mgy (M) — M(A).

@ This satisfies, for (L, R) € Mg(M,),& € M.,
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Representing multipliers using Hilbert C*-modules

@ We replace C?(G, K) by L(A, A® K).
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Representing multipliers using Hilbert C*-modules

@ We replace C?(G, K) by L(A, A® K).
@ Given a € L(A,A® K), there is a way to define
Axae LA A A® A® K). This generalises the map

CP(G,K) — CP(Gx G,K); fr (GxG— K; (s, 1) f(st)).
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Representing multipliers using Hilbert C*-modules

@ We replace C?(G, K) by L(A, A® K).
@ Given a € L(A,A® K), there is a way to define
Axae LA A A® A® K). This generalises the map

CP(G,K) — CP(G x G,K); fw (Gx G— K;(s,t) — f(st)).

@ We say that a pair of maps «, 8 € L(A, A® K) is “invariant” if
(168 )(A*xa) e M(A) 1.

(This is always in L(A® A) = M(A® A)).
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Representing multipliers using Hilbert C*-modules

@ We replace C?(G, K) by L(A, A® K).
@ Given a € L(A,A® K), there is a way to define
Axae LA A A® A® K). This generalises the map

CP(G,K) — CP(G x G,K); fw (Gx G— K;(s,t) — f(st)).

@ We say that a pair of maps «, 8 € L(A, A® K) is “invariant” if
(168 )(A*xa) e M(A) 1.

(This is always in L(A® A) =2 M(A® A)). This generalises the
possibility of finding f € C?(G) with

f(st™!) = (B(1)|(s)) < (3(t)|a(st)) constant in t.
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Representing multipliers

There is a bijection between:
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Representing multipliers

There is a bijection between:
Q “Represented” completely bounded left multipliers L. That is, cb
maps L : M, — M, with L(@6) = L(@)&, and such that there is
x € M(A) with xA\(&) = A(L(&)). (Notice that this is always true for
the “left half” of a cb multiplier (L, R)).
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@ Invariant pairs (a, 8) in L(A,A® K) with (1 ® *)(Axa) =x® 1.
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Representing multipliers

There is a bijection between:

Q “Represented” completely bounded left multipliers L. That is, cb
maps L : M, — M, with L(@6) = L(@)&, and such that there is

x € M(A) with xA\(&) = A(L(&)). (Notice that this is always true for
the “left half” of a cb multiplier (L, R)).

@ Invariant pairs (a, 8) in L(A,A® K) with (1 ® *)(Axa) =x® 1.
In this case, the map L* : M — M is given by

L'=Fxea (xeM.

Here & : H — H ® K is built from «, where H is the canonical Hilbert
space given by M.
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