Multipliers of Quantum groups from Hilbert C*-modules

Matthew Daws

Leeds

March 2010

Matthew Daws (Leeds)

Multipliers and Hilbert modules

March 2010 1 / 22

A (1) > A (2) > A

Suppose that *A* is an algebra: how might we embed *A* into a unital algebra *B*?

- Could use the unitisation: $A \oplus \mathbb{C}1$.
- Natural to ask that A is an *ideal* in B.
- But we don't want B to be too large: the natural condition is that A should be *essential* in B: if I ⊆ B is an ideal then A ∩ I ≠ {0}.
- For *faithful A*, this is equivalent to: if $b \in B$ and aba' = 0 for all $a, a' \in A$, then b = 0.
- Turns out there is a maximal such *B*, called the *multiplier algebra* of *A*, written *M*(*A*). Maximal in the sense that if *A* ⊴ *B*, then *B* → *M*(*A*). Clearly *M*(*A*) is unique.

Suppose that *A* is an algebra: how might we embed *A* into a unital algebra *B*?

- Could use the unitisation: $A \oplus \mathbb{C}1$.
- Natural to ask that A is an *ideal* in B.
- But we don't want *B* to be too large: the natural condition is that *A* should be *essential* in *B*: if $I \subseteq B$ is an ideal then $A \cap I \neq \{0\}$.
- For *faithful A*, this is equivalent to: if $b \in B$ and aba' = 0 for all $a, a' \in A$, then b = 0.
- Turns out there is a maximal such *B*, called the *multiplier algebra* of *A*, written *M*(*A*). Maximal in the sense that if *A* ⊴ *B*, then *B* → *M*(*A*). Clearly *M*(*A*) is unique.

(4 回) (4 回) (4 回)

Suppose that *A* is an algebra: how might we embed *A* into a unital algebra *B*?

- Could use the unitisation: $A \oplus \mathbb{C}1$.
- Natural to ask that A is an *ideal* in B.
- But we don't want B to be too large: the natural condition is that A should be *essential* in B: if I ⊆ B is an ideal then A ∩ I ≠ {0}.
- For faithful A, this is equivalent to: if $b \in B$ and aba' = 0 for all $a, a' \in A$, then b = 0.
- Turns out there is a maximal such *B*, called the *multiplier algebra* of *A*, written *M*(*A*). Maximal in the sense that if *A* ⊆ *B*, then *B* → *M*(*A*). Clearly *M*(*A*) is unique.

Suppose that *A* is an algebra: how might we embed *A* into a unital algebra *B*?

- Could use the unitisation: $A \oplus \mathbb{C}1$.
- Natural to ask that A is an *ideal* in B.
- But we don't want B to be too large: the natural condition is that A should be *essential* in B: if I ⊆ B is an ideal then A ∩ I ≠ {0}.
- For *faithful A*, this is equivalent to: if $b \in B$ and aba' = 0 for all $a, a' \in A$, then b = 0.
- Turns out there is a maximal such *B*, called the *multiplier algebra* of *A*, written M(A). Maximal in the sense that if $A \leq B$, then $B \rightarrow M(A)$. Clearly M(A) is unique.

Suppose that *A* is an algebra: how might we embed *A* into a unital algebra *B*?

- Could use the unitisation: $A \oplus \mathbb{C}1$.
- Natural to ask that A is an *ideal* in B.
- But we don't want B to be too large: the natural condition is that A should be *essential* in B: if I ⊆ B is an ideal then A ∩ I ≠ {0}.
- For *faithful A*, this is equivalent to: if $b \in B$ and aba' = 0 for all $a, a' \in A$, then b = 0.
- Turns out there is a maximal such *B*, called the *multiplier algebra* of *A*, written M(A). Maximal in the sense that if $A \leq B$, then $B \rightarrow M(A)$. Clearly M(A) is unique.

We define M(A) to be the collection of maps $L, R : A \rightarrow A$ with

 $L(ab) = L(a)b, \quad R(ab) = aR(b), \quad aL(b) = R(a)b \qquad (a, b \in A).$

- If *A* is faithful (which we shall assume from now on) then we only need the third condition.
- M(A) is a vector space, and an algebra for the product (L, R)(L', R') = (LL', R'R).
- Each $a \in A$ defines a pair $(L_a, R_a) \in M(A)$ by $L_a(b) = ab$ and $R_a(b) = ba$.
- The homomorphism $A \to M(A)$; $a \mapsto (L_a, R_a)$ identifies A with an essential ideal in M(A).
- If *A* is a Banach algebra, then natural to ask that *L* and *R* are bounded; but this is automatic by using the Closed Graph Theorem.

We define M(A) to be the collection of maps $L, R : A \rightarrow A$ with

 $L(ab) = L(a)b, \quad R(ab) = aR(b), \quad aL(b) = R(a)b \quad (a, b \in A).$

- If *A* is faithful (which we shall assume from now on) then we only need the third condition.
- M(A) is a vector space, and an algebra for the product (L, R)(L', R') = (LL', R'R).
- Each $a \in A$ defines a pair $(L_a, R_a) \in M(A)$ by $L_a(b) = ab$ and $R_a(b) = ba$.
- The homomorphism $A \to M(A)$; $a \mapsto (L_a, R_a)$ identifies A with an essential ideal in M(A).
- If *A* is a Banach algebra, then natural to ask that *L* and *R* are bounded; but this is automatic by using the Closed Graph Theorem.

イロト 不得 トイヨト イヨト 二日

We define M(A) to be the collection of maps $L, R : A \rightarrow A$ with

 $L(ab) = L(a)b, \quad R(ab) = aR(b), \quad aL(b) = R(a)b \quad (a, b \in A).$

- If *A* is faithful (which we shall assume from now on) then we only need the third condition.
- M(A) is a vector space, and an algebra for the product (L, R)(L', R') = (LL', R'R).
- Each $a \in A$ defines a pair $(L_a, R_a) \in M(A)$ by $L_a(b) = ab$ and $R_a(b) = ba$.
- The homomorphism $A \to M(A)$; $a \mapsto (L_a, R_a)$ identifies A with an essential ideal in M(A).
- If *A* is a Banach algebra, then natural to ask that *L* and *R* are bounded; but this is automatic by using the Closed Graph Theorem.

イロト 不得 トイヨト イヨト 二日

We define M(A) to be the collection of maps $L, R : A \rightarrow A$ with

 $L(ab) = L(a)b, \quad R(ab) = aR(b), \quad aL(b) = R(a)b \quad (a, b \in A).$

- If *A* is faithful (which we shall assume from now on) then we only need the third condition.
- M(A) is a vector space, and an algebra for the product (L, R)(L', R') = (LL', R'R).
- Each $a \in A$ defines a pair $(L_a, R_a) \in M(A)$ by $L_a(b) = ab$ and $R_a(b) = ba$.
- The homomorphism $A \to M(A)$; $a \mapsto (L_a, R_a)$ identifies A with an essential ideal in M(A).
- If *A* is a Banach algebra, then natural to ask that *L* and *R* are bounded; but this is automatic by using the Closed Graph Theorem.

We define M(A) to be the collection of maps $L, R : A \rightarrow A$ with

 $L(ab) = L(a)b, \quad R(ab) = aR(b), \quad aL(b) = R(a)b \quad (a, b \in A).$

- If *A* is faithful (which we shall assume from now on) then we only need the third condition.
- M(A) is a vector space, and an algebra for the product (L, R)(L', R') = (LL', R'R).
- Each $a \in A$ defines a pair $(L_a, R_a) \in M(A)$ by $L_a(b) = ab$ and $R_a(b) = ba$.
- The homomorphism $A \to M(A)$; $a \mapsto (L_a, R_a)$ identifies A with an essential ideal in M(A).
- If *A* is a Banach algebra, then natural to ask that *L* and *R* are bounded; but this is automatic by using the Closed Graph Theorem.

We define M(A) to be the collection of maps $L, R : A \rightarrow A$ with

 $L(ab) = L(a)b, \quad R(ab) = aR(b), \quad aL(b) = R(a)b \quad (a, b \in A).$

- If *A* is faithful (which we shall assume from now on) then we only need the third condition.
- M(A) is a vector space, and an algebra for the product (L, R)(L', R') = (LL', R'R).
- Each $a \in A$ defines a pair $(L_a, R_a) \in M(A)$ by $L_a(b) = ab$ and $R_a(b) = ba$.
- The homomorphism $A \to M(A)$; $a \mapsto (L_a, R_a)$ identifies A with an essential ideal in M(A).
- If *A* is a Banach algebra, then natural to ask that *L* and *R* are bounded; but this is automatic by using the Closed Graph Theorem.

Let A be a C^{*}-algebra acting non-degenerately on a Hilbert space H. Then we have that

$$M(A) = \{T \in \mathcal{B}(H) : Ta, aT \in A \ (a \in A)\}.$$

• Each such *T* does define a multiplier in the previous sense.

- Conversely, a bounded approximate identity argument allows you to build *T* ∈ B(*H*) given (*L*, *R*) ∈ M(*A*).
- If $A = C_0(X)$ then $M(A) = C^b(X) = C(\beta X)$, so M(A) is a non-commutative Stone-Čech compactification.

Let A be a C*-algebra acting non-degenerately on a Hilbert space H. Then we have that

$$M(A) = \{T \in \mathcal{B}(H) : Ta, aT \in A (a \in A)\}.$$

• Each such *T* does define a multiplier in the previous sense.

- Conversely, a bounded approximate identity argument allows you to build *T* ∈ B(*H*) given (*L*, *R*) ∈ M(*A*).
- If $A = C_0(X)$ then $M(A) = C^b(X) = C(\beta X)$, so M(A) is a non-commutative Stone-Čech compactification.

Let A be a C*-algebra acting non-degenerately on a Hilbert space H. Then we have that

$$M(A) = \{T \in \mathcal{B}(H) : Ta, aT \in A (a \in A)\}.$$

- Each such *T* does define a multiplier in the previous sense.
- Conversely, a bounded approximate identity argument allows you to build *T* ∈ B(*H*) given (*L*, *R*) ∈ M(*A*).
- If $A = C_0(X)$ then $M(A) = C^b(X) = C(\beta X)$, so M(A) is a non-commutative Stone-Čech compactification.

Let A be a C*-algebra acting non-degenerately on a Hilbert space H. Then we have that

$$M(A) = \{T \in \mathcal{B}(H) : Ta, aT \in A \ (a \in A)\}.$$

- Each such *T* does define a multiplier in the previous sense.
- Conversely, a bounded approximate identity argument allows you to build *T* ∈ B(*H*) given (*L*, *R*) ∈ M(*A*).
- If A = C₀(X) then M(A) = C^b(X) = C(βX), so M(A) is a non-commutative Stone-Čech compactification.

Let G be a locally compact group, equipped with a left invariant Haar measure. Examples include:

- Any discrete group with the counting measure.
- Any *compact* group, where the Haar measure is normalised to be a probability measure.
- The real line \mathbb{R} with Lebesgue measure.
- Various non-compact Lie groups give interesting examples.

Let G be a locally compact group, equipped with a left invariant Haar measure. Examples include:

- Any discrete group with the counting measure.
- Any *compact* group, where the Haar measure is normalised to be a probability measure.
- The real line \mathbb{R} with Lebesgue measure.
- Various non-compact Lie groups give interesting examples.

A (10) > A (10) > A (10)

Let *G* be a locally compact group, equipped with a left invariant Haar measure. Examples include:

- Any *discrete* group with the counting measure.
- Any compact group, where the Haar measure is normalised to be a probability measure.
- The real line \mathbb{R} with Lebesgue measure.
- Various non-compact Lie groups give interesting examples.

Let *G* be a locally compact group, equipped with a left invariant Haar measure. Examples include:

- Any *discrete* group with the counting measure.
- Any compact group, where the Haar measure is normalised to be a probability measure.
- The real line \mathbb{R} with Lebesgue measure.
- Various non-compact Lie groups give interesting examples.

A (10) > A (10) > A (10)

Let *G* be a locally compact group, equipped with a left invariant Haar measure. Examples include:

- Any *discrete* group with the counting measure.
- Any compact group, where the Haar measure is normalised to be a probability measure.
- The real line \mathbb{R} with Lebesgue measure.
- Various non-compact Lie groups give interesting examples.

Group algebras Turn $L^1(G)$ into a Banach algebra by using the convolution product:

$$(f*g)(s) = \int_G f(t)g(t^{-1}s) dt.$$

We can also convolve finite measures.

• Identify M(G) with $C_0(G)^*$, then

$$\langle \mu * \lambda, F
angle = \int \int F(st) \ d\mu(s) \ d\lambda(t) \qquad (\mu, \lambda \in M(G), F \in C_0(G)).$$

• [Wendel] Then we have that

$$M(L^1(G))=M(G),$$

where for each $(L, R) \in M(L^1(G))$, there exists $\mu \in M(G)$,

$$L(a) = \mu * a, \quad R(a) = a * \mu \qquad (a \in L^1(G)).$$

• • • • • • • • • • • • •

Group algebras

Turn $L^{1}(G)$ into a Banach algebra by using the convolution product:

$$(f*g)(s) = \int_G f(t)g(t^{-1}s) dt.$$

• We can also convolve finite measures.

• Identify M(G) with $C_0(G)^*$, then

$$\langle \mu * \lambda, F
angle = \int \int F(st) \ d\mu(s) \ d\lambda(t) \qquad (\mu, \lambda \in M(G), F \in \mathcal{C}_0(G)).$$

• [Wendel] Then we have that

$$M(L^1(G))=M(G),$$

where for each $(L, R) \in M(L^1(G))$, there exists $\mu \in M(G)$,

$$L(a) = \mu * a, \quad R(a) = a * \mu \qquad (a \in L^1(G)).$$

• • • • • • • • • • • • •

Group algebras

Turn $L^{1}(G)$ into a Banach algebra by using the convolution product:

$$(f*g)(s) = \int_G f(t)g(t^{-1}s) dt.$$

- We can also convolve finite measures.
- Identify M(G) with $C_0(G)^*$, then

$$\langle \mu * \lambda, F \rangle = \int \int F(st) \ d\mu(s) \ d\lambda(t) \qquad (\mu, \lambda \in M(G), F \in C_0(G)).$$

• [Wendel] Then we have that

$$M(L^1(G))=M(G),$$

where for each $(L, R) \in M(L^1(G))$, there exists $\mu \in M(G)$,

$$L(a) = \mu * a, \quad R(a) = a * \mu \qquad (a \in L^1(G)).$$

4 **A b b b b b b**

Group algebras

Turn $L^{1}(G)$ into a Banach algebra by using the convolution product:

$$(f*g)(s) = \int_G f(t)g(t^{-1}s) dt.$$

- We can also convolve finite measures.
- Identify M(G) with $C_0(G)^*$, then

$$\langle \mu * \lambda, F \rangle = \int \int F(st) \ d\mu(s) \ d\lambda(t) \qquad (\mu, \lambda \in M(G), F \in C_0(G)).$$

• [Wendel] Then we have that

$$M(L^1(G))=M(G),$$

where for each $(L, R) \in M(L^1(G))$, there exists $\mu \in M(G)$,

$$L(a) = \mu * a, \quad R(a) = a * \mu \qquad (a \in L^1(G)).$$

If G is abelian, then we have the dual group

 $\hat{G} = \{ \chi : G \to \mathbb{T} \text{ a continuous homomorphism} \}.$

Also we have the Fourier Transform

 $\mathcal{F}: L^1(G) \to C_0(\hat{G}) \quad \text{also} \quad L^2(G) \cong L^2(\hat{G}).$

• The image $\mathcal{F}(L^1(G))$ is the *Fourier algebra* $A(\hat{G})$.

- As $L^1(G) = L^2(G) \cdot L^2(G)$ (pointwise product) we see that $A(\hat{G}) = L^2(G) * L^2(G) = L^2(\hat{G}) * L^2(\hat{G})$ (convolution).
- *F* extends to *M*(*G*), and the image is *B*(*Ĝ*) ⊆ *C^b*(*G*), the *Fourier-Stieltjes algebra*.

A (10) > A (10) > A (10)

If G is abelian, then we have the dual group

 $\hat{G} = \{\chi : G \to \mathbb{T} \text{ a continuous homomorphism} \}.$

Also we have the Fourier Transform

 $\mathcal{F}: L^1(G) \to C_0(\hat{G}) \quad \text{also} \quad L^2(G) \cong L^2(\hat{G}).$

• The image $\mathcal{F}(L^1(G))$ is the *Fourier algebra* $A(\hat{G})$.

- As $L^1(G) = L^2(G) \cdot L^2(G)$ (pointwise product) we see that $A(\hat{G}) = L^2(G) * L^2(G) = L^2(\hat{G}) * L^2(\hat{G})$ (convolution).
- *F* extends to *M*(*G*), and the image is *B*(*Ĝ*) ⊆ *C^b*(*G*), the *Fourier-Stieltjes algebra*.

If G is abelian, then we have the dual group

 $\hat{G} = \{\chi : G \to \mathbb{T} \text{ a continuous homomorphism} \}.$

Also we have the Fourier Transform

 $\mathcal{F}: L^1(G) \to C_0(\hat{G}) \quad \text{also} \quad L^2(G) \cong L^2(\hat{G}).$

• The image $\mathcal{F}(L^1(G))$ is the Fourier algebra $A(\hat{G})$.

- As $L^1(G) = L^2(G) \cdot L^2(G)$ (pointwise product) we see that $A(\hat{G}) = L^2(G) * L^2(G) = L^2(\hat{G}) * L^2(\hat{G})$ (convolution).
- *F* extends to *M*(*G*), and the image is *B*(*Ĝ*) ⊆ *C^b*(*G*), the *Fourier-Stieltjes algebra*.

If G is abelian, then we have the dual group

 $\hat{G} = \{\chi : G \to \mathbb{T} \text{ a continuous homomorphism} \}.$

Also we have the Fourier Transform

$$\mathcal{F}: L^1(G) o C_0(\hat{G}) \quad ext{also} \quad L^2(G) \cong L^2(\hat{G}).$$

- The image $\mathcal{F}(L^1(G))$ is the Fourier algebra $A(\hat{G})$.
- As $L^1(G) = L^2(G) \cdot L^2(G)$ (pointwise product) we see that $A(\hat{G}) = L^2(G) * L^2(G) = L^2(\hat{G}) * L^2(\hat{G})$ (convolution).
- \mathcal{F} extends to M(G), and the image is $B(\hat{G}) \subseteq C^{b}(G)$, the *Fourier-Stieltjes algebra*.

If G is abelian, then we have the dual group

 $\hat{G} = \{ \chi : G \to \mathbb{T} \text{ a continuous homomorphism} \}.$

Also we have the Fourier Transform

$$\mathcal{F}: L^1(G) o C_0(\hat{G}) \quad ext{also} \quad L^2(G) \cong L^2(\hat{G}).$$

- The image $\mathcal{F}(L^1(G))$ is the Fourier algebra $A(\hat{G})$.
- As $L^1(G) = L^2(G) \cdot L^2(G)$ (pointwise product) we see that $A(\hat{G}) = L^2(G) * L^2(G) = L^2(\hat{G}) * L^2(\hat{G})$ (convolution).
- *F* extends to *M*(*G*), and the image is *B*(*Ĝ*) ⊆ *C^b*(*G*), the *Fourier-Stieltjes algebra*.

< 回 > < 三 > < 三 >

The Fourier transform similarly sets up isomorphisms

$$C_0(G) \cong C_r^*(\hat{G}) \qquad L^\infty(G) \cong VN(\hat{G}).$$

Let $\lambda : G \to \mathcal{B}(L^2(G))$ be the *left-regular representation*,

$$\lambda(\boldsymbol{s}): f \mapsto \boldsymbol{g} \qquad \boldsymbol{g}(t) = f(\boldsymbol{s}^{-1}t) \qquad (f \in L^2(\boldsymbol{G}), \boldsymbol{s}, t \in \boldsymbol{G}).$$

Integrate this to get a homomorphism $\lambda : L^1(G) \to \mathcal{B}(L^2(G))$.

- $C_r^*(G)$ is the closure of $\lambda(L^1(G))$.
- *C*^{*}(*G*) is the enveloping C^{*}-algebra of *L*¹(*G*): agrees with *C*^{*}_{*r*}(*G*) is *G* is abelian, compact, amenable.
- VN(G) is the WOT closure of $\lambda(L^1(G))$ (or of $\lambda(G)$).
- So, $A(\hat{G})$ is the predual of $VN(\hat{G})$ and $B(\hat{G})$ is the dual of $C^*(\hat{G})$.

The Fourier transform similarly sets up isomorphisms

$$C_0(G) \cong C_r^*(\hat{G}) \qquad L^\infty(G) \cong VN(\hat{G}).$$

Let $\lambda : G \to \mathcal{B}(L^2(G))$ be the *left-regular representation*,

$$\lambda(\boldsymbol{s}): \boldsymbol{f} \mapsto \boldsymbol{g} \qquad \boldsymbol{g}(t) = \boldsymbol{f}(\boldsymbol{s}^{-1}t) \qquad (\boldsymbol{f} \in L^2(\boldsymbol{G}), \boldsymbol{s}, t \in \boldsymbol{G}).$$

Integrate this to get a homomorphism $\lambda : L^1(G) \to \mathcal{B}(L^2(G))$.

- $C_r^*(G)$ is the closure of $\lambda(L^1(G))$.
- *C*^{*}(*G*) is the enveloping C^{*}-algebra of *L*¹(*G*): agrees with *C*^{*}_{*r*}(*G*) is *G* is abelian, compact, amenable.
- VN(G) is the WOT closure of $\lambda(L^1(G))$ (or of $\lambda(G)$).
- So, $A(\hat{G})$ is the predual of $VN(\hat{G})$ and $B(\hat{G})$ is the dual of $C^*(\hat{G})$.

The Fourier transform similarly sets up isomorphisms

$$C_0(G) \cong C_r^*(\hat{G}) \qquad L^\infty(G) \cong VN(\hat{G}).$$

Let $\lambda : G \to \mathcal{B}(L^2(G))$ be the *left-regular representation*,

$$\lambda(\boldsymbol{s}): \boldsymbol{f} \mapsto \boldsymbol{g} \qquad \boldsymbol{g}(t) = \boldsymbol{f}(\boldsymbol{s}^{-1}t) \qquad (\boldsymbol{f} \in L^2(\boldsymbol{G}), \boldsymbol{s}, t \in \boldsymbol{G}).$$

Integrate this to get a homomorphism $\lambda : L^1(G) \to \mathcal{B}(L^2(G))$.

- $C_r^*(G)$ is the closure of $\lambda(L^1(G))$.
- C*(G) is the enveloping C*-algebra of L¹(G): agrees with C^{*}_r(G) is G is abelian, compact, amenable.
- VN(G) is the WOT closure of $\lambda(L^1(G))$ (or of $\lambda(G)$).
- So, $A(\hat{G})$ is the predual of $VN(\hat{G})$ and $B(\hat{G})$ is the dual of $C^*(\hat{G})$.

The Fourier transform similarly sets up isomorphisms

$$C_0(G) \cong C_r^*(\hat{G}) \qquad L^\infty(G) \cong VN(\hat{G}).$$

Let $\lambda : G \to \mathcal{B}(L^2(G))$ be the *left-regular representation*,

$$\lambda(\boldsymbol{s}): \boldsymbol{f} \mapsto \boldsymbol{g} \qquad \boldsymbol{g}(t) = \boldsymbol{f}(\boldsymbol{s}^{-1}t) \qquad (\boldsymbol{f} \in L^2(\boldsymbol{G}), \boldsymbol{s}, t \in \boldsymbol{G}).$$

Integrate this to get a homomorphism $\lambda : L^1(G) \to \mathcal{B}(L^2(G))$.

- $C_r^*(G)$ is the closure of $\lambda(L^1(G))$.
- C*(G) is the enveloping C*-algebra of L¹(G): agrees with C^{*}_r(G) is G is abelian, compact, amenable.
- VN(G) is the WOT closure of $\lambda(L^1(G))$ (or of $\lambda(G)$).

• So, $A(\hat{G})$ is the predual of $VN(\hat{G})$ and $B(\hat{G})$ is the dual of $C^*(\hat{G})$.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The Fourier transform similarly sets up isomorphisms

$$C_0(G) \cong C_r^*(\hat{G}) \qquad L^\infty(G) \cong VN(\hat{G}).$$

Let $\lambda : G \to \mathcal{B}(L^2(G))$ be the *left-regular representation*,

$$\lambda(\boldsymbol{s}): \boldsymbol{f} \mapsto \boldsymbol{g} \qquad \boldsymbol{g}(t) = \boldsymbol{f}(\boldsymbol{s}^{-1}t) \qquad (\boldsymbol{f} \in L^2(\boldsymbol{G}), \boldsymbol{s}, t \in \boldsymbol{G}).$$

Integrate this to get a homomorphism $\lambda : L^1(G) \to \mathcal{B}(L^2(G))$.

- $C_r^*(G)$ is the closure of $\lambda(L^1(G))$.
- C*(G) is the enveloping C*-algebra of L¹(G): agrees with C^{*}_r(G) is G is abelian, compact, amenable.
- VN(G) is the WOT closure of $\lambda(L^1(G))$ (or of $\lambda(G)$).
- So, A(Ĝ) is the predual of VN(Ĝ) and B(Ĝ) is the dual of C*(Ĝ).

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The Fourier algebra

For a general G, we could hence define A(G) to be:

- the predual of VN(G).
- Or $A(G) = L^2(G) * L^2(G)$.
- We *hope* that these agree and that *A*(*G*) is an algebra for the pointwise product.

Remember that a von Neumann algebra always has a *predual*: the space of normal functionals.

As $VN(G) \subseteq \mathcal{B}(L^2(G))$, and $\mathcal{B}(L^2(G))$ is the dual of $\mathcal{T}(L^2(G))$, the trace-class operators on $L^2(G)$, we have a quotient map

 $\mathcal{T}(L^2(G)) \twoheadrightarrow VN(G)_*.$
For a general G, we could hence define A(G) to be:

• the predual of VN(G).

- Or $A(G) = L^2(G) * L^2(G)$.
- We *hope* that these agree and that *A*(*G*) is an algebra for the pointwise product.

Remember that a von Neumann algebra always has a *predual*: the space of normal functionals.

As $VN(G) \subseteq \mathcal{B}(L^2(G))$, and $\mathcal{B}(L^2(G))$ is the dual of $\mathcal{T}(L^2(G))$, the trace-class operators on $L^2(G)$, we have a quotient map

 $\mathcal{T}(L^2(G)) \twoheadrightarrow VN(G)_*.$

For a general G, we could hence define A(G) to be:

- the predual of VN(G).
- Or $A(G) = L^2(G) * L^2(G)$.
- We *hope* that these agree and that *A*(*G*) is an algebra for the pointwise product.

Remember that a von Neumann algebra always has a *predual*: the space of normal functionals.

As $VN(G) \subseteq \mathcal{B}(L^2(G))$, and $\mathcal{B}(L^2(G))$ is the dual of $\mathcal{T}(L^2(G))$, the trace-class operators on $L^2(G)$, we have a quotient map

 $\mathcal{T}(L^2(G)) \twoheadrightarrow VN(G)_*.$

For a general G, we could hence define A(G) to be:

- the predual of VN(G).
- Or $A(G) = L^2(G) * L^2(G)$.
- We *hope* that these agree and that *A*(*G*) is an algebra for the pointwise product.

Remember that a von Neumann algebra always has a *predual*: the space of normal functionals.

As $VN(G) \subseteq \mathcal{B}(L^2(G))$, and $\mathcal{B}(L^2(G))$ is the dual of $\mathcal{T}(L^2(G))$, the trace-class operators on $L^2(G)$, we have a quotient map

 $\mathcal{T}(L^2(G)) \twoheadrightarrow VN(G)_*.$

< ロ > < 同 > < 回 > < 回 >

For a general G, we could hence define A(G) to be:

- the predual of VN(G).
- Or $A(G) = L^2(G) * L^2(G)$.
- We *hope* that these agree and that *A*(*G*) is an algebra for the pointwise product.

Remember that a von Neumann algebra always has a *predual*: the space of normal functionals.

As $VN(G) \subseteq \mathcal{B}(L^2(G))$, and $\mathcal{B}(L^2(G))$ is the dual of $\mathcal{T}(L^2(G))$, the trace-class operators on $L^2(G)$, we have a quotient map

 $T(L^2(G)) \twoheadrightarrow VN(G)_*.$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

For a general G, we could hence define A(G) to be:

- the predual of VN(G).
- Or $A(G) = L^2(G) * L^2(G)$.
- We *hope* that these agree and that *A*(*G*) is an algebra for the pointwise product.

Remember that a von Neumann algebra always has a *predual*: the space of normal functionals.

As $VN(G) \subseteq \mathcal{B}(L^2(G))$, and $\mathcal{B}(L^2(G))$ is the dual of $\mathcal{T}(L^2(G))$, the trace-class operators on $L^2(G)$, we have a quotient map

$$\mathcal{T}(L^2(G)) \twoheadrightarrow VN(G)_*.$$

< 回 > < 三 > < 三 >

(Big Machine ⇒) VN(G) is in standard position, so any normal functional ω on VN(G) is of the form ω = ω_{ξ,η} for some ξ, η ∈ L²(G),

 $\langle x,\omega\rangle = (x(\xi)|\eta) \qquad (x \in VN(G), \xi, \eta \in L^2(G)).$

As {λ(s) : s ∈ G} generates VN(G), for ω ∈ VN(G)_{*}, if we know what ⟨λ(s⁻¹), ω⟩ is for all s, then we know ω.

Observe that

$$\begin{split} \langle \lambda(s^{-1}), \omega_{\xi,\eta} \rangle &= \int_{G} \lambda(s^{-1})(\xi)(t) \overline{\eta(t)} \ dt = \int_{G} \xi(st) \overline{\eta(t)} \ dt \\ &= \int_{G} \xi(t) \overline{\eta}(t^{-1}s) \ dt = (\xi * \overline{\eta})(s). \end{split}$$

(Big Machine ⇒) VN(G) is in standard position, so any normal functional ω on VN(G) is of the form ω = ω_{ξ,η} for some ξ, η ∈ L²(G),

 $\langle \mathbf{x},\omega\rangle = (\mathbf{x}(\xi)|\eta) \qquad (\mathbf{x}\in VN(G), \xi,\eta\in L^2(G)).$

As {λ(s) : s ∈ G} generates VN(G), for ω ∈ VN(G)_{*}, if we know what ⟨λ(s⁻¹), ω⟩ is for all s, then we know ω.

Observe that

$$\langle \lambda(s^{-1}), \omega_{\xi, \eta} \rangle = \int_{G} \lambda(s^{-1})(\xi)(t) \overline{\eta(t)} \, dt = \int_{G} \xi(st) \overline{\eta(t)} \, dt \\ = \int_{G} \xi(t) \overline{\eta}(t^{-1}s) \, dt = (\xi * \overline{\eta})(s).$$

(Big Machine ⇒) VN(G) is in standard position, so any normal functional ω on VN(G) is of the form ω = ω_{ξ,η} for some ξ, η ∈ L²(G),

 $\langle \mathbf{x},\omega\rangle = (\mathbf{x}(\xi)|\eta) \qquad (\mathbf{x}\in VN(G), \xi,\eta\in L^2(G)).$

As {λ(s) : s ∈ G} generates VN(G), for ω ∈ VN(G)_{*}, if we know what ⟨λ(s⁻¹), ω⟩ is for all s, then we know ω.

Observe that

$$egin{aligned} &\langle\lambda(s^{-1}),\omega_{\xi,\eta}
angle = \int_G\lambda(s^{-1})(\xi)(t)\overline{\eta(t)}\;dt = \int_G\xi(st)\overline{\eta(t)}\;dt \ &= \int_G\xi(t)\overline{\eta}(t^{-1}s)\;dt = (\xi*\overline{\eta})(s). \end{aligned}$$

(Big Machine ⇒) VN(G) is in standard position, so any normal functional ω on VN(G) is of the form ω = ω_{ξ,η} for some ξ, η ∈ L²(G),

$$\langle \mathbf{x},\omega\rangle = (\mathbf{x}(\xi)|\eta) \qquad (\mathbf{x}\in VN(G), \xi,\eta\in L^2(G)).$$

As {λ(s) : s ∈ G} generates VN(G), for ω ∈ VN(G)_{*}, if we know what ⟨λ(s⁻¹), ω⟩ is for all s, then we know ω.

Observe that

$$\langle \lambda(s^{-1}), \omega_{\xi,\eta} \rangle = \int_{G} \lambda(s^{-1})(\xi)(t) \overline{\eta(t)} \, dt = \int_{G} \xi(st) \overline{\eta(t)} \, dt \\ = \int_{G} \xi(t) \overline{\eta}(t^{-1}s) \, dt = (\xi * \overline{\eta})(s).$$

There is a normal *-homomorphsm $\Delta: VN(G) \rightarrow VN(G) \otimes VN(G) = VN(G \times G)$ which satisfies

$$\Delta(\lambda(\boldsymbol{s})) = \lambda(\boldsymbol{s}) \otimes \lambda(\boldsymbol{s}) = \lambda(\boldsymbol{s}, \boldsymbol{s}).$$

- As Δ is normal, we get a (completely) contractive map $\Delta_* : A(G) \times A(G) \rightarrow A(G)$.
- Turns out that Δ_* is associative, because Δ is *coassociative*.
- This obviously induces the pointwise product on A(G), as for ω, σ ∈ A(G) and s ∈ G,

 $(\omega\sigma)(s) = \langle \lambda(s^{-1}), \Delta_*(\omega \otimes \sigma) \rangle = \langle \lambda(s^{-1}, s^{-1}), \omega \otimes \sigma \rangle = \omega(s)\sigma(s).$

• Δ exists as $\Delta(x) = W^*(1 \otimes x)W$ for some unitary $W \in \mathcal{B}(L^2(G \times G))$; given by $W\xi(s, t) = \xi(ts, t)$.

There is a normal *-homomorphsm $\Delta: VN(G) \rightarrow VN(G) \overline{\otimes} VN(G) = VN(G \times G)$ which satisfies

$$\Delta(\lambda(s)) = \lambda(s) \otimes \lambda(s) = \lambda(s, s).$$

- As Δ is normal, we get a (completely) contractive map $\Delta_* : A(G) \times A(G) \rightarrow A(G)$.
- Turns out that Δ_* is associative, because Δ is *coassociative*.
- This obviously induces the pointwise product on A(G), as for ω, σ ∈ A(G) and s ∈ G,

 $(\omega\sigma)(s) = \langle \lambda(s^{-1}), \Delta_*(\omega \otimes \sigma) \rangle = \langle \lambda(s^{-1}, s^{-1}), \omega \otimes \sigma \rangle = \omega(s)\sigma(s).$

• Δ exists as $\Delta(x) = W^*(1 \otimes x)W$ for some unitary $W \in \mathcal{B}(L^2(G \times G))$; given by $W\xi(s, t) = \xi(ts, t)$.

There is a normal *-homomorphsm $\Delta: VN(G) \rightarrow VN(G) \overline{\otimes} VN(G) = VN(G \times G)$ which satisfies

$$\Delta(\lambda(s)) = \lambda(s) \otimes \lambda(s) = \lambda(s, s).$$

- As Δ is normal, we get a (completely) contractive map $\Delta_* : A(G) \times A(G) \rightarrow A(G)$.
- Turns out that Δ_* is associative, because Δ is *coassociative*.
- This obviously induces the pointwise product on A(G), as for ω, σ ∈ A(G) and s ∈ G,

 $(\omega\sigma)(s) = \langle \lambda(s^{-1}), \Delta_*(\omega \otimes \sigma) \rangle = \langle \lambda(s^{-1}, s^{-1}), \omega \otimes \sigma \rangle = \omega(s)\sigma(s).$

• Δ exists as $\Delta(x) = W^*(1 \otimes x)W$ for some unitary $W \in \mathcal{B}(L^2(G \times G))$; given by $W\xi(s, t) = \xi(ts, t)$.

There is a normal *-homomorphsm $\Delta: VN(G) \rightarrow VN(G) \overline{\otimes} VN(G) = VN(G \times G)$ which satisfies

$$\Delta(\lambda(s)) = \lambda(s) \otimes \lambda(s) = \lambda(s, s).$$

- As Δ is normal, we get a (completely) contractive map $\Delta_* : A(G) \times A(G) \rightarrow A(G)$.
- Turns out that Δ_* is associative, because Δ is *coassociative*.
- This obviously induces the pointwise product on A(G), as for ω, σ ∈ A(G) and s ∈ G,

$$(\omega\sigma)(\boldsymbol{s}) = \langle \lambda(\boldsymbol{s}^{-1}), \Delta_*(\omega \otimes \sigma) \rangle = \langle \lambda(\boldsymbol{s}^{-1}, \boldsymbol{s}^{-1}), \omega \otimes \sigma \rangle = \omega(\boldsymbol{s})\sigma(\boldsymbol{s}).$$

• Δ exists as $\Delta(x) = W^*(1 \otimes x)W$ for some unitary $W \in \mathcal{B}(L^2(G \times G))$; given by $W\xi(s, t) = \xi(ts, t)$.

There is a normal *-homomorphsm $\Delta: VN(G) \rightarrow VN(G) \overline{\otimes} VN(G) = VN(G \times G)$ which satisfies

$$\Delta(\lambda(s)) = \lambda(s) \otimes \lambda(s) = \lambda(s, s).$$

- As Δ is normal, we get a (completely) contractive map $\Delta_* : A(G) \times A(G) \rightarrow A(G)$.
- Turns out that Δ_* is associative, because Δ is *coassociative*.
- This obviously induces the pointwise product on A(G), as for ω, σ ∈ A(G) and s ∈ G,

$$(\omega\sigma)(\boldsymbol{s}) = \langle \lambda(\boldsymbol{s}^{-1}), \Delta_*(\omega \otimes \sigma) \rangle = \langle \lambda(\boldsymbol{s}^{-1}, \boldsymbol{s}^{-1}), \omega \otimes \sigma \rangle = \omega(\boldsymbol{s})\sigma(\boldsymbol{s}).$$

• Δ exists as $\Delta(x) = W^*(1 \otimes x)W$ for some unitary $W \in \mathcal{B}(L^2(G \times G))$; given by $W\xi(s, t) = \xi(ts, t)$.

BA 4 BA

- As A(G) is commutative, multipliers of A(G) are simply maps T on A(G) with T(ab) = T(a)b.
- As we consider A(G) ⊆ C₀(G), we find that every T ∈ MA(G) is given by some f ∈ C^b(G):

$MA(G) = \{ f \in C^b(G) : fa \in A(G) \ (a \in A(G)) \}.$

- By duality, each $T \in MA(G)$ induces a map $T^* : VN(G) \rightarrow VN(G)$.
- If this is *completely bounded* that is gives uniformly (in *n*) bounded maps 1 ⊗ *T*^{*} on M_n ⊗ *VN*(*G*)– then *T* ∈ *M_{cb}A*(*G*).
- [Haagerup, DeCanniere] For f ∈ MA(G), we have that f ∈ M_{cb}A(G) if and only if f ⊗ 1_K ∈ MA(G × K) for all compact K (or just K = SU(2)).

イロト 不得 トイヨト イヨト

- As A(G) is commutative, multipliers of A(G) are simply maps T on A(G) with T(ab) = T(a)b.
- As we consider A(G) ⊆ C₀(G), we find that every T ∈ MA(G) is given by some f ∈ C^b(G):

$MA(G) = \{f \in C^b(G) : fa \in A(G) \ (a \in A(G))\}.$

- By duality, each $T \in MA(G)$ induces a map $T^* : VN(G) \rightarrow VN(G)$.
- If this is *completely bounded* that is gives uniformly (in *n*) bounded maps $1 \otimes T^*$ on $\mathbb{M}_n \otimes VN(G)$ then $T \in M_{cb}A(G)$
- [Haagerup, DeCanniere] For $f \in MA(G)$, we have that $f \in M_{cb}A(G)$ if and only if $f \otimes 1_K \in MA(G \times K)$ for all compact K (or just K = SU(2)).

- As A(G) is commutative, multipliers of A(G) are simply maps T on A(G) with T(ab) = T(a)b.
- As we consider A(G) ⊆ C₀(G), we find that every T ∈ MA(G) is given by some f ∈ C^b(G):

$$MA(G) = \{f \in C^b(G) : fa \in A(G) \ (a \in A(G))\}.$$

• By duality, each $T \in MA(G)$ induces a map $T^* : VN(G) \rightarrow VN(G)$.

- If this is *completely bounded* that is gives uniformly (in *n*) bounded maps 1 ⊗ *T*^{*} on M_n ⊗ *VN*(*G*)– then *T* ∈ *M_{cb}A*(*G*)
- [Haagerup, DeCanniere] For $f \in MA(G)$, we have that $f \in M_{cb}A(G)$ if and only if $f \otimes 1_K \in MA(G \times K)$ for all compact K (or just K = SU(2)).

- As A(G) is commutative, multipliers of A(G) are simply maps T on A(G) with T(ab) = T(a)b.
- As we consider A(G) ⊆ C₀(G), we find that every T ∈ MA(G) is given by some f ∈ C^b(G):

$$MA(G) = \{f \in C^b(G) : fa \in A(G) \ (a \in A(G))\}.$$

- By duality, each $T \in MA(G)$ induces a map $T^* : VN(G) \rightarrow VN(G)$.
- If this is *completely bounded* that is gives uniformly (in *n*) bounded maps 1 ⊗ *T*^{*} on M_n ⊗ *VN*(*G*)– then *T* ∈ M_{cb}A(*G*).
- [Haagerup, DeCanniere] For $f \in MA(G)$, we have that $f \in M_{cb}A(G)$ if and only if $f \otimes 1_K \in MA(G \times K)$ for all compact K (or just K = SU(2)).

- As A(G) is commutative, multipliers of A(G) are simply maps T on A(G) with T(ab) = T(a)b.
- As we consider A(G) ⊆ C₀(G), we find that every T ∈ MA(G) is given by some f ∈ C^b(G):

$$MA(G) = \{f \in C^b(G) : fa \in A(G) \ (a \in A(G))\}.$$

- By duality, each $T \in MA(G)$ induces a map $T^* : VN(G) \rightarrow VN(G)$.
- If this is *completely bounded* that is gives uniformly (in *n*) bounded maps 1 ⊗ *T*^{*} on M_n ⊗ *VN*(*G*)– then *T* ∈ M_{cb}A(*G*).
- [Haagerup, DeCanniere] For $f \in MA(G)$, we have that $f \in M_{cb}A(G)$ if and only if $f \otimes 1_K \in MA(G \times K)$ for all compact K (or just K = SU(2)).

Lots of interesting properties of groups are related to how A(G) sits in $M_{cb}A(G)$:

- *A*(*G*) has a bounded approximate identity if and only if *G* is amenable.
- If *A*(*G*) has an approximate identity, bounded in *M_{cb}A*(*G*), then *G* is *weakly amenable*.
- For example, this is true for SO(1, n) and SU(1, n).
- Let \(\Lambda_G\) be the minimal bounded (in \(M_{cb}A(G)\)) for such an approximate identity.
- Then, for G = Sp(1, n), then $\Lambda_G = 2n 1$.
- [Ozawa] All hyperbolic groups are weakly amenable.

Lots of interesting properties of groups are related to how A(G) sits in $M_{cb}A(G)$:

- *A*(*G*) has a bounded approximate identity if and only if *G* is amenable.
- If *A*(*G*) has an approximate identity, bounded in *M_{cb}A*(*G*), then *G* is *weakly amenable*.
- For example, this is true for SO(1, n) and SU(1, n).
- Let Λ_G be the minimal bounded (in M_{cb}A(G)) for such an approximate identity.
- Then, for G = Sp(1, n), then $\Lambda_G = 2n 1$.
- [Ozawa] All hyperbolic groups are weakly amenable.

イロト 不得 トイヨト イヨト

Lots of interesting properties of groups are related to how A(G) sits in $M_{cb}A(G)$:

- *A*(*G*) has a bounded approximate identity if and only if *G* is amenable.
- If A(G) has an approximate identity, bounded in M_{cb}A(G), then G is weakly amenable.
- For example, this is true for SO(1, n) and SU(1, n).
- Let ∧_G be the minimal bounded (in M_{cb}A(G)) for such an approximate identity.
- Then, for G = Sp(1, n), then $\Lambda_G = 2n 1$.
- [Ozawa] All hyperbolic groups are weakly amenable.

Lots of interesting properties of groups are related to how A(G) sits in $M_{cb}A(G)$:

- *A*(*G*) has a bounded approximate identity if and only if *G* is amenable.
- If A(G) has an approximate identity, bounded in M_{cb}A(G), then G is weakly amenable.
- For example, this is true for SO(1, n) and SU(1, n).
- Let ∧_G be the minimal bounded (in M_{cb}A(G)) for such an approximate identity.
- Then, for G = Sp(1, n), then $\Lambda_G = 2n 1$.
- [Ozawa] All hyperbolic groups are weakly amenable.

Lots of interesting properties of groups are related to how A(G) sits in $M_{cb}A(G)$:

- *A*(*G*) has a bounded approximate identity if and only if *G* is amenable.
- If A(G) has an approximate identity, bounded in M_{cb}A(G), then G is weakly amenable.
- For example, this is true for SO(1, n) and SU(1, n).
- Let Λ_G be the minimal bounded (in M_{cb}A(G)) for such an approximate identity.
- Then, for G = Sp(1, n), then $\Lambda_G = 2n 1$.
- [Ozawa] All hyperbolic groups are weakly amenable.

Lots of interesting properties of groups are related to how A(G) sits in $M_{cb}A(G)$:

- *A*(*G*) has a bounded approximate identity if and only if *G* is amenable.
- If A(G) has an approximate identity, bounded in M_{cb}A(G), then G is weakly amenable.
- For example, this is true for SO(1, n) and SU(1, n).
- Let Λ_G be the minimal bounded (in M_{cb}A(G)) for such an approximate identity.
- Then, for G = Sp(1, n), then $\Lambda_G = 2n 1$.

^{• [}Ozawa] All hyperbolic groups are weakly amenable.

Lots of interesting properties of groups are related to how A(G) sits in $M_{cb}A(G)$:

- *A*(*G*) has a bounded approximate identity if and only if *G* is amenable.
- If A(G) has an approximate identity, bounded in M_{cb}A(G), then G is weakly amenable.
- For example, this is true for SO(1, n) and SU(1, n).
- Let Λ_G be the minimal bounded (in M_{cb}A(G)) for such an approximate identity.
- Then, for G = Sp(1, n), then $\Lambda_G = 2n 1$.
- [Ozawa] All hyperbolic groups are weakly amenable.

Gilbert's view on $M_{cb}A(G)$

Theorem (Gilbert, Jolissaint)

For $f \in C^{b}(G)$, we have that $f \in M_{cb}A(G)$ if and only if there is a Hilbert space K and continuous bounded maps $\alpha, \beta : G \to K$ with $f(st^{-1}) = (\beta(t)|\alpha(s))$ for $s, t \in G$.

Given a C*-algebra A, let X be a right module over A. Suppose that X has an A-valued inner-product:

- (x|x) ≥ 0 (in the C*-algebra sense) and (x|x) = 0 if and only if x = 0,
- $(x|y) = (y|x)^*$,
- $(x|y \cdot a) = (x|y)a$ for $x, y \in X, a \in A$.

Then *X* carries a norm: $||x|| = ||(x|x)||^{1/2}$. If *X* is complete, we say that *X* is a Hilbert C*-module over *A*.

Example: $A = C_0(G)$ and $X = C_0(G, K)$ for a Hilbert space K. The module action is obvious; the inner-product is

$$(x|y) = (G \to \mathbb{C}; s \mapsto (x(s)|y(s))_K) \qquad (x, y \in C_0(G, K)).$$

A (10) A (10) A (10)

Given a C*-algebra A, let X be a right module over A. Suppose that X has an A-valued inner-product:

- $(x|x) \ge 0$ (in the C*-algebra sense) and (x|x) = 0 if and only if x = 0,
- $(x|y) = (y|x)^*$,
- $(x|y \cdot a) = (x|y)a$ for $x, y \in X, a \in A$.

Then *X* carries a norm: $||x|| = ||(x|x)||^{1/2}$. If *X* is complete, we say that *X* is a Hilbert C*-module over *A*.

Example: $A = C_0(G)$ and $X = C_0(G, K)$ for a Hilbert space K. The module action is obvious; the inner-product is

 $(x|y) = (G \rightarrow \mathbb{C}; s \mapsto (x(s)|y(s))_K) \qquad (x, y \in C_0(G, K)).$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Given a C*-algebra A, let X be a right module over A. Suppose that X has an A-valued inner-product:

- $(x|x) \ge 0$ (in the C*-algebra sense) and (x|x) = 0 if and only if x = 0,
- $(x|y) = (y|x)^*$,
- $(x|y \cdot a) = (x|y)a$ for $x, y \in X, a \in A$.

Then *X* carries a norm: $||x|| = ||(x|x)||^{1/2}$. If *X* is complete, we say that *X* is a Hilbert C*-module over *A*.

Example: $A = C_0(G)$ and $X = C_0(G, K)$ for a Hilbert space *K*. The module action is obvious; the inner-product is

$$(x|y) = (G \rightarrow \mathbb{C}; s \mapsto (x(s)|y(s))_K) \qquad (x, y \in C_0(G, K)).$$

A (10) A (10)

Given a C*-algebra A, let X be a right module over A. Suppose that X has an A-valued inner-product:

- (x|x) ≥ 0 (in the C*-algebra sense) and (x|x) = 0 if and only if x = 0,
- $(x|y) = (y|x)^*$,
- $(x|y \cdot a) = (x|y)a$ for $x, y \in X, a \in A$.

Then *X* carries a norm: $||x|| = ||(x|x)||^{1/2}$. If *X* is complete, we say that *X* is a Hilbert C*-module over *A*. Example: $A = C_0(G)$ and $X = C_0(G, K)$ for a Hilbert space *K*. The

module action is obvious; the inner-product is

 $(x|y) = (G \rightarrow \mathbb{C}; s \mapsto (x(s)|y(s))_K) \qquad (x, y \in C_0(G, K)).$

Given a C*-algebra A, let X be a right module over A. Suppose that X has an A-valued inner-product:

(x|x) ≥ 0 (in the C*-algebra sense) and (x|x) = 0 if and only if x = 0,

•
$$(x|y) = (y|x)^*$$
,

• $(x|y \cdot a) = (x|y)a$ for $x, y \in X, a \in A$.

Then X carries a norm: $||x|| = ||(x|x)||^{1/2}$. If X is complete, we say that X is a Hilbert C*-module over A.

Example: $A = C_0(G)$ and $X = C_0(G, K)$ for a Hilbert space K. The module action is obvious; the inner-product is

 $(x|y) = (G \rightarrow \mathbb{C}; s \mapsto (x(s)|y(s))_K) \qquad (x, y \in C_0(G, K)).$

Given a C*-algebra A, let X be a right module over A. Suppose that X has an A-valued inner-product:

(x|x) ≥ 0 (in the C*-algebra sense) and (x|x) = 0 if and only if x = 0,

•
$$(x|y) = (y|x)^*$$
,

• $(x|y \cdot a) = (x|y)a$ for $x, y \in X, a \in A$.

Then X carries a norm: $||x|| = ||(x|x)||^{1/2}$. If X is complete, we say that X is a Hilbert C*-module over A.

Example: $A = C_0(G)$ and $X = C_0(G, K)$ for a Hilbert space *K*. The module action is obvious; the inner-product is

$$(x|y) = (G \rightarrow \mathbb{C}; s \mapsto (x(s)|y(s))_{\mathcal{K}}) \qquad (x, y \in C_0(G, \mathcal{K})).$$

Abstracting $C_0(G, K)$

For any C*-algebra A and Hilbert space K, we consider the algebraic tensor product $A \odot K$, with:

 $(a \otimes \xi) \cdot b = ab \otimes \xi, \quad (a \otimes \xi | b \otimes \eta) = a^* b(\xi | \eta).$

Let $A \otimes K$ be the completion.

Then $C_0(G) \otimes K \cong C_0(G, K)$: somewhat clear that $C_0(G) \odot K \subseteq C_0(G, K)$, and use a partition of unity argument to show density.

We're interested in $C^{b}(G, K)$: how can we abstract this?

Any $\alpha \in C^{b}(G, K)$ defines a map

 $C_0(G) \to C_0(G, K); \quad a \mapsto (G \to \mathbb{C}; s \mapsto a(s)\alpha(s)).$

Abstracting $C_0(G, K)$

For any C*-algebra A and Hilbert space K, we consider the algebraic tensor product $A \odot K$, with:

$$(a \otimes \xi) \cdot b = ab \otimes \xi, \quad (a \otimes \xi | b \otimes \eta) = a^* b(\xi | \eta).$$

Let $A \otimes K$ be the completion.

Then $C_0(G) \otimes K \cong C_0(G, K)$: somewhat clear that $C_0(G) \odot K \subseteq C_0(G, K)$, and use a partition of unity argument to show density.

We're interested in $C^b(G, K)$: how can we abstract this? Any $\alpha \in C^b(G, K)$ defines a map

 $C_0(G) \to C_0(G, K); \quad a \mapsto (G \to \mathbb{C}; s \mapsto a(s)\alpha(s)).$

イロト 不得 トイヨト イヨト

Abstracting $C_0(G, K)$

For any C*-algebra A and Hilbert space K, we consider the algebraic tensor product $A \odot K$, with:

 $(a \otimes \xi) \cdot b = ab \otimes \xi, \quad (a \otimes \xi | b \otimes \eta) = a^* b(\xi | \eta).$

Let $A \otimes K$ be the completion.

Then $C_0(G) \otimes K \cong C_0(G, K)$: somewhat clear that

 $C_0(G) \odot K \subseteq C_0(G, K)$, and use a partition of unity argument to show density.

We're interested in $C^{b}(G, K)$: how can we abstract this?

Any $\alpha \in C^{b}(G, K)$ defines a map

 $C_0(G) \to C_0(G, K); \quad a \mapsto (G \to \mathbb{C}; s \mapsto a(s)\alpha(s)).$
Abstracting $C_0(G, K)$

For any C*-algebra A and Hilbert space K, we consider the algebraic tensor product $A \odot K$, with:

$$(a \otimes \xi) \cdot b = ab \otimes \xi, \quad (a \otimes \xi | b \otimes \eta) = a^* b(\xi | \eta).$$

Let $A \otimes K$ be the completion.

Then $C_0(G) \otimes K \cong C_0(G, K)$: somewhat clear that

 $C_0(G) \odot K \subseteq C_0(G, K)$, and use a partition of unity argument to show density.

We're interested in $C^{b}(G, K)$: how can we abstract this? Any $\alpha \in C^{b}(G, K)$ defines a map

$$C_0(G) \to C_0(G, K); \quad a \mapsto (G \to \mathbb{C}; s \mapsto a(s)\alpha(s)).$$

A B K A B K

Actually, given $\alpha \in C^b(G, K)$, not only do we get a map $T : C_0(G) \to C_0(G, K)$, we get an "adjoint" $T^* : C_0(G, K) \to C_0(G)$ given by

$$T^*(\mathbf{x}) = (\mathbf{G} \to \mathbb{C}; \mathbf{s} \mapsto (\alpha(\mathbf{s}) | \mathbf{x}(\mathbf{s}))_{\mathcal{K}}).$$

This satisfies $(T^*(x)|a) = (x|T(a))$ for $x \in C_0(G, K)$ and $a \in C_0(G)$.

- Unlike for Hilbert spaces, not all maps between Hilbert C*-modules have adjoints.
- But, if a map is adjointable, it's automatically bounded and a module homomorphism.
- Write $\mathcal{L}(X, Y)$ for the space of maps which do have adjoints.
- Can show that $\mathcal{L}(C_0(G), C_0(G) \otimes K) \cong C^b(G, K)$.

< ロ > < 同 > < 回 > < 回 >

Actually, given $\alpha \in C^b(G, K)$, not only do we get a map $T : C_0(G) \to C_0(G, K)$, we get an "adjoint" $T^* : C_0(G, K) \to C_0(G)$ given by

$$T^*(\mathbf{x}) = (\mathbf{G}
ightarrow \mathbb{C}; \mathbf{s} \mapsto (lpha(\mathbf{s})|\mathbf{x}(\mathbf{s}))_{\mathcal{K}}).$$

This satisfies $(T^*(x)|a) = (x|T(a))$ for $x \in C_0(G, K)$ and $a \in C_0(G)$.

- Unlike for Hilbert spaces, not all maps between Hilbert C*-modules have adjoints.
- But, if a map is adjointable, it's automatically bounded and a module homomorphism.
- Write $\mathcal{L}(X, Y)$ for the space of maps which do have adjoints.
- Can show that $\mathcal{L}(C_0(G), C_0(G) \otimes K) \cong C^b(G, K)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Actually, given $\alpha \in C^b(G, K)$, not only do we get a map $T : C_0(G) \to C_0(G, K)$, we get an "adjoint" $T^* : C_0(G, K) \to C_0(G)$ given by

$$T^*(\mathbf{x}) = (\mathbf{G}
ightarrow \mathbb{C}; \mathbf{s} \mapsto (lpha(\mathbf{s})|\mathbf{x}(\mathbf{s}))_{\mathcal{K}}).$$

This satisfies $(T^*(x)|a) = (x|T(a))$ for $x \in C_0(G, K)$ and $a \in C_0(G)$.

- Unlike for Hilbert spaces, not all maps between Hilbert C*-modules have adjoints.
- But, if a map is adjointable, it's automatically bounded and a module homomorphism.
- Write $\mathcal{L}(X, Y)$ for the space of maps which do have adjoints.
- Can show that $\mathcal{L}(C_0(G), C_0(G) \otimes K) \cong C^b(G, K)$.

Actually, given $\alpha \in C^b(G, K)$, not only do we get a map $T : C_0(G) \to C_0(G, K)$, we get an "adjoint" $T^* : C_0(G, K) \to C_0(G)$ given by

$$T^*(\mathbf{x}) = (\mathbf{G}
ightarrow \mathbb{C}; \mathbf{s} \mapsto (lpha(\mathbf{s})|\mathbf{x}(\mathbf{s}))_{\mathcal{K}}).$$

This satisfies $(T^*(x)|a) = (x|T(a))$ for $x \in C_0(G, K)$ and $a \in C_0(G)$.

- Unlike for Hilbert spaces, not all maps between Hilbert C*-modules have adjoints.
- But, if a map is adjointable, it's automatically bounded and a module homomorphism.
- Write $\mathcal{L}(X, Y)$ for the space of maps which do have adjoints.
- Can show that $\mathcal{L}(C_0(G), C_0(G) \otimes K) \cong C^b(G, K)$.

Actually, given $\alpha \in C^b(G, K)$, not only do we get a map $T : C_0(G) \to C_0(G, K)$, we get an "adjoint" $T^* : C_0(G, K) \to C_0(G)$ given by

$$T^*(\mathbf{x}) = (\mathbf{G}
ightarrow \mathbb{C}; \mathbf{s} \mapsto (lpha(\mathbf{s})|\mathbf{x}(\mathbf{s}))_{\mathcal{K}}).$$

This satisfies $(T^*(x)|a) = (x|T(a))$ for $x \in C_0(G, K)$ and $a \in C_0(G)$.

- Unlike for Hilbert spaces, not all maps between Hilbert C*-modules have adjoints.
- But, if a map is adjointable, it's automatically bounded and a module homomorphism.
- Write $\mathcal{L}(X, Y)$ for the space of maps which do have adjoints.
- Can show that $\mathcal{L}(C_0(G), C_0(G) \otimes K) \cong C^b(G, K)$.

Actually, given $\alpha \in C^b(G, K)$, not only do we get a map $T : C_0(G) \to C_0(G, K)$, we get an "adjoint" $T^* : C_0(G, K) \to C_0(G)$ given by

$$T^*(\mathbf{x}) = (\mathbf{G}
ightarrow \mathbb{C}; \mathbf{s} \mapsto (lpha(\mathbf{s})|\mathbf{x}(\mathbf{s}))_{\mathcal{K}}).$$

This satisfies $(T^*(x)|a) = (x|T(a))$ for $x \in C_0(G, K)$ and $a \in C_0(G)$.

- Unlike for Hilbert spaces, not all maps between Hilbert C*-modules have adjoints.
- But, if a map is adjointable, it's automatically bounded and a module homomorphism.
- Write $\mathcal{L}(X, Y)$ for the space of maps which do have adjoints.
- Can show that $\mathcal{L}(C_0(G), C_0(G) \otimes K) \cong C^b(G, K)$.

A *locally compact quantum group* is a von Neumann algebra M which is equipped with a normal *-homomorphism $\Delta : M \to M \otimes M$ such that is coassociative: $(\Delta \otimes \iota)\Delta = (\iota \otimes \Delta)\Delta$.

- We also assume that *M* carries left and right invariant weights: I'll ignore these here: they are very important for the theory (but, if they exist, are unique, so in sense are intrinsic).
- As Δ is normal, we get an *associative* product on the predual M_* .
- We've seen one example: VN(G) and A(G).
- Another example: $L^{\infty}(G)$ with $\Delta : L^{\infty}(G) \to L^{\infty}(G \times G)$ given by $\Delta(F)(s,t) = F(st)$.
- This induces the usual convolution product on $L^1(G)$.
- Again, we have W a unitary on $L^2(G \times G)$ which induces Δ by $\Delta(F) = W^*(1 \otimes F)W$. Indeed, $W\xi(s,t) = \xi(s,s^{-1}t)$.

< 日 > < 同 > < 回 > < 回 > < □ > <

A *locally compact quantum group* is a von Neumann algebra M which is equipped with a normal *-homomorphism $\Delta : M \to M \otimes M$ such that is coassociative: $(\Delta \otimes \iota)\Delta = (\iota \otimes \Delta)\Delta$.

- We also assume that *M* carries left and right invariant weights: I'll ignore these here: they are very important for the theory (but, if they exist, are unique, so in sense are intrinsic).
- As Δ is normal, we get an *associative* product on the predual M_* .
- We've seen one example: VN(G) and A(G).
- Another example: $L^{\infty}(G)$ with $\Delta : L^{\infty}(G) \to L^{\infty}(G \times G)$ given by $\Delta(F)(s,t) = F(st)$.
- This induces the usual convolution product on $L^1(G)$.
- Again, we have W a unitary on $L^2(G \times G)$ which induces Δ by $\Delta(F) = W^*(1 \otimes F)W$. Indeed, $W\xi(s,t) = \xi(s,s^{-1}t)$.

< 日 > < 同 > < 回 > < 回 > < □ > <

A *locally compact quantum group* is a von Neumann algebra M which is equipped with a normal *-homomorphism $\Delta : M \to M \otimes M$ such that is coassociative: $(\Delta \otimes \iota)\Delta = (\iota \otimes \Delta)\Delta$.

- We also assume that *M* carries left and right invariant weights: I'll ignore these here: they are very important for the theory (but, if they exist, are unique, so in sense are intrinsic).
- As Δ is normal, we get an *associative* product on the predual M_* .
- We've seen one example: VN(G) and A(G).
- Another example: $L^{\infty}(G)$ with $\Delta : L^{\infty}(G) \to L^{\infty}(G \times G)$ given by $\Delta(F)(s,t) = F(st)$.
- This induces the usual convolution product on $L^1(G)$.
- Again, we have W a unitary on $L^2(G \times G)$ which induces Δ by $\Delta(F) = W^*(1 \otimes F)W$. Indeed, $W\xi(s,t) = \xi(s,s^{-1}t)$.

イロト 不得 トイヨト イヨト

A *locally compact quantum group* is a von Neumann algebra M which is equipped with a normal *-homomorphism $\Delta : M \to M \otimes M$ such that is coassociative: $(\Delta \otimes \iota)\Delta = (\iota \otimes \Delta)\Delta$.

- We also assume that *M* carries left and right invariant weights: I'll ignore these here: they are very important for the theory (but, if they exist, are unique, so in sense are intrinsic).
- As Δ is normal, we get an *associative* product on the predual M_* .
- We've seen one example: VN(G) and A(G).
- Another example: $L^{\infty}(G)$ with $\Delta : L^{\infty}(G) \to L^{\infty}(G \times G)$ given by $\Delta(F)(s,t) = F(st)$.
- This induces the usual convolution product on $L^1(G)$.
- Again, we have W a unitary on $L^2(G \times G)$ which induces Δ by $\Delta(F) = W^*(1 \otimes F)W$. Indeed, $W\xi(s,t) = \xi(s,s^{-1}t)$.

イロト 不得 トイヨト イヨト

A *locally compact quantum group* is a von Neumann algebra M which is equipped with a normal *-homomorphism $\Delta : M \to M \overline{\otimes} M$ such that is coassociative: $(\Delta \otimes \iota)\Delta = (\iota \otimes \Delta)\Delta$.

- We also assume that *M* carries left and right invariant weights: I'll ignore these here: they are very important for the theory (but, if they exist, are unique, so in sense are intrinsic).
- As Δ is normal, we get an *associative* product on the predual M_* .
- We've seen one example: VN(G) and A(G).
- Another example: $L^{\infty}(G)$ with $\Delta : L^{\infty}(G) \to L^{\infty}(G \times G)$ given by $\Delta(F)(s,t) = F(st)$.
- This induces the usual convolution product on $L^1(G)$.
- Again, we have W a unitary on $L^2(G \times G)$ which induces Δ by $\Delta(F) = W^*(1 \otimes F)W$. Indeed, $W\xi(s,t) = \xi(s, s^{-1}t)$.

A *locally compact quantum group* is a von Neumann algebra M which is equipped with a normal *-homomorphism $\Delta : M \to M \overline{\otimes} M$ such that is coassociative: $(\Delta \otimes \iota)\Delta = (\iota \otimes \Delta)\Delta$.

- We also assume that *M* carries left and right invariant weights: I'll ignore these here: they are very important for the theory (but, if they exist, are unique, so in sense are intrinsic).
- As Δ is normal, we get an *associative* product on the predual M_* .
- We've seen one example: VN(G) and A(G).
- Another example: $L^{\infty}(G)$ with $\Delta : L^{\infty}(G) \to L^{\infty}(G \times G)$ given by $\Delta(F)(s, t) = F(st)$.
- This induces the usual convolution product on $L^1(G)$.
- Again, we have W a unitary on $L^2(G \times G)$ which induces Δ by $\Delta(F) = W^*(1 \otimes F)W$. Indeed, $W\xi(s,t) = \xi(s, s^{-1}t)$.

A *locally compact quantum group* is a von Neumann algebra M which is equipped with a normal *-homomorphism $\Delta : M \to M \otimes M$ such that is coassociative: $(\Delta \otimes \iota)\Delta = (\iota \otimes \Delta)\Delta$.

- We also assume that *M* carries left and right invariant weights: I'll ignore these here: they are very important for the theory (but, if they exist, are unique, so in sense are intrinsic).
- As Δ is normal, we get an *associative* product on the predual M_* .
- We've seen one example: VN(G) and A(G).
- Another example: $L^{\infty}(G)$ with $\Delta : L^{\infty}(G) \to L^{\infty}(G \times G)$ given by $\Delta(F)(s, t) = F(st)$.
- This induces the usual convolution product on $L^1(G)$.
- Again, we have W a unitary on $L^2(G \times G)$ which induces Δ by $\Delta(F) = W^*(1 \otimes F)W$. Indeed, $W\xi(s, t) = \xi(s, s^{-1}t)$.

Inside *M* is a C*-algebra *A*, and Δ restricts to a map $\Delta : A \rightarrow M(A \otimes A)$.

- For $L^{\infty}(G)$, we get $C_0(G)$ (mapping into $C^b(G \times G)$).
- For VN(G), we get $C_r^*(G)$.
- Given *M*, we can form a "dual group" $(\hat{M}, \hat{\Delta})$, and we have that $(M, \Delta) \cong (\hat{\hat{M}}, \hat{\hat{\Delta}})$.
 - The dual of $L^{\infty}(G)$ is VN(G), so in some sense, this generalises Pontryagin duality.
 - Very roughly, we build a Hilbert space *H* from *M*. Then *M*_{*} acts on *H*; the WOT closure is then *M*; the norm closure is *Â*.

Inside *M* is a C*-algebra *A*, and Δ restricts to a map $\Delta : A \rightarrow M(A \otimes A)$.

- For $L^{\infty}(G)$, we get $C_0(G)$ (mapping into $C^b(G \times G)$).
- For VN(G), we get $C_r^*(G)$.
- Given M, we can form a "dual group" $(\hat{M}, \hat{\Delta})$, and we have that $(M, \Delta) \cong (\hat{\hat{M}}, \hat{\hat{\Delta}})$.
 - The dual of *L*[∞](*G*) is *VN*(*G*), so in some sense, this generalises Pontryagin duality.
 - Very roughly, we build a Hilbert space *H* from *M*. Then *M*_{*} acts on *H*; the WOT closure is then *M*; the norm closure is *Â*.

Inside *M* is a C*-algebra *A*, and Δ restricts to a map $\Delta : A \rightarrow M(A \otimes A)$.

- For $L^{\infty}(G)$, we get $C_0(G)$ (mapping into $C^b(G \times G)$).
- For VN(G), we get $C_r^*(G)$.
- Given M, we can form a "dual group" $(\hat{M}, \hat{\Delta})$, and we have that $(M, \Delta) \cong (\hat{\hat{M}}, \hat{\hat{\Delta}})$.
 - The dual of $L^{\infty}(G)$ is VN(G), so in some sense, this generalises Pontryagin duality.
 - Very roughly, we build a Hilbert space *H* from *M*. Then *M*_{*} acts on *H*; the WOT closure is then *M*; the norm closure is *Â*.

Inside *M* is a C*-algebra *A*, and Δ restricts to a map $\Delta : A \rightarrow M(A \otimes A)$.

- For $L^{\infty}(G)$, we get $C_0(G)$ (mapping into $C^b(G \times G)$).
- For VN(G), we get $C_r^*(G)$.

Given *M*, we can form a "dual group" $(\hat{M}, \hat{\Delta})$, and we have that $(M, \Delta) \cong (\hat{\hat{M}}, \hat{\hat{\Delta}})$.

- The dual of $L^{\infty}(G)$ is VN(G), so in some sense, this generalises Pontryagin duality.
- Very roughly, we build a Hilbert space *H* from *M*. Then *M*_{*} acts on *H*; the WOT closure is then *M*; the norm closure is *Â*.

< 回 > < 三 > < 三 >

Inside M is a C*-algebra A, and Δ restricts to a map $\Delta: A \to M(A \otimes A).$

- For $L^{\infty}(G)$, we get $C_0(G)$ (mapping into $C^b(G \times G)$).
- For VN(G), we get $C_r^*(G)$.

Given M, we can form a "dual group" ($\hat{M}, \hat{\Delta}$), and we have that $(M, \Delta) \cong (\hat{M}, \hat{\Delta}).$

- The dual of $L^{\infty}(G)$ is VN(G), so in some sense, this generalises Pontryagin duality.
- Very roughly, we build a Hilbert space H from M. Then M_* acts on

Inside *M* is a C*-algebra *A*, and Δ restricts to a map $\Delta : A \rightarrow M(A \otimes A)$.

- For $L^{\infty}(G)$, we get $C_0(G)$ (mapping into $C^b(G \times G)$).
- For VN(G), we get $C_r^*(G)$.

Given M, we can form a "dual group" $(\hat{M}, \hat{\Delta})$, and we have that $(M, \Delta) \cong (\hat{M}, \hat{\Delta})$.

- The dual of $L^{\infty}(G)$ is VN(G), so in some sense, this generalises Pontryagin duality.
- Very roughly, we build a Hilbert space H from M. Then M_{*} acts on H; the WOT closure is then M̂; the norm closure is Â.

- In the "classical" setup, we have that $M(L^1(G)) = M(G) \rightarrow M(C_r^*(G))$. This is just the extension of $\lambda : L^1(G) \rightarrow \mathcal{B}(L^2(G))$.
- Similarly, $M_{cb}A(G) \rightarrow C^b(G) = M(C_0(G))$.
- The duality framework gives a map $\hat{\lambda} : \hat{M}_* \to A$.
- [Daws], building heavily on work of [Kraus, Ruan]. This does indeed extend to a homomorphism $\hat{\Lambda} : M_{cb}(\hat{M}_*) \to M(A)$.
- This satisfies, for $(L, R) \in M_{cb}(\hat{M}_*), \hat{\omega} \in \hat{M}_*,$

 $\hat{\wedge}\big((L,R)\big)\hat{\lambda}(\hat{\omega}) = \hat{\lambda}\big(L(\hat{\omega})\big), \quad \hat{\lambda}(\hat{\omega})\hat{\wedge}\big((L,R)\big) = \hat{\lambda}\big(R(\hat{\omega})\big).$

A (10) A (10) A (10)

- In the "classical" setup, we have that $M(L^1(G)) = M(G) \rightarrow M(C_r^*(G))$. This is just the extension of $\lambda : L^1(G) \rightarrow \mathcal{B}(L^2(G))$.
- Similarly, $M_{cb}A(G) \rightarrow C^{b}(G) = M(C_{0}(G))$.

• The duality framework gives a map $\hat{\lambda} : \hat{M}_* \to A$.

- [Daws], building heavily on work of [Kraus, Ruan]. This does indeed extend to a homomorphism $\hat{\Lambda} : M_{cb}(\hat{M}_*) \to M(A)$.
- This satisfies, for $(L, R) \in M_{cb}(\hat{M}_*), \hat{\omega} \in \hat{M}_*,$

 $\hat{\wedge}\big((L,R)\big)\hat{\lambda}(\hat{\omega}) = \hat{\lambda}\big(L(\hat{\omega})\big), \quad \hat{\lambda}(\hat{\omega})\hat{\wedge}\big((L,R)\big) = \hat{\lambda}\big(R(\hat{\omega})\big).$

A (10) A (10) A (10)

- In the "classical" setup, we have that $M(L^1(G)) = M(G) \rightarrow M(C_r^*(G))$. This is just the extension of $\lambda : L^1(G) \rightarrow \mathcal{B}(L^2(G))$.
- Similarly, $M_{cb}A(G) \rightarrow C^b(G) = M(C_0(G))$.
- The duality framework gives a map $\hat{\lambda}: \hat{M}_* \to A$.
- [Daws], building heavily on work of [Kraus, Ruan]. This does indeed extend to a homomorphism $\hat{\Lambda} : M_{cb}(\hat{M}_*) \to M(A)$.
- This satisfies, for $(L, R) \in M_{cb}(\hat{M}_*), \hat{\omega} \in \hat{M}_*,$

 $\hat{\wedge}\big((L,R)\big)\hat{\lambda}(\hat{\omega}) = \hat{\lambda}\big(L(\hat{\omega})\big), \quad \hat{\lambda}(\hat{\omega})\hat{\wedge}\big((L,R)\big) = \hat{\lambda}\big(R(\hat{\omega})\big).$

A (10) A (10)

- In the "classical" setup, we have that $M(L^1(G)) = M(G) \rightarrow M(C_r^*(G))$. This is just the extension of $\lambda : L^1(G) \rightarrow \mathcal{B}(L^2(G))$.
- Similarly, $M_{cb}A(G) \rightarrow C^{b}(G) = M(C_{0}(G))$.
- The duality framework gives a map $\hat{\lambda} : \hat{M}_* \to A$.
- [Daws], building heavily on work of [Kraus, Ruan]. This does indeed extend to a homomorphism : M_{cb}(Â_{*}) → M(A).
- This satisfies, for $(L, R) \in M_{cb}(\hat{M}_*), \hat{\omega} \in \hat{M}_*,$

 $\hat{\Lambda}((L,R))\hat{\lambda}(\hat{\omega}) = \hat{\lambda}(L(\hat{\omega})), \quad \hat{\lambda}(\hat{\omega})\hat{\Lambda}((L,R)) = \hat{\lambda}(R(\hat{\omega})).$

< 回 > < 回 > < 回 > -

- In the "classical" setup, we have that $M(L^1(G)) = M(G) \rightarrow M(C_r^*(G))$. This is just the extension of $\lambda : L^1(G) \rightarrow \mathcal{B}(L^2(G))$.
- Similarly, $M_{cb}A(G) \rightarrow C^b(G) = M(C_0(G))$.
- The duality framework gives a map $\hat{\lambda} : \hat{M}_* \to A$.
- [Daws], building heavily on work of [Kraus, Ruan]. This does indeed extend to a homomorphism : M_{cb}(Â_{*}) → M(A).
- This satisfies, for $(L, R) \in M_{cb}(\hat{M}_*), \hat{\omega} \in \hat{M}_*,$

 $\hat{\Lambda}((L,R))\hat{\lambda}(\hat{\omega}) = \hat{\lambda}(L(\hat{\omega})), \quad \hat{\lambda}(\hat{\omega})\hat{\Lambda}((L,R)) = \hat{\lambda}(R(\hat{\omega})).$

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

• We replace $C^{b}(G, K)$ by $\mathcal{L}(A, A \otimes K)$.

Given α ∈ L(A, A ⊗ K), there is a way to define
 Δ ∗ α ∈ L(A ⊗ A, A ⊗ A ⊗ K). This generalises the map

 $C^{b}(G,K) \rightarrow C^{b}(G \times G,K); \quad f \mapsto (G \times G \rightarrow K; (s,t) \mapsto f(st)).$

• We say that a pair of maps $\alpha, \beta \in \mathcal{L}(A, A \otimes K)$ is "invariant" if

 $(1 \otimes \beta^*)(\Delta * \alpha) \in M(A) \otimes 1.$

(This is always in $\mathcal{L}(A \otimes A) \cong M(A \otimes A)$). This generalises the possibility of finding $f \in C^{b}(G)$ with

 $f(st^{-1}) = (\beta(t)|\alpha(s)) \Leftrightarrow (\beta(t)|\alpha(st))$ constant in t.

- We replace $C^{b}(G, K)$ by $\mathcal{L}(A, A \otimes K)$.
- Given α ∈ L(A, A ⊗ K), there is a way to define
 Δ * α ∈ L(A ⊗ A, A ⊗ A ⊗ K). This generalises the map

 $C^{b}(G, K) \rightarrow C^{b}(G \times G, K); \quad f \mapsto (G \times G \rightarrow K; (s, t) \mapsto f(st)).$

• We say that a pair of maps $\alpha, \beta \in \mathcal{L}(A, A \otimes K)$ is "invariant" if

 $(1 \otimes \beta^*)(\Delta * \alpha) \in M(A) \otimes 1.$

(This is always in $\mathcal{L}(A \otimes A) \cong M(A \otimes A)$). This generalises the possibility of finding $f \in C^{b}(G)$ with

 $f(st^{-1}) = (\beta(t)|\alpha(s)) \Leftrightarrow (\beta(t)|\alpha(st))$ constant in t.

- We replace $C^{b}(G, K)$ by $\mathcal{L}(A, A \otimes K)$.
- Given α ∈ L(A, A ⊗ K), there is a way to define
 Δ * α ∈ L(A ⊗ A, A ⊗ A ⊗ K). This generalises the map

 $C^{b}(G, K) \rightarrow C^{b}(G \times G, K); \quad f \mapsto (G \times G \rightarrow K; (s, t) \mapsto f(st)).$

• We say that a pair of maps $\alpha, \beta \in \mathcal{L}(A, A \otimes K)$ is "invariant" if

$$(1 \otimes \beta^*)(\Delta * \alpha) \in M(A) \otimes 1.$$

(This is always in $\mathcal{L}(A \otimes A) \cong M(A \otimes A)$). This generalises the possibility of finding $f \in C^{b}(G)$ with

 $f(st^{-1}) = (\beta(t)|\alpha(s)) \Leftrightarrow (\beta(t)|\alpha(st))$ constant in t.

- We replace $C^{b}(G, K)$ by $\mathcal{L}(A, A \otimes K)$.
- Given α ∈ L(A, A ⊗ K), there is a way to define
 Δ * α ∈ L(A ⊗ A, A ⊗ A ⊗ K). This generalises the map

$$\mathcal{C}^{b}(G,\mathcal{K})
ightarrow\mathcal{C}^{b}(G imes G,\mathcal{K}); \quad f\mapsto ig(G imes G
ightarrow\mathcal{K};(s,t)\mapsto f(st)ig).$$

• We say that a pair of maps $\alpha, \beta \in \mathcal{L}(A, A \otimes K)$ is "invariant" if

$$(1 \otimes \beta^*)(\Delta * \alpha) \in M(A) \otimes 1.$$

(This is always in $\mathcal{L}(A \otimes A) \cong M(A \otimes A)$). This generalises the possibility of finding $f \in C^{b}(G)$ with

 $f(st^{-1}) = (\beta(t)|\alpha(s)) \Leftrightarrow (\beta(t)|\alpha(st))$ constant in t.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

There is a bijection between:

- "Represented" completely bounded left multipliers *L*. That is, cb maps *L* : *M*_{*} → *M*_{*} with *L*(*ŵô*) = *L*(*ŵ*)*ô*, and such that there is *x* ∈ *M*(*A*) with *xλ*(*ŵ*) = *λ*(*L*(*ŵ*)). (Notice that this is always true for the "left half" of a cb multiplier (*L*, *R*)).
- 2 Invariant pairs (α, β) in $\mathcal{L}(A, A \otimes K)$ with $(1 \otimes \beta^*)(\Delta * \alpha) = x \otimes 1$. In this case, the map $L^* : \hat{M} \to \hat{M}$ is given by

$$L^* = \tilde{\beta}^*(x \otimes 1)\tilde{\alpha} \qquad (x \in \hat{M}).$$

Here $\tilde{\alpha} : H \to H \otimes K$ is built from α , where *H* is the canonical Hilbert space given by *M*.

< 回 > < 三 > < 三 >

There is a bijection between:

- "Represented" completely bounded left multipliers *L*. That is, cb maps *L* : *M̂*_{*} → *M̂*_{*} with *L*(*ŵô*) = *L*(*ŵ*)*ô*, and such that there is *x* ∈ *M*(*A*) with *xλ*(*ŵ*) = *λ*(*L*(*ŵ*)). (Notice that this is always true for the "left half" of a cb multiplier (*L*, *R*)).
- 2 Invariant pairs (α, β) in $\mathcal{L}(A, A \otimes K)$ with $(1 \otimes \beta^*)(\Delta * \alpha) = x \otimes 1$. In this case, the map $L^* : \hat{M} \to \hat{M}$ is given by

$$L^* = \tilde{\beta}^*(x \otimes 1)\tilde{\alpha} \qquad (x \in \hat{M}).$$

Here $\tilde{\alpha} : H \to H \otimes K$ is built from α , where *H* is the canonical Hilbert space given by *M*.

・ 同 ト ・ ヨ ト ・ ヨ ト

There is a bijection between:

- "Represented" completely bounded left multipliers *L*. That is, cb maps *L* : *M̂*_{*} → *M̂*_{*} with *L*(*ŵô*) = *L*(*ŵ*)*ô*, and such that there is *x* ∈ *M*(*A*) with *xλ*(*ŵ*) = *λ*(*L*(*ŵ*)). (Notice that this is always true for the "left half" of a cb multiplier (*L*, *R*)).
- 2 Invariant pairs (α, β) in $\mathcal{L}(A, A \otimes K)$ with $(1 \otimes \beta^*)(\Delta * \alpha) = x \otimes 1$. n this case, the map $L^* : \hat{M} \to \hat{M}$ is given by

$$L^* = \tilde{\beta}^*(x \otimes 1)\tilde{\alpha} \qquad (x \in \hat{M}).$$

Here $\tilde{\alpha} : H \to H \otimes K$ is built from α , where *H* is the canonical Hilbert space given by *M*.

< 日 > < 同 > < 回 > < 回 > < □ > <

There is a bijection between:

- "Represented" completely bounded left multipliers *L*. That is, cb maps *L* : *M̂*_{*} → *M̂*_{*} with *L*(*ŵô*) = *L*(*ŵ*)*ô*, and such that there is *x* ∈ *M*(*A*) with *xλ*(*ŵ*) = *λ*(*L*(*ŵ*)). (Notice that this is always true for the "left half" of a cb multiplier (*L*, *R*)).
- 2 Invariant pairs (α, β) in $\mathcal{L}(A, A \otimes K)$ with $(1 \otimes \beta^*)(\Delta * \alpha) = x \otimes 1$. In this case, the map $L^* : \hat{M} \to \hat{M}$ is given by

$$L^* = \tilde{\beta}^* (x \otimes 1) \tilde{\alpha} \qquad (x \in \hat{M}).$$

Here $\tilde{\alpha} : H \to H \otimes K$ is built from α , where *H* is the canonical Hilbert space given by *M*.

A THE A THE A