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Dual Banach algebras

A dual Banach algebras is a Banach algebra A which is a dual
space, A = E ′, such that the product is separately
weak∗-continuous.

I Recall that a C∗-algebra which is a dual Banach space is
called a W∗-algebra or a von Neumann algebra.

I Then the product, and involution, are weak∗-continuous.

If E ′ = A is a dual Banach algebra, then E ↪→ E ′′ = A′. Then
the product is weak∗-continuous if and only if E is a submodule
of A′.
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Unique preduals?

It is common knowledge that “A von Neumann algebra has a
unique predual”.
What, exactly, do we mean by this?

Theorem
Let M be a von Neumann algebra, let E be a Banach space,
and let θ : M→ E ′ be an isometric isomorphism. Then θ is
weak∗-continuous.
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Yes: in some sense

However, Pełczyński showed that `∞ and L∞[0, 1] are
isomorphic as Banach spaces. So the “isometric” condition
before is essential.

Theorem (D. & White)
Let M be a von Neumann algebra, let A be a dual Banach
algebra, and let θ : M→A be a Banach algebra isomorphism.
Then θ is weak∗-continuous.
Thus, if we ignore the involution, and the isometric structure, of
a von Neumann algebra, but not its algebra structure, then we
still have the unique predual property.
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Discrete groups

Let G be a discrete group, and form the convolution Banach
algebra `1(G). Every a ∈ `1(G) admits a representation of the
form

a =
∑
g∈G

agδg , ‖a‖ =
∑
g∈G

|ag |.

This is a dual Banach algebra with predual c0(G).
Is this the only predual which makes the product
weak∗-continuous?
If G is countable, and K is locally compact and countable, then

C0(K )′ = M(K ) = `1(K ) ∼= `1(G).
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C∗-preduals

Notice that the canonical predual c0(G), and the dual `∞(G),
are C∗-algebras.

Theorem (D. & White)
Let E ⊆ `∞(G) be a predual for `1(G). If E is also a
C∗-subalgebra of `∞(G), then E = c0(G).
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Coassociative products

Let E be a predual for `1(G). Then

(E⊗̌E)′ = E ′⊗̂E ′ ∼= `1(G ×G).

Consider the map

∆ : `1(G) → `1(G ×G), δg 7→ δg ⊗ δg = δ(g,g).

This is a coassociative product; compare with work of Effros
and Ruan, “Operator space tensor products and Hopf
convolution algebras.”
A simple calculation shows that ∆ is weak∗-continuous if and
only if E is a subalgebra of `1(G)′ = `∞(G).
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Duality: Compact groups

Dual to `1(G) for a discrete group G is A(H), the Fourier
algebra of a compact group H. This is the dual of C∗(H), and
the predual of VN(H).
Example: SU(2).

Theorem (D. & White)
Let E ⊆ VN(H) be a predual for A(H) which is also a
∗-subalgebra. Then E = C∗(H).
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Semigroups

We now turn to finding general preduals of `1(G). This is joint
work with Haydon, Schlumprecht and White.
Let E ⊆ `∞(G) be a predual. Let A be the unital C∗-algebra
generated by E in `∞(G). Thus A ∼= C(K ) and so A′ ∼= M(K ).
We get an injection G → K which we can use to extend the
product on G to K . Then K becomes a semitopological
semigroup containing G densely.

Theorem
There is a projection P : M(K ) → `1(G) which is an algebra
homomorphism, and such that

E = ⊥(ker P) = {f ∈ C(K ) : f (a) = 0 (P(a) = 0)}.

Furthermore, ker P is weak∗-closed.
P is just the adjoint of the inclusion E → A = C(K ).
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Constructions

We simply reverse the above argument. That is, we find a
compact semitopological semigroup K which contains G
densely, so we can identify `1(G) ⊂ M(K ). Suppose we have
defined a projection P : M(K ) → `1(G) which is a
homomorphism.

Theorem
Let ⊥(ker P) induce a space of functionals on `1(G), say
E ⊆ `∞(G). Then E is a predual for `1(G) if and only if ker P is
weak∗-closed.
What is E though?

Theorem
Let (aα) be a bounded net in `1(G) which tends weak∗ to
b ∈ C(K )′ = M(K ). Then (aα) tends to a = P(b) in the
weak∗-topology on `1(G) induced by E.
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Case study: G = Z

Pick the easiest compacitification of Z. Let z be some extra
generator, and form the free abelian semigroup generated by Z
and z, together with ∞. So everything in K is of the form

nz + k (n ≥ 0, k ∈ Z).

We give K some complicated topology.
The projection P : M(K ) = `1(K ) → `1(Z) is uniquely
determined by

P(δk ) = δk , P(δz) = a (k ∈ Z),

for some a ∈ `1(Z).
Given a suitable topology on K , we can prove some abstract
results about when (ker P) is weak∗-closed. In particular, this
will hold if

∑
n ‖an‖ < ∞.
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Conclusions

Theorem
Let J ⊆ Z be a “sparse” set, let a ∈ `1(Z) with ‖a‖ < 1. There
exists a predual for `1(Z) such that δn → a, as n tends through
J, in the weak∗-topology.

I Let a = λδ0 for some |λ| < 1, and let J = {2n}. Then the
predual we construct is isomorphic to a C(K ) space.
Furthermore, we can calculate the Szlenk index, showing
that E ∼= c0.

I Of course, such an isomorphism does not respect duality.
I For this example, the involution on `1(Z) is not

weak∗-continuous.
I Let a = δ0; then if we could find a predual as above, this

predual would have uncountable Szlenk index, showing
that the predual were itself uncountable!

I Surely there is a Banach algebra proof of this!
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Future work

Runde defined the concept of Connes-amenability for dual
Banach algebras: simply take the usual notion of amenability,
and make everything in sight weak∗-continuous.

I Then `1(G) is Connes-amenable if and only if G is
amenable.

I Of course, this is with respect to the predual c0(G).
I If G is amenable, then `1(G) is amenable, so `1(G) is

Connes-amenable for any predual.
I However, could we find a predual of `1(F2), say, making

this algebra Connes-amenable?
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