Uniqueness of preduals

Matthew Daws

9th July 2007

www.maths.ox.ac.uk/~daws

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

A *dual Banach algebras* is a Banach algebra A which is a dual space, A = E', such that the product is separately weak*-continuous.

- Recall that a C*-algebra which is a dual Banach space is called a W*-algebra or a von Neumann algebra.
- ▶ Then the product, and involution, are weak*-continuous.

If E' = A is a dual Banach algebra, then $E \hookrightarrow E'' = A'$. Then the product is weak*-continuous if and only if *E* is a *submodule* of A'.

A *dual Banach algebras* is a Banach algebra A which is a dual space, A = E', such that the product is separately weak*-continuous.

- Recall that a C*-algebra which is a dual Banach space is called a W*-algebra or a von Neumann algebra.
- ▶ Then the product, and involution, are weak*-continuous.

If E' = A is a dual Banach algebra, then $E \hookrightarrow E'' = A'$. Then the product is weak*-continuous if and only if E is a *submodule* of A'.

A *dual Banach algebras* is a Banach algebra A which is a dual space, A = E', such that the product is separately weak*-continuous.

- Recall that a C*-algebra which is a dual Banach space is called a W*-algebra or a von Neumann algebra.
- ► Then the product, and involution, are weak*-continuous.

If E' = A is a dual Banach algebra, then $E \hookrightarrow E'' = A'$. Then the product is weak*-continuous if and only if E is a *submodule* of A'.

A *dual Banach algebras* is a Banach algebra A which is a dual space, A = E', such that the product is separately weak*-continuous.

- Recall that a C*-algebra which is a dual Banach space is called a W*-algebra or a von Neumann algebra.
- ► Then the product, and involution, are weak*-continuous.

If E' = A is a dual Banach algebra, then $E \hookrightarrow E'' = A'$. Then the product is weak*-continuous if and only if *E* is a *submodule* of A'.

It is common knowledge that "A von Neumann algebra has a unique predual".

What, exactly, do we mean by this?

Theorem

Let \mathcal{M} be a von Neumann algebra, let E be a Banach space, and let $\theta : \mathcal{M} \to E'$ be an isometric isomorphism. Then θ is weak^{*}-continuous.

It is common knowledge that "A von Neumann algebra has a unique predual". What, exactly, do we mean by this?

Theorem

Let \mathcal{M} be a von Neumann algebra, let E be a Banach space, and let $\theta : \mathcal{M} \to E'$ be an isometric isomorphism. Then θ is weak^{*}-continuous. It is common knowledge that "A von Neumann algebra has a unique predual".

What, exactly, do we mean by this?

Theorem

Let \mathcal{M} be a von Neumann algebra, let E be a Banach space, and let $\theta : \mathcal{M} \to E'$ be an isometric isomorphism. Then θ is weak^{*}-continuous.

Yes: in some sense

However, Pełczyński showed that ℓ^{∞} and $L^{\infty}[0, 1]$ are *isomorphic* as Banach spaces. So the "isometric" condition before is essential.

Theorem (D. & White)

Let \mathcal{M} be a von Neumann algebra, let \mathcal{A} be a dual Banach algebra, and let $\theta : \mathcal{M} \to \mathcal{A}$ be a Banach algebra isomorphism. Then θ is weak*-continuous.

Thus, if we ignore the involution, and the isometric structure, of a von Neumann algebra, but not its algebra structure, then we still have the unique predual property.

(日) (日) (日) (日) (日) (日) (日)

Yes: in some sense

However, Pełczyński showed that ℓ^{∞} and $L^{\infty}[0, 1]$ are *isomorphic* as Banach spaces. So the "isometric" condition before is essential.

Theorem (D. & White)

Let \mathcal{M} be a von Neumann algebra, let \mathcal{A} be a dual Banach algebra, and let $\theta : \mathcal{M} \to \mathcal{A}$ be a Banach algebra isomorphism. Then θ is weak*-continuous.

Thus, if we ignore the involution, and the isometric structure, of a von Neumann algebra, but not its algebra structure, then we still have the unique predual property.

Yes: in some sense

However, Pełczyński showed that ℓ^{∞} and $L^{\infty}[0, 1]$ are *isomorphic* as Banach spaces. So the "isometric" condition before is essential.

Theorem (D. & White)

Let \mathcal{M} be a von Neumann algebra, let \mathcal{A} be a dual Banach algebra, and let $\theta : \mathcal{M} \to \mathcal{A}$ be a Banach algebra isomorphism. Then θ is weak*-continuous.

Thus, if we ignore the involution, and the isometric structure, of a von Neumann algebra, but not its algebra structure, then we still have the unique predual property.

Let *G* be a discrete group, and form the convolution Banach algebra $\ell^1(G)$. Every $a \in \ell^1(G)$ admits a representation of the form

$$a = \sum_{g \in G} a_g \delta_g, \quad \|a\| = \sum_{g \in G} |a_g|.$$

This is a dual Banach algebra with predual $c_0(G)$. Is this the only predual which makes the product weak*-continuous?

If G is countable, and K is locally compact and countable, then

$$C_0(K)' = M(K) = \ell^1(K) \cong \ell^1(G).$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Let *G* be a discrete group, and form the convolution Banach algebra $\ell^1(G)$. Every $a \in \ell^1(G)$ admits a representation of the form

$$a = \sum_{g \in G} a_g \delta_g, \quad \|a\| = \sum_{g \in G} |a_g|.$$

This is a dual Banach algebra with predual $c_0(G)$.

Is this the only predual which makes the product weak*-continuous?

If G is countable, and K is locally compact and countable, then

$$C_0(K)' = M(K) = \ell^1(K) \cong \ell^1(G).$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Let *G* be a discrete group, and form the convolution Banach algebra $\ell^1(G)$. Every $a \in \ell^1(G)$ admits a representation of the form

$$a = \sum_{g \in G} a_g \delta_g, \quad \|a\| = \sum_{g \in G} |a_g|.$$

This is a dual Banach algebra with predual $c_0(G)$. Is this the only predual which makes the product weak^{*}-continuous?

If G is countable, and K is locally compact and countable, then

$$C_0(K)' = M(K) = \ell^1(K) \cong \ell^1(G).$$

(日) (日) (日) (日) (日) (日) (日)

Let *G* be a discrete group, and form the convolution Banach algebra $\ell^1(G)$. Every $a \in \ell^1(G)$ admits a representation of the form

$$a = \sum_{g \in G} a_g \delta_g, \quad \|a\| = \sum_{g \in G} |a_g|.$$

This is a dual Banach algebra with predual $c_0(G)$. Is this the only predual which makes the product weak*-continuous?

If G is countable, and K is locally compact and countable, then

$$C_0(K)' = M(K) = \ell^1(K) \cong \ell^1(G).$$

(日) (日) (日) (日) (日) (日) (日)

C*-preduals

Notice that the canonical predual $c_0(G)$, and the dual $\ell^{\infty}(G)$, are C^{*}-algebras.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Theorem (D. & White) Let $E \subseteq \ell^{\infty}(G)$ be a predual for $\ell^1(G)$. If E is also a C^* -subalgebra of $\ell^{\infty}(G)$, then $E = c_0(G)$.

C*-preduals

Notice that the canonical predual $c_0(G)$, and the dual $\ell^{\infty}(G)$, are C^{*}-algebras.

(日) (日) (日) (日) (日) (日) (日)

Let *E* be a predual for $\ell^1(G)$. Then

$$(E\check{\otimes}E)' = E'\widehat{\otimes}E' \cong \ell^1(G \times G).$$

Consider the map

$$\Delta: \ell^1(G) \to \ell^1(G \times G), \quad \delta_g \mapsto \delta_g \otimes \delta_g = \delta_{(g,g)}.$$

This is a coassociative product; compare with work of Effros and Ruan, "Operator space tensor products and Hopf convolution algebras."

A simple calculation shows that Δ is weak*-continuous if and only if *E* is a subalgebra of $\ell^1(G)' = \ell^{\infty}(G)$.

Theorem (D. & White)

Let *E* be a predual for $\ell^1(G)$. Then

$$(E\check{\otimes}E)' = E'\widehat{\otimes}E' \cong \ell^1(G \times G).$$

Consider the map

$$\Delta: \ell^1(G) \to \ell^1(G \times G), \quad \delta_g \mapsto \delta_g \otimes \delta_g = \delta_{(g,g)}.$$

This is a coassociative product; compare with work of Effros and Ruan, "Operator space tensor products and Hopf convolution algebras."

A simple calculation shows that Δ is weak*-continuous if and only if *E* is a subalgebra of $\ell^1(G)' = \ell^{\infty}(G)$.

Theorem (D. & White)

Let *E* be a predual for $\ell^1(G)$. Then

$$(E\check{\otimes}E)' = E'\widehat{\otimes}E' \cong \ell^1(G \times G).$$

Consider the map

$$\Delta: \ell^1(\mathcal{G}) \to \ell^1(\mathcal{G} \times \mathcal{G}), \quad \delta_g \mapsto \delta_g \otimes \delta_g = \delta_{(g,g)}.$$

This is a coassociative product; compare with work of Effros and Ruan, "Operator space tensor products and Hopf convolution algebras."

A simple calculation shows that Δ is weak*-continuous if and only if *E* is a subalgebra of $\ell^1(G)' = \ell^\infty(G)$.

Theorem (D. & White)

Let *E* be a predual for $\ell^1(G)$. Then

$$(E\check{\otimes}E)' = E'\widehat{\otimes}E' \cong \ell^1(G \times G).$$

Consider the map

$$\Delta: \ell^1(G) \to \ell^1(G \times G), \quad \delta_g \mapsto \delta_g \otimes \delta_g = \delta_{(g,g)}.$$

This is a coassociative product; compare with work of Effros and Ruan, "Operator space tensor products and Hopf convolution algebras."

A simple calculation shows that Δ is weak*-continuous if and only if *E* is a subalgebra of $\ell^1(G)' = \ell^{\infty}(G)$.

Theorem (D. & White)

Let *E* be a predual for $\ell^1(G)$. Then

$$(E\check{\otimes}E)' = E'\widehat{\otimes}E' \cong \ell^1(G \times G).$$

Consider the map

$$\Delta: \ell^1(G) \to \ell^1(G \times G), \quad \delta_g \mapsto \delta_g \otimes \delta_g = \delta_{(g,g)}.$$

This is a coassociative product; compare with work of Effros and Ruan, "Operator space tensor products and Hopf convolution algebras."

A simple calculation shows that Δ is weak*-continuous if and only if *E* is a subalgebra of $\ell^1(G)' = \ell^{\infty}(G)$.

Theorem (D. & White)

Duality: Compact groups

Dual to $\ell^1(G)$ for a discrete group *G* is A(H), the *Fourier* algebra of a compact group *H*. This is the dual of $C^*(H)$, and the predual of VN(H).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Example: SU(2).

Theorem (D. & White)

Let $E \subseteq VN(H)$ be a predual for A(H) which is also a *-subalgebra. Then $E = C^*(H)$.

Duality: Compact groups

Dual to $\ell^1(G)$ for a discrete group *G* is A(H), the *Fourier* algebra of a compact group *H*. This is the dual of $C^*(H)$, and the predual of VN(H). Example: SU(2).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Theorem (D. & White)

Let $E \subseteq VN(H)$ be a predual for A(H) which is also a *-subalgebra. Then $E = C^*(H)$.

Duality: Compact groups

Dual to $\ell^1(G)$ for a discrete group *G* is A(H), the *Fourier* algebra of a compact group *H*. This is the dual of $C^*(H)$, and the predual of VN(H). Example: SU(2).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Theorem (D. & White)

Let $E \subseteq VN(H)$ be a predual for A(H) which is also a **-subalgebra*. Then $E = C^*(H)$.

We now turn to finding general preduals of $\ell^1(G)$. This is joint work with Haydon, Schlumprecht and White.

Let $E \subseteq \ell^{\infty}(G)$ be a predual. Let \mathcal{A} be the unital C*-algebra generated by E in $\ell^{\infty}(G)$. Thus $\mathcal{A} \cong C(K)$ and so $\mathcal{A}' \cong M(K)$. We get an injection $G \to K$ which we can use to extend the product on G to K. Then K becomes a *semitopological semigroup* containing G densely.

Theorem

There is a projection $P: M(K) \rightarrow \ell^1(G)$ which is an algebra homomorphism, and such that

$$E = {}^{\perp}(\ker P) = \{ f \in C(K) : f(a) = 0 \ (P(a) = 0) \}.$$

Furthermore, ker P is weak*-closed.

We now turn to finding general preduals of $\ell^1(G)$. This is joint work with Haydon, Schlumprecht and White.

Let $E \subseteq \ell^{\infty}(G)$ be a predual. Let \mathcal{A} be the unital C*-algebra generated by E in $\ell^{\infty}(G)$. Thus $\mathcal{A} \cong C(K)$ and so $\mathcal{A}' \cong M(K)$.

We get an injection $G \rightarrow K$ which we can use to extend the product on *G* to *K*. Then *K* becomes a *semitopological semigroup* containing *G* densely.

Theorem

There is a projection $P: M(K) \rightarrow \ell^1(G)$ which is an algebra homomorphism, and such that

 $E = {}^{\perp}(\ker P) = \{ f \in C(K) : f(a) = 0 \ (P(a) = 0) \}.$

Furthermore, ker *P* is weak*-closed.

We now turn to finding general preduals of $\ell^1(G)$. This is joint work with Haydon, Schlumprecht and White.

Let $E \subseteq \ell^{\infty}(G)$ be a predual. Let \mathcal{A} be the unital C*-algebra generated by E in $\ell^{\infty}(G)$. Thus $\mathcal{A} \cong C(K)$ and so $\mathcal{A}' \cong M(K)$. We get an injection $G \to K$ which we can use to extend the product on G to K. Then K becomes a *semitopological semigroup* containing G densely.

Theorem

There is a projection $P: M(K) \rightarrow \ell^1(G)$ which is an algebra homomorphism, and such that

 $E = {}^{\perp}(\ker P) = \{ f \in C(K) : f(a) = 0 \ (P(a) = 0) \}.$

Furthermore, ker P is weak*-closed.

We now turn to finding general preduals of $\ell^1(G)$. This is joint work with Haydon, Schlumprecht and White.

Let $E \subseteq \ell^{\infty}(G)$ be a predual. Let \mathcal{A} be the unital C*-algebra generated by E in $\ell^{\infty}(G)$. Thus $\mathcal{A} \cong C(K)$ and so $\mathcal{A}' \cong M(K)$. We get an injection $G \to K$ which we can use to extend the product on G to K. Then K becomes a *semitopological semigroup* containing G densely.

Theorem

There is a projection $P: M(K) \rightarrow \ell^1(G)$ which is an algebra homomorphism, and such that

 $E = {}^{\perp}(\ker P) = \{f \in C(K) : f(a) = 0 \ (P(a) = 0)\}.$

Furthermore, ker *P* is weak*-closed.

We now turn to finding general preduals of $\ell^1(G)$. This is joint work with Haydon, Schlumprecht and White.

Let $E \subseteq \ell^{\infty}(G)$ be a predual. Let \mathcal{A} be the unital C*-algebra generated by E in $\ell^{\infty}(G)$. Thus $\mathcal{A} \cong C(K)$ and so $\mathcal{A}' \cong M(K)$. We get an injection $G \to K$ which we can use to extend the product on G to K. Then K becomes a *semitopological semigroup* containing G densely.

Theorem

There is a projection $P: M(K) \rightarrow \ell^1(G)$ which is an algebra homomorphism, and such that

$$E = {}^{\perp}(\ker P) = \{ f \in C(K) : f(a) = 0 \ (P(a) = 0) \}.$$

Furthermore, ker P is weak*-closed.

We simply reverse the above argument. That is, we find a compact semitopological semigroup *K* which contains *G* densely, so we can identify $\ell^1(G) \subset M(K)$. Suppose we have defined a projection $P : M(K) \to \ell^1(G)$ which is a homomorphism.

Theorem

Let [⊥](ker P) induce a space of functionals on $\ell^1(G)$, say $E \subseteq \ell^{\infty}(G)$. Then E is a predual for $\ell^1(G)$ if and only if ker P is weak*-closed.

What is *E* though?

Theorem

We simply reverse the above argument. That is, we find a compact semitopological semigroup *K* which contains *G* densely, so we can identify $\ell^1(G) \subset M(K)$. Suppose we have defined a projection $P : M(K) \to \ell^1(G)$ which is a homomorphism.

Theorem

Let $^{\perp}(\ker P)$ induce a space of functionals on $\ell^1(G)$, say $E \subseteq \ell^{\infty}(G)$. Then E is a predual for $\ell^1(G)$ if and only if ker P is weak*-closed.

What is *E* though?

Theorem

We simply reverse the above argument. That is, we find a compact semitopological semigroup *K* which contains *G* densely, so we can identify $\ell^1(G) \subset M(K)$. Suppose we have defined a projection $P : M(K) \to \ell^1(G)$ which is a homomorphism.

Theorem

Let $^{\perp}(\ker P)$ induce a space of functionals on $\ell^1(G)$, say $E \subseteq \ell^{\infty}(G)$. Then E is a predual for $\ell^1(G)$ if and only if ker P is weak*-closed.

What is *E* though?

Theorem

We simply reverse the above argument. That is, we find a compact semitopological semigroup *K* which contains *G* densely, so we can identify $\ell^1(G) \subset M(K)$. Suppose we have defined a projection $P : M(K) \to \ell^1(G)$ which is a homomorphism.

Theorem

Let $^{\perp}(\ker P)$ induce a space of functionals on $\ell^1(G)$, say $E \subseteq \ell^{\infty}(G)$. Then E is a predual for $\ell^1(G)$ if and only if ker P is weak*-closed.

What is *E* though?

Theorem

Case study: $G = \mathbb{Z}$

Pick the easiest compacitification of \mathbb{Z} . Let *z* be some extra generator, and form the free abelian semigroup generated by \mathbb{Z} and *z*, together with ∞ . So everything in *K* is of the form

nz+k $(n\geq 0, k\in \mathbb{Z}).$

We give *K* some complicated topology. The projection $P: M(K) = \ell^1(K) \to \ell^1(\mathbb{Z})$ is uniquely determined by

$$P(\delta_k) = \delta_k, \quad P(\delta_z) = a \qquad (k \in \mathbb{Z}),$$

for some $a \in \ell^1(\mathbb{Z})$.

Given a suitable topology on K, we can prove some abstract results about when (ker P) is weak*-closed. In particular, this will hold if $\sum_n ||a^n|| < \infty$.

Case study: $G = \mathbb{Z}$

Pick the easiest compacitification of \mathbb{Z} . Let *z* be some extra generator, and form the free abelian semigroup generated by \mathbb{Z} and *z*, together with ∞ . So everything in *K* is of the form

$$nz+k$$
 $(n \ge 0, k \in \mathbb{Z}).$

We give *K* some complicated topology. The projection $P: M(K) = \ell^1(K) \to \ell^1(\mathbb{Z})$ is uniquely determined by

$$P(\delta_k) = \delta_k, \quad P(\delta_z) = a \qquad (k \in \mathbb{Z}),$$

for some $a \in \ell^1(\mathbb{Z})$.

Given a suitable topology on K, we can prove some abstract results about when (ker P) is weak*-closed. In particular, this will hold if $\sum_n ||a^n|| < \infty$.

Case study: $G = \mathbb{Z}$

Pick the easiest compacitification of \mathbb{Z} . Let *z* be some extra generator, and form the free abelian semigroup generated by \mathbb{Z} and *z*, together with ∞ . So everything in *K* is of the form

$$nz+k$$
 $(n \ge 0, k \in \mathbb{Z}).$

We give *K* some complicated topology. The projection $P: M(K) = \ell^1(K) \rightarrow \ell^1(\mathbb{Z})$ is uniquely determined by

$$P(\delta_k) = \delta_k, \quad P(\delta_z) = a \qquad (k \in \mathbb{Z}),$$

for some $a \in \ell^1(\mathbb{Z})$.

Given a suitable topology on K, we can prove some abstract results about when (ker P) is weak*-closed. In particular, this will hold if $\sum_{n} ||a^{n}|| < \infty$.

Case study: $G = \mathbb{Z}$

Pick the easiest compacitification of \mathbb{Z} . Let *z* be some extra generator, and form the free abelian semigroup generated by \mathbb{Z} and *z*, together with ∞ . So everything in *K* is of the form

$$nz+k$$
 $(n \ge 0, k \in \mathbb{Z}).$

We give *K* some complicated topology. The projection $P: M(K) = \ell^1(K) \to \ell^1(\mathbb{Z})$ is uniquely determined by

$$P(\delta_k) = \delta_k, \quad P(\delta_z) = a \qquad (k \in \mathbb{Z}),$$

for some $a \in \ell^1(\mathbb{Z})$.

Given a suitable topology on K, we can prove some abstract results about when (ker P) is weak*-closed. In particular, this will hold if $\sum_{n} ||a^{n}|| < \infty$.

Case study: $G = \mathbb{Z}$

Pick the easiest compacitification of \mathbb{Z} . Let *z* be some extra generator, and form the free abelian semigroup generated by \mathbb{Z} and *z*, together with ∞ . So everything in *K* is of the form

$$nz+k$$
 $(n \ge 0, k \in \mathbb{Z}).$

We give *K* some complicated topology. The projection $P: M(K) = \ell^1(K) \to \ell^1(\mathbb{Z})$ is uniquely determined by

$$P(\delta_k) = \delta_k, \quad P(\delta_z) = a \qquad (k \in \mathbb{Z}),$$

for some $a \in \ell^1(\mathbb{Z})$.

Given a suitable topology on *K*, we can prove some abstract results about when (ker *P*) is weak*-closed. In particular, this will hold if $\sum_{n} ||a^{n}|| < \infty$.

Theorem

Let $J \subseteq \mathbb{Z}$ be a "sparse" set, let $a \in \ell^1(\mathbb{Z})$ with ||a|| < 1. There exists a predual for $\ell^1(\mathbb{Z})$ such that $\delta_n \to a$, as n tends through J, in the weak*-topology.

- Let a = λδ₀ for some |λ| < 1, and let J = {2ⁿ}. Then the predual we construct is isomorphic to a C(K) space. Furthermore, we can calculate the *Szlenk index*, showing that E ≅ c₀.
- Of course, such an isomorphism does not respect duality.
- For this example, the involution on ℓ¹(Z) is not weak*-continuous.
- Let $a = \delta_0$; then if we could find a predual as above, this predual would have uncountable Szlenk index, showing that the predual were itself uncountable!

(日) (日) (日) (日) (日) (日) (日)

Theorem

Let $J \subseteq \mathbb{Z}$ be a "sparse" set, let $a \in \ell^1(\mathbb{Z})$ with ||a|| < 1. There exists a predual for $\ell^1(\mathbb{Z})$ such that $\delta_n \to a$, as n tends through J, in the weak*-topology.

- Let *a* = λδ₀ for some |λ| < 1, and let *J* = {2ⁿ}. Then the predual we construct is isomorphic to a *C*(*K*) space. Furthermore, we can calculate the *Szlenk index*, showing that *E* ≅ *c*₀.
- Of course, such an isomorphism does not respect duality.
- For this example, the involution on ℓ¹(Z) is not weak*-continuous.
- Let $a = \delta_0$; then if we could find a predual as above, this predual would have uncountable Szlenk index, showing that the predual were itself uncountable!

(日) (日) (日) (日) (日) (日) (日)

Theorem

Let $J \subseteq \mathbb{Z}$ be a "sparse" set, let $a \in \ell^1(\mathbb{Z})$ with ||a|| < 1. There exists a predual for $\ell^1(\mathbb{Z})$ such that $\delta_n \to a$, as n tends through J, in the weak*-topology.

- Let *a* = λδ₀ for some |λ| < 1, and let *J* = {2ⁿ}. Then the predual we construct is isomorphic to a *C*(*K*) space. Furthermore, we can calculate the *Szlenk index*, showing that *E* ≅ *c*₀.
- Of course, such an isomorphism does not respect duality.
- For this example, the involution on ℓ¹(Z) is not weak*-continuous.
- Let $a = \delta_0$; then if we could find a predual as above, this predual would have uncountable Szlenk index, showing that the predual were itself uncountable!

(日) (日) (日) (日) (日) (日) (日)

Theorem

Let $J \subseteq \mathbb{Z}$ be a "sparse" set, let $a \in \ell^1(\mathbb{Z})$ with ||a|| < 1. There exists a predual for $\ell^1(\mathbb{Z})$ such that $\delta_n \to a$, as n tends through J, in the weak*-topology.

- Let *a* = λδ₀ for some |λ| < 1, and let *J* = {2ⁿ}. Then the predual we construct is isomorphic to a *C*(*K*) space. Furthermore, we can calculate the *Szlenk index*, showing that *E* ≅ *c*₀.
- Of course, such an isomorphism does not respect duality.
- For this example, the involution on ℓ¹(Z) is not weak*-continuous.
- Let $a = \delta_0$; then if we could find a predual as above, this predual would have uncountable Szlenk index, showing that the predual were itself uncountable!

(日) (日) (日) (日) (日) (日) (日)

Theorem

Let $J \subseteq \mathbb{Z}$ be a "sparse" set, let $a \in \ell^1(\mathbb{Z})$ with ||a|| < 1. There exists a predual for $\ell^1(\mathbb{Z})$ such that $\delta_n \to a$, as n tends through J, in the weak*-topology.

- Let a = λδ₀ for some |λ| < 1, and let J = {2ⁿ}. Then the predual we construct is isomorphic to a C(K) space. Furthermore, we can calculate the *Szlenk index*, showing that E ≅ c₀.
- Of course, such an isomorphism does not respect duality.
- For this example, the involution on ℓ¹(ℤ) is not weak*-continuous.
- Let a = δ₀; then if we could find a predual as above, this predual would have uncountable Szlenk index, showing that the predual were itself uncountable!

(日) (日) (日) (日) (日) (日) (日)

Theorem

Let $J \subseteq \mathbb{Z}$ be a "sparse" set, let $a \in \ell^1(\mathbb{Z})$ with ||a|| < 1. There exists a predual for $\ell^1(\mathbb{Z})$ such that $\delta_n \to a$, as n tends through J, in the weak*-topology.

- Let a = λδ₀ for some |λ| < 1, and let J = {2ⁿ}. Then the predual we construct is isomorphic to a C(K) space. Furthermore, we can calculate the *Szlenk index*, showing that E ≅ c₀.
- Of course, such an isomorphism does not respect duality.
- For this example, the involution on ℓ¹(ℤ) is not weak*-continuous.
- Let a = δ₀; then if we could find a predual as above, this predual would have uncountable Szlenk index, showing that the predual were itself uncountable!
- Surely there is a Banach algebra proof of this!

Runde defined the concept of *Connes-amenability* for dual Banach algebras: simply take the usual notion of amenability, and make everything in sight weak*-continuous.

- ► Then l¹(G) is Connes-amenable if and only if G is amenable.
- Of course, this is with respect to the predual $c_0(G)$.
- If G is amenable, then ℓ¹(G) is amenable, so ℓ¹(G) is Connes-amenable for any predual.
- ► However, could we find a predual of l¹(F₂), say, making this algebra Connes-amenable?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Runde defined the concept of *Connes-amenability* for dual Banach algebras: simply take the usual notion of amenability, and make everything in sight weak*-continuous.

- ► Then ℓ¹(G) is Connes-amenable if and only if G is amenable.
- Of course, this is with respect to the predual $c_0(G)$.
- If G is amenable, then ℓ¹(G) is amenable, so ℓ¹(G) is Connes-amenable for any predual.
- ► However, could we find a predual of l¹(F₂), say, making this algebra Connes-amenable?

Runde defined the concept of *Connes-amenability* for dual Banach algebras: simply take the usual notion of amenability, and make everything in sight weak*-continuous.

- ► Then ℓ¹(G) is Connes-amenable if and only if G is amenable.
- Of course, this is with respect to the predual $c_0(G)$.
- If G is amenable, then ℓ¹(G) is amenable, so ℓ¹(G) is Connes-amenable for any predual.
- ► However, could we find a predual of l¹(F₂), say, making this algebra Connes-amenable?

Runde defined the concept of *Connes-amenability* for dual Banach algebras: simply take the usual notion of amenability, and make everything in sight weak*-continuous.

- ► Then ℓ¹(G) is Connes-amenable if and only if G is amenable.
- Of course, this is with respect to the predual $c_0(G)$.
- If G is amenable, then ℓ¹(G) is amenable, so ℓ¹(G) is Connes-amenable for any predual.
- ► However, could we find a predual of l¹(F₂), say, making this algebra Connes-amenable?

Runde defined the concept of *Connes-amenability* for dual Banach algebras: simply take the usual notion of amenability, and make everything in sight weak*-continuous.

- ► Then ℓ¹(G) is Connes-amenable if and only if G is amenable.
- Of course, this is with respect to the predual $c_0(G)$.
- If G is amenable, then ℓ¹(G) is amenable, so ℓ¹(G) is Connes-amenable for any predual.
- ► However, could we find a predual of l¹(F₂), say, making this algebra Connes-amenable?