
Around Compact Quantum Groups

Matthew Daws

23rd April 2009



What is a compact group?

Well, it’s a compact topological space G with the structure of a
group such that the group action is jointly continuous, and the
inverse is continuous.

It’s a unital commutative C∗-algebra A with a unital
∗-homomorphism ∆ : A→ A⊗min A which is:

I Co-associative, (id⊗∆)∆ = (∆⊗ id)∆

I “Cancellative”, that is, the sets

{(a⊗ 1)∆(b) : a,b ∈ A}, {(1⊗ a)∆(b) : a,b ∈ A},

have dense linear span in A⊗min A.



Equivalence, easy direction

If G is a compact group, set

A = C(G) = {continuous functions G→ C},

identify A⊗min A = C(G ×G), define

∆(f ) ∈ C(G×G), ∆(f ) : (s, t) 7→ f (st) (f ∈ C(G), s, t ∈ G).

Finally observe that

(a⊗ 1)∆(b) : (s, t) 7→ a(s)b(st),

will separate the points of G ×G (by varying a and b) so by
Stone-Weierstrass,

lin{(a⊗ 1)∆(b) : a,b ∈ A}

is a dense subalgebra of C(G ×G).



Equivalence, hard direction
Gelfand-Naimark tells us that a unital commutative C∗-algebra
A has the form C(X ) for some compact space X . So again
A⊗min A = C(X × X ). Then ∆ : C(X )→ C(X × X ) a unital
∗-homomorphism induces a continuous map θ : X × X → X
such that

f (θ(s, t)) = ∆(f )(s, t) (s, t ∈ X , f ∈ C(X )).

The category of unital commutative C∗-algebras and unital ∗-homomorphisms is dual to the category of compact

spaces and continuous maps.

∆ co-associative implies that θ is associative, so X is a
compact semigroup.
The cancellation rules for ∆ imply that X is cancellative, that is

st = rt =⇒ s = r , ts = tr =⇒ s = r .

Exercise: A compact semigroup with cancellation is a compact
group.



Compact quantum groups

Simply remove the word “commutative”!
For example, let Γ be a discrete group, and let Γ act on `2(Γ) by
left translation:

λ(s)f : t 7→ f (s−1t) (s, t ∈ Γ, f ∈ `2(Γ)).

Let C∗r (Γ) be the (reduced) group C∗-algebra: that is, the norm
closed algebra, acting on `2(Γ), generated by λ(Γ). So C∗r (Γ) is
commutative if and only if Γ is.
There is a ∗-homomorphism

∆ : C∗r (Γ)→ C∗r (Γ)⊗min C∗r (Γ) = C∗r (Γ× Γ),

∆ : λ(s) 7→ λ(s)⊗ λ(s) = λ(s, s) (s ∈ Γ).



Compact or Discrete?

Hang on: we’re saying that for discrete Γ, we have that C∗r (Γ) is
a compact quantum group?
If Γ were abelian, then the fourier transform tells us that

C∗r (Γ) ∼= C(Γ̂),

where Γ̂ is the Pontryagin dual of Γ. As Γ is discrete, Γ̂ is
compact.
As C(G) is our “commutative” base algebra, this weird
terminology is forced upon us.



Twisted SU(2)

From Woronowicz in the C∗-setting, but independently discovered by Soibelman and Vaksman

C(SU(2)) is the commutative C∗-algebra generated by a,b with

a∗a + b∗b = 1.
aa∗ + bb∗ = 1, b∗b = bb∗, ab = ba, ab∗ = b∗a.

We introduce a real parameter µ ∈ [−1,1] \ {0}, and let
C(SUµ(2)) be the (non-commutative) C∗-algebra generated by
a,b with

a∗a + b∗b = 1, aa∗ + µ2bb∗ = 1,
b∗b = bb∗, ab = µba, ab∗ = µb∗a.

There exists a coproduct ∆ with

∆(a) = a⊗ a− µb∗ ⊗ b, ∆(b) = b ⊗ a + a∗ ⊗ b.



Why?

(Topological) Quantum groups grew out of:

I How do we extend the notion of the Fourier transform, or
more specifically, the Pontryagin Duality, to non-abelian
groups? Ideally, we’d like a self-dual category into which all
proper groups fit (so Tannaka-Krein duality doesn’t quite fit
the bill). This lead to Kac algebras.

I But SUµ(2) does not fit into this framework! Indeed, we
have rather few examples of Kac algebras.

We now have a simple set of axioms for objects which are
called “locally compact quantum groups”, and which
encompass all known examples.



Haar state

A compact group admits a unique Haar measure: a probability
measure which is invariant under the group action. In our
language, this corresponds to a state ϕ on C(G) with

(ϕ⊗ id)∆(a) = (id⊗ϕ)∆(a) = ϕ(a) (a ∈ C(G)).

Woronowicz and van Daele showed that such a state always
exists on a compact quantum group (A,∆)
Applying the GNS construction gives a Hilbert space H and a
∗-representation of A on H. This is the analogue of C(G) acting
on L2(G) by pointwise multiplication.



Corepresentation theory

A (finite-dimensional) corepresentation of (A,∆) is a matrix
u ∈Mn(A) with

∆(uij) =
n∑

k=1

uik ⊗ ukj .

I All irreducible corepresentations of (A,∆) are
finite-dimensional.

I Using the Haar state, it’s possible to show that any
finite-dimensional corepresentation u is equivalent to a
unitary corepresentation: u∗u = uu∗ = In.

I There is an (infinite-dimensional) corepresentation of
(A,∆) on H; all finite-dimensional corepresentations are
sub-corepresentations of this. So we have a generalised
Peter-Weil theory.

I There is a character theory.



Links with algebra

Let A be the collection of matrix entries of all irreducible
corepresentations of (A,∆).

I Then A is a ∗-algebra.
I A is norm-dense in A.
I ∆ restricts to give a map A → A⊗A (algebraic tensor

product).
I We can turn (A,∆) into a Hopf ∗-algebra: there exists an

antipode and counit.
I But, in general, these are unbounded, and so don’t make

sense on A.
I (A,∆) is unique.



More algebra

We can go in reverse! Dijkhuizen and Koornwinder showed that
if (A,∆) is a Hopf ∗-algebra which is spanned by the matrix
entries of its finite-dimensional unitary corepresentations, then
there is a compact quantum group (A,∆) such that A is given
by A.
Drinfeld’s approach to quantum groups starts with a Lie group
G, the Lie algebra g and the enveloping algebra U(g) which is
naturally a Hopf algebra. It is this Hopf algebra which is
deformed to get a “quantum group”. If we start with SU(2), and
we now take the ∗-representations of this deformed enveloping
algebra, we naturally get a Hopf ∗-algebra which is isomorphic
to the Hopf ∗-algebra associated to C(SUµ(G)).
So we are really studying the “dual” world to what is often
understood by the term “quantum group”.



Back to analysis

I For a compact group G, we start with C(G), and find a
Haar measure to form L2(G).

I Then C(G) is a C∗-algebra acting on C(G).
I Consider the strong operator topology closure: this gives

us L∞(G), a von Neumann algebra.
I ∆ extends to L∞(G): it has the same formula.
I L∞(G) has a predual: L1(G).
I Then ∆ induces a Banach algebra product on L1(G),

which is the usual convolution product.



Interlude: KMS condition

I The Haar state on C(G) or C∗r (Γ) is a trace:

ϕ(ab) = ϕ(ba) (a,b ∈ A).

I For a compact quantum group, this is true if and only if we
really have a Kac algebra.

I So not so for C(SUµ(2)) say.
I But ϕ is KMS.
I Loosely speaking, this means that there is an

automorphism σ of A such that

ϕ(ab) = ϕ(bσ(a)) (a,b ∈ A).



For compact quantum groups

Can do the same thing:

(A,∆) =⇒ Haar state ϕ =⇒ Hilbert space H
=⇒ von Neumann algebra M
=⇒ predual M∗ has structure of a Banach algebra.

If we start with discrete Γ then we get A(Γ), the Fourier algebra:
this encodes information about positive definite functions on Γ,
and so forth.
If we start with C(SUµ(2)), we get: Who knows?



Projectivity

If A is a Banach algebra, then in the category of left A-modules,
P is projective if:

X

����
P //

?
??

Y

Complication: it might be impossible to solve this diagram
problem for purely toplogical reasons. So we insist that the map
X → Y is admissible, that is, there is a bounded linear (but not
necessarily A-linear) right inverse.
Then A is (left) projective if, as a module over itself, it is
projective.



For group algebras

I For a locally compact group G, we can still form L1(G) with
convolution.

I Then L1(G) is projective if and only if G is compact.

I Similarly, the Fourier algebra A(Γ) can be defined in
general.

I If we work in the right category, then A(Γ) is projective if
and only if Γ is discrete.

The “right category” is the category of completely bounded
maps.



For compact quantum groups
Let M∗ be the predual convolution algebra associated to a
(locally) compact quantum group (A,∆). Again, we work with
completely bounded maps.

I If M∗ is projective, then A is compact.
I The converse is tricky!
I Abstract nonsense implies that M∗ is projective if and only if

∆∗ : M∗⊗̂M∗ → M∗

the product map (⊗̂ is the topological tensor product which linearises bilinear, completely

bounded maps) has a completely bounded right inverse, which is
an M∗ module map.

I (Daws) If this inverse map is contractive, then A is a Kac
algebra.

I The proof ends up showing that the modular
automorphism of ϕ must be trivial.


