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Matrices

Throughout, Mn means Mn(C), that is, n × n complex matrices.
I will consider Mn as acting on Cn, the latter coming equipped with the usual
Euclidean inner product:

(ξ|η) =
n∑

j=1

ξjηj = ξ
t
η

if we think of ξ and η as column vectors. (Here I use Physics notation).
Then Mn has the operator norm:

‖x‖ = sup
{
‖xξ‖ : ‖ξ‖ ≤ 1

}
= sup

{
(ξ

t
x∗xξ)1/2 : ‖ξ‖ ≤ 1

}
.

Here x∗ = x t and ‖ξ‖2 = ξ
t
ξ.

As x∗x is hermitian, we can find a new orthonormal basis such that x∗x becomes
diagonal: the entries being the eigenvalues. A little thought then shows that

‖x‖2 = ‖x∗x‖ = max
{
|λ| : λ an eigenvalue of x∗x

}
.

Remember that ‖xy‖ ≤ ‖x‖‖y‖ for any x , y ∈Mn.

Matthew Daws (Leeds) Matrices and completely bounded maps November 2010 2 / 22



Maps between matrices
Let {u1, · · · , uk} and {w1, · · · ,wk} be finite sets in Mn. We can then define a
linear map ϕ : Mn →Mn by

ϕ(x) =
∑

j

ujxwj .

What is the norm of ϕ? That is, compute ‖ϕ‖ = sup
{
‖ϕ(x)‖ : ‖x‖ ≤ 1

}
.

The triangle inequality shows trivially that

‖ϕ‖ ≤
∑

j

‖uj‖‖wj‖.

Identify Cn ⊗ Ck with Cnk . In Ck , let {δ1, · · · , δk} be the standard basis.
Then we can define maps

u,w : Cn → Cn ⊗ Ck ; u(ξ) =
∑

j

u∗j (ξ)⊗ δj , w(ξ) =
∑

j

wj(ξ)⊗ δj .

Then

ϕ(x) = u∗(x ⊗ I )w =⇒ ‖ϕ‖ ≤ ‖u∗‖‖w‖ =
∥∥∥∑

j

uju
∗
j

∥∥∥1/2∥∥∥∑
j

w∗j wj

∥∥∥1/2

.
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Norms
This is a better estimate, but not tight. Indeed, identify Mm ⊗Mn with Mmn.
Then we can consider

ιm ⊗ ϕ : Mm ⊗Mn →Mm ⊗Mn.

However, now we have

(ιm ⊗ ϕ)(x) = (I ⊗ u)∗(x ⊗ I )(I ⊗ w) for x ∈Mmn.

Thus also

‖ιm ⊗ ϕ‖ ≤ ‖I ⊗ u‖‖I ⊗ w‖ ≤
∥∥∥∑

j

uju
∗
j

∥∥∥1/2∥∥∥∑
j

w∗j wj

∥∥∥1/2

.

It turns out that

sup
m
‖ιm ⊗ ϕ‖ = ‖ιn ⊗ ϕ‖ = inf

∥∥∥∑
j

uju
∗
j

∥∥∥1/2∥∥∥∑
j

w∗j wj

∥∥∥1/2

.

We call this quantity the completely bounded norm of ϕ.
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Positivity

For me, a positive matrix means a semi-definite positive matrix, that is

ξ
t
xξ ≥ 0 for all ξ ∈ Cn.

A matrix x is positive if and only if x = y∗y for some matrix y .

For x ∈Mn, we write x ≥ 0 to mean that x is positive.

A matrix a is hermitian, a∗ = a, if and only if a = x − y for x , y ≥ 0.

Hence we can define a partial order on the hermitians by a ≥ b if and only if
a− b ≥ 0.

This order is tightly linked to the norm structure: for a hermitian matrix a,
we have that ‖a‖ ≤ 1 if and only if −I ≤ a ≤ I .

All this can be proved easily by diagonalisation.
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Maps which respect positivity

A map ϕ : Mn →Mn is positive if it send positive matrices to positive
matrices.

Notice that then ϕ(x∗) = ϕ(x)∗.

We say that ϕ is m-positive if ιm ⊗ ϕ : Mmn →Mmn is positive.

Finally, ϕ is completely positive if ϕ is m-positive for all m. Again, enough
to check the case m = n.

The canonical example of a positive, not completely positive map is the
transpose map ϕ(x) = x t :

ι2 ⊗ ϕ


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 =

ϕ
(

1 0
0 0

)
ϕ

(
0 1
0 0

)
ϕ

(
0 0
1 0

)
ϕ

(
0 0
0 1

)
 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .

Not obvious what the bound of a completely positive map is.
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Maps and functionals
There is a bijection between linear maps ϕ : Mn →Mn and linear functionals
ϕ̂ : Mn2 = Mn ⊗Mn → C given by

ϕ̂
(
a⊗ eij

)
= ϕ(a)ij .

Here eij ∈Mn is the obvious elementary matrix which has 1 in the (i , j) position,
and 0 elsewhere.

Theorem (Choi, 1975)

The map ϕ is completely positive if and only if ϕ̂ is positive.

Proof.

(⇒) Let (δi )
n
i=1 be the canonical basis of Cn, and let ξ0 =

∑
i δi ⊗ δi ∈ Cn2

. Then(
ξ0
∣∣(ιn ⊗ ϕ)(eij ⊗ a)ξ0

)
=
∑
s,t

(
δs ⊗ δs

∣∣(eij ⊗ ϕ(a))δt ⊗ δt
)

=
(
δi
∣∣ϕ(a)δj

)
= ϕ(a)ij .

Thus ϕ̂(x) = (ξ0|(ιn ⊗ ϕ)(x)ξ0) for any x ∈Mn2 , so ϕ̂ is positive.
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More on positive functionals on matrices
We identify the dual space of Mm with Mm via trace duality:

〈x , y〉 = Tr(xy).

Here I write 〈·, ·〉 for a bilinear pairing between vector spaces.

If we give Mm the operator norm, then the dual space gets the trace class
norm

‖y‖1 = sup
{
|Tr(xy)| : ‖x‖ ≤ 1

}
=
∑{

λ : λ2 an eigenvalue of y∗y
}
.

If y ∈Mm is positive, then the functional x 7→ Tr(xy) is positive. Indeed, we
can write y = u∗u, and then

Tr(z∗zy) = Tr(z∗zu∗u) = Tr(uz∗zu∗) = Tr
(
(zu∗)∗zu∗

)
≥ 0.

If the functional x 7→ Tr(xy) is positive, then for ξ ∈ Cm, let x = ξξ
t ∈Mm,

so that x ≥ 0, and hence

0 ≤ Tr(xy) = Tr(ξξ
t
y) = Tr(ξ

t
yξ) = ξ

t
yξ.

Thus y is positive.
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Towards the converse
Recall: ϕ : Mn →Mn and ϕ̂ : Mn2 = Mn ⊗Mn → C linked by

ϕ̂
(
a⊗ eij

)
= ϕ(a)ij .

So ϕ̂ is identified with x ∈Mn2 . If this is positive, then diagonalise, and pick the
unique positive square-root, say y ∈Mn2 . Let

y =
∑
s,t

yst ⊗ est .

As y is positive, also y∗ = y , so yst = y∗ts for all s, t.
Then, for a ∈Mn,(

δj
∣∣ϕ(a)δi

)
= ϕ(a)ji = ϕ̂(a⊗ eij) = Tr

(
x(a⊗ eji )

)
= Tr

(
y(a⊗ eji )y

)
=
∑

s,t,r ,u

Tr(ystayru) Tr(estejieru) =
∑

s

Tr(ysjayis)

=
∑

s

Tr(y∗jsayis).
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Link with completely bounded norms

So we have (
δj
∣∣ϕ(a)δi

)
=
∑

s

Tr(y∗jsayis).

Let the kth row of yis be ξi,s,k , and define

v : Cn → Cn ⊗ Cn ⊗ Cn; δi 7→
∑
s,k

δk ⊗ δs ⊗ ξi,s,k .

Then(
δj
∣∣v∗(eab ⊗ I )vδi

)
=
∑

s,r ,k,l

(
δk ⊗ δs ⊗ ξj,s,k

∣∣eabδl ⊗ δr ⊗ ξi,r ,l
)

=
∑
s,r

(
δs ⊗ ξj,s,a

∣∣δr ⊗ ξi,r ,b) =
∑

s

(
ξj,s,a

∣∣ξi,s,b)
=
∑

s

ξi,s,bξt
j,s,a =

∑
s

(yisy∗js)ba =
∑

s

Tr(eabyisy∗js) =
(
δj
∣∣ϕ(eab)δi

)
.

Thus ϕ(x) = v∗(x ⊗ I )v for any x ∈Mn. Thus ϕ is certainly completely positive.

Matthew Daws (Leeds) Matrices and completely bounded maps November 2010 10 / 22



Stinespring Theorem and links to completely bounded
norms

Theorem (Stinespring, 1955)

Let ϕ : Mn →Mn be a completely positive map. There exists an inner-product
space K , of dimension at most n2, and a linear map v : Cn → Cn ⊗ K , such that
ϕ(x) = v∗(x ⊗ I )v.

If we pick an orthonormal basis (ej) for K , then we can find matrices (vj) with
v(ξ) =

∑
j vj(ξ)⊗ ej , and so

ϕ(x) =
∑

j

v∗j xvj .

This result is also attributed to Choi and Kraus. Hence

‖ϕ‖cb ≤
∥∥∥∑

j

v∗j vj

∥∥∥ = ‖ϕ(I )‖.

Actually we have equality throughout.
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Spans of completely positive maps

Remember from before that to compute the completely bounded norm of
ϕ : Mn →Mn, we looked at maps u,w : Cn → Cn ⊗ Ck with

ϕ(x) = u∗(x ⊗ I )w (x ∈Mn).

Now we know that ϕ is completely positive if and only if we can choose u = w .
However, polarisation gives

ϕ(x) =
1

4

3∑
k=0

ik(u + ikw)∗(x ⊗ I )(u + ikw).

Thus any linear map Mn →Mn is a linear combination of 4 completely positive
maps.
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Quantum channels

I am far from an expert here!

In quantum information theory, a quantum channel is a mathematical model
of the evolution of an “open” quantum system.

This is a trace preserving, completely positive map ϕ : Mn →Mn.

The trace is used to evaluate the probability of quantum states occurring,
and so trace preservation reflects conservation of probability.

Complete positivity is required to allow tensoring with other quantum
systems without losing positivity.

Given ϕ : Mn →Mn we can define ϕ† : Mn →Mn by using trace-duality:
Tr(ϕ†(x)y) = Tr(xϕ(y)). This operation preserves complete positivity, but
ϕ is trace preserving if and only if ϕ† is unital: ϕ†(I ) = I .

This swaps between the Schrödinger and Heisenberg pictures.
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Some open problems

We focus on completely positive unital maps ϕ : Mn →Mn, say with

ϕ(x) =
∑

i

v∗i xvi .

The collection of such maps, say UCPn, is a bounded, convex subset of the
collection of linear maps Mn →Mn. So we might ask what the extreme
points are (recall that a theorem of Minkowski shows that then UCPn is the
convex hull of its extreme points).

Choi showed that ϕ is extreme if and only if we can choose the matrices (vi )
with {v∗i vj} a linearly independent set.

The closure of the set of extreme points in UCPn is those ϕ which admit a
representation as above, with at most n matrices vi .

There seems to be considerable interest in “characterising” or “classifying”
the closure of the extreme points in UCPn.
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For example, when n = 2

Ruskai, Szarek, Wener showed that a ucp map ϕ : M2 →M2 which is in the
closure of the extreme points is of the following form:

ϕ(x) = u∗1 xu1 + u∗2 xu2,

where

u1 =
2∑

j=1

αjξjηt
j , u2 =

2∑
j=1

√
1− α2

j ρjηt
j

where {ξ1, ξ2}, {η1, η2}, {ρ1, ρ2} are three orthonormal bases of C2, and
0 ≤ αj ≤ 1.
Apparently (caveat emptor!) there is nothing known for Mn →Mn for n > 2.
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More on convexity

Any ϕ ∈ UCPn can be written as a convex combination of extreme points.
But how many?

As before, we allow ourselves also to work with the closure of the extreme
points. This is the maps of the form φ(x) =

∑n
i=1 u∗i xui .

Conjecture: Any ϕ ∈ UCPn can be written as

1

n

n∑
j=1

φj ,

where each φj is in the closure of the extreme points.

You can restate this in terms of matrices: suppose A = (aij) ∈Mn(Mn) is

positive. Conjecture: there are n matrices Bk = (b
(k)
ij ), each of rank at most

n, with

A =
1

n

∑
k

Bk ,
∑

j

b
(k)
jj =

∑
j

ajj for each k.
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Entropy problem

A density matrix is a positive matrix x ∈Mn with Tr(x) = 1.

The von Neumann entropy of a density matrix x is S(x) = −Tr(x log(x)).

Let ϕ : Mn →Mn be a completely positive, trace-preserving map. The
minimal entropy of ϕ is

Smin(ϕ) = inf
{

S(ϕ(x)) : x a density matrix
}
.

Is the following additivity conjecture true?

Smin(ϕ⊗ φ) = Smin(ϕ) + Smin(φ).
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Back to algebra
Let A,B ⊆Mn be (unital) algebras. Then

∑
i ai ⊗ bi ∈ A⊗ B induces

ϕ : Mn →Mn by

ϕ(x) =
∑

i

aixbi .

The completely bounded norm is estimated by

‖ϕ‖cb ≤
∥∥∥∑

i

aia
∗
i

∥∥∥1/2∥∥∥∑
i

b∗i bi

∥∥∥1/2

.

The infimum of the RHS is the Haagerup tensor norm on A⊗ B (and is ‖ϕ‖cb).
Conversely, suppose that ϕ : Mn →Mn is a linear map which is a left A′-module
homomorphism, and a right B ′-module homomorphism. Here
A′ = {x ∈Mn : xa = ax (a ∈ A)} the commutant of A, and similarly for B ′.
Then we have that

ϕ(x) =
∑

i

aixbi where (ai ) ⊆ A′′, (bi ) ⊆ B ′′.

We can still compute ‖ϕ‖cb be just considering these special forms.
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Application to Hopf algebras

Recall that a Hopf ∗-algebra is, for me, a hermitian algebra A ⊆Mm (so
a ∈ A =⇒ a∗ ∈ A) which admits a coproduct ∆ : A→ A⊗ A: that is, ∆ is an
algebra homomorphism, and (ι⊗∆)∆ = (∆⊗ ι)∆.
It’s usual to either specify a counit and antipode, or to require some generalised
cancellation rule which implies the existence of a counit and an antipode. But for
me, a coalgebra is enough.
The dual space A† = hom(A,C) becomes a hermitian algebra for the product

〈µλ, a〉 = 〈µ⊗ λ,∆(a)〉 (a ∈ A, µ, λ ∈ A†),

and the ∗-operation

〈µ∗, a〉 = 〈µ, a∗〉 (a ∈ A, µ ∈ A†).

A representation of A† is an algebra homomorphism π : A† →Mn which preserves
the ∗ operation.
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Coefficients

Fix a representation π : A† →Mn, and pick ξ, η ∈ Cn. These induce the
coefficient aξ,η ∈ A, which satisfies

〈µ, aξ,η〉 = ξtπ(µ)η (µ ∈ A†).

With the usual orthonormal basis (δi ) for Cn, we have that

〈µ⊗ λ,∆(aξ,η)〉 = ξtπ(µλ)η = ξtπ(µ)π(λ)η

=
∑

j

ξtπ(µ)δjδt
j π(λ)η =

∑
j

〈µ⊗ λ, aξ,δj ⊗ aδj ,η〉.

Thus
∆(aξ,η) =

∑
j

aξ,δj ⊗ aδj ,η.
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Where the Haagerup norm comes in

∆(aξ,η) =
∑

j

aξ,δj ⊗ aδj ,η.

We can check that a∗ξ,η = aη,ξ. It’s a bit tedious to show, but there is an absolute
constant K depending only on π such that∥∥∥∑

j

a∗δj ,ηaδj ,η

∥∥∥ =
∥∥∥∑

j

aη,δj aδj ,η

∥∥∥ ≤ K‖η‖2.

Hence we see that
‖∆(aξ,η)‖Haagerup ≤ K‖ξ‖‖η‖.

Consequently, studying these coefficients will have something to do with studying
completely bounded, A = A′′ bimodule maps Mm →Mm. This is what I’m
interested in.
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