Some operator algebra problems from quantum computing
Or. . What are some nice maps between matrices?

Matthew Daws

Leeds

November 2010

Matrices

Throughout, \mathbb{M}_{n} means $\mathbb{M}_{n}(\mathbb{C})$, that is, $n \times n$ complex matrices.
I will consider \mathbb{M}_{n} as acting on \mathbb{C}^{n}, the latter coming equipped with the usual Euclidean inner product:

$$
(\xi \mid \eta)=\sum_{j=1}^{n} \bar{\xi}_{j} \eta_{j}=\bar{\xi}^{t} \eta
$$

if we think of ξ and η as column vectors. (Here I use Physics notation). Then \mathbb{M}_{n} has the operator norm:

$$
\|x\|=\sup \{\|x \xi\|:\|\xi\| \leq 1\}=\sup \left\{\left(\bar{\xi}^{t} x^{*} x \xi\right)^{1 / 2}:\|\xi\| \leq 1\right\} .
$$

Here $x^{*}=\bar{x}^{t}$ and $\|\xi\|^{2}=\bar{\xi}^{t} \xi$.
As $x^{*} x$ is hermitian, we can find a new orthonormal basis such that $x^{*} x$ becomes diagonal: the entries being the eigenvalues. A little thought then shows that

$$
\|x\|^{2}=\left\|x^{*} x\right\|=\max \left\{|\lambda|: \lambda \text { an eigenvalue of } x^{*} x\right\}
$$

Remember that $\|x y\| \leq\|x\|\|y\|$ for any $x, y \in \mathbb{M}_{n}$.

Maps between matrices

Let $\left\{u_{1}, \cdots, u_{k}\right\}$ and $\left\{w_{1}, \cdots, w_{k}\right\}$ be finite sets in \mathbb{M}_{n}. We can then define a linear map $\varphi: \mathbb{M}_{n} \rightarrow \mathbb{M}_{n}$ by

$$
\varphi(x)=\sum_{j} u_{j} x w_{j} .
$$

What is the norm of φ ? That is, compute $\|\varphi\|=\sup \{\|\varphi(x)\|:\|x\| \leq 1\}$. The triangle inequality shows trivially that

$$
\|\varphi\| \leq \sum_{j}\left\|u_{j}\right\|\left\|w_{j}\right\| .
$$

Identify $\mathbb{C}^{n} \otimes \mathbb{C}^{k}$ with $\mathbb{C}^{n k} . \operatorname{In} \mathbb{C}^{k}$, let $\left\{\delta_{1}, \cdots, \delta_{k}\right\}$ be the standard basis. Then we can define maps

$$
u, w: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n} \otimes \mathbb{C}^{k} ; \quad u(\xi)=\sum_{j} u_{j}^{*}(\xi) \otimes \delta_{j}, \quad w(\xi)=\sum_{j} w_{j}(\xi) \otimes \delta_{j} .
$$

Then

$$
\varphi(x)=u^{*}(x \otimes I) w \Longrightarrow\|\varphi\| \leq\left\|u^{*}\right\|\|w\|=\left\|\sum_{j} u_{j} u_{j}^{*}\right\|^{1 / 2}\left\|\sum_{j} w_{j}^{*} w_{j}\right\|^{1 / 2}
$$

Norms

This is a better estimate, but not tight. Indeed, identify $\mathbb{M}_{m} \otimes \mathbb{M}_{n}$ with $\mathbb{M}_{m n}$. Then we can consider

$$
\iota_{m} \otimes \varphi: \mathbb{M}_{m} \otimes \mathbb{M}_{n} \rightarrow \mathbb{M}_{m} \otimes \mathbb{M}_{n}
$$

However, now we have

$$
\left(\iota_{m} \otimes \varphi\right)(x)=(I \otimes u)^{*}(x \otimes I)(I \otimes w) \quad \text { for } x \in \mathbb{M}_{m n} .
$$

Thus also

$$
\left\|\iota_{m} \otimes \varphi\right\| \leq\|I \otimes u\|\|I \otimes w\| \leq\left\|\sum_{j} u_{j} u_{j}^{*}\right\|^{1 / 2}\left\|\sum_{j} w_{j}^{*} w_{j}\right\|^{1 / 2} .
$$

It turns out that

$$
\sup _{m}\left\|\iota_{m} \otimes \varphi\right\|=\left\|\iota_{n} \otimes \varphi\right\|=\inf \left\|\sum_{j} u_{j} u_{j}^{*}\right\|^{1 / 2}\left\|\sum_{j} w_{j}^{*} w_{j}\right\|^{1 / 2} .
$$

We call this quantity the completely bounded norm of φ.

Positivity

For me, a positive matrix means a semi-definite positive matrix, that is

$$
\bar{\xi}^{t} x \xi \geq 0 \quad \text { for all } \xi \in \mathbb{C}^{n}
$$

- A matrix x is positive if and only if $x=y^{*} y$ for some matrix y.
- For $x \in \mathbb{M}_{n}$, we write $x \geq 0$ to mean that x is positive.
- A matrix a is hermitian, $a^{*}=a$, if and only if $a=x-y$ for $x, y \geq 0$.
- Hence we can define a partial order on the hermitians by $a \geq b$ if and only if $a-b \geq 0$.
- This order is tightly linked to the norm structure: for a hermitian matrix a, we have that $\|a\| \leq 1$ if and only if $-I \leq a \leq I$.
- All this can be proved easily by diagonalisation.

Maps which respect positivity

- A map $\varphi: \mathbb{M}_{n} \rightarrow \mathbb{M}_{n}$ is positive if it send positive matrices to positive matrices.
- Notice that then $\varphi\left(x^{*}\right)=\varphi(x)^{*}$.
- We say that φ is m-positive if $\iota_{m} \otimes \varphi: \mathbb{M}_{m n} \rightarrow \mathbb{M}_{m n}$ is positive.
- Finally, φ is completely positive if φ is m-positive for all m. Again, enough to check the case $m=n$.
- The canonical example of a positive, not completely positive map is the transpose map $\varphi(x)=x^{t}$:

$$
\iota_{2} \otimes \varphi\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ll}
\varphi\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) & \varphi\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \\
\varphi\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) & \varphi\left(\begin{array}{llll}
0 & 0 \\
0 & 1
\end{array}\right)
\end{array}\right)=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) .
$$

- Not obvious what the bound of a completely positive map is.

Maps and functionals

There is a bijection between linear maps $\varphi: \mathbb{M}_{n} \rightarrow \mathbb{M}_{n}$ and linear functionals $\hat{\varphi}: \mathbb{M}_{n^{2}}=\mathbb{M}_{n} \otimes \mathbb{M}_{n} \rightarrow \mathbb{C}$ given by

$$
\hat{\varphi}\left(a \otimes e_{i j}\right)=\varphi(a)_{i j} .
$$

Here $e_{i j} \in \mathbb{M}_{n}$ is the obvious elementary matrix which has 1 in the (i, j) position, and 0 elsewhere.

Theorem (Choi, 1975)

The map φ is completely positive if and only if $\hat{\varphi}$ is positive.

Proof.

(\Rightarrow) Let $\left(\delta_{i}\right)_{i=1}^{n}$ be the canonical basis of \mathbb{C}^{n}, and let $\xi_{0}=\sum_{i} \delta_{i} \otimes \delta_{i} \in \mathbb{C}^{n^{2}}$. Then $\left(\xi_{0} \mid\left(\iota_{n} \otimes \varphi\right)\left(e_{i j} \otimes a\right) \xi_{0}\right)=\sum_{s, t}\left(\delta_{s} \otimes \delta_{s} \mid\left(e_{i j} \otimes \varphi(a)\right) \delta_{t} \otimes \delta_{t}\right)=\left(\delta_{i} \mid \varphi(a) \delta_{j}\right)=\varphi(a)_{i j}$.

Thus $\hat{\varphi}(x)=\left(\xi_{0} \mid\left(\iota_{n} \otimes \varphi\right)(x) \xi_{0}\right)$ for any $x \in \mathbb{M}_{n^{2}}$, so $\hat{\varphi}$ is positive.

More on positive functionals on matrices

We identify the dual space of \mathbb{M}_{m} with \mathbb{M}_{m} via trace duality:

$$
\langle x, y\rangle=\operatorname{Tr}(x y)
$$

Here I write $\langle\cdot, \cdot\rangle$ for a bilinear pairing between vector spaces.

- If we give \mathbb{M}_{m} the operator norm, then the dual space gets the trace class norm

$$
\|y\|_{1}=\sup \{|\operatorname{Tr}(x y)|:\|x\| \leq 1\}=\sum\left\{\lambda: \lambda^{2} \text { an eigenvalue of } y^{*} y\right\}
$$

- If $y \in \mathbb{M}_{m}$ is positive, then the functional $x \mapsto \operatorname{Tr}(x y)$ is positive. Indeed, we can write $y=u^{*} u$, and then

$$
\operatorname{Tr}\left(z^{*} z y\right)=\operatorname{Tr}\left(z^{*} z u^{*} u\right)=\operatorname{Tr}\left(u z^{*} z u^{*}\right)=\operatorname{Tr}\left(\left(z u^{*}\right)^{*} z u^{*}\right) \geq 0
$$

- If the functional $x \mapsto \operatorname{Tr}(x y)$ is positive, then for $\xi \in \mathbb{C}^{m}$, let $x=\xi \bar{\xi}^{t} \in \mathbb{M}_{m}$, so that $x \geq 0$, and hence

$$
0 \leq \operatorname{Tr}(x y)=\operatorname{Tr}\left(\xi \bar{\xi}^{t} y\right)=\operatorname{Tr}\left(\bar{\xi}^{t} y \xi\right)=\bar{\xi}^{t} y \xi
$$

Thus y is positive.

Towards the converse

Recall: $\varphi: \mathbb{M}_{n} \rightarrow \mathbb{M}_{n}$ and $\hat{\varphi}: \mathbb{M}_{n^{2}}=\mathbb{M}_{n} \otimes \mathbb{M}_{n} \rightarrow \mathbb{C}$ linked by

$$
\hat{\varphi}\left(a \otimes e_{i j}\right)=\varphi(a)_{i j} .
$$

So $\hat{\varphi}$ is identified with $x \in \mathbb{M}_{n^{2}}$. If this is positive, then diagonalise, and pick the unique positive square-root, say $y \in \mathbb{M}_{n^{2}}$. Let

$$
y=\sum_{s, t} y_{s t} \otimes e_{s t} .
$$

As y is positive, also $y^{*}=y$, so $y_{s t}=y_{t s}^{*}$ for all s, t.
Then, for $a \in \mathbb{M}_{n}$,

$$
\begin{aligned}
\left(\delta_{j} \mid \varphi(a) \delta_{i}\right) & =\varphi(a)_{j i}=\hat{\varphi}\left(a \otimes e_{i j}\right)=\operatorname{Tr}\left(x\left(a \otimes e_{j i}\right)\right)=\operatorname{Tr}\left(y\left(a \otimes e_{j i}\right) y\right) \\
& =\sum_{s, t, r, u} \operatorname{Tr}\left(y_{s t} a y_{r u}\right) \operatorname{Tr}\left(e_{s t} e_{j i} e_{r u}\right)=\sum_{s} \operatorname{Tr}\left(y_{s j} a y_{i s}\right) \\
& =\sum_{s} \operatorname{Tr}\left(y_{j s}^{*} a y_{i s}\right) .
\end{aligned}
$$

Link with completely bounded norms

So we have

$$
\left(\delta_{j} \mid \varphi(a) \delta_{i}\right)=\sum_{s} \operatorname{Tr}\left(y_{j s}^{*} a y_{i s}\right)
$$

Let the k th row of $y_{i s}$ be $\xi_{i, s, k}$, and define

$$
v: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n} \otimes \mathbb{C}^{n} \otimes \mathbb{C}^{n} ; \quad \delta_{i} \mapsto \sum_{s, k} \delta_{k} \otimes \delta_{s} \otimes \xi_{i, s, k}
$$

Then

$$
\begin{aligned}
& \left(\delta_{j} \mid v^{*}\left(e_{a b} \otimes I\right) v \delta_{i}\right)=\sum_{s, r, k, I}\left(\delta_{k} \otimes \delta_{s} \otimes \xi_{j, s, k} \mid e_{a b} \delta_{I} \otimes \delta_{r} \otimes \xi_{i, r, l}\right) \\
& \quad=\sum_{s, r}\left(\delta_{s} \otimes \xi_{j, s, a} \mid \delta_{r} \otimes \xi_{i, r, b}\right)=\sum_{s}\left(\xi_{j, s, a} \mid \xi_{i, s, b}\right) \\
& \quad=\sum_{s} \xi_{i, s, b} \overline{\xi_{j, s, a}^{t}}=\sum_{s}\left(y_{i s} y_{j s}^{*}\right)_{b a}=\sum_{s} \operatorname{Tr}\left(e_{a b} y_{i s} y_{j s}^{*}\right)=\left(\delta_{j} \mid \varphi\left(e_{a b}\right) \delta_{i}\right)
\end{aligned}
$$

Thus $\varphi(x)=v^{*}(x \otimes I) v$ for any $x \in \mathbb{M}_{n}$. Thus φ is certainly completely positive.

Stinespring Theorem and links to completely bounded norms

Theorem (Stinespring, 1955)

Let $\varphi: \mathbb{M}_{n} \rightarrow \mathbb{M}_{n}$ be a completely positive map. There exists an inner-product space K, of dimension at most n^{2}, and a linear map $v: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n} \otimes K$, such that $\varphi(x)=v^{*}(x \otimes I) v$.

If we pick an orthonormal basis $\left(e_{j}\right)$ for K, then we can find matrices $\left(v_{j}\right)$ with $v(\xi)=\sum_{j} v_{j}(\xi) \otimes e_{j}$, and so

$$
\varphi(x)=\sum_{j} v_{j}^{*} x v_{j} .
$$

This result is also attributed to Choi and Kraus. Hence

$$
\|\varphi\|_{c b} \leq\left\|\sum_{j} v_{j}^{*} v_{j}\right\|=\|\varphi(I)\| .
$$

Actually we have equality throughout.

Spans of completely positive maps

Remember from before that to compute the completely bounded norm of $\varphi: \mathbb{M}_{n} \rightarrow \mathbb{M}_{n}$, we looked at maps $u, w: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n} \otimes \mathbb{C}^{k}$ with

$$
\varphi(x)=u^{*}(x \otimes I) w \quad\left(x \in \mathbb{M}_{n}\right)
$$

Now we know that φ is completely positive if and only if we can choose $u=w$. However, polarisation gives

$$
\varphi(x)=\frac{1}{4} \sum_{k=0}^{3} i^{k}\left(u+i^{k} w\right)^{*}(x \otimes I)\left(u+i^{k} w\right) .
$$

Thus any linear map $\mathbb{M}_{n} \rightarrow \mathbb{M}_{n}$ is a linear combination of 4 completely positive maps.

Quantum channels

I am far from an expert here!

- In quantum information theory, a quantum channel is a mathematical model of the evolution of an "open" quantum system.
- This is a trace preserving, completely positive map $\varphi: \mathbb{M}_{n} \rightarrow \mathbb{M}_{n}$.
- The trace is used to evaluate the probability of quantum states occurring, and so trace preservation reflects conservation of probability.
- Complete positivity is required to allow tensoring with other quantum systems without losing positivity.
- Given $\varphi: \mathbb{M}_{n} \rightarrow \mathbb{M}_{n}$ we can define $\varphi^{\dagger}: \mathbb{M}_{n} \rightarrow \mathbb{M}_{n}$ by using trace-duality: $\operatorname{Tr}\left(\varphi^{\dagger}(x) y\right)=\operatorname{Tr}(x \varphi(y))$. This operation preserves complete positivity, but φ is trace preserving if and only if φ^{\dagger} is unital: $\varphi^{\dagger}(I)=I$.
- This swaps between the Schrödinger and Heisenberg pictures.

Some open problems

We focus on completely positive unital maps $\varphi: \mathbb{M}_{n} \rightarrow \mathbb{M}_{n}$, say with

$$
\varphi(x)=\sum_{i} v_{i}^{*} x v_{i}
$$

- The collection of such maps, say $U C P_{n}$, is a bounded, convex subset of the collection of linear maps $\mathbb{M}_{n} \rightarrow \mathbb{M}_{n}$. So we might ask what the extreme points are (recall that a theorem of Minkowski shows that then $U C P_{n}$ is the convex hull of its extreme points).
- Choi showed that φ is extreme if and only if we can choose the matrices $\left(v_{i}\right)$ with $\left\{v_{i}^{*} v_{j}\right\}$ a linearly independent set.
- The closure of the set of extreme points in $U C P_{n}$ is those φ which admit a representation as above, with at most n matrices v_{i}.
- There seems to be considerable interest in "characterising" or "classifying" the closure of the extreme points in $U C P_{n}$.

For example, when $n=2$

Ruskai, Szarek, Wener showed that a ucp map $\varphi: \mathbb{M}_{2} \rightarrow \mathbb{M}_{2}$ which is in the closure of the extreme points is of the following form:

$$
\varphi(x)=u_{1}^{*} x u_{1}+u_{2}^{*} x u_{2}
$$

where

$$
u_{1}=\sum_{j=1}^{2} \alpha_{j} \xi_{j} \overline{\eta_{j}^{t}}, \quad u_{2}=\sum_{j=1}^{2} \sqrt{1-\alpha_{j}^{2}} \rho_{j} \overline{\eta_{j}^{t}}
$$

where $\left\{\xi_{1}, \xi_{2}\right\},\left\{\eta_{1}, \eta_{2}\right\},\left\{\rho_{1}, \rho_{2}\right\}$ are three orthonormal bases of \mathbb{C}^{2}, and $0 \leq \alpha_{j} \leq 1$.
Apparently (caveat emptor!) there is nothing known for $\mathbb{M}_{n} \rightarrow \mathbb{M}_{n}$ for $n>2$.

More on convexity

- Any $\varphi \in U C P_{n}$ can be written as a convex combination of extreme points. But how many?
- As before, we allow ourselves also to work with the closure of the extreme points. This is the maps of the form $\phi(x)=\sum_{i=1}^{n} u_{i}^{*} x u_{i}$.
- Conjecture: Any $\varphi \in U C P_{n}$ can be written as

$$
\frac{1}{n} \sum_{j=1}^{n} \phi_{j}
$$

where each ϕ_{j} is in the closure of the extreme points.

- You can restate this in terms of matrices: suppose $A=\left(a_{i j}\right) \in \mathbb{M}_{n}\left(\mathbb{M}_{n}\right)$ is positive. Conjecture: there are n matrices $B_{k}=\left(b_{i j}^{(k)}\right)$, each of rank at most n, with

$$
A=\frac{1}{n} \sum_{k} B_{k}, \quad \sum_{j} b_{j j}^{(k)}=\sum_{j} a_{j j} \text { for each } k .
$$

Entropy problem

- A density matrix is a positive matrix $x \in \mathbb{M}_{n}$ with $\operatorname{Tr}(x)=1$.
- The von Neumann entropy of a density matrix x is $S(x)=-\operatorname{Tr}(x \log (x))$.
- Let $\varphi: \mathbb{M}_{n} \rightarrow \mathbb{M}_{n}$ be a completely positive, trace-preserving map. The minimal entropy of φ is

$$
S_{\min }(\varphi)=\inf \{S(\varphi(x)): x \text { a density matrix }\} .
$$

- Is the following additivity conjecture true?

$$
S_{\min }(\varphi \otimes \phi)=S_{\min }(\varphi)+S_{\min }(\phi)
$$

Back to algebra

Let $A, B \subseteq \mathbb{M}_{n}$ be (unital) algebras. Then $\sum_{i} a_{i} \otimes b_{i} \in A \otimes B$ induces
$\varphi: \mathbb{M}_{n} \rightarrow \mathbb{M}_{n}$ by

$$
\varphi(x)=\sum_{i} a_{i} x b_{i}
$$

The completely bounded norm is estimated by

$$
\|\varphi\|_{c b} \leq\left\|\sum_{i} a_{i} a_{i}^{*}\right\|^{1 / 2}\left\|\sum_{i} b_{i}^{*} b_{i}\right\|^{1 / 2}
$$

The infimum of the RHS is the Haagerup tensor norm on $A \otimes B$ (and is $\|\varphi\|_{c b}$). Conversely, suppose that $\varphi: \mathbb{M}_{n} \rightarrow \mathbb{M}_{n}$ is a linear map which is a left A^{\prime}-module homomorphism, and a right B^{\prime}-module homomorphism. Here $A^{\prime}=\left\{x \in \mathbb{M}_{n}: x a=a x(a \in A)\right\}$ the commutant of A, and similarly for B^{\prime}. Then we have that

$$
\varphi(x)=\sum_{i} a_{i} x b_{i} \quad \text { where }\left(a_{i}\right) \subseteq A^{\prime \prime},\left(b_{i}\right) \subseteq B^{\prime \prime}
$$

We can still compute $\|\varphi\|_{c b}$ be just considering these special forms.

Application to Hopf algebras

Recall that a Hopf $*$-algebra is, for me, a hermitian algebra $A \subseteq \mathbb{M}_{m}$ (so $a \in A \Longrightarrow a^{*} \in A$) which admits a coproduct $\Delta: A \rightarrow A \otimes A$: that is, Δ is an algebra homomorphism, and $(\iota \otimes \Delta) \Delta=(\Delta \otimes \iota) \Delta$.
It's usual to either specify a counit and antipode, or to require some generalised cancellation rule which implies the existence of a counit and an antipode. But for me , a coalgebra is enough.
The dual space $A^{\dagger}=\operatorname{hom}(A, \mathbb{C})$ becomes a hermitian algebra for the product

$$
\langle\mu \lambda, a\rangle=\langle\mu \otimes \lambda, \Delta(a)\rangle \quad\left(a \in A, \mu, \lambda \in A^{\dagger}\right),
$$

and the $*$-operation

$$
\left\langle\mu^{*}, a\right\rangle=\overline{\left\langle\mu, a^{*}\right\rangle} \quad\left(a \in A, \mu \in A^{\dagger}\right) .
$$

A representation of A^{\dagger} is an algebra homomorphism $\pi: A^{\dagger} \rightarrow \mathbb{M}_{n}$ which preserves the $*$ operation.

Coefficients

Fix a representation $\pi: A^{\dagger} \rightarrow \mathbb{M}_{n}$, and pick $\xi, \eta \in \mathbb{C}^{n}$. These induce the coefficient $a_{\xi, \eta} \in A$, which satisfies

$$
\left\langle\mu, a_{\xi, \eta}\right\rangle=\overline{\xi^{\dagger}} \pi(\mu) \eta \quad\left(\mu \in A^{\dagger}\right)
$$

With the usual orthonormal basis $\left(\delta_{i}\right)$ for \mathbb{C}^{n}, we have that

$$
\begin{aligned}
\left\langle\mu \otimes \lambda, \Delta\left(a_{\xi, \eta}\right)\right\rangle & =\overline{\xi^{t}} \pi(\mu \lambda) \eta=\overline{\xi^{t}} \pi(\mu) \pi(\lambda) \eta \\
& =\sum_{j} \overline{\xi^{t}} \pi(\mu) \delta_{j} \overline{\delta_{j}^{t}} \pi(\lambda) \eta=\sum_{j}\left\langle\mu \otimes \lambda, a_{\xi, \delta_{j}} \otimes a_{\delta_{j}, \eta}\right\rangle .
\end{aligned}
$$

Thus

$$
\Delta\left(a_{\xi, \eta}\right)=\sum_{j} a_{\xi, \delta_{j}} \otimes a_{\delta_{j}, \eta} .
$$

Where the Haagerup norm comes in

$$
\Delta\left(a_{\xi, \eta}\right)=\sum_{j} a_{\xi, \delta_{j}} \otimes a_{\delta_{j}, \eta} .
$$

We can check that $a_{\xi, \eta}^{*}=a_{\eta, \xi}$. It's a bit tedious to show, but there is an absolute constant K depending only on π such that

$$
\left\|\sum_{j} a_{\delta_{j}, \eta}^{*} a_{\delta_{j}, \eta}\right\|=\left\|\sum_{j} a_{\eta, \delta_{j}} a_{\delta_{j}, \eta}\right\| \leq K\|\eta\|^{2}
$$

Hence we see that

$$
\left\|\Delta\left(a_{\xi, \eta}\right)\right\|_{\text {Haagerup }} \leq K\|\xi\|\|\eta\| .
$$

Consequently, studying these coefficients will have something to do with studying completely bounded, $A=A^{\prime \prime}$ bimodule maps $\mathbb{M}_{m} \rightarrow \mathbb{M}_{m}$. This is what I'm interested in.

References

嵩 M.-D. Choi, "Completely positive linear maps on complex matrices", Linear Algebra and Appl. 10 (1975) 285-290.

E D. Kribs, "A quantum computing primer for operator theorists", Linear Algebra and Appl. 400 (2005) 147-167.
(N. Johnston, D. Kribs, V. Paulsen, "Computing stabilized norms for quantum operations via the theory of completely bounded maps." Quantum Inf. Comput. 9 (2009) 16-35.

R M. B. Ruskai, "Some Open Problems in Quantum Information Theory", see http://robson.birs.ca/~07w5119/OpenProb5x.pdf

囯 M. B. Ruskai, S. Szarek, E. Werner, "An analysis of completely positive trace-preserving maps on M_{2} ", Linear Algebra Appl. 347 (2002) 159-187.

