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Project

UK Home O�ce Police Innovation Fund: \More with Less: Authentic

Implementation of Evidence-Based Predictive Patrol Plans". With

Andy Evans and Monsuru Adepeju here at Leeds.

My task:

Take crime prediction algorithms from the literature, and

implement in an open source way

(https://github.com/QuantCrimAtLeeds/PredictCode/)

Allow other researchers to see what bene�t di�erent crime

prediction algorithms are likely to give.

My background is in Mathematics; and Software Development.

Runs until February 2018.
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The (Near-)repeat hypothesis

\The tendency of victims of crime to, in the nearby future, be repeat

victims; and of near-by (say) buildings to also be future victims."

(Principally interested in Burglary.)

That is, a crime event at a spatial/temporal location tends to imply a

higher risk, localised in space and time, for nearby locations.

Classical prediction techniques tend to generate \hot spots"

around previous locations.

Part I: How do we do this? (Plea for reproducible research.)

Part II: And what do we mean by \prediction" anyway? What

makes a \good" prediciton?
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Publications
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The algorithm
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The code
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Reproducible Research

\An article about computational science in a scienti�c publication is

not the scholarship itself, it is merely advertising of the scholarship.

The actual scholarship is the complete software development

environment and the complete set of instructions which generated the

�gures." | Buckheit, Donoho, \WaveLab and Reproducible Research", 1995.

\In my own experience, error is ubiquitous in scienti�c computing . . . "

| Donoho, \An invitation to reproducible computational research", Biostatistics (2010).

Merton's norms: universalism, communalism, disinterestedness,

organized scepticism.

With thanks to Victoria Stodden.
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Resources

http://reproducibleresearch.net/

https://rroxford.github.io/

http://www.bmj.com/content/344/bmj.e4383
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But to continue

Wikipedia entry \Hobby horse"

\My Uncle Toby on his Hobby-horse",
Wikipedia
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What is crime prediction?

\Precrime: It Works!"

Wikipedia entry \The Minority

Report"
From IMDB
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What is crime prediction actually?

\Although much news coverage promotes the meme that predictive

policing is a crystal ball, these algorithms predict the risk of future

events, not the events themselves." Perry, McInnis, Price, Smith, Hollywood,

\Predictive Policing", RAND report.

\Prior to each shift, Santa Cruz police o�cers receive information

identifying 15 such squares with the highest probability of crime, and

are encouraged | though not required | to provide greater attention

to these areas." Joh, \Policing by numbers: Big data and the fourth amendment.

\Despite the increased emphasis on proactive policing, the core of

police work remains that of responding to calls for service. . . " Gro�, La

Vigne, \Forecasting the future of predictive crime mapping".
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Analogy with weather forecasting

I have found analogies with probabilistic forecasting within

Meteorology to be very pro�table.

\There is a 20% chance of rain in Leeds tomorrow."

What does this mean?

If we make this prediction many times, then 1 in 5 times, it should

rain tomorrow. \reliability".

But maybe it rains 20% of the time in Leeds anyway (over a year,

say)?

\resolution" (which is hard to actually de�ne.)
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Lack of analogy
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Northside of Chicago, predictions and reality for 5th Nov 2016, and

23rd October 2016.

The probabilities involved are tiny.
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Hit rate

The de facto standard.

Pick a \coverage level", say 10% of the

area, which might be chosen given

Policing resources.

Pick that % of grid cells, by picking

those with the highest risk �rst.

Then calculate the fraction of actual

events which fall in the selected grid

cells.
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The good, the bad, the ugly

Easy to understand, tied to usage of the

prediction;

But seems to me to confuse prediction

with hot-spot / patrol plan creation.

Notice the huge quantitative di�erence

in the two examples.

How do you deal with the selection of a

coverage level?
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Interpret the results

Usual to plot mean hitrate against

coverage. Then use some statistical test.

But what's the model?

Let's suppose that each trial is an

independent draw from a binomial with

unknown p.

Use a at prior. Compute the predictive

posterior, plot the median and

inter-quartile range.

Gives much the same result (the number

of events per day doesn't vary that much).
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Brier scores

BS = 1

N

∑
N

t=1(ft − ot )
2

F = 1

K

∑
K

k=1

(
pk −

nk

N

)2

Return to Meteorology and probabilistic forecasting.

Binary events: either happens (1) or not (0).

For t = 1, · · · ,N make a prediction ft ∈ [0, 1].

Have actual events (ot ).

We follow a variant from Roberts, \Assessing the spatial and
temporal variation in the skill of precipitation forecasts from an
NWP model"

I K grid cells
I predicted probability pk
I nk actual events so nk/N fraction.

\Fractional Brier Score"

Matthew Daws (Leeds) Assessing predictions LIDA, Nov 2017 17 / 20



Brier scores

BS = 1

N

∑
N

t=1(ft − ot )
2

F = 1

K

∑
K

k=1

(
pk −

nk

N

)2

Return to Meteorology and probabilistic forecasting.

Binary events: either happens (1) or not (0).

For t = 1, · · · ,N make a prediction ft ∈ [0, 1].

Have actual events (ot ).

We follow a variant from Roberts, \Assessing the spatial and
temporal variation in the skill of precipitation forecasts from an
NWP model"

I K grid cells
I predicted probability pk
I nk actual events so nk/N fraction.

\Fractional Brier Score"

Matthew Daws (Leeds) Assessing predictions LIDA, Nov 2017 17 / 20



Brier scores

BS = 1

N

∑
N

t=1(ft − ot )
2

F = 1

K

∑
K

k=1

(
pk −

nk

N

)2

Return to Meteorology and probabilistic forecasting.

Binary events: either happens (1) or not (0).

For t = 1, · · · ,N make a prediction ft ∈ [0, 1].

Have actual events (ot ).

We follow a variant from Roberts, \Assessing the spatial and
temporal variation in the skill of precipitation forecasts from an
NWP model"

I K grid cells
I predicted probability pk
I nk actual events so nk/N fraction.

\Fractional Brier Score"

Matthew Daws (Leeds) Assessing predictions LIDA, Nov 2017 17 / 20



Brier scores

BS = 1

N

∑
N

t=1(ft − ot )
2

F = 1

K

∑
K

k=1

(
pk −

nk

N

)2

Return to Meteorology and probabilistic forecasting.

Binary events: either happens (1) or not (0).

For t = 1, · · · ,N make a prediction ft ∈ [0, 1].

Have actual events (ot ).

We follow a variant from Roberts, \Assessing the spatial and
temporal variation in the skill of precipitation forecasts from an
NWP model"

I K grid cells
I predicted probability pk
I nk actual events so nk/N fraction.

\Fractional Brier Score"

Matthew Daws (Leeds) Assessing predictions LIDA, Nov 2017 17 / 20



Brier scores

BS = 1

N

∑
N

t=1(ft − ot )
2

F = 1

K

∑
K

k=1

(
pk −

nk

N

)2

Return to Meteorology and probabilistic forecasting.

Binary events: either happens (1) or not (0).

For t = 1, · · · ,N make a prediction ft ∈ [0, 1].

Have actual events (ot ).

We follow a variant from Roberts, \Assessing the spatial and
temporal variation in the skill of precipitation forecasts from an
NWP model"

I K grid cells
I predicted probability pk
I nk actual events so nk/N fraction.

\Fractional Brier Score"

Matthew Daws (Leeds) Assessing predictions LIDA, Nov 2017 17 / 20



Skill score; results
Fworst =

1

K

∑
K

k=1

(
p2
k
+
(
nk

N

)2)
FS = 1− F/Fworst

What are units of F?

FS is the \skill"; closer to 1 is better.
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Bayesian information gain

Want to capture the feeling that if we see more events on a given

day, we should learn more about the quality of the prediction.

My idea is to use the prediction to form a prior, the update this

given the data to form a posterior, and then compare these with

the Kullback-Leibler divergence.

Measures the information gain from prior to posterior{ a good

prediction should mean less gained on learning the result.
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Conclusions?

Seems a little inconclusive.

Hit rate, Brier scores, (other ideas we develop) show roughly a tie.

The information gain idea is more of a clear win for the KDE

method.

Original aim was to get beyond the \hit rate" as being the only game

in town.

Bit of a work in progress: any ideas much appreciated!

https://github.com/QuantCrimAtLeeds/PredictCode/
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