Kaplansky Density for automorphism groups

Matthew Daws

UCLan

Newcastle, March 2019

Matthew Daws (UCLan)

Aut groups

Newcastle, Mar 2019 1/28

Outline

Operator algebras

2 One parameter automorphism groups

3 Interlude: Motivation

4 Kaplansky density for automorphism groups

Operator algebras

- A C^* -algebra is either:
 - A norm closed, self-adjoint, subalgebra A of $\mathcal{B}(H)$ (algebra of bounded operators on a Hilbert space).
 - A Banach algebra A with an involution * with $\|a^*a\| = \|a\|^2$ for $a \in A$.
- A von Neumann algebra is either:
 - A SOT closed, self-adjoint, subalgebra M of $\mathcal{B}(H)$. So if (x_i) a net in M, and $x \in \mathcal{B}(H)$, with $||x_i(\xi) - x(\xi)|| \to 0$ for $\xi \in H$, then $x \in M$.
 - A C*-algebra M which is isometrically isomorphic to the dual of some Banach space M_* .

Operator algebras

- A C^* -algebra is either:
 - A norm closed, self-adjoint, subalgebra A of $\mathcal{B}(H)$ (algebra of bounded operators on a Hilbert space).
 - A Banach algebra A with an involution * with $\|a^*a\| = \|a\|^2$ for $a \in A$.
- A von Neumann algebra is either:
 - A SOT closed, self-adjoint, subalgebra M of $\mathcal{B}(H)$. So if (x_i) a net in M, and $x \in \mathcal{B}(H)$, with $||x_i(\xi) - x(\xi)|| \to 0$ for $\xi \in H$, then $x \in M$.
 - A C^* -algebra M which is isometrically isomorphic to the dual of some Banach space M_* .

Let $\mathcal{T}(H)$ be the space of trace-class operators on H: those $x \in \mathcal{B}(H)$ for which |x| has finite trace, $\operatorname{tr}(|x|) < \infty$.

For $\xi,\eta\in H$ let $heta_{\xi,\eta}\in\mathcal{T}(H)$ be the rank-one operator

 $heta_{\xi,\eta}(\gamma) = (\gamma|\eta)\xi \qquad (\gamma\in H).$

There is a dual pairing between $\mathcal{T}(H)$ and $\mathcal{B}(H)$:

 $\langle x,y
angle = {
m tr}(xy) \qquad (x\in {\mathcal B}(H),y\in {\mathcal T}(H)).$

• Under this, $\mathcal{B}(H)$ is the dual space of $\mathcal{T}(H)$.

• Under this, $\theta_{\xi,\eta}$ induces the "vector functional" $\omega_{\xi,\eta}$ on $\mathcal{B}(H)$:

 $\langle x, \omega_{\xi,\eta}
angle = \operatorname{tr}(x \theta_{\xi,\eta}) = (\eta | x(\xi)) \qquad (x \in \mathcal{B}(H)).$

Let $\mathcal{T}(H)$ be the space of trace-class operators on H: those $x \in \mathcal{B}(H)$ for which |x| has finite trace, $\operatorname{tr}(|x|) < \infty$. For $\xi, \eta \in H$ let $\theta_{\xi, \eta} \in \mathcal{T}(H)$ be the rank-one operator

$$\theta_{\xi,\eta}(\gamma) = (\gamma|\eta)\xi, \quad (\gamma \in H).$$

There is a dual pairing between $\mathcal{T}(H)$ and $\mathcal{B}(H)$:

 $\langle x,y
angle = {
m tr}(xy) \qquad (x\in {\mathcal B}(H),y\in {\mathcal T}(H)).$

• Under this, $\mathcal{B}(H)$ is the dual space of $\mathcal{T}(H)$.

• Under this, $\theta_{\xi,\eta}$ induces the "vector functional" $\omega_{\xi,\eta}$ on $\mathcal{B}(H)$:

 $\langle x, \omega_{\xi,\eta}
angle = \operatorname{tr}(x \theta_{\xi,\eta}) = (\eta | x(\xi)) \qquad (x \in \mathcal{B}(H)).$

Let $\mathcal{T}(H)$ be the space of trace-class operators on H: those $x \in \mathcal{B}(H)$ for which |x| has finite trace, $\operatorname{tr}(|x|) < \infty$.

For $\xi, \eta \in H$ let $\theta_{\xi,\eta} \in \mathcal{T}(H)$ be the rank-one operator

$$\theta_{\xi,\eta}(\gamma) = (\gamma|\eta)\xi, \quad (\gamma \in H).$$

There is a dual pairing between $\mathcal{T}(H)$ and $\mathcal{B}(H)$:

$$\langle x,y
angle = {
m tr}(xy) \qquad (x\in {\mathcal B}(H),y\in {\mathcal T}(H)).$$

• Under this, $\mathcal{B}(H)$ is the dual space of $\mathcal{T}(H)$.

• Under this, $\theta_{\xi,\eta}$ induces the "vector functional" $\omega_{\xi,\eta}$ on $\mathcal{B}(H)$:

 $\langle x, \omega_{\xi,\eta}
angle = \operatorname{tr}(x heta_{\xi,\eta}) = (\eta | x(\xi)) \qquad (x \in \mathcal{B}(H)).$

Let $\mathcal{T}(H)$ be the space of trace-class operators on H: those $x \in \mathcal{B}(H)$ for which |x| has finite trace, $\operatorname{tr}(|x|) < \infty$. For $\xi \in \mathcal{T}(H)$ be the rank one operator

For $\xi, \eta \in H$ let $\theta_{\xi,\eta} \in \mathcal{T}(H)$ be the rank-one operator

$$\theta_{\xi,\eta}(\gamma) = (\gamma|\eta)\xi, \quad (\gamma \in H).$$

There is a dual pairing between $\mathcal{T}(H)$ and $\mathcal{B}(H)$:

$$\langle x,y
angle = {
m tr}(xy) \qquad (x\in {\mathcal B}(H),y\in {\mathcal T}(H)).$$

• Under this, $\mathcal{B}(H)$ is the dual space of $\mathcal{T}(H)$.

• Under this, $\theta_{\xi,\eta}$ induces the "vector functional" $\omega_{\xi,\eta}$ on $\mathcal{B}(H)$:

 $\langle x, \omega_{\xi,\eta}
angle = \operatorname{tr}(x \theta_{\xi,\eta}) = (\eta | x(\xi)) \qquad (x \in \mathcal{B}(H)).$

Let $\mathcal{T}(H)$ be the space of trace-class operators on H: those $x \in \mathcal{B}(H)$ for which |x| has finite trace, $\operatorname{tr}(|x|) < \infty$. For $\xi, \eta \in H$ let $\theta_{\xi,\eta} \in \mathcal{T}(H)$ be the rank-one operator

 ζ if lot $\delta \zeta, \eta \in \mathcal{T}$ (if) so the falls one operate

$$\theta_{\xi,\eta}(\gamma) = (\gamma|\eta)\xi, \quad (\gamma \in H).$$

There is a dual pairing between $\mathcal{T}(H)$ and $\mathcal{B}(H)$:

$$\langle x,y
angle = {
m tr}(xy) \qquad (x\in {\mathcal B}(H),y\in {\mathcal T}(H)).$$

- Under this, $\mathcal{B}(H)$ is the dual space of $\mathcal{T}(H)$.
- Under this, $\theta_{\xi,\eta}$ induces the "vector functional" $\omega_{\xi,\eta}$ on $\mathcal{B}(H)$:

$$\langle x, \omega_{\xi,\eta} \rangle = \operatorname{tr}(x \theta_{\xi,\eta}) = (\eta | x(\xi)) \qquad (x \in \mathcal{B}(H))$$

- We often write $\mathcal{B}(H)_*$ for $\mathcal{T}(H)$ as $\mathcal{T}(H)$ is the *predual* of $\mathcal{B}(H)$.
- Given a von Neumann algebra $M \subseteq \mathcal{B}(H)$, that M is SOT closed means that...
- M is closed in $\mathcal{B}(H)$ for the weak*-topology induced by $\mathcal{B}(H)_*$.
- Equivalently, $M = (^{\perp}M)^{\perp}$ where

$$^{\perp}M=\{\omega\in\mathcal{B}(H)_{*}:\langle x,\omega
angle=0\,\,(x\in M)\}.$$

• Equivalently (Hahn-Banach) the quotient $M_* = \mathcal{B}(H)_*/^{\perp}M$ is the predual of M:

$$\left(\mathcal{B}(H)_*/^{\perp}M\right)^* = (^{\perp}M)^{\perp} = M.$$

• Conversely, if M is a C^* -algebra with a predual M_* , a GNS type argument shows that there is H with $M \subseteq \mathcal{B}(H)$ and $M_* \cong \mathcal{B}(H)_*/^{\perp}M$.

- We often write $\mathcal{B}(H)_*$ for $\mathcal{T}(H)$ as $\mathcal{T}(H)$ is the *predual* of $\mathcal{B}(H)$.
- Given a von Neumann algebra $M \subseteq \mathcal{B}(H)$, that M is SOT closed means that...
- M is closed in $\mathcal{B}(H)$ for the weak*-topology induced by $\mathcal{B}(H)_*$.
- Equivalently, $M = (^{\perp}M)^{\perp}$ where

 $^{\perp}M=\{\omega\in\mathcal{B}(H)_{*}:\langle x,\omega
angle=$ 0 $(x\in M)\}.$

• Equivalently (Hahn-Banach) the quotient $M_* = \mathcal{B}(H)_*/^{\perp}M$ is the predual of M:

$$\left(\mathcal{B}(H)_*/^{\perp}M\right)^* = (^{\perp}M)^{\perp} = M.$$

• Conversely, if M is a C^* -algebra with a predual M_* , a GNS type argument shows that there is H with $M \subseteq \mathcal{B}(H)$ and $M_* \cong \mathcal{B}(H)_*/^{\perp}M$.

- We often write $\mathcal{B}(H)_*$ for $\mathcal{T}(H)$ as $\mathcal{T}(H)$ is the *predual* of $\mathcal{B}(H)$.
- Given a von Neumann algebra $M \subseteq \mathcal{B}(H)$, that M is SOT closed means that...
- M is closed in $\mathcal{B}(H)$ for the weak*-topology induced by $\mathcal{B}(H)_*$.
- Equivalently, $M = (^{\perp}M)^{\perp}$ where

$$^{\perp}M=\{\omega\in\mathcal{B}(H)_{st}:\langle x,\omega
angle={ extsf{0}}\;(x\in M)\}.$$

• Equivalently (Hahn-Banach) the quotient $M_* = \mathcal{B}(H)_*/^{\perp}M$ is the predual of M:

$$\left(\mathcal{B}(H)_*/^{\perp}M\right)^* = (^{\perp}M)^{\perp} = M.$$

• Conversely, if M is a C^* -algebra with a predual M_* , a GNS type argument shows that there is H with $M \subseteq \mathcal{B}(H)$ and $M_* \cong \mathcal{B}(H)_*/^{\perp}M$.

- We often write $\mathcal{B}(H)_*$ for $\mathcal{T}(H)$ as $\mathcal{T}(H)$ is the *predual* of $\mathcal{B}(H)$.
- Given a von Neumann algebra $M \subseteq \mathcal{B}(H)$, that M is SOT closed means that...
- M is closed in $\mathcal{B}(H)$ for the weak*-topology induced by $\mathcal{B}(H)_*$.
- Equivalently, $M = (^{\perp}M)^{\perp}$ where

$$^{\perp}M=\{\omega\in \mathcal{B}(H)_{st}:\langle x,\omega
angle=$$
0 $(x\in M)\}.$

• Equivalently (Hahn-Banach) the quotient $M_* = \mathcal{B}(H)_*/^{\perp}M$ is the predual of M:

$$\left(\mathcal{B}(H)_*/^{\perp}M\right)^* = (^{\perp}M)^{\perp} = M.$$

• Conversely, if M is a C^* -algebra with a predual M_* , a GNS type argument shows that there is H with $M \subseteq \mathcal{B}(H)$ and $M_* \cong \mathcal{B}(H)_*/^{\perp}M$.

- We often write $\mathcal{B}(H)_*$ for $\mathcal{T}(H)$ as $\mathcal{T}(H)$ is the *predual* of $\mathcal{B}(H)$.
- Given a von Neumann algebra $M \subseteq \mathcal{B}(H)$, that M is SOT closed means that...
- M is closed in $\mathcal{B}(H)$ for the weak*-topology induced by $\mathcal{B}(H)_*$.
- Equivalently, $M = (^{\perp}M)^{\perp}$ where

$$^{\perp}M=\{\omega\in \mathcal{B}(H)_{st}:\langle x,\omega
angle={ extsf{0}}\;(x\in M)\}.$$

• Equivalently (Hahn-Banach) the quotient $M_* = \mathcal{B}(H)_*/^{\perp}M$ is the predual of M:

$$\left(\mathcal{B}(H)_*/^{\perp}M\right)^* = (^{\perp}M)^{\perp} = M.$$

• Conversely, if M is a C^* -algebra with a predual M_* , a GNS type argument shows that there is H with $M \subseteq \mathcal{B}(H)$ and $M_* \cong \mathcal{B}(H)_*/^{\perp}M$.

Kaplansky Density

Theorem (Kaplansky)

Let M be a von Neumann algebra, and $A \subseteq M$ be a C^* -algebra which is weak*-dense in M. Then the unit ball of A is weak*-dense in the unit ball of M.

How could this fail?

Consider a Hilbert space H with orthonormal basis (e_n) . Think of $x \in \mathcal{B}(H)$ as an infinite matrix (x_{ij}) . Let ω be a state on $\mathcal{B}(H)$ which annihilates all compact operators. Finally, set

$$X = \{x \in \mathcal{B}(H) : 2x_{11} = \omega(x)\}.$$

Claim

The weak^{*}-closure of X equals all of $\mathcal{B}(H)$.

Sketch.

The compacts are weak*-dense in $\mathcal{B}(H)$, so approximate $x \in \mathcal{B}(H)$ by a compact. Then fiddle what happens to the (1, 1) matrix entry, by adding a multiple of the identity, to get inside X.

How could this fail, cont.

$$X = \{x \in \mathcal{B}(H) : 2x_{11} = \omega(x)\}.$$

- If x is in the unit ball of X then $2|x_{11}| = |\omega(x)| \le ||x|| \le 1$ (as ω is a state). So $|x_{11}| \le 1/2$.
- As evaluating a matrix entry is weak*-continuous, any x in the weak*-closure of the unit ball of X has |x₁₁| ≤ 1/2.
- Thus the unit ball of X is not weak*-dense in the unit ball of $\mathcal{B}(H)$.

Algebra example

For any subspace $Y \subseteq \mathcal{B}(H)$ let

$${S}_Y=\Big\{egin{pmatrix} lpha & x\ 0 & lpha \end{pmatrix}: lpha\in\mathbb{C}, x\in Y\Big\}\subseteq\mathcal{B}(H\oplus H)=M_2(\mathcal{B}(H)).$$

- This is a subalgebra, but not self-adjoint.
- The weak*-closure of S_Y is $S_{\overline{Y}}$, where \overline{Y} is the weak*-closure of Y in $\mathcal{B}(H)$.

• So
$$S_X$$
 is weak*-dense in $S_{\mathcal{B}(H)}$.

• If
$$\begin{pmatrix} lpha & x \\ 0 & lpha \end{pmatrix}$$
 is in the unit ball of S_X then $\|x\| \leq 1$. And so $|x_{11}| \leq 1/2.$

• So the weak*-closure of the unit ball of S_X does not contain $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, for example.

Outline

1 Operator algebras

2 One parameter automorphism groups

3 Interlude: Motivation

4 Kaplansky density for automorphism groups

Automorphism groups

Definition

Let *E* be a Banach space. A one-parameter group of isometries of *E* is a family $(\alpha_t)_{t\in\mathbb{R}}$ with:

- Each α_t is a contraction in $\mathcal{B}(E)$;
- $\alpha_0 = 1;$
- $\alpha_{t+s} = \alpha_t \circ \alpha_s$ for $s, t \in \mathbb{R}$.

Then $\alpha_{-t} \circ \alpha_t = \alpha_t \circ \alpha_{-t} = \alpha_0 = 1$ so each α_t is a bijective isometry. Say that (α_t) is strongly-continuous or a C_0 -group if

$$\lim_{t o 0}\|lpha_t(x)-x\|=0 \qquad (x\in E).$$

Equivalently, $\mathbb{R} o E, t \mapsto lpha_t(x)$ is (norm) continuous.

Automorphism groups

Definition

Let *E* be a Banach space. A one-parameter group of isometries of *E* is a family $(\alpha_t)_{t\in\mathbb{R}}$ with:

- Each α_t is a contraction in $\mathcal{B}(E)$;
- $\alpha_0 = 1;$
- $\alpha_{t+s} = \alpha_t \circ \alpha_s$ for $s, t \in \mathbb{R}$.

Then $\alpha_{-t} \circ \alpha_t = \alpha_t \circ \alpha_{-t} = \alpha_0 = 1$ so each α_t is a bijective isometry. Say that (α_t) is *strongly-continuous* or a C_0 -group if

$$\lim_{t\to 0} \|lpha_t(x)-x\|=0 \qquad (x\in E).$$

Equivalently, $\mathbb{R} \to E, t \mapsto \alpha_t(x)$ is (norm) continuous.

Examples

Let E = H a Hilbert space, so that each α_t is a unitary on H.

Theorem (Stone)

There is an (unbounded) self-adjoint operator T with $\alpha_t = \exp(iTt)$ for $t \in \mathbb{R}$.

Let $T\in \mathbb{M}_n$ be self-adjoint, so $u_t=\exp(iTt)$ forms a 1-parameter unitary group on \mathbb{C}^n . For $x\in \mathbb{M}_n$ define

$$lpha_t(x) = u_t x u_{-t} = e^{iTt} x e^{-iTt} \qquad (x \in \mathbb{M}_n).$$

- Each α_t is an isometry for the operator norm.
- (α_t) is a 1-parameter group.
- Each α_t is a *-automorphism of the algebra \mathbb{M}_n .

Examples

Let E = H a Hilbert space, so that each α_t is a unitary on H.

Theorem (Stone)

There is an (unbounded) self-adjoint operator T with $\alpha_t = \exp(iTt)$ for $t \in \mathbb{R}$.

Let $T \in \mathbb{M}_n$ be self-adjoint, so $u_t = \exp(iTt)$ forms a 1-parameter unitary group on \mathbb{C}^n . For $x \in \mathbb{M}_n$ define

$$\alpha_t(x) = u_t x u_{-t} = e^{iTt} x e^{-iTt}$$
 $(x \in \mathbb{M}_n).$

- Each α_t is an isometry for the operator norm.
- (α_t) is a 1-parameter group.
- Each α_t is a *-automorphism of the algebra \mathbb{M}_n .

Examples cont.

Consider $C_0(\mathbb{R})$, the C*-algebra of continuous functions $f:\mathbb{R}\to\mathbb{C}$ with $\lim_{|t|\to\infty}f(t)=0$.

• Define $\alpha_t(f)$ to be the function $s \mapsto f(s-t)$.

• Then (α_t) is a 1-parameter group of *-automorphisms of $C_0(\mathbb{R})$.

Let $L^{\infty}(\mathbb{R})$ be the von Neumann algebra of (equivalence classes) of (essentially) bounded measurable functions $f:\mathbb{R} o\mathbb{C}.$

- Define $\alpha_t(f)$ to be the function $s \mapsto f(s-t)$.
- Then (α_t) is a 1-parameter group of *-automorphisms of L[∞](ℝ), continuous in the weak* sense.

Notice that $C_0(\mathbb{R})$ is weak*-dense in $L^{\infty}(\mathbb{R})$, and that the automorphism groups are compatible with this inclusion.

Examples cont.

Consider $C_0(\mathbb{R})$, the C*-algebra of continuous functions $f:\mathbb{R}\to\mathbb{C}$ with $\lim_{|t|\to\infty}f(t)=0$.

• Define $\alpha_t(f)$ to be the function $s \mapsto f(s-t)$.

• Then (α_t) is a 1-parameter group of *-automorphisms of $C_0(\mathbb{R})$. Let $L^{\infty}(\mathbb{R})$ be the von Neumann algebra of (equivalence classes) of (essentially) bounded measurable functions $f : \mathbb{R} \to \mathbb{C}$.

- Define $\alpha_t(f)$ to be the function $s\mapsto f(s-t).$
- Then (α_t) is a 1-parameter group of *-automorphisms of L[∞](ℝ), continuous in the weak* sense.

Notice that $C_0(\mathbb{R})$ is weak^{*}-dense in $L^{\infty}(\mathbb{R})$, and that the automorphism groups are compatible with this inclusion.

Examples cont.

Consider $C_0(\mathbb{R})$, the C*-algebra of continuous functions $f:\mathbb{R}\to\mathbb{C}$ with $\lim_{|t|\to\infty}f(t)=0$.

• Define $\alpha_t(f)$ to be the function $s\mapsto f(s-t).$

• Then (α_t) is a 1-parameter group of *-automorphisms of $C_0(\mathbb{R})$. Let $L^{\infty}(\mathbb{R})$ be the von Neumann algebra of (equivalence classes) of (essentially) bounded measurable functions $f : \mathbb{R} \to \mathbb{C}$.

- Define $\alpha_t(f)$ to be the function $s\mapsto f(s-t).$
- Then (α_t) is a 1-parameter group of *-automorphisms of L[∞](ℝ), continuous in the weak* sense.

Notice that $C_0(\mathbb{R})$ is weak*-dense in $L^{\infty}(\mathbb{R})$, and that the automorphism groups are compatible with this inclusion.

Analytic generators: Holomorphic functions

Let E be a Banach space, $D \subseteq \mathbb{C}$ a domain, and $f: D \to E$ a function. The following are equivalent:

• f is *analytic* in the sense that for each $\alpha \in D$ there is an absolutely convergence power series for f, near α :

$$f(z) = \sum_{n \ge 0} a_n (z - lpha)^n \qquad |z - lpha| < r.$$

• f is holomorphic, in the sense that there is $F \subseteq E^*$ norming, with $D \to \mathbb{C}; z \mapsto \phi(f(z))$ is differentiable, for each $\phi \in F$.

Here norming means that

$$\|x\| = \sup\{|\phi(x)| : \phi \in F\}$$
 $(x \in E).$

In particular, "weakly holomorphic" or "weak*-holomorphic" imply "norm analytic".

Analytic generators: Holomorphic functions

Let E be a Banach space, $D \subseteq \mathbb{C}$ a domain, and $f: D \to E$ a function. The following are equivalent:

• f is *analytic* in the sense that for each $\alpha \in D$ there is an absolutely convergence power series for f, near α :

$$f(z) = \sum_{n \ge 0} a_n (z - lpha)^n \qquad |z - lpha| < r.$$

• f is holomorphic, in the sense that there is $F \subseteq E^*$ norming, with $D \to \mathbb{C}; z \mapsto \phi(f(z))$ is differentiable, for each $\phi \in F$.

Here *norming* means that

$$||x|| = \sup\{|\phi(x)| : \phi \in F\}$$
 $(x \in E).$

In particular, "weakly holomorphic" or "weak*-holomorphic" imply "norm analytic".

Given $\alpha \in \mathbb{C}$ let

$$S(lpha) = \Big\{ z \in \mathbb{C} : egin{array}{ccc} 0 \leq \operatorname{Im}(z) \leq \operatorname{Im}(lpha) & ext{if } \operatorname{Im}(lpha) \geq 0 \ 0 \geq \operatorname{Im}(z) \geq \operatorname{Im}(lpha) & ext{if } \operatorname{Im}(lpha) \leq 0 \Big\}. \end{split}$$

That is, the closed horizontal strip bounded by \mathbb{R} and $\mathbb{R} + \alpha$. A function $f: S(\alpha) \to E$ is *regular* if f is continuous, analytic in the interior of $S(\alpha)$, and bounded on \mathbb{R} and $\mathbb{R} + \alpha$:

$$M:=\sup_{t\in\mathbb{R}}\max\left(\|f(t)\|,\|f(\alpha+t)\|\right)<\infty.$$

Given $\alpha \in \mathbb{C}$ let

$$S(\alpha) = \Big\{ z \in \mathbb{C} : egin{array}{ccc} 0 \leq \operatorname{Im}(z) \leq \operatorname{Im}(lpha) & ext{if } \operatorname{Im}(lpha) \geq 0 \ 0 \geq \operatorname{Im}(z) \geq \operatorname{Im}(lpha) & ext{if } \operatorname{Im}(lpha) \leq 0 \Big\}. \end{split}$$

That is, the closed horizontal strip bounded by \mathbb{R} and $\mathbb{R} + \alpha$. A function $f: S(\alpha) \to E$ is *regular* if f is continuous, analytic in the interior of $S(\alpha)$, and bounded on \mathbb{R} and $\mathbb{R} + \alpha$:

$$M := \sup_{t \in \mathbb{R}} \max \left(\|f(t)\|, \|f(\alpha+t)\| \right) < \infty.$$

Given $\alpha \in \mathbb{C}$ let

$$S(\alpha) = \Big\{ z \in \mathbb{C} : egin{array}{ccc} 0 \leq \operatorname{Im}(z) \leq \operatorname{Im}(lpha) & ext{if } \operatorname{Im}(lpha) \geq 0 \ 0 \geq \operatorname{Im}(z) \geq \operatorname{Im}(lpha) & ext{if } \operatorname{Im}(lpha) \leq 0 \Big\}. \end{split}$$

That is, the closed horizontal strip bounded by \mathbb{R} and $\mathbb{R} + \alpha$. A function $f: S(\alpha) \to E$ is *regular* if f is continuous, analytic in the interior of $S(\alpha)$, and bounded on \mathbb{R} and $\mathbb{R} + \alpha$:

$$M := \sup_{t \in \mathbb{R}} \max \left(\|f(t)\|, \|f(\alpha+t)\| \right) < \infty.$$

Given $\alpha \in \mathbb{C}$ let

$$S(\alpha) = \Big\{ z \in \mathbb{C} : egin{array}{ccc} 0 \leq \operatorname{Im}(z) \leq \operatorname{Im}(lpha) & ext{if } \operatorname{Im}(lpha) \geq 0 \ 0 \geq \operatorname{Im}(z) \geq \operatorname{Im}(lpha) & ext{if } \operatorname{Im}(lpha) \leq 0 \Big\}. \end{split}$$

That is, the closed horizontal strip bounded by \mathbb{R} and $\mathbb{R} + \alpha$. A function $f: S(\alpha) \to E$ is *regular* if f is continuous, analytic in the interior of $S(\alpha)$, and bounded on \mathbb{R} and $\mathbb{R} + \alpha$:

$$M := \sup_{t \in \mathbb{R}} \max \left(\|f(t)\|, \|f(\alpha+t)\| \right) < \infty.$$

Given (α_t) , a 1-parameter group on E, and $z \in \mathbb{C}$, define an operator $D(\alpha_z) \to E$ by

 $x\in D(lpha_z)$ when there is f:S(z) o E regular with $f(t)=lpha_t(x) \,\,(t\in \mathbb{R}).$

Then we set $\alpha_z(x) = f(z)$.

- Morera's Theorem and the Reflection Principle imply that such an f is unique. So α_z is well-defined.
- Think of α_z as an "analytic extension" of the mapping $t \mapsto \alpha_t(x)$.
- Can show that $D(\alpha_z)$ is dense in E and that α_z is *closed*.
- Then α_{-i} is the analytic generator of (α_t) .

Given (α_t) , a 1-parameter group on E, and $z \in \mathbb{C}$, define an operator $D(\alpha_z) \to E$ by

$$x\in D(lpha_z)$$
 when there is $f:S(z) o E$ regular with $f(t)=lpha_t(x) \,\,(t\in \mathbb{R}).$

Then we set $\alpha_z(x) = f(z)$.

- Morera's Theorem and the Reflection Principle imply that such an f is unique. So α_z is well-defined.
- Think of α_z as an "analytic extension" of the mapping $t \mapsto \alpha_t(x)$.
- Can show that $D(\alpha_z)$ is dense in E and that α_z is closed.
- Then α_{-i} is the analytic generator of (α_t) .

Given (α_t) , a 1-parameter group on E, and $z \in \mathbb{C}$, define an operator $D(\alpha_z) \to E$ by

$$x\in D(lpha_z)$$
 when there is $f:S(z) o E$ regular with $f(t)=lpha_t(x) \,\,(t\in \mathbb{R}).$

Then we set $\alpha_z(x) = f(z)$.

- Morera's Theorem and the Reflection Principle imply that such an f is unique. So α_z is well-defined.
- Think of α_z as an "analytic extension" of the mapping $t \mapsto \alpha_t(x)$.
- Can show that $D(\alpha_z)$ is dense in E and that α_z is closed.
- Then α_{-i} is the analytic generator of (α_t) .

Given (α_t) , a 1-parameter group on E, and $z \in \mathbb{C}$, define an operator $D(\alpha_z) \to E$ by

$$x\in D(lpha_z)$$
 when there is $f:S(z) o E$ regular with $f(t)=lpha_t(x) \,\,(t\in \mathbb{R}).$

Then we set $\alpha_z(x) = f(z)$.

- Morera's Theorem and the Reflection Principle imply that such an f is unique. So α_z is well-defined.
- Think of α_z as an "analytic extension" of the mapping $t \mapsto \alpha_t(x)$.
- Can show that $D(\alpha_z)$ is dense in E and that α_z is *closed*.

• Then α_{-i} is the analytic generator of (α_t) .

Analytic generators

Given (α_t) , a 1-parameter group on E, and $z \in \mathbb{C}$, define an operator $D(\alpha_z) \to E$ by

$$x\in D(lpha_z)$$
 when there is $f:S(z) o E$ regular with $f(t)=lpha_t(x) \ (t\in \mathbb{R}).$

Then we set $\alpha_z(x) = f(z)$.

- Morera's Theorem and the Reflection Principle imply that such an f is unique. So α_z is well-defined.
- Think of α_z as an "analytic extension" of the mapping $t \mapsto \alpha_t(x)$.
- Can show that $D(\alpha_z)$ is dense in E and that α_z is *closed*.
- Then α_{-i} is the analytic generator of (α_t) .

Examples

When (α_t) is a continuous unitary group on a Hilbert space H, with $\alpha_t = \exp(iTt)$, then

$$\alpha_{-i} = \exp(T).$$

Define $\exp(T)$ by functional calculus. The equality means with equality of domains. (Of course formally obvious; but the LHS and RHS have different definitions.)

If (α_t) on \mathbb{M}_n is

$$\alpha_t(x) = u_t x u_{-t} = e^{iTt} x e^{-iTt},$$

then

$$\alpha_{-i}(x) = e^T x e^{-T} = P x P^{-1},$$

where $P = e^{T}$ is the analytic generator of (u_t) .

Examples

When (α_t) is a continuous unitary group on a Hilbert space H, with $\alpha_t = \exp(iTt)$, then

$$\alpha_{-i} = \exp(T).$$

Define $\exp(T)$ by functional calculus. The equality means with equality of domains. (Of course formally obvious; but the LHS and RHS have different definitions.) If (α_t) on \mathbb{M}_n is

$$\alpha_t(x) = u_t x u_{-t} = e^{iTt} x e^{-iTt},$$

then

$$\alpha_{-i}(x) = e^T x e^{-T} = P x P^{-1},$$

where $P = e^{T}$ is the analytic generator of (u_t) .

Examples, cont.

$$lpha_t(f)(s) = f(s-t)$$
 $(s,t \in \mathbb{R}, f \in C_0(\mathbb{R})).$

• Let $f \in D(\alpha_{-i})$;

- Let $F: S(-i) \to C_0(R)$ be the associated regular function.
- Can show that $\alpha_t \circ \alpha_z = \alpha_z \circ \alpha_t = \alpha_{t+z}$ in general.
- Define $g: S(i) \to \mathbb{C}$ by g(z) = F(-z)(0).
- Then $g(t) = F(-t)(0) = \alpha_{-t}(f)(0) = f(t)$.
- Also g is regular.
- Can reverse this.

So f itself analytically extends to S(i), and F(-i) is this extension of f, evaluated on $\mathbb{R} + i$.

(Somehow like a Hardy space...)

Examples, cont.

$$lpha_t(f)(s) = f(s-t)$$
 $(s,t \in \mathbb{R}, f \in C_0(\mathbb{R})).$

- Let $f \in D(\alpha_{-i})$;
- Let $F: S(-i) \to C_0(R)$ be the associated regular function.
- Can show that $\alpha_t \circ \alpha_z = \alpha_z \circ \alpha_t = \alpha_{t+z}$ in general.
- Define $g:S(i)
 ightarrow \mathbb{C}$ by g(z)=F(-z)(0).
- Then $g(t) = F(-t)(0) = \alpha_{-t}(f)(0) = f(t)$.
- Also g is regular.
- Can reverse this.

So f itself analytically extends to S(i), and F(-i) is this extension of f, evaluated on $\mathbb{R} + i$.

(Somehow like a Hardy space...)

Examples, cont.

$$lpha_t(f)(s) = f(s-t) \qquad (s,t\in\mathbb{R}, f\in C_0(\mathbb{R})).$$

- Let $f \in D(\alpha_{-i})$;
- Let $F: S(-i) \to C_0(R)$ be the associated regular function.
- Can show that $\alpha_t \circ \alpha_z = \alpha_z \circ \alpha_t = \alpha_{t+z}$ in general.
- Define $g:S(i)
 ightarrow \mathbb{C}$ by g(z)=F(-z)(0).
- Then $g(t) = F(-t)(0) = \alpha_{-t}(f)(0) = f(t)$.
- Also g is regular.
- Can reverse this.

So f itself analytically extends to S(i), and F(-i) is this extension of f, evaluated on $\mathbb{R} + i$. (Somehow like a Hardy space...)

Outline

Operator algebras

2 One parameter automorphism groups

Interlude: Motivation

4 Kaplansky density for automorphism groups

The Operator algebraic approach to Quantum Groups uses C^* and von Neumann algebras to generalise the notion of a locally compact group, and Pontryagin duality.

- Write G for the "abstract quantum group" and $L^{\infty}(\mathbb{G})$ and $C_0(\mathbb{G})$ for the associated algebras.
- The correct notion of the "group inverse" here is the *antipode S*, which in interesting examples turns out to be unbounded.
- Can "polar decompose" $S = R\tau_{-i/2}$ where R is the unitary antipode (and anti-*-automorphism), and...
- (τ_t) is the scaling group, a 1-parameter group of *-automorphisms of L[∞](G).

• $S^2 = \tau_{-i}$.

The Operator algebraic approach to Quantum Groups uses C^* and von Neumann algebras to generalise the notion of a locally compact group, and Pontryagin duality.

- Write \mathbb{G} for the "abstract quantum group" and $L^{\infty}(\mathbb{G})$ and $C_0(\mathbb{G})$ for the associated algebras.
- The correct notion of the "group inverse" here is the *antipode* S, which in interesting examples turns out to be unbounded.
- Can "polar decompose" $S = R\tau_{-i/2}$ where R is the unitary antipode (and anti-*-automorphism), and...
- (τ_t) is the scaling group, a 1-parameter group of *-automorphisms of L[∞](G).

• $S^2 = \tau_{-i}$.

The Operator algebraic approach to Quantum Groups uses C^* and von Neumann algebras to generalise the notion of a locally compact group, and Pontryagin duality.

- Write G for the "abstract quantum group" and L[∞](G) and C₀(G) for the associated algebras.
- The correct notion of the "group inverse" here is the *antipode* S, which in interesting examples turns out to be unbounded.
- Can "polar decompose" $S = R\tau_{-i/2}$ where R is the unitary antipode (and anti-*-automorphism), and...
- (τ_t) is the scaling group, a 1-parameter group of *-automorphisms of L[∞](G).

• $S^2 = \tau_{-i}$.

The Operator algebraic approach to Quantum Groups uses C^* and von Neumann algebras to generalise the notion of a locally compact group, and Pontryagin duality.

- Write G for the "abstract quantum group" and L[∞](G) and C₀(G) for the associated algebras.
- The correct notion of the "group inverse" here is the *antipode* S, which in interesting examples turns out to be unbounded.
- Can "polar decompose" $S = R\tau_{-i/2}$ where R is the unitary antipode (and anti-*-automorphism), and...
- (τ_t) is the scaling group, a 1-parameter group of *-automorphisms of L[∞](G).

• $S^2 = \tau_{-i}$.

The Operator algebraic approach to Quantum Groups uses C^* and von Neumann algebras to generalise the notion of a locally compact group, and Pontryagin duality.

- Write \mathbb{G} for the "abstract quantum group" and $L^{\infty}(\mathbb{G})$ and $C_0(\mathbb{G})$ for the associated algebras.
- The correct notion of the "group inverse" here is the *antipode* S, which in interesting examples turns out to be unbounded.
- Can "polar decompose" $S = R\tau_{-i/2}$ where R is the unitary antipode (and anti-*-automorphism), and...
- (τ_t) is the scaling group, a 1-parameter group of *-automorphisms of $L^{\infty}(\mathbb{G})$.

• $S^2 = \tau_{-i}$.

The Operator algebraic approach to Quantum Groups uses C^* and von Neumann algebras to generalise the notion of a locally compact group, and Pontryagin duality.

- Write \mathbb{G} for the "abstract quantum group" and $L^{\infty}(\mathbb{G})$ and $C_0(\mathbb{G})$ for the associated algebras.
- The correct notion of the "group inverse" here is the *antipode* S, which in interesting examples turns out to be unbounded.
- Can "polar decompose" $S = R\tau_{-i/2}$ where R is the unitary antipode (and anti-*-automorphism), and...
- (τ_t) is the scaling group, a 1-parameter group of *-automorphisms of L[∞](G).

•
$$S^2 = \tau_{-i}$$
.

Outline

1 Operator algebras

2 One parameter automorphism groups

3 Interlude: Motivation

4 Kaplansky density for automorphism groups

Setup

We will suppose we have:

- a C*-algebra A which is weak*-dense in a von Neumann algebra M;
- A (strongly-continuous) 1-parameter *-automorphism group (α^A_t) on A, which extends to a (weak*-continuous) 1-parameter *-automorphism group (α^M_t) on M.

So we can consider:

 α^A_{-i} a norm-closed, norm-densely defined operator on A, α^M_{-i} a weak*-closed, weak*-densely defined operator on M.

How are these related?

Setup

We will suppose we have:

- a C*-algebra A which is weak*-dense in a von Neumann algebra M;
- A (strongly-continuous) 1-parameter *-automorphism group (α^A_t) on A, which extends to a (weak*-continuous) 1-parameter *-automorphism group (α^M_t) on M.

So we can consider:

 α_{-i}^{A} a norm-closed, norm-densely defined operator on A, α_{-i}^{M} a weak*-closed, weak*-densely defined operator on M.

How are these related?

Graphs

As α_{-i}^A is *closed*, by definition, its graph is closed:

$$\mathcal{G}(\alpha_{-i}^A) = \{(a, \alpha_{-i}^A(a)) : a \in D(\alpha_{-i}^A)\} \subseteq A \oplus A.$$

Almost by definition, we have that α_{-i}^{M} extends α_{-i}^{A} , which means that

 $\mathcal{G}(\alpha_{-i}^{A}) \subseteq \mathcal{G}(\alpha_{-i}^{M}),$

under the obvious inclusions $A \oplus A \subseteq M \oplus M$.

• In fact, $\mathcal{G}(\alpha_{-i}^A) = \mathcal{G}(\alpha_{-i}^M) \cap (A \oplus A).$

One can show that actually

 $\mathcal{G}(\pmb{lpha}_{-i}^A)$ is weak^{*} dense in $\mathcal{G}(\pmb{lpha}_{-i}^M).$

In other words, α_{-i}^A is a (weak *j*) core for α_{-i}^M .

Graphs

As α_{-i}^A is *closed*, by definition, its graph is closed:

$$\mathcal{G}(\alpha_{-i}^A) = \{(a, \alpha_{-i}^A(a)) : a \in D(\alpha_{-i}^A)\} \subseteq A \oplus A.$$

Almost by definition, we have that α_{-i}^{M} extends α_{-i}^{A} , which means that

 $\mathcal{G}(\alpha_{-i}^{A}) \subseteq \mathcal{G}(\alpha_{-i}^{M}),$

under the obvious inclusions $A \oplus A \subseteq M \oplus M$.

• In fact,
$$\mathcal{G}(\alpha_{-i}^A) = \mathcal{G}(\alpha_{-i}^M) \cap (A \oplus A).$$

One can show that actually

 $\mathcal{G}(\alpha_{-i}^A)$ is weak^{*} dense in $\mathcal{G}(\alpha_{-i}^M)$.

In other words, α_{-i}^A is a (weak *j*) core for α_{-i}^M .

Graphs

As α_{-i}^A is *closed*, by definition, its graph is closed:

$$\mathcal{G}(\alpha_{-i}^A) = \{(a, \alpha_{-i}^A(a)) : a \in D(\alpha_{-i}^A)\} \subseteq A \oplus A.$$

Almost by definition, we have that α_{-i}^{M} extends α_{-i}^{A} , which means that

 $\mathcal{G}(\alpha_{-i}^{A}) \subseteq \mathcal{G}(\alpha_{-i}^{M}),$

under the obvious inclusions $A \oplus A \subseteq M \oplus M$.

• In fact,
$$\mathcal{G}(\alpha_{-i}^A) = \mathcal{G}(\alpha_{-i}^M) \cap (A \oplus A).$$

One can show that actually

$$\mathcal{G}(\alpha_{-i}^{A})$$
 is weak^{*} dense in $\mathcal{G}(\alpha_{-i}^{M})$.

In other words, α_{-i}^A is a (weak j) core for α_{-i}^M .

Kaplansky

Theorem

The unit ball of $\mathcal{G}(\alpha_{-i}^A)$ is weak*-dense in the unit ball of $\mathcal{G}(\alpha_{-i}^M)$.

To be concrete, this means that given $x \in D(lpha_{-i}^M)$ with

 $\|x\| \leq 1 ext{ and } \|lpha_{-i}^M(x)\| \leq 1,$

there is a net (a_j) in $D(\alpha_{-i}^A)$ with $a_j \to x$ and $\alpha_{-i}^A(a_j) \to \alpha_{-i}^M(x)$ weak*, and with

$$\|a_j\|\leq 1 ext{ and } \|lpha_{-i}^M(a_j)\|\leq 1.$$

Consider $a, b \in D(lpha^A_{-i})$, with analytic extensions $f_a, f_b: S(-i) o A$. Then

$$g:S(-i)
ightarrow A; \quad z\mapsto f_a(z)f_b(z),$$

will be bounded, continuous, and holomorphic on the interior, so regular. As

$$g(t)=lpha_t(a)lpha_t(b)=lpha_t(ab)$$
 $(t\in\mathbb{R}),$

we conclude that $ab \in D(\alpha_{-i}^A)$ with $\alpha_{-i}^A(ab) = \alpha_{-i}^A(a)\alpha_{-i}^A(b)$.

- The same holds for *M*, but the proof is surprisingly tricky, because multiplication is not *jointly* continuous.
- So $\mathcal{G}(\alpha^A_{-i})$ and $\mathcal{G}(\alpha^M_{-i})$ are sub-algebras of $A\oplus A$, and $M\oplus M$.
- But they are non-self-adjoint. Indeed, if $a \in D(\alpha_{-i}^A)$ then $a^* \in D(\alpha_i^A)$ and $\alpha_i^A(a^*) = \alpha_{-i}^A(a)^*$.

Consider $a, b \in D(lpha^A_{-i})$, with analytic extensions $f_a, f_b: S(-i) o A$. Then

$$g:S(-i)
ightarrow A; \quad z\mapsto f_a(z)f_b(z),$$

will be bounded, continuous, and holomorphic on the interior, so regular. As

$$g(t) = lpha_t(a) lpha_t(b) = lpha_t(ab)$$
 $(t \in \mathbb{R}),$

we conclude that $ab \in D(\alpha^A_{-i})$ with $\alpha^A_{-i}(ab) = \alpha^A_{-i}(a)\alpha^A_{-i}(b)$.

• The same holds for *M*, but the proof is surprisingly tricky, because multiplication is not *jointly* continuous.

• So $\mathcal{G}(\alpha^A_{-i})$ and $\mathcal{G}(\alpha^M_{-i})$ are sub-algebras of $A \oplus A$, and $M \oplus M$.

• But they are non-self-adjoint. Indeed, if $a \in D(\alpha_{-i}^A)$ then $a^* \in D(\alpha_i^A)$ and $\alpha_i^A(a^*) = \alpha_{-i}^A(a)^*$.

Consider $a, b \in D(lpha^A_{-i})$, with analytic extensions $f_a, f_b: S(-i) o A$. Then

$$g:S(-i)
ightarrow A; \quad z\mapsto f_a(z)f_b(z),$$

will be bounded, continuous, and holomorphic on the interior, so regular. As

$$g(t) = lpha_t(a) lpha_t(b) = lpha_t(ab)$$
 $(t \in \mathbb{R}),$

we conclude that $ab \in D(\alpha^A_{-i})$ with $\alpha^A_{-i}(ab) = \alpha^A_{-i}(a)\alpha^A_{-i}(b)$.

- The same holds for *M*, but the proof is surprisingly tricky, because multiplication is not *jointly* continuous.
- So $\mathcal{G}(\alpha^A_{-i})$ and $\mathcal{G}(\alpha^M_{-i})$ are sub-algebras of $A\oplus A$, and $M\oplus M$.
- But they are non-self-adjoint. Indeed, if $a \in D(\alpha_{-i}^A)$ then $a^* \in D(\alpha_i^A)$ and $\alpha_i^A(a^*) = \alpha_{-i}^A(a)^*$.

Consider $a, b \in D(lpha^A_{-i})$, with analytic extensions $f_a, f_b: S(-i) o A.$ Then

$$g:S(-i)
ightarrow A; \quad z\mapsto f_a(z)f_b(z),$$

will be bounded, continuous, and holomorphic on the interior, so regular. As

$$g(t) = lpha_t(a) lpha_t(b) = lpha_t(ab)$$
 $(t \in \mathbb{R}),$

we conclude that $ab \in D(\alpha^A_{-i})$ with $\alpha^A_{-i}(ab) = \alpha^A_{-i}(a)\alpha^A_{-i}(b)$.

• The same holds for *M*, but the proof is surprisingly tricky, because multiplication is not *jointly* continuous.

• So $\mathcal{G}(\alpha^A_{-i})$ and $\mathcal{G}(\alpha^M_{-i})$ are sub-algebras of $A\oplus A$, and $M\oplus M$.

• But they are non-self-adjoint. Indeed, if $a \in D(\alpha_{-i}^A)$ then $a^* \in D(\alpha_i^A)$ and $\alpha_i^A(a^*) = \alpha_{-i}^A(a)^*$.

The key idea is von Neumann algebraic:

- Using Kaplansky density for $A \subseteq M$ we see that A norms the predual M_* .
- Equivalently, the induced map $M_* \to A^*$ (given by restricting functions in M_* to $A \subseteq M$) is an isometry.
- The resulting subspace of A^* is an A-bimodule, and so there is a central projection $z \in A^{**}$ with $A^*z = M_*$.

• Thus
$$A^{**}z \cong M$$
.

We now consider $\mathcal{G}(\alpha_{-i}^A)^{**} \subseteq A^{**} \oplus A^{**}$. One can carefully show that

 $\mathcal{G}(\alpha_{-i}^M) \cong \mathcal{G}(\alpha_{-i}^A)^{**}(z \oplus z) \text{ and } \mathcal{G}(\alpha_{-i}^M) \subseteq \mathcal{G}(\alpha_{-i}^A)^{**}.$

The key idea is von Neumann algebraic:

- Using Kaplansky density for $A \subseteq M$ we see that A norms the predual M_* .
- Equivalently, the induced map $M_* \to A^*$ (given by restricting functions in M_* to $A \subseteq M$) is an isometry.
- The resulting subspace of A^* is an A-bimodule, and so there is a central projection $z \in A^{**}$ with $A^*z = M_*$.

• Thus
$$A^{**}z \cong M$$
.

We now consider $\mathcal{G}(\alpha_{-i}^A)^{**} \subseteq A^{**} \oplus A^{**}$. One can carefully show that

 $\mathcal{G}(\alpha^M_{-i}) \cong \mathcal{G}(\alpha^A_{-i})^{**}(z \oplus z) \text{ and } \mathcal{G}(\alpha^M_{-i}) \subseteq \mathcal{G}(\alpha^A_{-i})^{**}.$

The key idea is von Neumann algebraic:

- Using Kaplansky density for $A \subseteq M$ we see that A norms the predual M_* .
- Equivalently, the induced map $M_* \to A^*$ (given by restricting functions in M_* to $A \subseteq M$) is an isometry.
- The resulting subspace of A^* is an A-bimodule, and so there is a central projection $z \in A^{**}$ with $A^*z = M_*$.

```
• Thus A^{**}z \cong M.
```

We now consider $\mathcal{G}(lpha^A_{-i})^{**}\subseteq A^{**}\oplus A^{**}.$ One can carefully show that

 $\mathcal{G}(\alpha_{-i}^{M}) \cong \mathcal{G}(\alpha_{-i}^{A})^{**}(z \oplus z) \text{ and } \mathcal{G}(\alpha_{-i}^{M}) \subseteq \mathcal{G}(\alpha_{-i}^{A})^{**}.$

The key idea is von Neumann algebraic:

- Using Kaplansky density for $A \subseteq M$ we see that A norms the predual M_* .
- Equivalently, the induced map $M_* \to A^*$ (given by restricting functions in M_* to $A \subseteq M$) is an isometry.
- The resulting subspace of A^* is an A-bimodule, and so there is a central projection $z \in A^{**}$ with $A^*z = M_*$.
- Thus $A^{**}z \cong M$.

We now consider $\mathcal{G}(lpha^A_{-i})^{**}\subseteq A^{**}\oplus A^{**}.$ One can carefully show that

 $\mathcal{G}(\boldsymbol{\alpha}_{-i}^{M}) \cong \mathcal{G}(\boldsymbol{\alpha}_{-i}^{A})^{**}(z \oplus z) \text{ and } \mathcal{G}(\boldsymbol{\alpha}_{-i}^{M}) \subseteq \mathcal{G}(\boldsymbol{\alpha}_{-i}^{A})^{**}.$

The key idea is von Neumann algebraic:

- Using Kaplansky density for $A \subseteq M$ we see that A norms the predual M_* .
- Equivalently, the induced map $M_* \to A^*$ (given by restricting functions in M_* to $A \subseteq M$) is an isometry.
- The resulting subspace of A^* is an A-bimodule, and so there is a central projection $z \in A^{**}$ with $A^*z = M_*$.

• Thus
$$A^{**}z \cong M$$
 .

We now consider $\mathcal{G}(\alpha^A_{-i})^{**} \subseteq A^{**} \oplus A^{**}$. One can carefully show that

$$\mathcal{G}(\boldsymbol{\alpha}_{-i}^{M})\cong \mathcal{G}(\boldsymbol{\alpha}_{-i}^{A})^{**}(\boldsymbol{z}\oplus\boldsymbol{z}) \text{ and } \mathcal{G}(\boldsymbol{\alpha}_{-i}^{M})\subseteq \mathcal{G}(\boldsymbol{\alpha}_{-i}^{A})^{**}.$$

$$\mathcal{G}(\pmb{lpha}_{-i}^M)\cong \mathcal{G}(\pmb{lpha}_{-i}^A)^{**}(\pmb{z}\oplus\pmb{z})\subseteq \mathcal{G}(\pmb{lpha}_{-i}^A)^{**}.$$

- Given $(x,y)\in \mathcal{G}(lpha_{-i}^M)$ with $\|x\|\leq 1, \|y\|\leq 1,$
- But then we can regard $\mathcal{G}(\alpha_{-i}^M)$ as a subset of $\mathcal{G}(\alpha_{-i}^A)^{**}$.
- So there are $(a^{**}, b^{**}) \in \mathcal{G}(\alpha_{-i}^A)^{**}$ with $a^{**}z = a^{**}$, $b^{**}z = b^{**}$ and (a^{**}, b^{**}) corresponds to (x, y).
- By Hahn-Banach ("Goldstine theorem") there is a net (a_j, b_j) in $\mathcal{G}(\alpha_{-i}^A)$ converging to (a^{**}, b^{**}) , with norm control: $||a_j|| \leq 1$ and $||b_j|| \leq 1$.
- Check the topologies agree, so that $(a_j, b_j)
 ightarrow (x, y)$ weak* as required.

$$\mathcal{G}(lpha_{-i}^M) \cong \mathcal{G}(lpha_{-i}^A)^{**}(z \oplus z) \subseteq \mathcal{G}(lpha_{-i}^A)^{**}.$$

- Given $(x,y)\in \mathcal{G}(lpha_{-i}^M)$ with $\|x\|\leq 1, \|y\|\leq 1,$
- But then we can regard $\mathcal{G}(\alpha_{-i}^M)$ as a subset of $\mathcal{G}(\alpha_{-i}^A)^{**}$.
- So there are $(a^{**}, b^{**}) \in \mathcal{G}(\alpha_{-i}^A)^{**}$ with $a^{**}z = a^{**}$, $b^{**}z = b^{**}$ and (a^{**}, b^{**}) corresponds to (x, y).
- By Hahn-Banach ("Goldstine theorem") there is a net (a_j, b_j) in $\mathcal{G}(\alpha_{-i}^A)$ converging to (a^{**}, b^{**}) , with norm control: $||a_j|| \leq 1$ and $||b_j|| \leq 1$.
- Check the topologies agree, so that $(a_j, b_j)
 ightarrow (x, y)$ weak* as required.

$$\mathcal{G}(\pmb{lpha}_{-i}^M)\cong \mathcal{G}(\pmb{lpha}_{-i}^A)^{**}(\pmb{z}\oplus\pmb{z})\subseteq \mathcal{G}(\pmb{lpha}_{-i}^A)^{**}.$$

- Given $(x,y)\in \mathcal{G}(lpha_{-i}^M)$ with $\|x\|\leq 1, \|y\|\leq 1,$
- But then we can regard $\mathcal{G}(\alpha_{-i}^M)$ as a subset of $\mathcal{G}(\alpha_{-i}^A)^{**}$.
- So there are $(a^{**}, b^{**}) \in \mathcal{G}(\alpha_{-i}^A)^{**}$ with $a^{**}z = a^{**}$, $b^{**}z = b^{**}$ and (a^{**}, b^{**}) corresponds to (x, y).
- By Hahn-Banach ("Goldstine theorem") there is a net (a_j, b_j) in $\mathcal{G}(\alpha_{-i}^A)$ converging to (a^{**}, b^{**}) , with norm control: $||a_j|| \leq 1$ and $||b_j|| \leq 1$.
- Check the topologies agree, so that $(a_j, b_j)
 ightarrow (x, y)$ weak* as required.

$$\mathcal{G}(\pmb{lpha}_{-i}^M)\cong \mathcal{G}(\pmb{lpha}_{-i}^A)^{**}(\pmb{z}\oplus\pmb{z})\subseteq \mathcal{G}(\pmb{lpha}_{-i}^A)^{**}.$$

- Given $(x,y)\in \mathcal{G}(lpha_{-i}^M)$ with $\|x\|\leq 1, \|y\|\leq 1,$
- But then we can regard $\mathcal{G}(\alpha_{-i}^M)$ as a subset of $\mathcal{G}(\alpha_{-i}^A)^{**}$.
- So there are $(a^{**}, b^{**}) \in \mathcal{G}(\alpha_{-i}^A)^{**}$ with $a^{**}z = a^{**}$, $b^{**}z = b^{**}$ and (a^{**}, b^{**}) corresponds to (x, y).
- By Hahn-Banach ("Goldstine theorem") there is a net (a_j, b_j) in $\mathcal{G}(\alpha_{-i}^A)$ converging to (a^{**}, b^{**}) , with norm control: $||a_j|| \leq 1$ and $||b_j|| \leq 1$.
- Check the topologies agree, so that $(a_j, b_j)
 ightarrow (x, y)$ weak* as required.

$$\mathcal{G}(\pmb{lpha}_{-i}^M)\cong \mathcal{G}(\pmb{lpha}_{-i}^A)^{**}(\pmb{z}\oplus\pmb{z})\subseteq \mathcal{G}(\pmb{lpha}_{-i}^A)^{**}.$$

- Given $(x,y)\in \mathcal{G}(lpha_{-i}^M)$ with $\|x\|\leq 1, \|y\|\leq 1,$
- But then we can regard $\mathcal{G}(\alpha_{-i}^M)$ as a subset of $\mathcal{G}(\alpha_{-i}^A)^{**}$.
- So there are $(a^{**}, b^{**}) \in \mathcal{G}(\alpha_{-i}^A)^{**}$ with $a^{**}z = a^{**}$, $b^{**}z = b^{**}$ and (a^{**}, b^{**}) corresponds to (x, y).
- By Hahn-Banach ("Goldstine theorem") there is a net (a_j, b_j) in $\mathcal{G}(\alpha_{-i}^A)$ converging to (a^{**}, b^{**}) , with norm control: $||a_j|| \leq 1$ and $||b_j|| \leq 1$.
- Check the topologies agree, so that $(a_j, b_j)
 ightarrow (x, y)$ weak* as required.

Open question

Swap things about:

- The adjoints of (α^A_t) give rise to a weak*-continuous 1-parameter isometry group on A*.
- The pre-adjoints of (α^M_t) give rise to a norm-continuous
 1-parameter isometry group on M_{*}.

We have the isometric inclusion $M_* o A^*$ which leads to

 $\mathcal{G}(\alpha_{-i}^{M_*}) \subseteq \mathcal{G}(\alpha_{-i}^{A^*}),$

which is weak*-dense. Does Kaplansky Density hold fo

Open question

Swap things about:

- The adjoints of (α^A_t) give rise to a weak*-continuous 1-parameter isometry group on A*.
- The pre-adjoints of (α^M_t) give rise to a norm-continuous
 1-parameter isometry group on M_{*}.

We have the isometric inclusion $M_* o A^*$ which leads to

$$\mathcal{G}(\alpha_{-i}^{M_*}) \subseteq \mathcal{G}(\alpha_{-i}^{A^*}),$$

which is weak*-dense.

Does Kaplansky Density hold for this?

Open question

Swap things about:

- The adjoints of (α^A_t) give rise to a weak*-continuous 1-parameter isometry group on A*.
- The pre-adjoints of (α^M_t) give rise to a norm-continuous
 1-parameter isometry group on M_{*}.

We have the isometric inclusion $M_* o A^*$ which leads to

$$\mathcal{G}(\alpha_{-i}^{M_*}) \subseteq \mathcal{G}(\alpha_{-i}^{A^*}),$$

which is weak*-dense.

Does Kaplansky Density hold for this?