
Weakly almost periodic functionals on the measure
algebra

Matthew Daws

Leeds

October, 2009

Matthew Daws (Leeds) Measure algebras and WAP October, 2009 1 / 25



Outline

1 Weakly almost periodic functionals

2 Hopf von Neumann algebras

3 Further directions

Matthew Daws (Leeds) Measure algebras and WAP October, 2009 2 / 25



Locally compact groups

Let G be a locally compact group;

then G has a Haar measure: a
left-invariant Radon measure on G.
It is often interesting just to consider a discrete group G. Then the
Haar measure is just the counting measure.
The Haar measure on R is just the Lebesgue measure.
Let L1(G) be the usual space of integrable functions, with respect to
Haar measure. We turn L1(G) into a Banach algebra with the
convolution product.
Let M(G) be the collection of all finite Borel measures on G; again
equipped with the convolution product. Then L1(G) is an (essential)
ideal in M(G). M(G) = L1(G) if and only if G is discrete.
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Weakly almost periodic functionals

For f ∈ Cb(G) and s ∈ G, define the left translate by

Cb(G) 3 Ls(f ) : r 7→ f (s−1r) (r ∈ G).

We call f ∈ Cb(G) periodic if the left translates

LG(f ) = {Ls(f ) : s ∈ G}

span a finite-dimensional subspace of Cb(G).
As LG(f ) is bounded, f periodic implies that LG(f ) is (relatively)
compact.
Generalise: f is almost periodic if LG(f ) is (relatively) compact.
Generalise: f is weakly almost periodic if LG(f ) is (relatively) compact,
in the weak topology on Cb(G).
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Links with compactifications

A group compactification of G is a pair (H, φ) of a compact group H
and a continuous homomorphism φ : G→ H, which has dense range
(but may not be injective).

The Bohr (or almost periodic) compactification is the maximal group
compactification of G, say bG.
Let ap(G) ⊆ Cb(G) be collection of all almost periodic functions. Then
ap(G) is a (commutative) C∗-subalgebra of Cb(G), with character
space bG. There is a natural way to lift the product from G to the
character space of ap(G).
Replace “compact group” by “compact semitopological semigroup”
(that is, separate continuity of the product) and we replace “almost
periodic” by “weakly almost periodic”.
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For Banach algebras

For a Banach algebra A, a functional µ ∈ A∗ is (weakly) almost
periodic if the orbit

{a · µ : a ∈ A, ‖a‖ = 1}

is relatively (weakly) compact in A. Here A acts on A∗ in the usual
way.

Write wap(A) or ap(A).
A bounded approximate identity argument shows that

ap(L1(G)) = ap(G), wap(L1(G)) = wap(G),

where Cb(G) ⊆ L∞(G) = L1(G)∗. (See Ulger, 1986, or Wong, 1969, or
Lau, 1977).
wap(A) has interesting links with the Arens products on A∗∗.
In general, little can be said about wap(A) and ap(A).
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Measure algebras

What can we say about ap(M(G)) or wap(M(G))?

To be more precise: the history above was backwards. To show that
wap(L1(G)) is a subalgebra of L∞(G) requires the result that
wap(L1(G)) = wap(G), and then an application of Grothendieck’s
repeated limit criterion for weak compactness.
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Representation theory

A representation of G is a group homomorphism π : G→ iso(E), the
isometry group of a Banach space E , which is weak operator topology
continuous.

A representation of L1(G) is a contractive Banach algebra
homomorphism π̂ : L1(G)→ B(E).
Johnson: There is a bijection between (non-degenerate)
representations of G and (non-degenerate) representations of L1(G).

π̂(f ) =

∫
G

f (s)π(s) ds,

Bounded approximate identities allows you to build π from π̂.
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“Multiplying” functionals
Given π : G→ iso(E), a coefficient functional of π is

F ∈ Cb(G), F (s) = 〈µ, π(s)x〉 (s ∈ G),

where µ ∈ E∗ and x ∈ E . Write F = ωπ,µ,x .

Given πi : G→ iso(Ei) and Fi = ωπi ,µi ,xi , we define

π = π1 ⊗ π2 : G→ iso(E1 ⊗ E2), s 7→ π1(s)⊗ π2(s),

and then

(F1F2)(s) = 〈µ1 ⊗ µ2, π(s)(x1 ⊗ x2)〉 (s ∈ G).

Mantra: Multiplication of coefficient functionals is the same as
tensoring representations.
This is exactly the proof that the Fourier-Stieltjes algebra is an algebra
(all coefficient functionals of unitary representations).
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Young, Kaiser and Interpolation

The celebrated theorem of Davis, Figiel, Johnson and Pełcyzǹski tells
us the weakly compact operators are precisely the operators which
factor through reflexive Banach spaces.

Young adapted the proof to Banach algebras; Kaiser recast it in the
language of interpolation spaces.

Theorem
µ ∈ wap(A∗) if and only if there exists a reflexive Banach space E, a
representation π : A → B(E), and x ∈ E , µ ∈ E∗ with

〈µ,a〉 = 〈µ, π(a)(x)〉 (a ∈ A).

So F ∈ wap(L1(G)) if and only if F is the coefficient functional of a
representation on a reflexive Banach space.
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us the weakly compact operators are precisely the operators which
factor through reflexive Banach spaces.
Young adapted the proof to Banach algebras; Kaiser recast it in the
language of interpolation spaces.

Theorem
µ ∈ wap(A∗) if and only if there exists a reflexive Banach space E, a
representation π : A → B(E), and x ∈ E , µ ∈ E∗ with

〈µ,a〉 = 〈µ, π(a)(x)〉 (a ∈ A).

So F ∈ wap(L1(G)) if and only if F is the coefficient functional of a
representation on a reflexive Banach space.

Matthew Daws (Leeds) Measure algebras and WAP October, 2009 10 / 25



Reflexive tensor products

Let E and F be reflexive Banach spaces. There exists a norm on
E ⊗ F such that:

1 ‖x ⊗ y‖ = ‖x‖‖y‖ for x ∈ E , y ∈ F ;
2 Given T ∈ B(E) and S ∈ B(F ), the map T ⊗ S is bounded, with

norm ‖T‖‖S‖;
3 the completion is reflexive.

So:
wap(L1(G)) is the space of coefficient functionals on reflexive
spaces;
Multiplication is the same as tensoring;
Reflexive spaces are stable under tensoring.

So wap(L1(G)) is a subalgebra of Cb(G).
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The measure algebra

There is a measure space X such that M(G) = L1(X ) as Banach
spaces.

Seemingly no way to express the convolution product on M(G) in
terms of X .
For example, no link between representations of M(G) and a
“representation” of X .
Change categories!
Look at Hopf von Neumann algebras and corepresentations.
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Hopf von Neumann algebras

A (commutative) Hopf von Neumann algebra is a pair (L∞(X ), Γ)
where Γ : L∞(X )→ L∞(X × X ) is a unital, normal, ∗-homomorphism
which is co-associative:

L∞(X )

Γ
��

Γ // L∞(X × X )

id⊗Γ
��

L∞(X × X )
Γ⊗id// L∞(X × X × X )

As Γ is normal, it drops to give a contraction

L1(X )× L1(X ) // L1(X × X )
Γ∗ // L1(X ).

Then Γ is co-associative if and only if this product is associative.
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Examples

The motivating example is L∞(G) with the map

Γ : L∞(G)→ L∞(G ×G);

Γ(F )(s, t) = F (st) (F ∈ L∞(G), s, t ∈ G).

Then Γ∗ induces the usual convolution product on L1(G).
As M(G) = C0(G)∗, we can lift the product from C0(G) to
M(G)∗ = C0(G)∗∗, so M(G)∗ becomes a commutative von Neumann
algebra.
We can lift the product from M(G) to a co-associative map on M(G)∗,
turning M(G)∗ into a Hopf von Neumann algebra.
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Representations?

A suitable generalisation of a representation is a co-representation of
(L∞(X ), Γ).

A co-representation of L∞(X ) on a Hilbert space H is an element
W ∈ L∞(X )⊗B(H) (von Neumann tensor product); with

(Γ⊗ id)W = W13W23 ∈ L∞(X × X )⊗B(H).

Here W23(x1 ⊗ x2 ⊗ x3) = x1 ⊗W (x2 ⊗ x3). W13 = χW23χ where
χ(x1 ⊗ x2 ⊗ x3) = x2 ⊗ x1 ⊗ x3.
The von Neumann algebra L∞(X )⊗B(H) has predual

L1(X )⊗̂T (H),

the projective tensor product of L1(X ) and the trace-class operators on
H.

Matthew Daws (Leeds) Measure algebras and WAP October, 2009 15 / 25



Representations?

A suitable generalisation of a representation is a co-representation of
(L∞(X ), Γ).
A co-representation of L∞(X ) on a Hilbert space H is an element
W ∈ L∞(X )⊗B(H) (von Neumann tensor product);

with

(Γ⊗ id)W = W13W23 ∈ L∞(X × X )⊗B(H).

Here W23(x1 ⊗ x2 ⊗ x3) = x1 ⊗W (x2 ⊗ x3). W13 = χW23χ where
χ(x1 ⊗ x2 ⊗ x3) = x2 ⊗ x1 ⊗ x3.
The von Neumann algebra L∞(X )⊗B(H) has predual

L1(X )⊗̂T (H),

the projective tensor product of L1(X ) and the trace-class operators on
H.

Matthew Daws (Leeds) Measure algebras and WAP October, 2009 15 / 25



Representations?

A suitable generalisation of a representation is a co-representation of
(L∞(X ), Γ).
A co-representation of L∞(X ) on a Hilbert space H is an element
W ∈ L∞(X )⊗B(H) (von Neumann tensor product); with

(Γ⊗ id)W = W13W23 ∈ L∞(X × X )⊗B(H).

Here W23(x1 ⊗ x2 ⊗ x3) = x1 ⊗W (x2 ⊗ x3). W13 = χW23χ where
χ(x1 ⊗ x2 ⊗ x3) = x2 ⊗ x1 ⊗ x3.
The von Neumann algebra L∞(X )⊗B(H) has predual

L1(X )⊗̂T (H),

the projective tensor product of L1(X ) and the trace-class operators on
H.

Matthew Daws (Leeds) Measure algebras and WAP October, 2009 15 / 25



Representations?

A suitable generalisation of a representation is a co-representation of
(L∞(X ), Γ).
A co-representation of L∞(X ) on a Hilbert space H is an element
W ∈ L∞(X )⊗B(H) (von Neumann tensor product); with

(Γ⊗ id)W = W13W23 ∈ L∞(X × X )⊗B(H).

Here W23(x1 ⊗ x2 ⊗ x3) = x1 ⊗W (x2 ⊗ x3).

W13 = χW23χ where
χ(x1 ⊗ x2 ⊗ x3) = x2 ⊗ x1 ⊗ x3.
The von Neumann algebra L∞(X )⊗B(H) has predual

L1(X )⊗̂T (H),

the projective tensor product of L1(X ) and the trace-class operators on
H.

Matthew Daws (Leeds) Measure algebras and WAP October, 2009 15 / 25



Representations?

A suitable generalisation of a representation is a co-representation of
(L∞(X ), Γ).
A co-representation of L∞(X ) on a Hilbert space H is an element
W ∈ L∞(X )⊗B(H) (von Neumann tensor product); with

(Γ⊗ id)W = W13W23 ∈ L∞(X × X )⊗B(H).

Here W23(x1 ⊗ x2 ⊗ x3) = x1 ⊗W (x2 ⊗ x3). W13 = χW23χ where
χ(x1 ⊗ x2 ⊗ x3) = x2 ⊗ x1 ⊗ x3.

The von Neumann algebra L∞(X )⊗B(H) has predual

L1(X )⊗̂T (H),

the projective tensor product of L1(X ) and the trace-class operators on
H.

Matthew Daws (Leeds) Measure algebras and WAP October, 2009 15 / 25



Representations?

A suitable generalisation of a representation is a co-representation of
(L∞(X ), Γ).
A co-representation of L∞(X ) on a Hilbert space H is an element
W ∈ L∞(X )⊗B(H) (von Neumann tensor product); with

(Γ⊗ id)W = W13W23 ∈ L∞(X × X )⊗B(H).

Here W23(x1 ⊗ x2 ⊗ x3) = x1 ⊗W (x2 ⊗ x3). W13 = χW23χ where
χ(x1 ⊗ x2 ⊗ x3) = x2 ⊗ x1 ⊗ x3.
The von Neumann algebra L∞(X )⊗B(H) has predual

L1(X )⊗̂T (H),

the projective tensor product of L1(X ) and the trace-class operators on
H.

Matthew Daws (Leeds) Measure algebras and WAP October, 2009 15 / 25



Co-representations

L∞(X )⊗B(H) =
(
L1(X )⊗̂T (H)

)∗
= B(L1(X ),B(H)),

via the dual pairing

〈T , f ⊗ τ〉 = 〈T (f ), τ〉
(

T ∈ B(L1(X ),B(H)),
f ∈ L1(X ), τ ∈ T (H)

)

So W ∈ L∞(X )⊗B(H) induces π : L1(X )→ B(H); W is a
corepresentation if and only if π is a (Banach algebra) representation.
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Tensoring co-representations

Given πi : L1(X )→ B(Hi) representations, the tensored representation

π = π1 ⊗ π2 : L1(X )→ B(H1 ⊗ H2),

is associated to

W (1)
12 W (2)

13 ∈ L∞(X )⊗B(H1)⊗B(H2).

A coefficient functional associated to π is

〈F ,a〉 = 〈µ, π(a)(x)〉 = 〈(id⊗ωµ,x )W ,a〉 (a ∈ L1(X )),

where ωµ,x ∈ T (H) is the normal functional

B(H)→ C; T 7→ 〈µ,T (x)〉.
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For reflexive spaces?

So multiplying coefficient functionals is equivalent to “multiplying”
co-representations.

At least on Hilbert spaces!
So we need a co-representation theory for reflexive Banach spaces!
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Weak∗-tensor products

Fix a reflexive space E . We define L∞(X )⊗B(E) to be the
weak∗-closure of L∞(X )⊗ B(E) inside B(L2(X ,E)).

Here L2(X ,E) is a vector-valued L2 space.
That is, the closure of L2(X )⊗ E for some norm.
Using the approximation property for L1(X ), we can show that

B
(
L1(X ),B(E)

) ∼= L∞(X )⊗B(E).

Then co-representations all still work, and are compatible with our way
of tensoring reflexive spaces.
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A result!

Theorem
Let (L∞(X ), Γ) be a commutative Hopf von Neumann algebra. The
wap(L1(X )) is a C∗-subalgebra of L∞(X ).

Proof.
Easy to see that wap(L1(X )) is closed and self-adjoint.
Need to show that given F1,F2 ∈ wap(L1(X )), we have
F1F2 ∈ wap(L1(X )).
Fi associated to πi : L1(X )→ B(Ei), associated to
W (i) ∈ L∞(X )⊗B(Ei).
Then can take product W = W (1)W (2) ∈ L∞(X )⊗B(E1 ⊗ E2), induces
π : L1(X )→ B(E1 ⊗ E2), induces F1F2.

The analogous result for ap(L1(X )) is easy, once you think in terms of
Γ (and not just look at L1(X )).
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But what is wap(M(G))?

For L1(G), we have that wap(L1(G)) = wap(G) = C(K ) where K is
some compact semigroup, which we can characterise in terms of G.

We know that wap(M(G)) = C(K ) for some K . It would be natural that
Γ somehow induce a map K × K → K .
But we only expect separate continuity, so we cannot expect
something simple, like Γ restricting to a map C(K )→ C(K × K ).
Not clear that co-representations give much insight.
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Weakly compact operators

We have that

L∞(X × X ) = L∞(X )⊗L∞(X ) =
(
L1(X )⊗̂L1(X )

)∗
= B(L1(X ),L∞(X )).

LetW(L1(X ),L∞(X )) be the collection of all weakly-compact operators
L1(X )→ L∞(X ).
Again using factorisation results, it is possible to show:

Theorem
Identify B(L1(X ),L∞(X )) with L∞(X × X ). ThenW(L1(X ),L∞(X )) is a
subalgebra of L∞(X × X ).

This immediately implies that wap(L1(X )) is a subalgebra!
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Semitopological semigroups

Recall that a topological semigroup K is semitopological if the product
is separately continuous.

Theorem
Let (L∞(X ), Γ) be a commutative Hopf von Neumann algebra. Let K
be the character space of wap(L1(X )). Then Γ naturally induces a
semigroup product on K turning K into a compact semitopological
semigroup.
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For the measure algebra

We can apply this to wap(M(G)) ∼= C(K ).

We now know that K is, naturally, a compact semitopological
semigroup.
But what can we say about K ? It would be good to have an abstract
characterisation of K in terms of G.
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Non-commutative issues

I initially thought about these problems for non-commutative Hopf von
Neumann algebras,

specifically for locally compact quantum groups.
Let (M, Γ) be a Hopf von Neumann algebra; let M∗ be the predual of
M; let E be a reflexive (operator) space.

1 What is a good replacement for L2(X ,E)? Maybe Pisier’s notion of
vector-valued non-commutative Lp spaces? But does M act nicely
on these?

2 Lacking the approximation property, can we show that
CB(M∗, CB(E)) is equal to M∗⊗CB(E)? (True if E is a Hilbert
space).

3 How to tensor two reflexive operator spaces?

Matthew Daws (Leeds) Measure algebras and WAP October, 2009 25 / 25



Non-commutative issues

I initially thought about these problems for non-commutative Hopf von
Neumann algebras, specifically for locally compact quantum groups.

Let (M, Γ) be a Hopf von Neumann algebra; let M∗ be the predual of
M; let E be a reflexive (operator) space.

1 What is a good replacement for L2(X ,E)? Maybe Pisier’s notion of
vector-valued non-commutative Lp spaces? But does M act nicely
on these?

2 Lacking the approximation property, can we show that
CB(M∗, CB(E)) is equal to M∗⊗CB(E)? (True if E is a Hilbert
space).

3 How to tensor two reflexive operator spaces?

Matthew Daws (Leeds) Measure algebras and WAP October, 2009 25 / 25



Non-commutative issues

I initially thought about these problems for non-commutative Hopf von
Neumann algebras, specifically for locally compact quantum groups.
Let (M, Γ) be a Hopf von Neumann algebra; let M∗ be the predual of
M; let E be a reflexive (operator) space.

1 What is a good replacement for L2(X ,E)? Maybe Pisier’s notion of
vector-valued non-commutative Lp spaces? But does M act nicely
on these?

2 Lacking the approximation property, can we show that
CB(M∗, CB(E)) is equal to M∗⊗CB(E)? (True if E is a Hilbert
space).

3 How to tensor two reflexive operator spaces?

Matthew Daws (Leeds) Measure algebras and WAP October, 2009 25 / 25



Non-commutative issues

I initially thought about these problems for non-commutative Hopf von
Neumann algebras, specifically for locally compact quantum groups.
Let (M, Γ) be a Hopf von Neumann algebra; let M∗ be the predual of
M; let E be a reflexive (operator) space.

1 What is a good replacement for L2(X ,E)?

Maybe Pisier’s notion of
vector-valued non-commutative Lp spaces? But does M act nicely
on these?

2 Lacking the approximation property, can we show that
CB(M∗, CB(E)) is equal to M∗⊗CB(E)? (True if E is a Hilbert
space).

3 How to tensor two reflexive operator spaces?

Matthew Daws (Leeds) Measure algebras and WAP October, 2009 25 / 25



Non-commutative issues

I initially thought about these problems for non-commutative Hopf von
Neumann algebras, specifically for locally compact quantum groups.
Let (M, Γ) be a Hopf von Neumann algebra; let M∗ be the predual of
M; let E be a reflexive (operator) space.

1 What is a good replacement for L2(X ,E)? Maybe Pisier’s notion of
vector-valued non-commutative Lp spaces?

But does M act nicely
on these?

2 Lacking the approximation property, can we show that
CB(M∗, CB(E)) is equal to M∗⊗CB(E)? (True if E is a Hilbert
space).

3 How to tensor two reflexive operator spaces?

Matthew Daws (Leeds) Measure algebras and WAP October, 2009 25 / 25



Non-commutative issues

I initially thought about these problems for non-commutative Hopf von
Neumann algebras, specifically for locally compact quantum groups.
Let (M, Γ) be a Hopf von Neumann algebra; let M∗ be the predual of
M; let E be a reflexive (operator) space.

1 What is a good replacement for L2(X ,E)? Maybe Pisier’s notion of
vector-valued non-commutative Lp spaces? But does M act nicely
on these?

2 Lacking the approximation property, can we show that
CB(M∗, CB(E)) is equal to M∗⊗CB(E)? (True if E is a Hilbert
space).

3 How to tensor two reflexive operator spaces?

Matthew Daws (Leeds) Measure algebras and WAP October, 2009 25 / 25



Non-commutative issues

I initially thought about these problems for non-commutative Hopf von
Neumann algebras, specifically for locally compact quantum groups.
Let (M, Γ) be a Hopf von Neumann algebra; let M∗ be the predual of
M; let E be a reflexive (operator) space.

1 What is a good replacement for L2(X ,E)? Maybe Pisier’s notion of
vector-valued non-commutative Lp spaces? But does M act nicely
on these?

2 Lacking the approximation property, can we show that
CB(M∗, CB(E)) is equal to M∗⊗CB(E)? (True if E is a Hilbert
space).

3 How to tensor two reflexive operator spaces?

Matthew Daws (Leeds) Measure algebras and WAP October, 2009 25 / 25



Non-commutative issues

I initially thought about these problems for non-commutative Hopf von
Neumann algebras, specifically for locally compact quantum groups.
Let (M, Γ) be a Hopf von Neumann algebra; let M∗ be the predual of
M; let E be a reflexive (operator) space.

1 What is a good replacement for L2(X ,E)? Maybe Pisier’s notion of
vector-valued non-commutative Lp spaces? But does M act nicely
on these?

2 Lacking the approximation property, can we show that
CB(M∗, CB(E)) is equal to M∗⊗CB(E)? (True if E is a Hilbert
space).

3 How to tensor two reflexive operator spaces?

Matthew Daws (Leeds) Measure algebras and WAP October, 2009 25 / 25


	Weakly almost periodic functionals
	Hopf von Neumann algebras
	Further directions

