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Multipliers of C∗-algebras

Let A be a C∗-algebra acting non-degenerately on a Hilbert space H.
The multiplier algebra of A is

M(A) = {T ∈ B(H) : Ta,aT ∈ A (a ∈ A)}.

If A is unital, then clearly M(A) = A.
Notice that A ⊆ M(A) as an ideal, and M(A) is always unital.
M(A) is the largest unital algebra containing A as an essential
ideal: if I ⊆ M(A) is any ideal, then A ∩ I 6= {0}.
If A = C0(X ) then M(A) = Cb(X ) = C(βX ), so M(A) is a
non-commutative Stone-Čech compactification.
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non-commutative Stone-Čech compactification.

Matthew Daws (Leeds) Multipliers and the Fourier algebra January 2010 3 / 24



Multipliers of C∗-algebras

Let A be a C∗-algebra acting non-degenerately on a Hilbert space H.
The multiplier algebra of A is

M(A) = {T ∈ B(H) : Ta,aT ∈ A (a ∈ A)}.

If A is unital, then clearly M(A) = A.
Notice that A ⊆ M(A) as an ideal, and M(A) is always unital.
M(A) is the largest unital algebra containing A as an essential
ideal: if I ⊆ M(A) is any ideal, then A ∩ I 6= {0}.
If A = C0(X ) then M(A) = Cb(X ) = C(βX ), so M(A) is a
non-commutative Stone-Čech compactification.
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Centralisers

For an algebra A, let M(A) be the space of double centralisers, that is,
pairs of linear maps (L,R) of A → A with{

L(ab) = L(a)b, R(ab) = aR(b),

aL(b) = R(a)b
(a,b ∈ A).

We always assume that A is faithful, meaning that if a ∈ A with bac = 0 for
any b, c ∈ A, then a = 0.
For a C∗-algebra, this agrees with the notion of a multiplier.
When A is a Banach algebra, we naturally ask that L and R are linear
and bounded. However. . .
A Closed Graph argument shows that if (L,R) is a pair of maps A → A
with

aL(b) = R(a)b (a,b ∈ A),

then already (L,R) ∈ M(A) and L and R are bounded.
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Centralisers continued

Then M(A) becomes a Banach algebra for the product and norm

(L,R)(L′,R′) = (LL′,R′R), ‖(L,R)‖ = max(‖L‖, ‖R‖).

We can identify A as a subalgebra of M(A) by

a 7→ (La,Ra), La(b) = ab, Ra(b) = ba (a,b ∈ A).

Then A is an essential ideal in M(A), and M(A) is the largest algebra
with this property.
If A is a Banach algebra with a bounded approximate identity, then
most of what we expect from the C∗-world works for M(A).
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Dual Banach algebras and multipliers

A dual Banach algebra is a Banach algebra A which is (isomorphic to)
the dual of some Banach space A∗, such that the product on A is
separately weak∗-continuous.

Some motivation is the theory of von Neumann algebras.
However. . .
The multiplier algebra of a C∗-algebra is rarely a dual Banach
algebra:

M(c0) = `∞ = (`1)∗, M(C0(K )) = Cb(K ) ∼= C(βK ).

However, for many algebras arising in abstract harmonic analysis,
we do have that M(A) is a dual Banach algebra.
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Locally compact groups

Let G be a locally compact group, equipped with a left invariant Haar
measure. Examples include:

Any discrete group with the counting measure.
Any compact group, where the Haar measure is normalised to be
a probability measure.
The real line R with Lebesgue measure.
Various non-compact Lie groups give interesting examples.
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Group algebras

Turn L1(G) into a Banach algebra by using the convolution product:

(f ∗ g)(s) =

∫
G

f (t)g(t−1s) dt .

We can also convolve finite measures. Identify M(G) with C0(G)∗, then

〈µ ∗ λ,F 〉 =

∫ ∫
F (st) dµ(s) dλ(t) (µ, λ ∈ M(G),F ∈ C0(G)).

Then we have that
M(L1(G)) = M(G),

where for each (L,R) ∈ M(L1(G)), there exists µ ∈ M(G),

L(a) = µ ∗ a, R(a) = a ∗ µ (a ∈ L1(G)).
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Representations

Building on work of Young and Kaiser, we have

Theorem (Daws, Uygul)
Let A be a (completely contractive) dual Banach algebra. Then there
exists a reflexive Operator / Banach space E and a (completely)
isometric, weak∗-weak∗-continuous homomorphism π : A → B(E).

If we know more about A (say, A = M(L1(G)) = M(G)) can we choose
E in a “nice” way?
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An idea of Young

Fix a group G. Let (pn) ⊆ (1,∞) be a sequence tending to 1, and let

E = `2 −
⊕

n

Lpn (G).

L1(G) acts by convolution on each Lpn (G), and hence on E .
Similarly M(G) acts by convolution on E , extending the action of
L1(G).
Actually, the homomorphism π : M(G)→ B(E) is an isometry, and
is weak∗-weak∗ continuous.
The image of M(G) in B(E) is the idealiser of π(L1(G)):

π(M(G)) =
{

T ∈ B(E) :
Tπ(a), π(a)T ∈ π(L1(G))

(a ∈ L1(G))

}
.
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The Fourier Algebra

For a locally compact group G let λ be the left regular representation(
λ(s)ξ

)
(t) = ξ(s−1t) (s, t ∈ G, ξ ∈ L2(G)).

This induces a homomorphism λ : L1(G)→ B(L2(G)).
Let C∗λ(G) and VN(G) be the norm and σ-weak closures of λ(L1(G)),
respectively. So VN(G) = C∗λ(G)′′.
Let A(G) be the predual of VN(G). As VN(G) is in standard position
on L2(G), for each ω ∈ A(G), there exist ξ, η ∈ L2(G) with

ω = ωξ,η 〈x , ω〉 =
(
x(ξ)|η

)
(x ∈ VN(G)).
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Fourier Algebra: The product

As {λ(s) : s ∈ G} also generates VN(G), we see that
{〈λ(s), ω〉 : s ∈ G} determines ω ∈ A(G).
So ω ∈ A(G) is identified with a function G→ C.
This function is actually in C0(G), so we have a map

Φ : A(G)→ C0(G).

Then Φ(A(G)) is a (not closed!) subalgebra of C0(G), and A(G) is
a Banach algebra.
If G is abelian with dual group Ĝ, then A(G) is the image, under
the Fourier transform, of L1(Ĝ).
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Matthew Daws (Leeds) Multipliers and the Fourier algebra January 2010 12 / 24



Fourier Algebra: The product

As {λ(s) : s ∈ G} also generates VN(G), we see that
{〈λ(s), ω〉 : s ∈ G} determines ω ∈ A(G).
So ω ∈ A(G) is identified with a function G→ C.
This function is actually in C0(G), so we have a map

Φ : A(G)→ C0(G).

Then Φ(A(G)) is a (not closed!) subalgebra of C0(G), and A(G) is
a Banach algebra.
If G is abelian with dual group Ĝ, then A(G) is the image, under
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Multipliers
So we can form MA(G).

Either abstractly, or. . .
As A(G) is a “nice” subalgebra of C0(G), we have that

MA(G) = {f ∈ Cb(G) : fa ∈ A(G) (a ∈ A(G))}.

MA(G) = B(G), the Fourier-Stieltjes algebra, if and only if G is
amenable [Losert].

As the predual of a von Neumann algebra, A(G) is an operator space.
Actually a completely contractive Banach algebra. Hence natural to
consider the completely bounded multipliers, written Mcb(A(G)).
[De Canniere, Haagerup]: For f ∈ MA(G), TFAE:

f ∈ McbA(G);
f ⊗ 1K ∈ MA(G × K ) for all compact groups K ;
f ⊗ 1K ∈ MA(G × K ) for K = SU(2).
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MA(G) and McbA(G) are dual

[De Canniere, Haagerup]: Let Q be the completion of L1(G) under the
norm

‖f‖Q = sup
{∣∣∣ ∫ f (s)a(s) ds

∣∣∣ : a ∈ MA(G), ‖a‖ ≤ 1
}
.

Then Q∗ = MA(G).
Let Q0 be the completion of L1(G) under the norm

‖f‖Q0 = sup
{∣∣∣ ∫ f (s)a(s) ds

∣∣∣ : a ∈ McbA(G), ‖a‖ ≤ 1
}
.

Then Q∗0 = McbA(G).
Easy to check that MA(G) and McbA(G) hence become dual Banach
algebras.
Can we find representations on “nice” reflexive spaces?
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Abstracting Young’s construction

It is well-known that Lp(G) can be realised as the complex interpolation
space, of parameter 1/p, between L∞(G) and L1(G).
I won’t explain this in detail but observe that:

We regard L∞ = L∞(G) and L1 = L1(G) as spaces of functions on
G, so it makes sense to talk about L∞ ∩ L1 and L∞ + L1.
We have inclusions L∞ ∩ L1 ⊆ Lp ⊆ L∞ + L1 for p ∈ (1,∞);
(Riesz-Thorin) If T : L∞ + L1 → L∞ + L1 is linear, and restricts to
give maps L1 → L1 and L∞ → L∞, then

‖T : Lp → Lp‖ ≤ ‖T : L∞ → L∞‖1−1/p‖T : L1 → L1‖1/p.
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Convolution action

For µ ∈ M(G), we have a convolution action of µ on L1(G) and L∞(G).
Interpolating gives the convolution action on Lp(G).
However, from an abstract point of view, this is actually a little odd:

M(G) acts entirely naturally on L1(G) as M(L1(G)) = M(G).
L∞(G) is the dual space of L1(G).
So we have the adjoint action of M(G) on L∞(G).
This is not the usual convolution action of M(G) on L∞(G).

So, if we are to generalise this, we need a new idea.
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Analogous ideas for A(G)

So for the Fourier algebra, we might proceed as follows:

Find some way to embed A(G) and VN(G) into a Hausdorff
topological space;
so we can form VN(G) ∩ A(G) and VN(G) + A(G).
Use the complex interpolation method with parameter 1/p.
Find some module action of MA(G) on VN(G) which agrees with
the standard action of MA(G) on A(G) in VN(G) ∩ A(G).
Then do the same again at the Operator Space level!

Bizarrely, the last point suggests a novel way to get the module actions.
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Non-commutative Lp spaces

Using the complex interpolation method applied to von Neumann
algebras is a well established way to construct non-commutative Lp

spaces, say Lp(VN(G)).

If G is discrete, then VN(G) admits a finite trace: ϕ : x 7→ (xδe|δe)
for x ∈ VN(G). Then Lp(VN(G)) is the completion of VN(G) under
the norm ‖x‖p = ϕ(|x |p)1/p, where |x | = (x∗x)1/2.
In general, VN(G) only admits a weight, which satisfies
ϕ(λ(f ∗ g)) = (f ∗ g)(e) for, say, f ,g ∈ C00(G).
If G is compact, then

VN(G) ∼=
∏

i

Mni , Lp(VN(G)) ∼= `p −
⊕

i

Sp
ni
,

where Sp
n is Mn equipped with the pth Schatten-class norm.
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Operator Space Structures

For further details on the complex interpolation approach to
non-commutative Lp spaces, see [Kosaki], [Terp] and [Izumi].
Eventually we want a natural Operator Space structure on Lp(VN(G)):

Under favourable circumstances, we except that non-commutative
L2 is a Hilbert space;
A Hilbert space is self-dual;
The unique Operator Space structure on a Hilbert space with this
property is Pisier’s Operator Hilbert Space;
To recover this, we need to interpolate between a von Neumann
algebra M and the opposite predual Mop

∗ , see [Pisier].
Here Mop

∗ is the predual of M equipped with the opposite structure,

‖(ωij)‖Mop
∗

= ‖(ωji)‖M∗ .
(
(ωij) ∈Mn(M∗)

)
.
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The unique Operator Space structure on a Hilbert space with this
property is Pisier’s Operator Hilbert Space;
To recover this, we need to interpolate between a von Neumann
algebra M and the opposite predual Mop

∗ , see [Pisier].
Here Mop

∗ is the predual of M equipped with the opposite structure,

‖(ωij)‖Mop
∗

= ‖(ωji)‖M∗ .
(
(ωij) ∈Mn(M∗)

)
.
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For the Fourier algebra

As VN(G) is in standard position on L2(G), we can identify A(G)op

with the predual of the commutant VN(G)′.
However, VN(G)′ is simply VNr (G), the right group von Neumann
algebra, which is generated by the right regular representation.
So if we privilege A(G), it makes sense to interpolate between
VNr (G) and A(G).
If we follow Terp’s interpolation method through, then in
A(G) ∩ VNr (G), we find that

a = ρ
(
∇−1/2a

) (
a ∈ A(G) ∩ C00(G)2).

Here ρ is the right regular representation, and ∇ is the modular
function of G.
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The spaces

So we interpolate between VNr (G) and A(G), leading to Lp(Ĝ)
say. If G is abelian, this is the Lp space of the dual group Ĝ.
As a Banach space, Lp(Ĝ) is just Lp(VN(G)).
It turns out we can find a (rather natural, in the end) action of
MA(G) on VNr (G) which makes sense on A(G) ∩ VNr (G).
So we interpolate the module actions, and hence Lp(Ĝ) becomes
a (completely contractive) A(G) module. A similar argument
establishes that MA(G) and McbA(G) act on Lp(Ĝ), extending the
action of A(G).
Work of Izumi shows that there is a natural dual pairing between
Lp(Ĝ) and Lp′(Ĝ), where p−1 + p′−1 = 1.
Using this, we can show that the actions of MA(G) and McbA(G)
are weak∗-weak∗-continuous.
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a (completely contractive) A(G) module. A similar argument
establishes that MA(G) and McbA(G) act on Lp(Ĝ), extending the
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action of A(G).
Work of Izumi shows that there is a natural dual pairing between
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say. If G is abelian, this is the Lp space of the dual group Ĝ.
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Lp(Ĝ) and Lp′(Ĝ), where p−1 + p′−1 = 1.
Using this, we can show that the actions of MA(G) and McbA(G)
are weak∗-weak∗-continuous.

Matthew Daws (Leeds) Multipliers and the Fourier algebra January 2010 21 / 24



The theorem

Let (pn) be a sequence in (1,∞) tending to 1. Let

E = `2 −
⊕

n

Lpn (Ĝ).

Let π : MA(G)→ B(E) be the diagonal action.

Theorem
The homomorphism π is an isometric, weak∗-weak∗-continuous
isomorphism onto its range, which is equal to the idealiser of π(A(G))
in B(E),

π(MA(G)) =
{

T ∈ B(E) :
Tπ(a), π(a)T ∈ π(A(G))

(a ∈ A(G))

}
.
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Completely bounded case
Equip

E = `2 −
⊕

n

Lpn (Ĝ)

with its natural operator space structure (given by complex
interpolation, again, see [Pisier] and [Xu]). Let π : McbA(G)→ CB(E)
be the diagonal map.

Theorem
The homomorphism π is a completely isometric,
weak∗-weak∗-continuous isomorphism onto its range, which is equal to
the idealiser of π(A(G)) in CB(E),

π(McbA(G)) =
{

T ∈ CB(E) :
Tπ(a), π(a)T ∈ π(A(G))

(a ∈ A(G))

}
.

Notice that E , and the A(G) action, is the same in either case. The
idealiser in B(E) is MA(G), while the idealiser in CB(E) is McbA(G).
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Preprints

“Multipliers, Self-Induced and Dual Banach Algebras”,
arXiv:1001.1633v1 [math.FA]
“Representing multipliers of the Fourier algebra on non-commutative
Lp spaces”, arXiv:0906.5128v2 [math.FA]
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