Multipliers and the Fourier algebra

Matthew Daws
Leeds
January 2010

Outline

(1) Multipliers
(2) Dual Banach algebras
(3) The Fourier algebra
(4) Non-commutative L^{p} spaces

Multipliers of C*-algebras

Let A be a C*-algebra acting non-degenerately on a Hilbert space H. The multiplier algebra of A is

$$
M(A)=\{T \in \mathcal{B}(H): T a, a T \in A(a \in A)\}
$$

- If A is unital, then clearly $M(A)=A$.
- Notice that $A \subset M(A)$ as an ideal, and $M(A)$ is always unital.
- $M(A)$ is the largest unital algebra containing A as an essential ideal: if $I \subseteq M(A)$ is any ideal, then $A \cap I \neq\{0\}$.
- If $A=C_{0}(X)$ then $M(A)=C^{b}(X)=C(\beta X)$, so $M(A)$ is a non-commutative Stone-Čech compactification.

Multipliers of C*-algebras

Let A be a C*-algebra acting non-degenerately on a Hilbert space H. The multiplier algebra of A is

$$
M(A)=\{T \in \mathcal{B}(H): T a, a T \in A(a \in A)\}
$$

- If A is unital, then clearly $M(A)=A$.
- Notice that $A \subseteq M(A)$ as an ideal, and $M(A)$ is always unital.
- $M(A)$ is the largest unital algebra containing A as an essential ideal: if $I \subseteq M(A)$ is any ideal, then $A \cap I \neq\{0\}$.
- If $A=C_{0}(X)$ then $M(A)=C^{b}(X)=C(\beta X)$, so $M(A)$ is a non-commutative Stone-Čech compactification.

Multipliers of C*-algebras

Let A be a C^{*}-algebra acting non-degenerately on a Hilbert space H. The multiplier algebra of A is

$$
M(A)=\{T \in \mathcal{B}(H): T a, a T \in A(a \in A)\}
$$

- If A is unital, then clearly $M(A)=A$.
- Notice that $A \subseteq M(A)$ as an ideal, and $M(A)$ is always unital.
- $M(A)$ is the largest unital algebra containing A as an essential ideal: if $I \subseteq M(A)$ is any ideal, then $A \cap I \neq\{0\}$.
- If $A=C_{0}(X)$ then $M(A)=C^{b}(X)=C(\beta X)$, so $M(A)$ is a non-commutative Stone-Cech compactification.

Multipliers of C*-algebras

Let A be a C^{*}-algebra acting non-degenerately on a Hilbert space H. The multiplier algebra of A is

$$
M(A)=\{T \in \mathcal{B}(H): T a, a T \in A(a \in A)\}
$$

- If A is unital, then clearly $M(A)=A$.
- Notice that $A \subseteq M(A)$ as an ideal, and $M(A)$ is always unital.
- $M(A)$ is the largest unital algebra containing A as an essential ideal: if $I \subseteq M(A)$ is any ideal, then $A \cap I \neq\{0\}$.
non-commutative Stone-Čech compactification.

Multipliers of C*-algebras

Let A be a C^{*}-algebra acting non-degenerately on a Hilbert space H. The multiplier algebra of A is

$$
M(A)=\{T \in \mathcal{B}(H): T a, a T \in A(a \in A)\}
$$

- If A is unital, then clearly $M(A)=A$.
- Notice that $A \subseteq M(A)$ as an ideal, and $M(A)$ is always unital.
- $M(A)$ is the largest unital algebra containing A as an essential ideal: if $I \subseteq M(A)$ is any ideal, then $A \cap I \neq\{0\}$.
- If $A=C_{0}(X)$ then $M(A)=C^{b}(X)=C(\beta X)$, so $M(A)$ is a non-commutative Stone-Čech compactification.

Centralisers

For an algebra \mathcal{A}, let $M(\mathcal{A})$ be the space of double centralisers, that is, pairs of linear maps (L, R) of $\mathcal{A} \rightarrow \mathcal{A}$ with

$$
\left\{\begin{array}{c}
L(a b)=L(a) b, \quad R(a b)=a R(b), \\
a L(b)=R(a) b
\end{array} \quad(a, b \in \mathcal{A}) .\right.
$$

We always assume that \mathcal{A} is faithful, meaning that if $a \in \mathcal{A}$ with bac $=0$ for any $b, c \in \mathcal{A}$, then $a=0$.

When \mathcal{A} is a Banach algebra, we naturally ask that L and R are linear and bounded. However.
A Closed Graph argument shows that if (L, R) is a pair of maps $\mathcal{A} \rightarrow \mathcal{A}$ with

$$
a L(b)=R(a) b
$$

then already $(L, R) \in M(\mathcal{A})$ and L and R are bounded.

Centralisers

For an algebra \mathcal{A}, let $M(\mathcal{A})$ be the space of double centralisers, that is, pairs of linear maps (L, R) of $\mathcal{A} \rightarrow \mathcal{A}$ with

$$
\left\{\begin{array}{c}
L(a b)=L(a) b, \quad R(a b)=a R(b), \\
\quad L(b)=R(a) b
\end{array} \quad(a, b \in \mathcal{A}) .\right.
$$

We always assume that \mathcal{A} is faithful, meaning that if $a \in \mathcal{A}$ with bac $=0$ for any $b, c \in \mathcal{A}$, then $a=0$.
For a C^{*}-algebra, this agrees with the notion of a multiplier.

with

$$
a L(b)=R(a) b
$$

then already $(L, R) \in M(\mathcal{A})$ and L and R are bounded.

Centralisers

For an algebra \mathcal{A}, let $M(\mathcal{A})$ be the space of double centralisers, that is, pairs of linear maps (L, R) of $\mathcal{A} \rightarrow \mathcal{A}$ with

$$
\left\{\begin{array}{c}
L(a b)=L(a) b, \quad R(a b)=a R(b), \\
a L(b)=R(a) b
\end{array} \quad(a, b \in \mathcal{A}) .\right.
$$

We always assume that \mathcal{A} is faithful, meaning that if $a \in \mathcal{A}$ with bac $=0$ for any $b, c \in \mathcal{A}$, then $a=0$.
For a C^{*}-algebra, this agrees with the notion of a multiplier.
When \mathcal{A} is a Banach algebra, we naturally ask that L and R are linear and bounded. However...
A Closed Graph argument shows that if (L, R) is a pair of maps $\mathcal{A} \rightarrow \mathcal{A}$
with
then already $(L, R) \in M(\mathcal{A})$ and L and R are bounded.

Centralisers

For an algebra \mathcal{A}, let $M(\mathcal{A})$ be the space of double centralisers, that is, pairs of linear maps (L, R) of $\mathcal{A} \rightarrow \mathcal{A}$ with

$$
\left\{\begin{array}{c}
L(a b)=L(a) b, \quad R(a b)=a R(b), \\
a L(b)=R(a) b
\end{array} \quad(a, b \in \mathcal{A}) .\right.
$$

We always assume that \mathcal{A} is faithful, meaning that if $a \in \mathcal{A}$ with bac $=0$ for any $b, c \in \mathcal{A}$, then $a=0$.
For a C^{*}-algebra, this agrees with the notion of a multiplier.
When \mathcal{A} is a Banach algebra, we naturally ask that L and R are linear and bounded. However. . .
A Closed Graph argument shows that if (L, R) is a pair of maps $\mathcal{A} \rightarrow \mathcal{A}$ with

$$
a L(b)=R(a) b \quad(a, b \in \mathcal{A})
$$

then already $(L, R) \in M(\mathcal{A})$ and L and R are bounded.

Centralisers continued

Then $M(\mathcal{A})$ becomes a Banach algebra for the product and norm

$$
(L, R)\left(L^{\prime}, R^{\prime}\right)=\left(L L^{\prime}, R^{\prime} R\right), \quad\|(L, R)\|=\max (\|L\|,\|R\|) .
$$

We can identify \mathcal{A} as a subalgebra of $M(\mathcal{A})$ by

$$
a \mapsto\left(L_{\mathrm{a}}, R_{a}\right), \quad L_{a}(b)=a b, R_{a}(b)=b a \quad(a, b \in \mathcal{A}) .
$$

Then \mathcal{A} is an essential ideal in $M(\mathcal{A})$, and $M(\mathcal{A})$ is the largest algebra with this property.
If \mathcal{A} is a Banach algebra with a bounded approximate identity, then most of what we expect from the C^{*}-world works for $M(\mathcal{A})$.

Centralisers continued

Then $M(\mathcal{A})$ becomes a Banach algebra for the product and norm

$$
(L, R)\left(L^{\prime}, R^{\prime}\right)=\left(L L^{\prime}, R^{\prime} R\right), \quad\|(L, R)\|=\max (\|L\|,\|R\|) .
$$

We can identify \mathcal{A} as a subalgebra of $M(\mathcal{A})$ by

$$
a \mapsto\left(L_{a}, R_{a}\right), \quad L_{a}(b)=a b, R_{a}(b)=b a \quad(a, b \in \mathcal{A}) .
$$

Then \mathcal{A} is an essential ideal in $M(\mathcal{A})$, and $M(\mathcal{A})$ is the largest algebra with this property.
If \mathcal{A} is a Banach algebra with a bounded approximate identity, then most of what we expect from the C^{*}-world works for $M(\mathcal{A})$.

Centralisers continued

Then $M(\mathcal{A})$ becomes a Banach algebra for the product and norm

$$
(L, R)\left(L^{\prime}, R^{\prime}\right)=\left(L L^{\prime}, R^{\prime} R\right), \quad\|(L, R)\|=\max (\|L\|,\|R\|) .
$$

We can identify \mathcal{A} as a subalgebra of $M(\mathcal{A})$ by

$$
a \mapsto\left(L_{a}, R_{a}\right), \quad L_{a}(b)=a b, R_{a}(b)=b a \quad(a, b \in \mathcal{A}) .
$$

Then \mathcal{A} is an essential ideal in $M(\mathcal{A})$, and $M(\mathcal{A})$ is the largest algebra with this property.

> If \mathcal{A} is a Banach algebra with a bounded approximate identity, then most of what we expect from the C^{*}-world works for $M(\mathcal{A})$.

Centralisers continued

Then $M(\mathcal{A})$ becomes a Banach algebra for the product and norm

$$
(L, R)\left(L^{\prime}, R^{\prime}\right)=\left(L L^{\prime}, R^{\prime} R\right), \quad\|(L, R)\|=\max (\|L\|,\|R\|) .
$$

We can identify \mathcal{A} as a subalgebra of $M(\mathcal{A})$ by

$$
a \mapsto\left(L_{a}, R_{a}\right), \quad L_{a}(b)=a b, R_{a}(b)=b a \quad(a, b \in \mathcal{A}) .
$$

Then \mathcal{A} is an essential ideal in $M(\mathcal{A})$, and $M(\mathcal{A})$ is the largest algebra with this property.
If \mathcal{A} is a Banach algebra with a bounded approximate identity, then most of what we expect from the C^{*}-world works for $M(\mathcal{A})$.

Dual Banach algebras and multipliers

A dual Banach algebra is a Banach algebra \mathcal{A} which is (isomorphic to) the dual of some Banach space \mathcal{A}_{*}, such that the product on \mathcal{A} is separately weak*-continuous.

- Some motivation is the theory of von Neumann algebras. However.
- The multiplier algebra of a C*-algebra is rarely a dual Banach algebra:

- However, for many algebras arising in abstract harmonic analysis, we do have that $M(\mathcal{A})$ is a dual Banach algebra.

Dual Banach algebras and multipliers

A dual Banach algebra is a Banach algebra \mathcal{A} which is (isomorphic to) the dual of some Banach space \mathcal{A}_{*}, such that the product on \mathcal{A} is separately weak*-continuous.

- Some motivation is the theory of von Neumann algebras. However...
- The multiplier algebra of a C*-algebra is rarely a dual Banach algebra:

- However, for many algebras arising in abstract harmonic analysis, we do have that $M(\mathcal{A})$ is a dual Banach algebra.

Dual Banach algebras and multipliers

A dual Banach algebra is a Banach algebra \mathcal{A} which is (isomorphic to) the dual of some Banach space \mathcal{A}_{*}, such that the product on \mathcal{A} is separately weak*-continuous.

- Some motivation is the theory of von Neumann algebras. However...
- The multiplier algebra of a C*-algebra is rarely a dual Banach algebra:

$$
M\left(c_{0}\right)=\ell^{\infty}=\left(\ell^{1}\right)^{*}, \quad M\left(C_{0}(K)\right)=C^{b}(K) \cong C(\beta K)
$$

- However, for many algebras arising in abstract harmonic analysis, we do have that $M(\mathcal{A})$ is a dual Banach algebra.

Dual Banach algebras and multipliers

A dual Banach algebra is a Banach algebra \mathcal{A} which is (isomorphic to) the dual of some Banach space \mathcal{A}_{*}, such that the product on \mathcal{A} is separately weak*-continuous.

- Some motivation is the theory of von Neumann algebras. However. . .
- The multiplier algebra of a C*-algebra is rarely a dual Banach algebra:

$$
M\left(c_{0}\right)=\ell^{\infty}=\left(\ell^{1}\right)^{*}, \quad M\left(C_{0}(K)\right)=C^{b}(K) \cong C(\beta K)
$$

- However, for many algebras arising in abstract harmonic analysis, we do have that $M(\mathcal{A})$ is a dual Banach algebra.

Locally compact groups

Let G be a locally compact group, equipped with a left invariant Haar measure. Examples include:

- Any discrete group with the counting measure.
- Any compact group, where the Haar measure is normalised to be a probability measure.
- The real line \mathbb{R} with Lebesgue measure.
- Various non-compact Lie groups give interesting examples.

Locally compact groups

Let G be a locally compact group, equipped with a left invariant Haar measure. Examples include:

- Any discrete group with the counting measure.
- Any compact group, where the Haar measure is normalised to be a probability measure.
- The real line \mathbb{R} with Lebesgue measure.
- Various non-compact Lie groups give interesting examples.

Locally compact groups

Let G be a locally compact group, equipped with a left invariant Haar measure. Examples include:

- Any discrete group with the counting measure.
- Any compact group, where the Haar measure is normalised to be a probability measure.
- The real line \mathbb{R} with Lebesgue measure.
- Various non-compact Lie groups give interesting examples.

Locally compact groups

Let G be a locally compact group, equipped with a left invariant Haar measure. Examples include:

- Any discrete group with the counting measure.
- Any compact group, where the Haar measure is normalised to be a probability measure.
- The real line \mathbb{R} with Lebesgue measure.
- Various non-compact Lie groups give interesting examples.

Locally compact groups

Let G be a locally compact group, equipped with a left invariant Haar measure. Examples include:

- Any discrete group with the counting measure.
- Any compact group, where the Haar measure is normalised to be a probability measure.
- The real line \mathbb{R} with Lebesgue measure.
- Various non-compact Lie groups give interesting examples.

Group algebras

Turn $L^{1}(G)$ into a Banach algebra by using the convolution product:

$$
(f * g)(s)=\int_{G} f(t) g\left(t^{-1} s\right) d t
$$

We can also convolve finite measures. Identify $M(G)$ with $C_{0}(G)^{*}$, then

Then we have that

$$
M\left(L^{1}(G)\right)=M(G)
$$

where for each $(L, R) \in M\left(L^{1}(G)\right)$, there exists $\mu \in M(G)$,

$$
L^{\prime}(a)=\mu * a, \quad R^{\prime}(a)=a * \mu \quad\left(a \in L^{1}(G)\right)
$$

Group algebras

Turn $L^{1}(G)$ into a Banach algebra by using the convolution product:

$$
(f * g)(s)=\int_{G} f(t) g\left(t^{-1} s\right) d t
$$

We can also convolve finite measures. Identify $M(G)$ with $C_{0}(G)^{*}$, then

Then we have that
$M\left(L^{1}(G)\right)=M(G)$,
where for each $(L, R) \in M\left(L^{1}(G)\right)$, there exists $u \in M(G)$,

$$
L(a)=\mu * a, \quad R(a)=a * \mu \quad\left(a \in L^{1}(G)\right)
$$

Group algebras

Turn $L^{1}(G)$ into a Banach algebra by using the convolution product:

$$
(f * g)(s)=\int_{G} f(t) g\left(t^{-1} s\right) d t
$$

We can also convolve finite measures. Identify $M(G)$ with $C_{0}(G)^{*}$, then

$$
\langle\mu * \lambda, F\rangle=\iint F(s t) d \mu(s) d \lambda(t) \quad\left(\mu, \lambda \in M(G), F \in C_{0}(G)\right)
$$

Then we have that

$$
M\left(L^{1}(G)\right)=M(G)
$$

where for each $(L, R) \in M\left(L^{1}(G)\right)$, there exists $\mu \in M(G)$,

$$
L^{\prime}(a)=\mu * a, \quad R(a)=a * \mu \quad\left(a \in L^{1}(G)\right)
$$

Group algebras

Turn $L^{1}(G)$ into a Banach algebra by using the convolution product:

$$
(f * g)(s)=\int_{G} f(t) g\left(t^{-1} s\right) d t
$$

We can also convolve finite measures. Identify $M(G)$ with $C_{0}(G)^{*}$, then

$$
\langle\mu * \lambda, F\rangle=\iint F(s t) d \mu(s) d \lambda(t) \quad\left(\mu, \lambda \in M(G), F \in C_{0}(G)\right)
$$

Then we have that

$$
M\left(L^{1}(G)\right)=M(G)
$$

where for each $(L, R) \in M\left(L^{1}(G)\right)$, there exists $\mu \in M(G)$,

$$
L(a)=\mu * a, \quad R(a)=a * \mu \quad\left(a \in L^{1}(G)\right)
$$

Representations

Building on work of Young and Kaiser, we have

Theorem (Daws, Uygul)

Let \mathcal{A} be a (completely contractive) dual Banach algebra. Then there exists a reflexive Operator / Banach space E and a (completely) isometric, weak*-weak*-continuous homomorphism $\pi: \mathcal{A} \rightarrow \mathcal{B}(E)$.

If we know more about \mathcal{A} (say, $\left.\mathcal{A}=M\left(L^{1}(G)\right)=M(G)\right)$ can we choose

Representations

Building on work of Young and Kaiser, we have

Theorem (Daws, Uygul)

Let \mathcal{A} be a (completely contractive) dual Banach algebra. Then there exists a reflexive Operator / Banach space E and a (completely) isometric, weak*-weak*-continuous homomorphism $\pi: \mathcal{A} \rightarrow \mathcal{B}(E)$.

If we know more about \mathcal{A} (say, $\mathcal{A}=M\left(L^{1}(G)\right)=M(G)$) can we choose E in a "nice" way?

An idea of Young

Fix a group G. Let $\left(p_{n}\right) \subseteq(1, \infty)$ be a sequence tending to 1 , and let

$$
E=\ell^{2}-\bigoplus_{n} L^{p_{n}}(G) .
$$

- $L^{1}(G)$ acts by convolution on each $L^{p_{n}}(G)$, and hence on E.
- Similarly $M(G)$ acts by convolution on E, extending the action of $L^{1}(G)$.
- Actually, the homomorphism $\pi: M(G) \rightarrow \mathcal{B}(E)$ is an isometry, and is weak*-weak* continuous.
- The image of $M(G)$ in $\mathcal{B}(E)$ is the idealiser of $\pi\left(L^{1}(G)\right)$:

$$
\pi(M(G))=\left\{T \in \mathcal{B}(E): \begin{array}{c}
T \pi(a), \\
\left(a \in(a) T \in \pi\left(L^{1}(G)\right)\right. \\
\left(a \in L^{1}(G)\right)
\end{array} .\right.
$$

An idea of Young

Fix a group G. Let $\left(p_{n}\right) \subseteq(1, \infty)$ be a sequence tending to 1 , and let

$$
E=\ell^{2}-\bigoplus_{n} L^{p_{n}}(G)
$$

- $L^{1}(G)$ acts by convolution on each $L^{p_{n}}(G)$, and hence on E.
- Similarly $M(G)$ acts by convolution on E, extending the action of $L^{1}(G)$.
- Actually, the homomorphism $\pi: M(G) \rightarrow B(E)$ is an isometry, and is weak*-weak* continuous.
- The image of $M(G)$ in $\mathcal{B}(E)$ is the idealiser of $\pi\left(L^{1}(G)\right)$:

$$
\pi(M(G))=\left\{T \in B(E):^{T \pi(a),} \begin{array}{c}
\left.(a) T \in \pi^{\left(L^{1}\right.}(G)\right) \\
\left(a \in L^{1}(G)\right)
\end{array}\right\}
$$

An idea of Young

Fix a group G. Let $\left(p_{n}\right) \subseteq(1, \infty)$ be a sequence tending to 1 , and let

$$
E=\ell^{2}-\bigoplus_{n} L^{p_{n}}(G)
$$

- $L^{1}(G)$ acts by convolution on each $L^{p_{n}}(G)$, and hence on E.
- Similarly $M(G)$ acts by convolution on E, extending the action of $L^{1}(G)$.
- Actually, the homomorphism $\pi: M(G) \rightarrow \mathcal{B}(E)$ is an isometry, and is weak*-weak* continuous.
- The image of $M(G)$ in $\mathcal{B}(E)$ is the idealiser of $\pi\left(L^{1}(G)\right)$:

An idea of Young

Fix a group G. Let $\left(p_{n}\right) \subseteq(1, \infty)$ be a sequence tending to 1 , and let

$$
E=\ell^{2}-\bigoplus_{n} L^{p_{n}}(G)
$$

- $L^{1}(G)$ acts by convolution on each $L^{p_{n}}(G)$, and hence on E.
- Similarly $M(G)$ acts by convolution on E, extending the action of $L^{1}(G)$.
- Actually, the homomorphism $\pi: M(G) \rightarrow \mathcal{B}(E)$ is an isometry, and is weak*-weak* continuous.
- The image of $M(G)$ in $\mathcal{B}(E)$ is the idealiser of $\pi\left(L^{1}(G)\right)$:

An idea of Young

Fix a group G. Let $\left(p_{n}\right) \subseteq(1, \infty)$ be a sequence tending to 1 , and let

$$
E=\ell^{2}-\bigoplus_{n} L^{p_{n}}(G)
$$

- $L^{1}(G)$ acts by convolution on each $L^{p_{n}}(G)$, and hence on E.
- Similarly $M(G)$ acts by convolution on E, extending the action of $L^{1}(G)$.
- Actually, the homomorphism $\pi: M(G) \rightarrow \mathcal{B}(E)$ is an isometry, and is weak*-weak* continuous.
- The image of $M(G)$ in $\mathcal{B}(E)$ is the idealiser of $\pi\left(L^{1}(G)\right)$:

$$
\pi(M(G))=\left\{T \in \mathcal{B}(E): \begin{array}{c}
T \pi(a), \\
\left(a \in(a) T \in \pi\left(L^{1}(G)\right)\right. \\
\left(a \in L^{1}(G)\right)
\end{array}\right\}
$$

The Fourier Algebra

For a locally compact group G let λ be the left regular representation

$$
(\lambda(s) \xi)(t)=\xi\left(s^{-1} t\right) \quad\left(s, t \in G, \xi \in L^{2}(G)\right)
$$

This induces a homomorphism $\lambda: L^{1}(G) \rightarrow \mathcal{B}\left(L^{2}(G)\right)$.
Let $C_{\lambda}^{*}(G)$ and $V / N(G)$ be the norm and σ-weak closures of $\lambda\left(L^{1}(G)\right)$, respectively. So $V N(G)=C_{\lambda}^{*}(G)^{\prime \prime}$. Let $A(G)$ be the predual of $V N(G)$. As $V N(G)$ is in standard position on $L^{2}(G)$, for each $\omega \in A(G)$, there exist $\xi, \eta \in L^{2}(G)$ with

The Fourier Algebra

For a locally compact group G let λ be the left regular representation

$$
(\lambda(s) \xi)(t)=\xi\left(s^{-1} t\right) \quad\left(s, t \in G, \xi \in L^{2}(G)\right)
$$

This induces a homomorphism $\lambda: L^{1}(G) \rightarrow \mathcal{B}\left(L^{2}(G)\right)$.
Let $C_{\lambda}^{*}(G)$ and $V N(G)$ be the norm and σ-weak closures of $\lambda\left(L^{1}(G)\right)$, respectively. So $V N(G)=C_{\lambda}^{*}(G)^{\prime \prime}$.
on $L^{2}(G)$, for each $\omega \in A(G)$, there exist $\xi, \eta \in L^{2}(G)$ with

The Fourier Algebra

For a locally compact group G let λ be the left regular representation

$$
(\lambda(s) \xi)(t)=\xi\left(s^{-1} t\right) \quad\left(s, t \in G, \xi \in L^{2}(G)\right)
$$

This induces a homomorphism $\lambda: L^{1}(G) \rightarrow \mathcal{B}\left(L^{2}(G)\right)$.
Let $C_{\lambda}^{*}(G)$ and $V N(G)$ be the norm and σ-weak closures of $\lambda\left(L^{1}(G)\right)$, respectively. So $V N(G)=C_{\lambda}^{*}(G)^{\prime \prime}$.
Let $A(G)$ be the predual of $V N(G)$. As $V N(G)$ is in standard position on $L^{2}(G)$, for each $\omega \in A(G)$, there exist $\xi, \eta \in L^{2}(G)$ with

$$
\omega=\omega_{\xi, \eta} \quad\langle x, \omega\rangle=(x(\xi) \mid \eta) \quad(x \in V N(G))
$$

Fourier Algebra: The product

- As $\{\lambda(s): s \in G\}$ also generates $V N(G)$, we see that $\{\langle\lambda(s), \omega\rangle: s \in G\}$ determines $\omega \in A(G)$.
- So $\omega \in A(G)$ is identified with a function $G \rightarrow \mathbb{C}$.
- This function is actually in $C_{0}(G)$, so we have a map
$\phi: A(G) \rightarrow C_{0}(G)$.
- Then $\Phi(A(G))$ is a (not closed!) subalgebra of $C_{0}(G)$, and $A(G)$ is a Banach algebra.
- If G is abelian with dual group \hat{G}, then $A(G)$ is the image, under the Fourier transform, of $L^{1}(\hat{G})$.

Fourier Algebra: The product

- As $\{\lambda(s): s \in G\}$ also generates $V N(G)$, we see that $\{\langle\lambda(s), \omega\rangle: s \in G\}$ determines $\omega \in A(G)$.
- So $\omega \in A(G)$ is identified with a function $G \rightarrow \mathbb{C}$.
- This function is actually in $C_{0}(G)$, so we have a map $\Phi: A(G) \rightarrow C_{0}(G)$.
- Then $\Phi(A(G))$ is a (not closed!) subalgebra of $C_{0}(G)$, and $A(G)$ is a Banach algebra.
- If G is abelian with dual group \hat{G}, then $A(G)$ is the image, under the Fourier transform, of $L^{1}(\hat{G})$.

Fourier Algebra: The product

- As $\{\lambda(s): s \in G\}$ also generates $V N(G)$, we see that $\{\langle\lambda(s), \omega\rangle: s \in G\}$ determines $\omega \in A(G)$.
- So $\omega \in A(G)$ is identified with a function $G \rightarrow \mathbb{C}$.
- This function is actually in $C_{0}(G)$, so we have a map

$$
\Phi: A(G) \rightarrow C_{0}(G)
$$

- Then $\Phi(A(G))$ is a (not closed!) subalgebra of $C_{0}(G)$, and $A(G)$ is a Banach algebra.
- If G is abelian with dual group \hat{G}, then $A(G)$ is the image, under the Fourier transform, of $L^{1}(\hat{G})$.

Fourier Algebra: The product

- As $\{\lambda(s): s \in G\}$ also generates $V N(G)$, we see that $\{\langle\lambda(s), \omega\rangle: s \in G\}$ determines $\omega \in A(G)$.
- So $\omega \in A(G)$ is identified with a function $G \rightarrow \mathbb{C}$.
- This function is actually in $C_{0}(G)$, so we have a map

$$
\Phi: A(G) \rightarrow C_{0}(G)
$$

- Then $\Phi(A(G))$ is a (not closed!) subalgebra of $C_{0}(G)$, and $A(G)$ is a Banach algebra.
If G is abelian with dual group \hat{G}, then $A(G)$ is the image, under the Fourier transform, of $L^{1}(\hat{G})$.

Fourier Algebra: The product

- As $\{\lambda(s): s \in G\}$ also generates $V N(G)$, we see that $\{\langle\lambda(s), \omega\rangle: s \in G\}$ determines $\omega \in A(G)$.
- So $\omega \in A(G)$ is identified with a function $G \rightarrow \mathbb{C}$.
- This function is actually in $C_{0}(G)$, so we have a map

$$
\Phi: A(G) \rightarrow C_{0}(G)
$$

- Then $\Phi(A(G))$ is a (not closed!) subalgebra of $C_{0}(G)$, and $A(G)$ is a Banach algebra.
- If G is abelian with dual group \hat{G}, then $A(G)$ is the image, under the Fourier transform, of $L^{1}(\hat{G})$.

Multipliers

So we can form $M A(G)$.

- Either abstractly, or.
- As $A(G)$ is a "nice" subalgebra of $C_{0}(G)$, we have that

$$
M A(G)=\left\{f \in C^{b}(G): f a \in A(G)(a \in A(G))\right\} .
$$

- $M A(G)=B(G)$, the Fourier-Stieltjes algebra, if and only if G is amenable [Losert].
As the predual of a von Neumann algebra, $A(G)$ is an operator space. Actually a completely contractive Banach algebra. Hence natural to consider the completely bounded multipliers, written $M_{c b}(A(G))$.
[De Canniere, Haagerup]: For $f \in M A(G)$, TFAE:
- $f \in M_{c b} A(G)$;
- $f \otimes 1_{K} \in M A(G \times K)$ for all compact groups K;
- $f \otimes 1_{K} \in \operatorname{MA}(G \times K)$ for $K=S U(2)$.

Multipliers

So we can form $M A(G)$.

- Either abstractly, or...
- As $A(G)$ is a "nice" subalgebra of $C_{0}(G)$, we have that

$$
M A(G)=\left\{f \in C^{b}(G): f a \in A(G)(a \in A(G))\right\} .
$$

- $M A(G)=B(G)$, the Fourier-Stieltjes algebra, if and only if G is amenable [Losert].
As the predual of a von Neumann algebra, $A(G)$ is an operator space. Actually a completely contractive Banach algebra. Hence natural to consider the completely bounded multipliers, written $M_{c b}(A(G))$. [De Canniere, Haagerup]: For $f \in M A(G), T F A E:$
- $f \in M_{c b} A(G)$;
- $f \otimes 1_{K} \in M A(G \times K)$ for all compact groups K;
- $f \otimes 1_{K} \in M A(G \times K)$ for $K=S U(2)$.

Multipliers

So we can form $M A(G)$.

- Either abstractly, or. . .
- As $A(G)$ is a "nice" subalgebra of $C_{0}(G)$, we have that

$$
M A(G)=\left\{f \in C^{b}(G): f a \in A(G)(a \in A(G))\right\}
$$

- $M A(G)=B(G)$, the Fourier-Stieltjes algebra, if and only if G is amenable [Losert].
As the predual of a von $N \in u m a n n$ algebra, $A(G)$ is an operator space. Actually a completely contractive Banach algebra. Hence natural to consider the completely bounded multipliers, written $M_{c b}(A(G))$. [De Canniere, Haagerup]: For $f \in M A(G)$, TFAE:
- $f \in M_{c b} A(G)$;
- $f \otimes 1_{K} \in M A(G \times K)$ for all compact groups K;
- $f \otimes 1_{k} \in M A(G \times K)$ for $K=S U(2)$.

Multipliers

So we can form $M A(G)$.

- Either abstractly, or. . .
- As $A(G)$ is a "nice" subalgebra of $C_{0}(G)$, we have that

$$
M A(G)=\left\{f \in C^{b}(G): f a \in A(G)(a \in A(G))\right\}
$$

- $M A(G)=B(G)$, the Fourier-Stieltjes algebra, if and only if G is amenable [Losert].

Actually a completely contractive Banach algebra. Hence natural to consider the completely bounded multipliers, written $M_{c b}(A(G))$. [De Canniere, Haagerup]: For $f \in M A(G)$, TFAE:

- $f \in M_{c b} A(G)$;
- $f \otimes 1_{K} \in \operatorname{MA}(G \times K)$ for all compact groups K;
- $f \otimes 1_{K} \in M A(G \times K)$ for $K=S U(2)$.

Multipliers

So we can form $M A(G)$.

- Either abstractly, or...
- As $A(G)$ is a "nice" subalgebra of $C_{0}(G)$, we have that

$$
M A(G)=\left\{f \in C^{b}(G): f a \in A(G)(a \in A(G))\right\}
$$

- $M A(G)=B(G)$, the Fourier-Stieltjes algebra, if and only if G is amenable [Losert].
As the predual of a von Neumann algebra, $A(G)$ is an operator space. Actually a completely contractive Banach algebra. Hence natural to consider the completely bounded multipliers, written $M_{c b}(A(G))$.

Multipliers

So we can form $M A(G)$.

- Either abstractly, or...
- As $A(G)$ is a "nice" subalgebra of $C_{0}(G)$, we have that

$$
M A(G)=\left\{f \in C^{b}(G): f a \in A(G)(a \in A(G))\right\}
$$

- $M A(G)=B(G)$, the Fourier-Stieltjes algebra, if and only if G is amenable [Losert].
As the predual of a von Neumann algebra, $A(G)$ is an operator space. Actually a completely contractive Banach algebra. Hence natural to consider the completely bounded multipliers, written $M_{c b}(A(G))$. [De Canniere, Haagerup]: For $f \in M A(G)$, TFAE:
- $f \in M_{c b} A(G)$;
- $f \otimes 1_{K} \in M A(G \times K)$ for all compact groups K;
- $f \otimes 1_{K} \in M A(G \times K)$ for $K=S U(2)$.

$M A(G)$ and $M_{c b} A(G)$ are dual

[De Canniere, Haagerup]: Let Q be the completion of $L^{1}(G)$ under the norm

$$
\|f\|_{Q}=\sup \left\{\left|\int f(s) a(s) d s\right|: a \in M A(G),\|a\| \leq 1\right\} .
$$

Then $Q^{*}=M A(G)$.
Let Q_{0} be the completion of $L^{1}(G)$ under the norm

$$
\|f\|_{Q_{0}}=\sup \left\{\left|\int f(s) a(s) d s\right|: a \in M_{c b} A(G),\|a\| \leq 1\right\} .
$$

Then $Q_{0}^{*}=M_{c b} A(G)$.
Easy to check that $M A(G)$ and $M_{c b} A(G)$ hence become dual Banach algebras.
Can we find representations on "nice" reflexive spaces?

$M A(G)$ and $M_{c b} A(G)$ are dual

[De Canniere, Haagerup]: Let Q be the completion of $L^{1}(G)$ under the norm

$$
\|f\|_{Q}=\sup \left\{\left|\int f(s) a(s) d s\right|: a \in M A(G),\|a\| \leq 1\right\}
$$

Then $Q^{*}=M A(G)$.
Let Q_{0} be the completion of $L^{1}(G)$ under the norm

$$
\|f\|_{Q_{0}}=\sup \left\{\left|\int f(s) a(s) d s\right|: a \in M_{c b} A(G),\|a\| \leq 1\right\} .
$$

Then $Q_{0}^{*}=M_{c b} A(G)$.

Easy to check that $M A(G)$ and $M_{c b} A(G)$ hence become dual Banach algebras.
 Can we find representations on "nice" reflexive spaces?

$M A(G)$ and $M_{c b} A(G)$ are dual

[De Canniere, Haagerup]: Let Q be the completion of $L^{1}(G)$ under the norm

$$
\|f\|_{Q}=\sup \left\{\left|\int f(s) a(s) d s\right|: a \in M A(G),\|a\| \leq 1\right\}
$$

Then $Q^{*}=M A(G)$.
Let Q_{0} be the completion of $L^{1}(G)$ under the norm

$$
\|f\|_{Q_{0}}=\sup \left\{\left|\int f(s) a(s) d s\right|: a \in M_{c b} A(G),\|a\| \leq 1\right\} .
$$

Then $Q_{0}^{*}=M_{c b} A(G)$.
Easy to check that $\operatorname{MA(G)}$ and $M_{c b} A(G)$ hence become dual Banach algebras.
Can we find representations on "nice" reflexive spaces?

$M A(G)$ and $M_{c b} A(G)$ are dual

[De Canniere, Haagerup]: Let Q be the completion of $L^{1}(G)$ under the norm

$$
\|f\|_{Q}=\sup \left\{\left|\int f(s) a(s) d s\right|: a \in M A(G),\|a\| \leq 1\right\}
$$

Then $Q^{*}=M A(G)$.
Let Q_{0} be the completion of $L^{1}(G)$ under the norm

$$
\|f\|_{Q_{0}}=\sup \left\{\left|\int f(s) a(s) d s\right|: a \in M_{c b} A(G),\|a\| \leq 1\right\} .
$$

Then $Q_{0}^{*}=M_{c b} A(G)$.
Easy to check that $\operatorname{MA(G)}$ and $M_{c b} A(G)$ hence become dual Banach algebras.
Can we find representations on "nice" reflexive spaces?

Abstracting Young's construction

It is well-known that $L^{p}(G)$ can be realised as the complex interpolation space, of parameter $1 / p$, between $L^{\infty}(G)$ and $L^{1}(G)$.

Abstracting Young's construction

It is well-known that $L^{p}(G)$ can be realised as the complex interpolation space, of parameter $1 / p$, between $L^{\infty}(G)$ and $L^{1}(G)$.
I won't explain this in detail but observe that:

- We regard $L^{\infty}=L^{\infty}(G)$ and $L^{1}=L^{1}(G)$ as spaces of functions on G, so it makes sense to talk about $L^{\infty} \cap L^{1}$ and $L^{\infty}+L^{1}$.
 give maps $L^{1} \rightarrow L^{1}$ and $L^{\infty} \rightarrow L^{\infty}$, then

Abstracting Young's construction

It is well-known that $L^{p}(G)$ can be realised as the complex interpolation space, of parameter $1 / p$, between $L^{\infty}(G)$ and $L^{1}(G)$.
I won't explain this in detail but observe that:

- We regard $L^{\infty}=L^{\infty}(G)$ and $L^{1}=L^{1}(G)$ as spaces of functions on G, so it makes sense to talk about $L^{\infty} \cap L^{1}$ and $L^{\infty}+L^{1}$.
- We have inclusions $L^{\infty} \cap L^{1} \subseteq L^{p} \subseteq L^{\infty}+L^{1}$ for $p \in(1, \infty)$;
give maps $L^{1} \rightarrow L^{1}$ and $L^{\infty} \rightarrow L^{\infty}$, then

Abstracting Young's construction

It is well-known that $L^{p}(G)$ can be realised as the complex interpolation space, of parameter $1 / p$, between $L^{\infty}(G)$ and $L^{1}(G)$.
I won't explain this in detail but observe that:

- We regard $L^{\infty}=L^{\infty}(G)$ and $L^{1}=L^{1}(G)$ as spaces of functions on G, so it makes sense to talk about $L^{\infty} \cap L^{1}$ and $L^{\infty}+L^{1}$.
- We have inclusions $L^{\infty} \cap L^{1} \subseteq L^{p} \subseteq L^{\infty}+L^{1}$ for $p \in(1, \infty)$;
- (Riesz-Thorin) If $T: L^{\infty}+L^{1} \rightarrow L^{\infty}+L^{1}$ is linear, and restricts to give maps $L^{1} \rightarrow L^{1}$ and $L^{\infty} \rightarrow L^{\infty}$, then

$$
\left\|T: L^{p} \rightarrow L^{p}\right\| \leq\left\|T: L^{\infty} \rightarrow L^{\infty}\right\|^{1-1 / p}\left\|T: L^{1} \rightarrow L^{1}\right\|^{1 / p}
$$

Convolution action

For $\mu \in M(G)$, we have a convolution action of μ on $L^{1}(G)$ and $L^{\infty}(G)$. Interpolating gives the convolution action on $L^{p}(G)$.

- $M(G)$ acts entirely naturally on $L^{1}(G)$ as $M\left(L^{1}(G)\right)=M(G)$.
- $L^{\infty}(G)$ is the dual space of $L^{1}(G)$.
- So we have the adjoint action of $M(G)$ on $L^{\infty}(G)$.
- This is not the usual convolution action of $M(G)$ on $L^{\infty}(G)$.

So, if we are to generalise this, we need a new idea.

Convolution action

For $\mu \in M(G)$, we have a convolution action of μ on $L^{1}(G)$ and $L^{\infty}(G)$. Interpolating gives the convolution action on $L^{p}(G)$. However, from an abstract point of view, this is actually a little odd:

- $M(G)$ acts entirely naturally on $L^{1}(G)$ as $M\left(L^{1}(G)\right)=M(G)$.
- $L^{\infty}(G)$ is the dual space of $L^{1}(G)$.
- So we have the adjoint action of $M(G)$ on $L^{\infty}(G)$.
- This is not the usual convolution action of $M(G)$ on $L^{\infty}(G)$. So, if we are to generalise this, we need a new idea.

Convolution action

For $\mu \in M(G)$, we have a convolution action of μ on $L^{1}(G)$ and $L^{\infty}(G)$. Interpolating gives the convolution action on $L^{p}(G)$. However, from an abstract point of view, this is actually a little odd:

- $M(G)$ acts entirely naturally on $L^{1}(G)$ as $M\left(L^{1}(G)\right)=M(G)$.
- So we have the adjoint action of $M(G)$ on $L^{\infty}(G)$. - This is not the usual convolution action of $M(G)$ on $L^{\infty}(G)$. So, if we are to generalise this, we need a new idea.

Convolution action

For $\mu \in M(G)$, we have a convolution action of μ on $L^{1}(G)$ and $L^{\infty}(G)$. Interpolating gives the convolution action on $L^{p}(G)$. However, from an abstract point of view, this is actually a little odd:

- $M(G)$ acts entirely naturally on $L^{1}(G)$ as $M\left(L^{1}(G)\right)=M(G)$.
- $L^{\infty}(G)$ is the dual space of $L^{1}(G)$.
- So we have the adjoint action of $M(G)$ on $L^{\infty}(G)$. - This is not the usual convolution action of $M(G)$ on $L^{\infty}(G)$. So, if we are to generalise this, we need a new idea.

Convolution action

For $\mu \in M(G)$, we have a convolution action of μ on $L^{1}(G)$ and $L^{\infty}(G)$. Interpolating gives the convolution action on $L^{p}(G)$. However, from an abstract point of view, this is actually a little odd:

- $M(G)$ acts entirely naturally on $L^{1}(G)$ as $M\left(L^{1}(G)\right)=M(G)$.
- $L^{\infty}(G)$ is the dual space of $L^{1}(G)$.
- So we have the adjoint action of $M(G)$ on $L^{\infty}(G)$.

So, if we are to generalise this, we need a new idea.

Convolution action

For $\mu \in M(G)$, we have a convolution action of μ on $L^{1}(G)$ and $L^{\infty}(G)$. Interpolating gives the convolution action on $L^{p}(G)$. However, from an abstract point of view, this is actually a little odd:

- $M(G)$ acts entirely naturally on $L^{1}(G)$ as $M\left(L^{1}(G)\right)=M(G)$.
- $L^{\infty}(G)$ is the dual space of $L^{1}(G)$.
- So we have the adjoint action of $M(G)$ on $L^{\infty}(G)$.
- This is not the usual convolution action of $M(G)$ on $L^{\infty}(G)$.

So, if we are to generalise this, we need a new idea.

Convolution action

For $\mu \in M(G)$, we have a convolution action of μ on $L^{1}(G)$ and $L^{\infty}(G)$. Interpolating gives the convolution action on $L^{p}(G)$. However, from an abstract point of view, this is actually a little odd:

- $M(G)$ acts entirely naturally on $L^{1}(G)$ as $M\left(L^{1}(G)\right)=M(G)$.
- $L^{\infty}(G)$ is the dual space of $L^{1}(G)$.
- So we have the adjoint action of $M(G)$ on $L^{\infty}(G)$.
- This is not the usual convolution action of $M(G)$ on $L^{\infty}(G)$. So, if we are to generalise this, we need a new idea.

Analogous ideas for $A(G)$

So for the Fourier algebra, we might proceed as follows:

- Find some way to embed $A(G)$ and $V /(G)$ into a Hausdorff topological space;
- so we can form $V N(G) \cap A(G)$ and $V N(G)+A(G)$.
- Use the complex interpolation method with parameter $1 / p$.
- Find some module action of $M A(G)$ on $V N(G)$ which agrees with the standard action of $M A(G)$ on $A(G)$ in $V N(G) \cap A(G)$.
- Then do the same again at the Operator Space level!

Bizarrely, the last point suggests a novel way to get the module actions.

Analogous ideas for $A(G)$

So for the Fourier algebra, we might proceed as follows:

- Find some way to embed $A(G)$ and $V N(G)$ into a Hausdorff topological space;
- so we can form $V N(G) \cap A(G)$ and $V N(G)+A(G)$.
- Use the complex interpolation method with parameter 1/p.
- Find some module action of $M A(G)$ on $V N(G)$ which agrees with the standard action of $M A(G)$ on $A(G)$ in $V N(G) \cap A(G)$.
- Then do the same again at the Operator Space level!

Bizarrely, the last point suggests a novel may to get the module actions.

Analogous ideas for $A(G)$

So for the Fourier algebra, we might proceed as follows:

- Find some way to embed $A(G)$ and $V N(G)$ into a Hausdorff topological space;
- so we can form $V N(G) \cap A(G)$ and $V N(G)+A(G)$.
- Use the complex interpolation method with parameter 1/p.
- Find some module action of $M A(G)$ on $V N(G)$ which agrees with the standard action of $M A(G)$ on $A(G)$ in $V N(G) \cap A(G)$.
- Then do the same again at the Operator Space level!

Bizarrely, the last point suggests a novel way to get the module actions.

Analogous ideas for $A(G)$

So for the Fourier algebra, we might proceed as follows:

- Find some way to embed $A(G)$ and $V N(G)$ into a Hausdorff topological space;
- so we can form $V N(G) \cap A(G)$ and $V N(G)+A(G)$.
- Use the complex interpolation method with parameter $1 / p$.
- Find some module action of $M A(G)$ on $V N(G)$ which agrees with the standard action of $M A(G)$ on $A(G)$ in $V N(G) \cap A(G)$.
- Then do the same again at the Operator Space level!

Bizarrely, the last point suggests a novel way to get the module actions.

Analogous ideas for $A(G)$

So for the Fourier algebra, we might proceed as follows:

- Find some way to embed $A(G)$ and $V N(G)$ into a Hausdorff topological space;
- so we can form $V N(G) \cap A(G)$ and $V N(G)+A(G)$.
- Use the complex interpolation method with parameter $1 / p$.
- Find some module action of $M A(G)$ on $V N(G)$ which agrees with the standard action of $M A(G)$ on $A(G)$ in $V N(G) \cap A(G)$.

Bizarrely, the last point suggests a novel way to get the module actions.

Analogous ideas for $A(G)$

So for the Fourier algebra, we might proceed as follows:

- Find some way to embed $A(G)$ and $V N(G)$ into a Hausdorff topological space;
- so we can form $V N(G) \cap A(G)$ and $V N(G)+A(G)$.
- Use the complex interpolation method with parameter $1 / p$.
- Find some module action of $M A(G)$ on $V N(G)$ which agrees with the standard action of $M A(G)$ on $A(G)$ in $V N(G) \cap A(G)$.
- Then do the same again at the Operator Space level!

Bizarrely, the last point suggests a novel way to get the module actions.

Analogous ideas for $A(G)$

So for the Fourier algebra, we might proceed as follows:

- Find some way to embed $A(G)$ and $V N(G)$ into a Hausdorff topological space;
- so we can form $V N(G) \cap A(G)$ and $V N(G)+A(G)$.
- Use the complex interpolation method with parameter $1 / p$.
- Find some module action of $M A(G)$ on $V N(G)$ which agrees with the standard action of $M A(G)$ on $A(G)$ in $V N(G) \cap A(G)$.
- Then do the same again at the Operator Space level!

Bizarrely, the last point suggests a novel way to get the module actions.

Non-commutative L^{p} spaces

Using the complex interpolation method applied to von Neumann algebras is a well established way to construct non-commutative L^{p} spaces, say $L^{p}(V N(G))$.

where S_{n}^{p} is \mathbb{M}_{n} equipped with the p th Schatten-class norm.

Non-commutative L^{p} spaces

Using the complex interpolation method applied to von Neumann algebras is a well established way to construct non-commutative L^{p} spaces, say $L^{p}(V N(G))$.

- If G is discrete, then $V N(G)$ admits a finite trace: $\varphi: x \mapsto\left(x \delta_{e} \mid \delta_{e}\right)$ for $x \in V N(G)$. Then $L^{p}(V N(G))$ is the completion of $V N(G)$ under the norm $\|x\|_{p}=\varphi\left(|x|^{p}\right)^{1 / p}$, where $|x|=\left(x^{*} x\right)^{1 / 2}$.
- In general, $\operatorname{VN}(G)$ only admits a weight, which satisfies $\varphi(\lambda(f * g))=(f * g)(e)$ for, say, $f, g \in C_{00}(G)$.
- If G is compact, then

where S_{n}^{p} is \mathbb{M}_{n} equipped with the p th Schatten-class norm.

Non-commutative L^{p} spaces

Using the complex interpolation method applied to von Neumann algebras is a well established way to construct non-commutative L^{p} spaces, say $L^{p}(V N(G))$.

- If G is discrete, then $V N(G)$ admits a finite trace: $\varphi: x \mapsto\left(x \delta_{e} \mid \delta_{e}\right)$ for $x \in V N(G)$. Then $L^{p}(V N(G))$ is the completion of $V N(G)$ under the norm $\|x\|_{p}=\varphi\left(|x|^{p}\right)^{1 / p}$, where $|x|=\left(x^{*} x\right)^{1 / 2}$.
- In general, $V N(G)$ only admits a weight, which satisfies $\varphi(\lambda(f * g))=(f * g)(e)$ for, say, $f, g \in C_{00}(G)$.

where S_{n}^{p} is \mathbb{M}_{n} equipped with the pth Schatten-class norm.

Non-commutative L^{p} spaces

Using the complex interpolation method applied to von Neumann algebras is a well established way to construct non-commutative L^{p} spaces, say $L^{p}(V N(G))$.

- If G is discrete, then $V N(G)$ admits a finite trace: $\varphi: x \mapsto\left(x \delta_{e} \mid \delta_{e}\right)$ for $x \in V N(G)$. Then $L^{p}(V N(G))$ is the completion of $V N(G)$ under the norm $\|x\|_{p}=\varphi\left(|x|^{p}\right)^{1 / p}$, where $|x|=\left(x^{*} x\right)^{1 / 2}$.
- In general, $V N(G)$ only admits a weight, which satisfies
$\varphi(\lambda(f * g))=(f * g)(e)$ for, say, $f, g \in C_{00}(G)$.
- If G is compact, then

$$
V N(G) \cong \prod_{i} \mathbb{M}_{n_{i}}, \quad L^{p}(V N(G)) \cong \ell^{p}-\bigoplus_{i} S_{n_{i}}^{p}
$$

where S_{n}^{p} is \mathbb{M}_{n} equipped with the p th Schatten-class norm.

Operator Space Structures

For further details on the complex interpolation approach to non-commutative L^{p} spaces, see [Kosaki], [Terp] and [Izumi].

- Under favourable circumstances, we except that non-commutative L^{2} is a Hilbert space;
- A Hilbert space is self-dual;
- The unique Operator Space structure on a Hilbert space with this property is Pisier's Operator Hilbert Space;
- To recover this, we need to interpolate between a von Neumann algebra M and the opposite predual $M_{*}^{0 p}$, see [Pisier].
- Here $M_{*}^{o p}$ is the predual of M equipped with the opposite structure,

Operator Space Structures

For further details on the complex interpolation approach to non-commutative L^{p} spaces, see [Kosaki], [Terp] and [Izumi]. Eventually we want a natural Operator Space structure on $L^{p}(V N(G))$:

- Under favourable circumstances, we except that non-commutative L^{2} is a Hilbert space;
- A Hilbert space is self-dual;
- The unique Operator Space structure on a Hilbert space with this property is Pisier's Operator Hilbert Space;
- To recover this, we need to interpolate between a von Neumann algebra M and the opposite predual M_{*}^{00}, see [Pisier].
- Here $M^{\circ \rho}$ is the predual of M equipped with the opposite structure,

Operator Space Structures

For further details on the complex interpolation approach to non-commutative L^{p} spaces, see [Kosaki], [Terp] and [Izumi]. Eventually we want a natural Operator Space structure on $L^{p}(V N(G))$:

- Under favourable circumstances, we except that non-commutative L^{2} is a Hilbert space;
- A Hilbert space is self-dual;
- The unique Operator Space structure on a Hilbert space with this
property is Pisier's Operator Hilbert Space;
- To recover this, we need to interpolate between a von Neumann
algebra M and the opposite predual $M_{*}^{\text {op }}$, see [Pisier].
- Here $M_{*}^{\text {op }}$ is the predual of M equipped with the opposite structure,

Operator Space Structures

For further details on the complex interpolation approach to non-commutative L^{p} spaces, see [Kosaki], [Terp] and [Izumi]. Eventually we want a natural Operator Space structure on $L^{p}(V N(G))$:

- Under favourable circumstances, we except that non-commutative L^{2} is a Hilbert space;
- A Hilbert space is self-dual;
- The unique Operator Space structure on a Hilbert space with this property is Pisier's Operator Hilbert Space;
- To recover this, we need to interpolate between a von Neumann algebra M and the opposite predual $M^{0 p}$, see [Pisier].
- Here $M_{*}^{o p}$ is the predual of M equipped with the opposite structure,

Operator Space Structures

For further details on the complex interpolation approach to non-commutative L^{p} spaces, see [Kosaki], [Terp] and [Izumi]. Eventually we want a natural Operator Space structure on $L^{p}(V N(G))$:

- Under favourable circumstances, we except that non-commutative L^{2} is a Hilbert space;
- A Hilbert space is self-dual;
- The unique Operator Space structure on a Hilbert space with this property is Pisier's Operator Hilbert Space;
- To recover this, we need to interpolate between a von Neumann
algebra M and the opposite predual $M_{*}^{\circ p}$, see [Pisier].
- Here $M_{*}^{\circ p}$ is the predual of M equipped with the opposite structure,
\square

Operator Space Structures

For further details on the complex interpolation approach to non-commutative L^{p} spaces, see [Kosaki], [Terp] and [Izumi]. Eventually we want a natural Operator Space structure on $L^{p}(V N(G))$:

- Under favourable circumstances, we except that non-commutative L^{2} is a Hilbert space;
- A Hilbert space is self-dual;
- The unique Operator Space structure on a Hilbert space with this property is Pisier's Operator Hilbert Space;
- To recover this, we need to interpolate between a von Neumann algebra M and the opposite predual $M_{*}^{o p}$, see [Pisier].

Operator Space Structures

For further details on the complex interpolation approach to non-commutative L^{p} spaces, see [Kosaki], [Terp] and [Izumi]. Eventually we want a natural Operator Space structure on $L^{p}(V N(G))$:

- Under favourable circumstances, we except that non-commutative L^{2} is a Hilbert space;
- A Hilbert space is self-dual;
- The unique Operator Space structure on a Hilbert space with this property is Pisier's Operator Hilbert Space;
- To recover this, we need to interpolate between a von Neumann algebra M and the opposite predual $M_{*}^{o p}$, see [Pisier].
- Here $M_{*}^{\text {op }}$ is the predual of M equipped with the opposite structure,

$$
\left\|\left(\omega_{i j}\right)\right\|_{M_{*}^{0 p}}=\left\|\left(\omega_{j i}\right)\right\|_{M_{*}} . \quad\left(\left(\omega_{i j}\right) \in \mathbb{M}_{n}\left(M_{*}\right)\right) .
$$

For the Fourier algebra

- As $V N(G)$ is in standard position on $L^{2}(G)$, we can identify $A(G)^{\mathrm{op}}$ with the predual of the commutant $V N(G)^{\prime}$.
- However, $V N(G)^{\prime}$ is simply $V N_{r}(G)$, the right group von Neumann algebra, which is generated by the right regular representation.
- So if we privilege $A(G)$, it makes sense to interpolate between $V N_{r}(G)$ and $A(G)$.
- If we follow Terp's interpolation method through, then in $A(G) \cap V N_{r}(G)$, we find that

Here ρ is the right regular representation, and ∇ is the modular function of G.

For the Fourier algebra

- As $V N(G)$ is in standard position on $L^{2}(G)$, we can identify $A(G)^{\mathrm{op}}$ with the predual of the commutant $V N(G)^{\prime}$.
- However, $V N(G)^{\prime}$ is simply $V N_{r}(G)$, the right group von Neumann algebra, which is generated by the right regular representation.
- So if we privilege $A(G)$, it makes sense to interpolate between $V N_{r}(G)$ and $A(G)$.
- If we follow Terp's interpolation method through, then in $A(G) \cap V N_{r}(G)$, we find that

Here ρ is the right regular representation, and ∇ is the modular function of G.

For the Fourier algebra

- As $V N(G)$ is in standard position on $L^{2}(G)$, we can identify $A(G)^{\mathrm{op}}$ with the predual of the commutant $V N(G)^{\prime}$.
- However, $V N(G)^{\prime}$ is simply $V N_{r}(G)$, the right group von Neumann algebra, which is generated by the right regular representation.
- So if we privilege $A(G)$, it makes sense to interpolate between $V N_{r}(G)$ and $A(G)$.
- If we follow Terp's interpolation method through, then in $A(G) \cap V N_{r}(G)$, we find that

Here ρ is the right regular representation, and ∇ is the modular function of G.

For the Fourier algebra

- As $V N(G)$ is in standard position on $L^{2}(G)$, we can identify $A(G)^{\mathrm{op}}$ with the predual of the commutant $V N(G)^{\prime}$.
- However, $V N(G)^{\prime}$ is simply $V N_{r}(G)$, the right group von Neumann algebra, which is generated by the right regular representation.
- So if we privilege $A(G)$, it makes sense to interpolate between $V N_{r}(G)$ and $A(G)$.
- If we follow Terp's interpolation method through, then in $A(G) \cap V N_{r}(G)$, we find that

$$
a=\rho\left(\nabla^{-1 / 2} a\right) \quad\left(a \in A(G) \cap C_{00}(G)^{2}\right)
$$

Here ρ is the right regular representation, and ∇ is the modular function of G.

The spaces

- So we interpolate between $V N_{r}(G)$ and $A(G)$, leading to $L^{p}(\hat{G})$ say. If G is abelian, this is the L^{p} space of the dual group \hat{G}.
- As a Banach space, $L^{P}(\hat{G})$ is just $L^{P}(V /(G))$.
- It turns out we can find a (rather natural, in the end) action of $M A(G)$ on $V N_{r}(G)$ which makes sense on $A(G) \cap V N_{r}(G)$.
- So we interpolate the module actions, and hence $L^{P}(G)$ becomes a (completely contractive) $A(G)$ module. A similar argument establishes that $M A(G)$ and $M_{c b} A(G)$ act on $L^{p}(\hat{G})$, extending the action of $A(G)$.
- Work of Izumi shows that there is a natural dual pairing between $L^{p}(\hat{G})$ and $L^{p^{\prime}}(\hat{G})$, where $p^{-1}+p^{\prime-1}=1$
- Using this, we can show that the actions of $M A(G)$ and $M_{c b} A(G)$ are weak*-weak*-continuous.

The spaces

- So we interpolate between $V N_{r}(G)$ and $A(G)$, leading to $L^{p}(\hat{G})$ say. If G is abelian, this is the L^{p} space of the dual group \hat{G}.
- As a Banach space, $L^{p}(\hat{G})$ is just $L^{p}(V N(G))$.
$M A(G)$ on $V N_{r}(G)$ which makes sense on $A(G) \cap V N_{r}(G)$.
- So we interpolate the module actions, and hence $L^{p}(G)$ becomes a (completely contractive) $A(G)$ module. A similar argument establishes that $M A(G)$ and $M_{c b} A(G)$ act on $L^{p}(\hat{G})$, extending the action of $A(G)$
- Work of Izumi shows that there is a natural dual pairing between $L^{p}(\hat{G})$ and $L^{p^{\prime}}(\hat{G})$, where $p^{-1}+p^{\prime-1}=1$
- Using this, we can show that the actions of $M A(G)$ and $M_{c b} A(G)$ are weak*-weak*-continuous.

The spaces

- So we interpolate between $V N_{r}(G)$ and $A(G)$, leading to $L^{p}(\hat{G})$ say. If G is abelian, this is the L^{p} space of the dual group \hat{G}.
- As a Banach space, $L^{p}(\hat{G})$ is just $L^{p}(V N(G))$.
- It turns out we can find a (rather natural, in the end) action of $M A(G)$ on $V N_{r}(G)$ which makes sense on $A(G) \cap V N_{r}(G)$.
 are weak*-weak*-continuous.

The spaces

- So we interpolate between $V N_{r}(G)$ and $A(G)$, leading to $L^{p}(\hat{G})$ say. If G is abelian, this is the L^{p} space of the dual group \hat{G}.
- As a Banach space, $L^{p}(\hat{G})$ is just $L^{p}(V N(G))$.
- It turns out we can find a (rather natural, in the end) action of $M A(G)$ on $V N_{r}(G)$ which makes sense on $A(G) \cap V N_{r}(G)$.
- So we interpolate the module actions, and hence $L^{p}(\hat{G})$ becomes a (completely contractive) $A(G)$ module. A similar argument establishes that $M A(G)$ and $M_{c b} A(G)$ act on $L^{p}(\hat{G})$, extending the action of $A(G)$.
- Work of Izumi shows that there is a natural dual pairing between - Using this, we can show that the actions of $M A(G)$ and $M_{c b} A(G)$ are weak*-weak*-continuous.

The spaces

- So we interpolate between $V N_{r}(G)$ and $A(G)$, leading to $L^{p}(\hat{G})$ say. If G is abelian, this is the L^{p} space of the dual group \hat{G}.
- As a Banach space, $L^{p}(\hat{G})$ is just $L^{p}(V N(G))$.
- It turns out we can find a (rather natural, in the end) action of $M A(G)$ on $V N_{r}(G)$ which makes sense on $A(G) \cap V N_{r}(G)$.
- So we interpolate the module actions, and hence $L^{p}(\hat{G})$ becomes a (completely contractive) $A(G)$ module. A similar argument establishes that $M A(G)$ and $M_{c b} A(G)$ act on $L^{p}(\hat{G})$, extending the action of $A(G)$.
- Work of Izumi shows that there is a natural dual pairing between $L^{p}(\hat{G})$ and $L^{p^{\prime}}(\hat{G})$, where $p^{-1}+p^{\prime-1}=1$.
are weak*-weak*-continuous.

The spaces

- So we interpolate between $V N_{r}(G)$ and $A(G)$, leading to $L^{p}(\hat{G})$ say. If G is abelian, this is the L^{p} space of the dual group \hat{G}.
- As a Banach space, $L^{p}(\hat{G})$ is just $L^{p}(V N(G))$.
- It turns out we can find a (rather natural, in the end) action of $M A(G)$ on $V N_{r}(G)$ which makes sense on $A(G) \cap V N_{r}(G)$.
- So we interpolate the module actions, and hence $L^{p}(\hat{G})$ becomes a (completely contractive) $A(G)$ module. A similar argument establishes that $M A(G)$ and $M_{c b} A(G)$ act on $L^{p}(\hat{G})$, extending the action of $A(G)$.
- Work of Izumi shows that there is a natural dual pairing between $L^{p}(\hat{G})$ and $L^{p^{\prime}}(\hat{G})$, where $p^{-1}+p^{\prime-1}=1$.
- Using this, we can show that the actions of $M A(G)$ and $M_{c b} A(G)$ are weak*-weak*-continuous.

The theorem

Let $\left(p_{n}\right)$ be a sequence in $(1, \infty)$ tending to 1 . Let

$$
E=\ell^{2}-\bigoplus_{n} L^{p_{n}}(\hat{G}) .
$$

Let $\pi: M A(G) \rightarrow \mathcal{B}(E)$ be the diagonal action.

> Theorem
> The homomorphism π is an isometric, weak ${ }^{*}$-weak k^{*}-continuous isomorphism onto its range, which is equal to the idealiser of $\pi(A(G))$ in $\mathcal{B}(E)$,

The theorem

Let $\left(p_{n}\right)$ be a sequence in $(1, \infty)$ tending to 1 . Let

$$
E=\ell^{2}-\bigoplus_{n} L^{p_{n}}(\hat{G})
$$

Let $\pi: M A(G) \rightarrow \mathcal{B}(E)$ be the diagonal action.

Theorem

The homomorphism π is an isometric, weak*-weak*-continuous isomorphism onto its range, which is equal to the idealiser of $\pi(A(G))$ in $\mathcal{B}(E)$,

$$
\pi(M A(G))=\left\{T \in \mathcal{B}(E): \begin{array}{c}
T \pi(a), \\
, \pi(a) T \in \pi(A(G)) \\
(a \in A(G))
\end{array}\right\}
$$

Completely bounded case

Equip

$$
E=\ell^{2}-\bigoplus_{n} L^{p_{n}}(\hat{G})
$$

with its natural operator space structure (given by complex interpolation, again, see [Pisier] and [Xu]). Let $\pi: M_{c b} A(G) \rightarrow \mathcal{C B}(E)$ be the diagonal map.

Theorem
The homomorphism π is a completely isometric,
weak*-weak*-continuous isomorphism onto its range, which is equal to
the idealiser of $\pi(A(G))$ in $C B(E)$,

Notice that E, and the $A(G)$ action, is the same in either case. The idealiser in $\mathcal{B}(E)$ is $M A(G)$, while the idealiser in $\mathcal{C B}(E)$ is $M_{c b} A(G)$.

Completely bounded case

Equip

$$
E=\ell^{2}-\bigoplus_{n} L^{p_{n}}(\hat{G})
$$

with its natural operator space structure (given by complex interpolation, again, see [Pisier] and [Xu]). Let $\pi: M_{c b} A(G) \rightarrow \mathcal{C B}(E)$ be the diagonal map.

Theorem

The homomorphism π is a completely isometric, weak*-weak*-continuous isomorphism onto its range, which is equal to the idealiser of $\pi(A(G))$ in $\mathcal{C B}(E)$,

$$
\pi\left(M_{c b} A(G)\right)=\left\{T \in \mathcal{C B}(E): \begin{array}{c}
T \pi(a), \\
(a \in(a) T \in \pi(A(G)) \\
(a \in A(G))
\end{array}\right\}
$$

Completely bounded case

Equip

$$
E=\ell^{2}-\bigoplus_{n} L^{p_{n}}(\hat{G})
$$

with its natural operator space structure (given by complex interpolation, again, see [Pisier] and [Xu]). Let $\pi: M_{c b} A(G) \rightarrow \mathcal{C B}(E)$ be the diagonal map.

Theorem

The homomorphism π is a completely isometric, weak*-weak*-continuous isomorphism onto its range, which is equal to the idealiser of $\pi(A(G))$ in $\mathcal{C B}(E)$,

$$
\pi\left(M_{c b} A(G)\right)=\left\{T \in \mathcal{C B}(E): \begin{array}{c}
T \pi(a), \\
(a \in(a) T \in \pi(A(G)) \\
(a \in A(G))
\end{array}\right\}
$$

Notice that E, and the $A(G)$ action, is the same in either case.

Completely bounded case

Equip

$$
E=\ell^{2}-\bigoplus_{n} L^{p_{n}}(\hat{G})
$$

with its natural operator space structure (given by complex interpolation, again, see [Pisier] and [Xu]). Let $\pi: M_{c b} A(G) \rightarrow \mathcal{C B}(E)$ be the diagonal map.

Theorem

The homomorphism π is a completely isometric, weak*-weak*-continuous isomorphism onto its range, which is equal to the idealiser of $\pi(A(G))$ in $\mathcal{C B}(E)$,

$$
\pi\left(M_{c b} A(G)\right)=\left\{T \in \mathcal{C B}(E): \begin{array}{c}
T \pi(a), \pi(a) T \in \pi(A(G)) \\
(a \in A(G))
\end{array}\right\} .
$$

Notice that E, and the $A(G)$ action, is the same in either case. The idealiser in $\mathcal{B}(E)$ is $M A(G)$, while the idealiser in $\mathcal{C B}(E)$ is $M_{c b} A(G)$.

Preprints

"Multipliers, Self-Induced and Dual Banach Algebras", arXiv:1001.1633v1 [math.FA]
"Representing multipliers of the Fourier algebra on non-commutative L^{p} spaces", arXiv:0906.5128v2 [math.FA]

