Operator Spaces and the Sz-Nagy Similarity Problem

Matthew Daws

22 November, 2006

Talk Plan

- Contractions on a Hilbert space.
- Models and functional calculus.
- Similarity problem and conjectures.
- Operator spaces.
- A positive result and conclusion.

Contractions on a Hilbert space

Throughout \mathcal{H} will be a Hilbert space. An operator T on \mathcal{H} is a contraction if

$$
\|T(x)\| \leq\|x\| \quad(x \in \mathcal{H})
$$

The Sz.-Nagy dilation theorem states that if T is a contraction, then we can find a bigger Hilbert space \mathcal{H}_{0} with $\mathcal{H} \subseteq \mathcal{H}_{0}$, and an isometry U on H_{0} such that

$$
T=\left.P_{\mathcal{H}} U\right|_{\mathcal{H}},
$$

where $P_{\mathcal{H}}: \mathcal{H}_{0} \rightarrow \mathcal{H}$ is the orthogonal projection, and $\left.U\right|_{\mathcal{H}}$ is the restriction of U to \mathcal{H}.

Contractions on a Hilbert space

Throughout \mathcal{H} will be a Hilbert space. An operator T on \mathcal{H} is a contraction if

$$
\|T(x)\| \leq\|x\| \quad(x \in \mathcal{H})
$$

The Sz.-Nagy dilation theorem states that if T is a contraction, then we can find a bigger Hilbert space \mathcal{H}_{0} with $\mathcal{H} \subseteq \mathcal{H}_{0}$, and an isometry U on H_{0} such that

$$
T=\left.P_{\mathcal{H}} U\right|_{\mathcal{H}},
$$

where $P_{\mathcal{H}}: \mathcal{H}_{0} \rightarrow \mathcal{H}$ is the orthogonal projection, and $\left.U\right|_{\mathcal{H}}$ is the restriction of U to \mathcal{H}.

Dilation Theorem

In fact, we can choose \mathcal{H}_{0} and U such that

$$
T^{n}=\left.P_{\mathcal{H}} U^{n}\right|_{\mathcal{H}}, \quad \overline{\operatorname{lin}}\left\{U^{n}(\mathcal{H}): n \in \mathbb{Z}\right\}=\mathcal{H}_{0}
$$

Let \mathcal{H}_{1} be such that $\mathcal{H}_{0}=\mathcal{H} \oplus \mathcal{H}_{1}$, so with respect to this direct sum,

For many contractions T, we can even choose U to be a suitable generalisation of the bilateral shift.

Dilation Theorem

In fact, we can choose \mathcal{H}_{0} and U such that

$$
T^{n}=\left.P_{\mathcal{H}} U^{n}\right|_{\mathcal{H}}, \quad \overline{\operatorname{lin}}\left\{U^{n}(\mathcal{H}): n \in \mathbb{Z}\right\}=\mathcal{H}_{0}
$$

Let \mathcal{H}_{1} be such that $\mathcal{H}_{0}=\mathcal{H} \oplus \mathcal{H}_{1}$, so with respect to this direct sum,

$$
U=\left(\begin{array}{ll}
T & 0 \\
? & ?
\end{array}\right)
$$

For many contractions T, we can even choose U to be a suitable generalisation of the bilateral shift.

Dilation Theorem

In fact, we can choose \mathcal{H}_{0} and U such that

$$
T^{n}=\left.P_{\mathcal{H}} U^{n}\right|_{\mathcal{H}}, \quad \overline{\operatorname{lin}}\left\{U^{n}(\mathcal{H}): n \in \mathbb{Z}\right\}=\mathcal{H}_{0}
$$

Let \mathcal{H}_{1} be such that $\mathcal{H}_{0}=\mathcal{H} \oplus \mathcal{H}_{1}$, so with respect to this direct sum,

$$
U=\left(\begin{array}{ll}
T & 0 \\
? & ?
\end{array}\right)
$$

For many contractions T, we can even choose U to be a suitable generalisation of the bilateral shift.

Functional Calculus: Hardy Spaces

Let $\mathbb{T}=\{z \in \mathbb{C}:|z|=1\}$ be the unit circle, and let $L^{p}(\mathbb{T})$ be the usual Lebesgue space.
For $1 \leq p \leq \infty$, let $H^{p} \subseteq L^{p}(\mathbb{T})$ be the Hardy Space of index p,
defined as follows. We let $f \in H^{p}$ if and only if the negative
Fourier coefficients of f are zero, that is,

$$
\int_{0}^{2 \pi} f\left(e^{i \theta}\right) e^{i n \theta} \frac{d \theta}{2 \pi}=0 \quad(n<0)
$$

Equivalently, H^{P} consists of those functions f analytic on the unit disc, and such that

Functional Calculus: Hardy Spaces

Let $\mathbb{T}=\{z \in \mathbb{C}:|z|=1\}$ be the unit circle, and let $L^{p}(\mathbb{T})$ be the usual Lebesgue space.
For $1 \leq p \leq \infty$, let $H^{p} \subseteq L^{p}(\mathbb{T})$ be the Hardy Space of index p, defined as follows. We let $f \in H^{p}$ if and only if the negative Fourier coefficients of f are zero, that is,

$$
\int_{0}^{2 \pi} f\left(e^{i \theta}\right) e^{i n \theta} \frac{d \theta}{2 \pi}=0 \quad(n<0) .
$$

Equivalently, H^{P} consists of those functions f analytic on the unit disc, and such that

Functional Calculus: Hardy Spaces

Let $\mathbb{T}=\{z \in \mathbb{C}:|z|=1\}$ be the unit circle, and let $L^{p}(\mathbb{T})$ be the usual Lebesgue space.
For $1 \leq p \leq \infty$, let $H^{p} \subseteq L^{p}(\mathbb{T})$ be the Hardy Space of index p, defined as follows. We let $f \in H^{p}$ if and only if the negative Fourier coefficients of f are zero, that is,

$$
\int_{0}^{2 \pi} f\left(e^{i \theta}\right) e^{i n \theta} \frac{d \theta}{2 \pi}=0 \quad(n<0) .
$$

Equivalently, H^{p} consists of those functions f analytic on the unit disc, and such that

$$
\sup _{0<r<1}\left(\int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{p} \frac{d \theta}{2 \pi}\right)^{1 / p}<\infty .
$$

A simple-minded definition

Let f be analytic on \mathbb{D}, with power-series expansion

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \quad(z \in \mathbb{D})
$$

Suppose that $\sum_{n=0}^{\infty}\left|a_{n}\right|<\infty$.
For any contraction T on \mathcal{H}, we can define

as the sum is absolutely convergent.
Of course, not all analytic functions have such an absolutely
convergent power series.

A simple-minded definition

Let f be analytic on \mathbb{D}, with power-series expansion

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \quad(z \in \mathbb{D})
$$

Suppose that $\sum_{n=0}^{\infty}\left|a_{n}\right|<\infty$.
For any contraction T on \mathcal{H}, we can define

$$
f(T)=\sum_{n=0}^{\infty} a_{n} T^{n}
$$

as the sum is absolutely convergent.
Of course, not all analytic functions have such an absolutely
convergent power series.

A simple-minded definition

Let f be analytic on \mathbb{D}, with power-series expansion

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \quad(z \in \mathbb{D})
$$

Suppose that $\sum_{n=0}^{\infty}\left|a_{n}\right|<\infty$.
For any contraction T on \mathcal{H}, we can define

$$
f(T)=\sum_{n=0}^{\infty} a_{n} T^{n}
$$

as the sum is absolutely convergent.
Of course, not all analytic functions have such an absolutely convergent power series.

The H^{∞} functional calculus

In fact, working somewhat harder, we can prove that for each $f \in H^{\infty}$, we can define a bounded operator $f(T)$ on \mathcal{H}.

The H^{∞} functional calculus

In fact, working somewhat harder, we can prove that for each $f \in H^{\infty}$, we can define a bounded operator $f(T)$ on \mathcal{H}.

- The map $H^{\infty} \rightarrow \mathcal{B}(\mathcal{H}) ; f \mapsto f(T)$ is a norm-decreasing algebra homomorphism;
- For $f \in H^{\infty}$, define $\tilde{f} \in H^{\infty}$ by

$$
\tilde{f}(z)=\overline{f(\bar{z})} \quad(z \in \mathbb{D})
$$

Then $f(T)^{*}=\tilde{f}\left(T^{*}\right)$.

- If $\left(f_{n}\right)$ is a bounded sequence in H^{∞} which converges
pointwise to $f \in H^{\infty}$, then $f_{n}(T) \rightarrow f(T)$ in the strong
topology.

The H^{∞} functional calculus

In fact, working somewhat harder, we can prove that for each $f \in H^{\infty}$, we can define a bounded operator $f(T)$ on \mathcal{H}.

- The map $H^{\infty} \rightarrow \mathcal{B}(\mathcal{H}) ; f \mapsto f(T)$ is a norm-decreasing algebra homomorphism;
- For $f \in H^{\infty}$, define $\tilde{f} \in H^{\infty}$ by

$$
\tilde{f}(z)=\overline{f(\bar{z})} \quad(z \in \mathbb{D})
$$

Then $f(T)^{*}=\tilde{f}\left(T^{*}\right)$.

- If $\left(f_{n}\right)$ is a bounded sequence in H^{∞} which converges pointwise to $f \in H^{\infty}$, then $f_{n}(T) \rightarrow f(T)$ in the strong topology.

The H^{∞} functional calculus

In fact, working somewhat harder, we can prove that for each $f \in H^{\infty}$, we can define a bounded operator $f(T)$ on \mathcal{H}.

- The map $H^{\infty} \rightarrow \mathcal{B}(\mathcal{H}) ; f \mapsto f(T)$ is a norm-decreasing algebra homomorphism;
- For $f \in H^{\infty}$, define $\tilde{f} \in H^{\infty}$ by

$$
\tilde{f}(z)=\overline{f(\bar{z})} \quad(z \in \mathbb{D})
$$

Then $f(T)^{*}=\tilde{f}\left(T^{*}\right)$.

- If $\left(f_{n}\right)$ is a bounded sequence in H^{∞} which converges pointwise to $f \in H^{\infty}$, then $f_{n}(T) \rightarrow f(T)$ in the strong topology.

Similarity

- We get the impression that contractions are rather nicely behaved objects.
- We define $T \in \mathcal{B}(\mathcal{H})$ to be similar to a contraction if there exists an invertible map $S \in \mathcal{B}(\mathcal{H})$ such that $S^{-1} T S$ is a contraction.
- All of the previous explained properties can easily be seen to hold for maps similar to a contraction.
- For example, we define a functional calculus by

$$
f \mapsto S f\left(S^{-1} T S\right) S^{-1}
$$

- But how can we recognise an operator which is similar to a contraction?

Similarity

- We get the impression that contractions are rather nicely behaved objects.
- We define $T \in \mathcal{B}(\mathcal{H})$ to be similar to a contraction if there exists an invertible map $S \in \mathcal{B}(\mathcal{H})$ such that $S^{-1} T S$ is a contraction.
- All of the previous explained properties can easily be seen to hold for maps similar to a contraction.
- For examole, we define a functional calculus by

$$
f \mapsto S f\left(S^{-1} T S\right) S^{-1}
$$

- But how can we recognise an operator which is similar to a contraction?

Similarity

- We get the impression that contractions are rather nicely behaved objects.
- We define $T \in \mathcal{B}(\mathcal{H})$ to be similar to a contraction if there exists an invertible map $S \in \mathcal{B}(\mathcal{H})$ such that $S^{-1} T S$ is a contraction.
- All of the previous explained properties can easily be seen to hold for maps similar to a contraction.
- For example, we define a functional calculus by

$$
f \mapsto S f\left(S^{-1} T S\right) S^{-1}
$$

- But how can we recognise an operator which is similar to a contraction?

Similarity

- We get the impression that contractions are rather nicely behaved objects.
- We define $T \in \mathcal{B}(\mathcal{H})$ to be similar to a contraction if there exists an invertible map $S \in \mathcal{B}(\mathcal{H})$ such that $S^{-1} T S$ is a contraction.
- All of the previous explained properties can easily be seen to hold for maps similar to a contraction.
- For example, we define a functional calculus by

$$
f \mapsto S f\left(S^{-1} T S\right) S^{-1} .
$$

- But how can we recognise an operator which is similar to a contraction?

Similarity

- We get the impression that contractions are rather nicely behaved objects.
- We define $T \in \mathcal{B}(\mathcal{H})$ to be similar to a contraction if there exists an invertible map $S \in \mathcal{B}(\mathcal{H})$ such that $S^{-1} T S$ is a contraction.
- All of the previous explained properties can easily be seen to hold for maps similar to a contraction.
- For example, we define a functional calculus by

$$
f \mapsto S f\left(S^{-1} T S\right) S^{-1}
$$

- But how can we recognise an operator which is similar to a contraction?

Sz.-Nagy Conjecture

- If $\left\|S^{-1} T S\right\| \leq 1$, then clearly we have that

$$
\sup _{n \geq 0}\left\|T^{n}\right\|=\sup _{n \geq 0}\left\|S\left(S^{-1} T S\right)^{n} S^{-1}\right\| \leq\|S\|\left\|S^{-1}\right\|
$$

so that T is power-bounded.

- Sz.-Nagy proved (1959) that if T is compact and power-bounded, then T is similar to a contraction.
- So he conjectured that this was true for general power-bounded operators.

Sz.-Nagy Conjecture

- If $\left\|S^{-1} T S\right\| \leq 1$, then clearly we have that

$$
\sup _{n \geq 0}\left\|T^{n}\right\|=\sup _{n \geq 0}\left\|S\left(S^{-1} T S\right)^{n} S^{-1}\right\| \leq\|S\|\left\|S^{-1}\right\|
$$

so that T is power-bounded.

- Sz.-Nagy proved (1959) that if T is compact and power-bounded, then T is similar to a contraction.
- So he conjectured that this was true for general power-bounded operators.

Sz.-Nagy Conjecture

- If $\left\|S^{-1} T S\right\| \leq 1$, then clearly we have that

$$
\sup _{n \geq 0}\left\|T^{n}\right\|=\sup _{n \geq 0}\left\|S\left(S^{-1} T S\right)^{n} S^{-1}\right\| \leq\|S\|\left\|S^{-1}\right\|
$$

so that T is power-bounded.

- Sz.-Nagy proved (1959) that if T is compact and power-bounded, then T is similar to a contraction.
- So he conjectured that this was true for general power-bounded operators.

Counter-example

Foguel (1964) found the following counter-example.

- Let ℓ^{2} be the usual Hilbert space indexed by \mathbb{N}, with standard orthonormal basis $\left(e_{n}\right)_{n \in \mathbb{N}}$.
\Rightarrow Let S be the right shift, $S\left(e_{n}\right)=e_{n+1}$
- Let Q be the projection onto the lacunary sequence $\left\{e_{3^{k}}\right\}$. - Foguel's example is $R(Q)$ acting on $\ell^{2} \oplus \ell^{2}$,

Counter-example

Foguel (1964) found the following counter-example.

- Let ℓ^{2} be the usual Hilbert space indexed by \mathbb{N}, with standard orthonormal basis $\left(e_{n}\right)_{n \in \mathbb{N}}$.
- Let S be the right shift, $S\left(e_{n}\right)=e_{n+1}$.
\Rightarrow Let Q be the projection onto the lacunary sequence $\left\{e_{3_{k}}\right\}$. - Foguel's example is $R(Q)$ acting on $\ell^{2} \oplus \ell^{2}$,

Counter-example

Foguel (1964) found the following counter-example.

- Let ℓ^{2} be the usual Hilbert space indexed by \mathbb{N}, with standard orthonormal basis $\left(e_{n}\right)_{n \in \mathbb{N}}$.
- Let S be the right shift, $S\left(e_{n}\right)=e_{n+1}$.
- Let Q be the projection onto the lacunary sequence $\left\{e_{3^{k}}\right\}$.
- Foguel's example is $R(Q)$ acting on $\ell^{2} \oplus \ell^{2}$,

Counter-example

Foguel (1964) found the following counter-example.

- Let ℓ^{2} be the usual Hilbert space indexed by \mathbb{N}, with standard orthonormal basis $\left(e_{n}\right)_{n \in \mathbb{N}}$.
- Let S be the right shift, $S\left(e_{n}\right)=e_{n+1}$.
- Let Q be the projection onto the lacunary sequence $\left\{e_{3^{k}}\right\}$.
- Foguel's example is $R(Q)$ acting on $\ell^{2} \oplus \ell^{2}$,

$$
R(G)=\left(\begin{array}{cc}
S^{*} & Q \\
0 & S
\end{array}\right)
$$

von Neumann inequality

- Let p be a polynomial, so $p \in H^{\infty}$, and hence by the H^{∞}-calculus, for a contraction $R,\|p(R)\| \leq\|p\|_{\infty}$. Hence, if $S^{-1} T S$ is a contraction,

$$
\|p(T)\|=\left\|S p\left(S^{-1} T S\right) S^{-1}\right\| \leq\|S\|\left\|S^{-1}\right\|\|p\|_{\infty}
$$

- Actually, there is a more elementary proof of this, due to von Neumann.
- So we have a new conjecture: T is similar to a contraction if and only if, for some constant K, we have

That is, T is polynomially bounded.

- Lebow (1968) showed that Foguel's example is not a counter-example to this new conjecture.

von Neumann inequality

- Let p be a polynomial, so $p \in H^{\infty}$, and hence by the H^{∞}-calculus, for a contraction $R,\|p(R)\| \leq\|p\|_{\infty}$. Hence, if $S^{-1} T S$ is a contraction,

$$
\|p(T)\|=\left\|S p\left(S^{-1} T S\right) S^{-1}\right\| \leq\|S\|\left\|S^{-1}\right\|\|p\|_{\infty}
$$

- Actually, there is a more elementary proof of this, due to von Neumann.
- So we have a new conjecture: T is similar to a contraction if and only if, for some constant K, we have

That is, T is polynomially bounded.

- Lebow (1968) showed that Foguel's example is not a counter-example to this new conjecture.

von Neumann inequality

- Let p be a polynomial, so $p \in H^{\infty}$, and hence by the H^{∞}-calculus, for a contraction $R,\|p(R)\| \leq\|p\|_{\infty}$. Hence, if $S^{-1} T S$ is a contraction,

$$
\|p(T)\|=\left\|S p\left(S^{-1} T S\right) S^{-1}\right\| \leq\|S\|\left\|S^{-1}\right\|\|p\|_{\infty}
$$

- Actually, there is a more elementary proof of this, due to von Neumann.
- So we have a new conjecture: T is similar to a contraction if and only if, for some constant K, we have

$$
\|p(T)\| \leq K\|p\|_{\infty} \quad(p \text { a polynomial }) .
$$

That is, T is polynomially bounded.

- Lebow (1968) showed that Foguel's example is not a counter-example to this new conjecture.

von Neumann inequality

- Let p be a polynomial, so $p \in H^{\infty}$, and hence by the H^{∞}-calculus, for a contraction $R,\|p(R)\| \leq\|p\|_{\infty}$. Hence, if $S^{-1} T S$ is a contraction,

$$
\|p(T)\|=\left\|S p\left(S^{-1} T S\right) S^{-1}\right\| \leq\|S\|\left\|S^{-1}\right\|\|p\|_{\infty}
$$

- Actually, there is a more elementary proof of this, due to von Neumann.
- So we have a new conjecture: T is similar to a contraction if and only if, for some constant K, we have

$$
\|p(T)\| \leq K\|p\|_{\infty} \quad(p \text { a polynomial })
$$

That is, T is polynomially bounded.

- Lebow (1968) showed that Foguel's example is not a counter-example to this new conjecture.

Pisier's Counter-example

- Similar counter-examples to Foguel's have been considered, with much more complicated operators Q,

$$
R(G)=\left(\begin{array}{cc}
S^{*} & Q \\
0 & S
\end{array}\right)
$$

However, work of Bourgain, Aleksandrov and Peller has shown that this approach is fairly hopeless.

- Pisier instead uses amplifications (Blackboarc). He then found a counter-example of the form

Here Γ_{F} is an "operator-valued Hankel operator".

Pisier's Counter-example

- Similar counter-examples to Foguel's have been considered, with much more complicated operators Q,

$$
R(G)=\left(\begin{array}{cc}
S^{*} & Q \\
0 & S
\end{array}\right)
$$

However, work of Bourgain, Aleksandrov and Peller has shown that this approach is fairly hopeless.

- Pisier instead uses amplifications (Blackboard). He then found a counter-example of the form

$$
R\left(\Gamma_{F}\right)=\left(\begin{array}{cc}
S^{*(\infty)} & \Gamma_{F} \\
0 & S^{(\infty)}
\end{array}\right)
$$

Here Γ_{F} is an "operator-valued Hankel operator".

Operator spaces

- An operator space is just a closed subspace of $\mathcal{B}(\mathcal{H})$.
- Obviously, thanks to the GNS construction, we can replace $\mathcal{B}(\mathcal{H})$ be any C^{*}-algebra \mathcal{A}.
- So every Banach space is an operator space!
- The difference, however, is the maps which we consider. We replace bounded maps by completely bounded maps.

Operator spaces

- An operator space is just a closed subspace of $\mathcal{B}(\mathcal{H})$.
- Obviously, thanks to the GNS construction, we can replace $\mathcal{B}(\mathcal{H})$ be any C^{*}-algebra \mathcal{A}.
- So every Banach space is an operator space!
- The difference, however, is the maps which we consider. We replace bounded maps by completely bounded maps.

Operator spaces

- An operator space is just a closed subspace of $\mathcal{B}(\mathcal{H})$.
- Obviously, thanks to the GNS construction, we can replace $\mathcal{B}(\mathcal{H})$ be any C^{*}-algebra \mathcal{A}.
- So every Banach space is an operator space!
- The difference, however, is the maps which we consider. We replace bounded maps by completely bounded maps.

Operator spaces

- An operator space is just a closed subspace of $\mathcal{B}(\mathcal{H})$.
- Obviously, thanks to the GNS construction, we can replace $\mathcal{B}(\mathcal{H})$ be any C^{*}-algebra \mathcal{A}.
- So every Banach space is an operator space!
- The difference, however, is the maps which we consider. We replace bounded maps by completely bounded maps.

Completely bounded maps

Let $E \subseteq \mathcal{B}(\mathcal{H})$. Write $\mathbb{M}_{n}(E)$ for the set of $n \times n$ matricies with entries in E.
We have the identification
$\mathbb{M}_{n}(\mathcal{B}(\mathcal{H}))=\mathcal{B}(\mathcal{H} \oplus \cdots \oplus \mathcal{H})$.

Which induces a norm on $\mathbb{M}_{n}\left(B\left(\mathcal{T} C^{\prime}\right)\right.$).
 As $\mathbb{M}_{n}(E) \subseteq \mathbb{M}_{n}(\mathcal{B}(\mathcal{H}))$, we get a norm on $\mathbb{M}_{n}(E)$.
 For $T \in \mathcal{B}(E)$, we let $(T)_{n} \in \mathcal{B}\left(\mathbb{M}_{n}(E)\right)$ be defined by

Then T is completely bounded if and only if

Completely bounded maps

Let $E \subseteq \mathcal{B}(\mathcal{H})$. Write $\mathbb{M}_{n}(E)$ for the set of $n \times n$ matricies with entries in E.
We have the identification

$$
\mathbb{M}_{n}(\mathcal{B}(\mathcal{H}))=\mathcal{B}(\mathcal{H} \oplus \cdots \oplus \mathcal{H})
$$

Which induces a norm on $\mathbb{M}_{n}(\mathcal{B}(\mathcal{H}))$.

Then T is completely bounded if and only if

Completely bounded maps

Let $E \subseteq \mathcal{B}(\mathcal{H})$. Write $\mathbb{M}_{n}(E)$ for the set of $n \times n$ matricies with entries in E.
We have the identification

$$
\mathbb{M}_{n}(\mathcal{B}(\mathcal{H}))=\mathcal{B}(\mathcal{H} \oplus \cdots \oplus \mathcal{H})
$$

Which induces a norm on $\mathbb{M}_{n}(\mathcal{B}(\mathcal{H}))$.
As $\mathbb{M}_{n}(E) \subseteq \mathbb{M}_{n}(\mathcal{B}(\mathcal{H}))$, we get a norm on $\mathbb{M}_{n}(E)$.
For $T \in \mathcal{B}(E)$, we let $(T)_{n} \in \mathcal{B}\left(\mathbb{M}_{n}(E)\right)$ be defined by

Then T is completely bounded if and only if

Completely bounded maps

Let $E \subseteq \mathcal{B}(\mathcal{H})$. Write $\mathbb{M}_{n}(E)$ for the set of $n \times n$ matricies with entries in E.
We have the identification

$$
\mathbb{M}_{n}(\mathcal{B}(\mathcal{H}))=\mathcal{B}(\mathcal{H} \oplus \cdots \oplus \mathcal{H})
$$

Which induces a norm on $\mathbb{M}_{n}(\mathcal{B}(\mathcal{H}))$.
As $\mathbb{M}_{n}(E) \subseteq \mathbb{M}_{n}(\mathcal{B}(\mathcal{H}))$, we get a norm on $\mathbb{M}_{n}(E)$.
For $T \in \mathcal{B}(E)$, we let $(T)_{n} \in \mathcal{B}\left(\mathbb{M}_{n}(E)\right)$ be defined by

$$
(T)_{n}:\left(\begin{array}{ccc}
x_{11} & \cdots & x_{1 n} \\
\vdots & \ddots & \vdots \\
x_{n 1} & \cdots & x_{n n}
\end{array}\right) \mapsto\left(\begin{array}{ccc}
T\left(x_{11}\right) & \cdots & T\left(x_{1 n}\right) \\
\vdots & \ddots & \vdots \\
T\left(x_{n 1}\right) & \cdots & T\left(x_{n n}\right)
\end{array}\right)
$$

Then T is completely bounded if and only if

Completely bounded maps

Let $E \subseteq \mathcal{B}(\mathcal{H})$. Write $\mathbb{M}_{n}(E)$ for the set of $n \times n$ matricies with entries in E.
We have the identification

$$
\mathbb{M}_{n}(\mathcal{B}(\mathcal{H}))=\mathcal{B}(\mathcal{H} \oplus \cdots \oplus \mathcal{H})
$$

Which induces a norm on $\mathbb{M}_{n}(\mathcal{B}(\mathcal{H}))$.
As $\mathbb{M}_{n}(E) \subseteq \mathbb{M}_{n}(\mathcal{B}(\mathcal{H}))$, we get a norm on $\mathbb{M}_{n}(E)$.
For $T \in \mathcal{B}(E)$, we let $(T)_{n} \in \mathcal{B}\left(\mathbb{M}_{n}(E)\right)$ be defined by

$$
(T)_{n}:\left(\begin{array}{ccc}
x_{11} & \cdots & x_{1 n} \\
\vdots & \ddots & \vdots \\
x_{n 1} & \cdots & x_{n n}
\end{array}\right) \mapsto\left(\begin{array}{ccc}
T\left(x_{11}\right) & \cdots & T\left(x_{1 n}\right) \\
\vdots & \ddots & \vdots \\
T\left(x_{n 1}\right) & \cdots & T\left(x_{n n}\right)
\end{array}\right)
$$

Then T is completely bounded if and only if

$$
\|T\|_{c b}:=\sup _{n \geq 1}\left\|(T)_{n}\right\|<\infty
$$

Example

- Let $\mathcal{H}=\mathbb{C}^{2}$ be a two-dimensional Hilbert space, so we can idenfity $\mathcal{B}(\mathcal{H})$ with \mathbb{M}_{2}.
- Let $T \in \mathcal{B}\left(\mathbb{M}_{2}\right)$ be transposition:

- For example, we identify $\mathbb{M}_{2}\left(\mathbb{M}_{2}\right)$ with \mathbb{M}_{4}, and then we have

Example

- Let $\mathcal{H}=\mathbb{C}^{2}$ be a two-dimensional Hilbert space, so we can idenfity $\mathcal{B}(\mathcal{H})$ with \mathbb{M}_{2}.
- Let $T \in \mathcal{B}\left(\mathbb{M}_{2}\right)$ be transposition:

$$
T\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right)
$$

- For example, we identify $\mathbb{M}_{2}\left(\mathbb{M}_{2}\right)$ with \mathbb{M}_{4}, and then we have

Example

- Let $\mathcal{H}=\mathbb{C}^{2}$ be a two-dimensional Hilbert space, so we can idenfity $\mathcal{B}(\mathcal{H})$ with \mathbb{M}_{2}.
- Let $T \in \mathcal{B}\left(\mathbb{M}_{2}\right)$ be transposition:

$$
T\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right)
$$

- For example, we identify $\mathbb{M}_{2}\left(\mathbb{M}_{2}\right)$ with \mathbb{M}_{4}, and then we have

$$
(T)_{2}\left(\begin{array}{llll}
x_{11} & x_{12} & x_{13} & x_{14} \\
x_{21} & x_{22} & x_{23} & x_{24} \\
x_{31} & x_{32} & x_{33} & x_{34} \\
x_{41} & x_{42} & x_{43} & x_{44}
\end{array}\right)=\left(\begin{array}{llll}
x_{11} & x_{21} & x_{13} & x_{23} \\
x_{12} & x_{22} & x_{14} & x_{24} \\
x_{31} & x_{41} & x_{33} & x_{43} \\
x_{32} & x_{42} & x_{34} & x_{44}
\end{array}\right)
$$

Example continued

- So we see that

$$
(T)_{2}\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)=\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1
\end{array}\right)
$$

- Call the left matrix A and the right on B. Then A is just a permutation operator, so that $\|A\|=1$, while

$$
B\left(2^{-1 / 2}, 0,0,2^{-1 / 2}\right)=\left(2^{1 / 2}, 0,0,2^{1 / 2}\right)
$$

so that $\|B\| \geq 2$.

- This examole can be extended to construct operators which are bounded, but not completely bounded.

Example continued

- So we see that

$$
(T)_{2}\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)=\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1
\end{array}\right)
$$

- Call the left matrix A and the right on B. Then A is just a permutation operator, so that $\|A\|=1$, while

$$
B\left(2^{-1 / 2}, 0,0,2^{-1 / 2}\right)=\left(2^{1 / 2}, 0,0,2^{1 / 2}\right)
$$

so that $\|B\| \geq 2$.

- This example can be extended to construct operators which are bounded, but not completely bounded.

Example continued

- So we see that

$$
(T)_{2}\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)=\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1
\end{array}\right) .
$$

- Call the left matrix A and the right on B. Then A is just a permutation operator, so that $\|A\|=1$, while

$$
B\left(2^{-1 / 2}, 0,0,2^{-1 / 2}\right)=\left(2^{1 / 2}, 0,0,2^{1 / 2}\right)
$$

so that $\|B\| \geq 2$.

- This example can be extended to construct operators which are bounded, but not completely bounded.

The Disc Algebra

- The disc algebra $A(\mathbb{D})$ is the closure of the space of polynomials in $C(\overline{\mathbb{D}})$.
- Alternatively, $A(\mathbb{D})$ is the space of functions $f: \mathbb{D} \rightarrow \mathbb{C}$ which are analytic and have a continuous extension to \mathbb{T}.
- We turn $A(\mathbb{D})$ into an operator space by embedding $A(\mathbb{D})$ into the C^{*}-algebra $C(\bar{D})$.
- Let T be a polynomially bounded operator. Then, by continuity, $f(T)$ is defined for each $f \in A(\mathbb{D})$, and $\|f(T)\| \leq C\|f\|_{\infty}$.

The Disc Algebra

- The disc algebra $A(\mathbb{D})$ is the closure of the space of polynomials in $C(\overline{\mathbb{D}})$.
- Alternatively, $A(\mathbb{D})$ is the space of functions $f: \mathbb{D} \rightarrow \mathbb{C}$ which are analytic and have a continuous extension to \mathbb{T}.
- We turn $A(\mathbb{D})$ into an operator space by embedding $A(\mathbb{D})$ into the C^{*}-algebra $C(\overline{\mathbb{D}})$.
- Let T be a polynomially bounded operator. Then, by continuity, $f(T)$ is defined for each $f \in A(\mathbb{D})$, and $\|f(T)\| \leq C\|f\|_{\infty}$.

The Disc Algebra

- The disc algebra $A(\mathbb{D})$ is the closure of the space of polynomials in $C(\overline{\mathbb{D}})$.
- Alternatively, $A(\mathbb{D})$ is the space of functions $f: \mathbb{D} \rightarrow \mathbb{C}$ which are analytic and have a continuous extension to \mathbb{T}.
- We turn $A(\mathbb{D})$ into an operator space by embedding $A(\mathbb{D})$ into the C^{*}-algebra $C(\overline{\mathbb{D}})$.
- Let T be a polynomially bounded operator. Then, by continuity, $f(T)$ is defined for each $f \in A(\mathbb{D})$, and $\|f(T)\| \leq C\|f\|$

The Disc Algebra

- The disc algebra $A(\mathbb{D})$ is the closure of the space of polynomials in $C(\overline{\mathbb{D}})$.
- Alternatively, $A(\mathbb{D})$ is the space of functions $f: \mathbb{D} \rightarrow \mathbb{C}$ which are analytic and have a continuous extension to \mathbb{T}.
- We turn $A(\mathbb{D})$ into an operator space by embedding $A(\mathbb{D})$ into the C^{*}-algebra $C(\overline{\mathbb{D}})$.
- Let T be a polynomially bounded operator. Then, by continuity, $f(T)$ is defined for each $f \in A(\mathbb{D})$, and $\|f(T)\| \leq C\|f\|_{\infty}$.

Paulsen's characterisation

Paulsen (1984) proved that the following are equivalent for $T \in \mathcal{B}(\mathcal{H})$ for $C \geq 0$


```
    and | S S-1 TS| \leq 1;
* T is polynomially bounded, so there is a bounded map
    uT : A(\mathbb{D})->\mathcal{B}(\mathcal{H});f\mapstof(T), and furthermore, |uT|cb}\leq\mp@code{C;
- For each n\geq1, and each n\timesn matrix with polynomial
entries ( }\mp@subsup{p}{ij}{}\mp@subsup{)}{1\leqi,j\leqn}{}\mathrm{ , we have that
```

$\left\|\left[p_{i j}(T)\right]\right\|_{\mathbb{M}_{n}(\mathcal{B}(\mathcal{H}))} \leq C \sup _{|z|<1}\left\|\left[p_{i j}(z)\right]\right\|_{\mathbb{M}_{n}}$,
where we give \mathbb{M}_{n} the norm coming from \mathbb{M}_{n} acting on
n-dimensional Hilbert space.

Paulsen's characterisation

Paulsen (1984) proved that the following are equivalent for $T \in \mathcal{B}(\mathcal{H})$ for $C \geq 0$

- There exists an invertible $S \in \mathcal{B}(\mathcal{H})$ with $\|S\|\left\|S^{-1}\right\| \leq C$ and $\left\|S^{-1} T S\right\| \leq 1$;
- T is polynomially bounded, so there is a bounded map $u_{T}: A(\mathbb{D}) \rightarrow \mathcal{B}(\mathcal{H}) ; f \mapsto f(T)$, and furthermore, $\left\|u_{T}\right\|_{c b} \leq C$;
- For each $n \geq 1$, and each $n \times n$ matrix with polynomial entries $\left(p_{i j}\right)_{1 \leq i, j \leq n}$, we have that

where we give \mathbb{M}_{n} the norm coming from \mathbb{M}_{n} acting on n-dimensional Hilbert space.

Paulsen's characterisation

Paulsen (1984) proved that the following are equivalent for $T \in \mathcal{B}(\mathcal{H})$ for $C \geq 0$

- There exists an invertible $S \in \mathcal{B}(\mathcal{H})$ with $\|S\|\left\|S^{-1}\right\| \leq C$ and $\left\|S^{-1} T S\right\| \leq 1$;
- T is polynomially bounded, so there is a bounded map $u_{T}: A(\mathbb{D}) \rightarrow \mathcal{B}(\mathcal{H}) ; f \mapsto f(T)$, and furthermore, $\left\|u_{T}\right\|_{c b} \leq C$;
- For each $n \geq 1$, and each $n \times n$ matrix with polynomial entries $\left(p_{i j}\right)_{1 \leq i, j \leq n}$, we have that

where we give \mathbb{M}_{n} the norm coming from \mathbb{M}_{n} acting on n-dimensional Hilbert space.

Paulsen's characterisation

Paulsen (1984) proved that the following are equivalent for $T \in \mathcal{B}(\mathcal{H})$ for $C \geq 0$

- There exists an invertible $S \in \mathcal{B}(\mathcal{H})$ with $\|S\|\left\|S^{-1}\right\| \leq C$ and $\left\|S^{-1} T S\right\| \leq 1$;
- T is polynomially bounded, so there is a bounded map $u_{T}: A(\mathbb{D}) \rightarrow \mathcal{B}(\mathcal{H}) ; f \mapsto f(T)$, and furthermore, $\left\|u_{T}\right\|_{c b} \leq C$;
- For each $n \geq 1$, and each $n \times n$ matrix with polynomial entries $\left(p_{i j}\right)_{1 \leq i, j \leq n}$, we have that

$$
\left\|\left[p_{i j}(T)\right]\right\|_{\mathbb{M}_{n}(\mathcal{B}(\mathcal{H}))} \leq C \sup _{|z|<1}\left\|\left[p_{i j}(z)\right]\right\|_{\mathbb{M}_{n}}
$$

where we give \mathbb{M}_{n} the norm coming from \mathbb{M}_{n} acting on n-dimensional Hilbert space.

