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Talk Plan

» Contractions on a Hilbert space.
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» Similarity problem and conjectures.
» Operator spaces.

» A positive result and conclusion.
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Throughout H will be a Hilbert space. An operator T on H is a
contraction if
TN < [Ix]| (x € H).

The Sz.-Nagy dilation theorem states that if T is a contraction,
then we can find a bigger Hilbert space Hy with H C Hg, and
an isometry U on Hj such that

T = Py Uy,

where Py, : Hy — H is the orthogonal projection, and Ul is
the restriction of U to H.
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Dilation Theorem

In fact, we can choose Hy and U such that
T" = Py U )y, Tin{U"(H):necZ}="H,.

Let H4 be such that Hy = H @ H;4, so with respect to this direct

sum,
T O
o= (T 2).

For many contractions T, we can even choose U to be a
suitable generalisation of the bilateral shift.
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Let T={z € C: |z| = 1} be the unit circle, and let LP(T) be the
usual Lebesgue space.

For1 < p < oo, let HP C LP(T) be the Hardy Space of index p,
defined as follows. We let f € HP if and only if the negative
Fourier coefficients of f are zero, that is,

27 . .
/0 f(e')e™M g =0 (n<0).

Equivalently, HP consists of those functions f analytic on the
unit disc, and such that

27
sup (/O }f(reIG)’p §)1/p<oo

0<r<i
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A simple-minded definition

Let f be analytic on D, with power-series expansion
f(z2)=> anz" (zeD).
n=0

Suppose that Y~ |an| < oc.
For any contraction T on H, we can define

f(T)=Y anT"
n=0

as the sum is absolutely convergent.
Of course, not all analytic functions have such an absolutely
convergent power series.
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The H*° functional calculus

In fact, working somewhat harder, we can prove that for each
f € H*, we can define a bounded operator f(T) on H.

» The map H>* — B(H); f — f(T) is a norm-decreasing
algebra homomorphism;
» For f € H>, define f € H> by

f2)=Hz) (zeD).
Then f(T)* = F(T*).
» If (f,) is a bounded sequence in H> which converges
pointwise to f € H*, then f,(T) — f(T) in the strong
topology.
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Similarity

» We get the impression that contractions are rather nicely
behaved objects.

» We define T € B(H) to be similar to a contraction if there
exists an invertible map S € B(H) such that S™'TS'is a
contraction.

» All of the previous explained properties can easily be seen
to hold for maps similar to a contraction.

» For example, we define a functional calculus by
f— SHS1TS)S .

» But how can we recognise an operator which is similar to a
contraction?
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Sz.-Nagy Conjecture

» If ||S™1TS|| < 1, then clearly we have that

sup | T"| = sup [S(S'TS)"S™"|| < |ISIIII Sl
n>0 n>0

so that T is power-bounded.

» Sz.-Nagy proved (1959) that if T is compact and
power-bounded, then T is similar to a contraction.

» So he conjectured that this was true for general
power-bounded operators.
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Counter-example

Foguel (1964) found the following counter-example.
» Let /2 be the usual Hilbert space indexed by N, with
standard orthonormal basis (en)nen.
» Let S be the right shift, S(e,) = en1.
» Let Q be the projection onto the lacunary sequence {es«}.
» Foguel's example is R(Q) acting on (2 @ 2,

R(G) = (SO g) .
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von Neumann inequality

>

Let p be a polynomial, so p € H*, and hence by the
H*-calculus, for a contraction R, |p(R)| < ||pll~- Hence,
if S~1 TS is a contraction,

Ip(T)ll = 11Sp(S~'TS)S™ || < [ISII1S~H]IPlloc-

Actually, there is a more elementary proof of this, due to
von Neumann.

So we have a new conjecture: T is similar to a contraction
if and only if, for some constant K, we have

Io(T)|| < K||plle (P a polynomial).

That is, T is polynomially bounded.

Lebow (1968) showed that Foguel’s example is not a
counter-example to this new conjecture.
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Pisier’s Counter-example

» Similar counter-examples to Foguel’s have been
considered, with much more complicated operators Q,

R(G) = <“°6 g) |

However, work of Bourgain, Aleksandrov and Peller has
shown that this approach is fairly hopeless.

» Pisier instead uses amplifications (iackeears). He then found a
counter-example of the form

g 1
R(TF) = ( 0 S(Q)) :

Here I is an “operator-valued Hankel operator”.
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Operator spaces

» An operator space is just a closed subspace of B(H).

» Obviously, thanks to the GNS construction, we can replace
B(H) be any C*-algebra A.

» So every Banach space is an operator space!

» The difference, however, is the maps which we consider.
We replace bounded maps by completely bounded maps.
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Completely bounded maps
Let E C B(H). Write M,(E) for the set of n x n matricies with
entries in E.
We have the identification

Mp(B(H)) = B(H & - - & H).

Which induces a norm on Mp(B(H)).
As M,(E) € Mp(B(H)), we get a norm on M,(E).

For T € B(E), we let (T), € B(Mj(E)) be defined by

Xi1 -+ Xin T(x11) -+ T(x1n)
(M= = .+ | = : : :
Xnmt -+ Xnn T(Xm1) -+ T(Xnn)

Then T is completely bounded if and only if

[ Tllob :=sup [|(T)nll < oco.
n>1
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Example

» Let H = C? be a two-dimensional Hilbert space, so we can
idenfity B(H) with M.

» Let T € B(MSy) be transposition:
ab a c
r(2a)=(63)

» For example, we identify M(My) with My, and then we

have
X111 X12 X13 X4 X191 Xo1 X13 X3
(T)a Xo1 X2 Xo3 Xoa | _ | X12 Xo2  X14 X24
X31 X3z2 X33 X34 X31 X41 X33 X43

X41  X42 X43  X44 X32 X42 X34 Xag
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» So we see that

1 000 1 0 0 1
0010 0000
(T)201oo_oooo
000 1 1 0 0 1

» Call the left matrix A and the right on B. Then Ais just a
permutation operator, so that ||A|| = 1, while

B(2-/2,0,0,27"/2) = (2'/2,0,0,2'/2),

so that || B|| > 2.



Example continued

» So we see that

1 000 1 0 0 1
0010 0000
(T)201oo_oooo
000 1 1 0 0 1

» Call the left matrix A and the right on B. Then Ais just a
permutation operator, so that ||A|| = 1, while

B(2-/2,0,0,27"/2) = (2'/2,0,0,2'/2),

so that || B|| > 2.

» This example can be extended to construct operators
which are bounded, but not completely bounded.
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The Disc Algebra

» The disc algebra A(D) is the closure of the space of
polynomials in C(D).

» Alternatively, A(D) is the space of functions f : D — C
which are analytic and have a continuous extension to T.

» We turn A(D) into an operator space by embedding A(D)
into the C*-algebra C(D).
» Let T be a polynomially bounded operator. Then, by

continuity, f(T) is defined for each f € A(D), and
(T < C|f[|oo-
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Paulsen’s characterisation

Paulsen (1984) proved that the following are equivalent for
TeB(H)forC>0

» There exists an invertible S € B(H) with ||S]|||S7'|| < C
and |S7'TS| < 1;

» T is polynomially bounded, so there is a bounded map
ur : A(D) — B(H); f — f(T), and furthermore, |url||c» < C;

» For each n > 1, and each n x n matrix with polynomial
entries (pj)1<ij<n, We have that

I[ps(T)]]

(i) < © SUP 1 [Pi(2)] ],

where we give M, the norm coming from M, acting on
n-dimensional Hilbert space.



