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Talk Plan

I Contractions on a Hilbert space.
I Models and functional calculus.
I Similarity problem and conjectures.
I Operator spaces.
I A positive result and conclusion.



Contractions on a Hilbert space

Throughout H will be a Hilbert space. An operator T on H is a
contraction if

‖T (x)‖ ≤ ‖x‖ (x ∈ H).

The Sz.-Nagy dilation theorem states that if T is a contraction,
then we can find a bigger Hilbert space H0 with H ⊆ H0, and
an isometry U on H0 such that

T = PHU|H,

where PH : H0 → H is the orthogonal projection, and U|H is
the restriction of U to H.
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Dilation Theorem

In fact, we can choose H0 and U such that

T n = PHUn|H, lin{Un(H) : n ∈ Z} = H0.

Let H1 be such that H0 = H⊕H1, so with respect to this direct
sum,

U =

(
T 0
? ?

)
.

For many contractions T , we can even choose U to be a
suitable generalisation of the bilateral shift.
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Functional Calculus: Hardy Spaces

Let T = {z ∈ C : |z| = 1} be the unit circle, and let Lp(T) be the
usual Lebesgue space.
For 1 ≤ p ≤ ∞, let Hp ⊆ Lp(T) be the Hardy Space of index p,
defined as follows. We let f ∈ Hp if and only if the negative
Fourier coefficients of f are zero, that is,∫ 2π

0
f (eiθ)einθ dθ

2π
= 0 (n < 0).

Equivalently, Hp consists of those functions f analytic on the
unit disc, and such that

sup
0<r<1

( ∫ 2π

0

∣∣f (reiθ)
∣∣p dθ

2π

)1/p
< ∞.
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A simple-minded definition

Let f be analytic on D, with power-series expansion

f (z) =
∞∑

n=0

anzn (z ∈ D).

Suppose that
∑∞

n=0 |an| < ∞.
For any contraction T on H, we can define

f (T ) =
∞∑

n=0

anT n,

as the sum is absolutely convergent.
Of course, not all analytic functions have such an absolutely
convergent power series.
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The H∞ functional calculus

In fact, working somewhat harder, we can prove that for each
f ∈ H∞, we can define a bounded operator f (T ) on H.

I The map H∞ → B(H); f 7→ f (T ) is a norm-decreasing
algebra homomorphism;

I For f ∈ H∞, define f̃ ∈ H∞ by

f̃ (z) = f (z) (z ∈ D).

Then f (T )∗ = f̃ (T ∗).
I If (fn) is a bounded sequence in H∞ which converges

pointwise to f ∈ H∞, then fn(T ) → f (T ) in the strong
topology.
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Similarity

I We get the impression that contractions are rather nicely
behaved objects.

I We define T ∈ B(H) to be similar to a contraction if there
exists an invertible map S ∈ B(H) such that S−1TS is a
contraction.

I All of the previous explained properties can easily be seen
to hold for maps similar to a contraction.

I For example, we define a functional calculus by

f 7→ Sf (S−1TS)S−1.

I But how can we recognise an operator which is similar to a
contraction?
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Sz.-Nagy Conjecture

I If ‖S−1TS‖ ≤ 1, then clearly we have that

sup
n≥0

‖T n‖ = sup
n≥0

‖S(S−1TS)nS−1‖ ≤ ‖S‖‖S−1‖,

so that T is power-bounded.
I Sz.-Nagy proved (1959) that if T is compact and

power-bounded, then T is similar to a contraction.
I So he conjectured that this was true for general

power-bounded operators.
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Counter-example

Foguel (1964) found the following counter-example.

I Let `2 be the usual Hilbert space indexed by N, with
standard orthonormal basis (en)n∈N.

I Let S be the right shift, S(en) = en+1.
I Let Q be the projection onto the lacunary sequence {e3k}.
I Foguel’s example is R(Q) acting on `2 ⊕ `2,

R(G) =

(
S∗ Q
0 S

)
.
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von Neumann inequality

I Let p be a polynomial, so p ∈ H∞, and hence by the
H∞-calculus, for a contraction R, ‖p(R)‖ ≤ ‖p‖∞. Hence,
if S−1TS is a contraction,

‖p(T )‖ = ‖Sp(S−1TS)S−1‖ ≤ ‖S‖‖S−1‖‖p‖∞.

I Actually, there is a more elementary proof of this, due to
von Neumann.

I So we have a new conjecture: T is similar to a contraction
if and only if, for some constant K , we have

‖p(T )‖ ≤ K‖p‖∞ (p a polynomial).

That is, T is polynomially bounded.
I Lebow (1968) showed that Foguel’s example is not a

counter-example to this new conjecture.



von Neumann inequality

I Let p be a polynomial, so p ∈ H∞, and hence by the
H∞-calculus, for a contraction R, ‖p(R)‖ ≤ ‖p‖∞. Hence,
if S−1TS is a contraction,

‖p(T )‖ = ‖Sp(S−1TS)S−1‖ ≤ ‖S‖‖S−1‖‖p‖∞.

I Actually, there is a more elementary proof of this, due to
von Neumann.

I So we have a new conjecture: T is similar to a contraction
if and only if, for some constant K , we have

‖p(T )‖ ≤ K‖p‖∞ (p a polynomial).

That is, T is polynomially bounded.
I Lebow (1968) showed that Foguel’s example is not a

counter-example to this new conjecture.



von Neumann inequality

I Let p be a polynomial, so p ∈ H∞, and hence by the
H∞-calculus, for a contraction R, ‖p(R)‖ ≤ ‖p‖∞. Hence,
if S−1TS is a contraction,

‖p(T )‖ = ‖Sp(S−1TS)S−1‖ ≤ ‖S‖‖S−1‖‖p‖∞.

I Actually, there is a more elementary proof of this, due to
von Neumann.

I So we have a new conjecture: T is similar to a contraction
if and only if, for some constant K , we have

‖p(T )‖ ≤ K‖p‖∞ (p a polynomial).

That is, T is polynomially bounded.
I Lebow (1968) showed that Foguel’s example is not a

counter-example to this new conjecture.



von Neumann inequality

I Let p be a polynomial, so p ∈ H∞, and hence by the
H∞-calculus, for a contraction R, ‖p(R)‖ ≤ ‖p‖∞. Hence,
if S−1TS is a contraction,

‖p(T )‖ = ‖Sp(S−1TS)S−1‖ ≤ ‖S‖‖S−1‖‖p‖∞.

I Actually, there is a more elementary proof of this, due to
von Neumann.

I So we have a new conjecture: T is similar to a contraction
if and only if, for some constant K , we have

‖p(T )‖ ≤ K‖p‖∞ (p a polynomial).

That is, T is polynomially bounded.
I Lebow (1968) showed that Foguel’s example is not a

counter-example to this new conjecture.



Pisier’s Counter-example

I Similar counter-examples to Foguel’s have been
considered, with much more complicated operators Q,

R(G) =

(
S∗ Q
0 S

)
.

However, work of Bourgain, Aleksandrov and Peller has
shown that this approach is fairly hopeless.

I Pisier instead uses amplifications (Blackboard). He then found a
counter-example of the form

R(ΓF ) =

(
S∗(∞) ΓF

0 S(∞)

)
.

Here ΓF is an “operator-valued Hankel operator”.
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Operator spaces

I An operator space is just a closed subspace of B(H).
I Obviously, thanks to the GNS construction, we can replace
B(H) be any C∗-algebra A.

I So every Banach space is an operator space!
I The difference, however, is the maps which we consider.

We replace bounded maps by completely bounded maps.
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Completely bounded maps
Let E ⊆ B(H). Write Mn(E) for the set of n × n matricies with
entries in E .
We have the identification

Mn(B(H)) = B(H⊕ · · · ⊕ H).

Which induces a norm on Mn(B(H)).
As Mn(E) ⊆ Mn(B(H)), we get a norm on Mn(E).
For T ∈ B(E), we let (T )n ∈ B(Mn(E)) be defined by

(T )n :

x11 · · · x1n
...

. . .
...

xn1 · · · xnn

 7→

T (x11) · · · T (x1n)
...

. . .
...

T (xn1) · · · T (xnn)


Then T is completely bounded if and only if

‖T‖cb := sup
n≥1

‖(T )n‖ < ∞.
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Example

I Let H = C2 be a two-dimensional Hilbert space, so we can
idenfity B(H) with M2.

I Let T ∈ B(M2) be transposition:

T
(

a b
c d

)
=

(
a c
b d

)
.

I For example, we identify M2(M2) with M4, and then we
have

(T )2


x11 x12 x13 x14
x21 x22 x23 x24
x31 x32 x33 x34
x41 x42 x43 x44

 =


x11 x21 x13 x23
x12 x22 x14 x24
x31 x41 x33 x43
x32 x42 x34 x44
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Example continued

I So we see that

(T )2


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 =


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 .

I Call the left matrix A and the right on B. Then A is just a
permutation operator, so that ‖A‖ = 1, while

B(2−1/2, 0, 0, 2−1/2) = (21/2, 0, 0, 21/2),

so that ‖B‖ ≥ 2.
I This example can be extended to construct operators

which are bounded, but not completely bounded.
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The Disc Algebra

I The disc algebra A(D) is the closure of the space of
polynomials in C(D).

I Alternatively, A(D) is the space of functions f : D → C
which are analytic and have a continuous extension to T.

I We turn A(D) into an operator space by embedding A(D)
into the C∗-algebra C(D).

I Let T be a polynomially bounded operator. Then, by
continuity, f (T ) is defined for each f ∈ A(D), and
‖f (T )‖ ≤ C‖f‖∞.
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Paulsen’s characterisation

Paulsen (1984) proved that the following are equivalent for
T ∈ B(H) for C ≥ 0

I There exists an invertible S ∈ B(H) with ‖S‖‖S−1‖ ≤ C
and ‖S−1TS‖ ≤ 1;

I T is polynomially bounded, so there is a bounded map
uT : A(D) → B(H); f 7→ f (T ), and furthermore, ‖uT‖cb ≤ C;

I For each n ≥ 1, and each n × n matrix with polynomial
entries (pij)1≤i,j≤n, we have that∥∥[

pij(T )
]∥∥

Mn(B(H))
≤ C sup

|z|<1

∥∥[
pij(z)

]∥∥
Mn

,

where we give Mn the norm coming from Mn acting on
n-dimensional Hilbert space.
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