Analysis in "non-commutative" mathematics

Matthew Daws

22 March 2012

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

C*-algebras as non-commutative spaces

Compact quantum groups

Moving on

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

A *C**-algebra is a complex algebra with:

- An *involution*, $(ab)^* = b^*a^*$ and $(ta)^* = \overline{t}a^*$.
- A complete norm with:

•
$$||ab|| \le ||a|| ||b||;$$

•
$$||a^*a|| = ||a||^2$$
.

In this talk, I'll mostly stick to unital algebras.

Let X be a compact Hausdorff space, and consider C(X), the space of complex-valued continuous functions on X, made into an algebra with pointwise operations, given an involution by taking pointwise complex conjugation, and given the supremum norm:

$$\|f\| = \sup_{x \in X} |f(x)|.$$

(日) (日) (日) (日) (日) (日) (日)

A *C**-algebra is a complex algebra with:

- An *involution*, $(ab)^* = b^*a^*$ and $(ta)^* = \overline{t}a^*$.
- A complete norm with:
 - $||ab|| \le ||a|| ||b||;$
 - $||a^*a|| = ||a||^2$.

In this talk, I'll mostly stick to unital algebras.

Let X be a compact Hausdorff space, and consider C(X), the space of complex-valued continuous functions on X, made into an algebra with pointwise operations, given an involution by taking pointwise complex conjugation, and given the supremum norm:

$$\|f\| = \sup_{x \in X} |f(x)|.$$

(日) (日) (日) (日) (日) (日) (日)

A *C**-algebra is a complex algebra with:

- An *involution*, $(ab)^* = b^*a^*$ and $(ta)^* = \overline{t}a^*$.
- A complete norm with:

•
$$||ab|| \leq ||a|| ||b||;$$

•
$$||a^*a|| = ||a||^2$$
.

In this talk, I'll mostly stick to unital algebras.

Let X be a compact Hausdorff space, and consider C(X), the space of complex-valued continuous functions on X, made into an algebra with pointwise operations, given an involution by taking pointwise complex conjugation, and given the supremum norm:

$$\|f\| = \sup_{x \in X} |f(x)|.$$

(日) (日) (日) (日) (日) (日) (日)

A *C**-algebra is a complex algebra with:

- An *involution*, $(ab)^* = b^*a^*$ and $(ta)^* = \overline{t}a^*$.
- A complete norm with:

•
$$||ab|| \leq ||a|| ||b||;$$

•
$$||a^*a|| = ||a||^2$$
.

In this talk, I'll mostly stick to unital algebras.

Let X be a compact Hausdorff space, and consider C(X), the space of complex-valued continuous functions on X, made into an algebra with pointwise operations, given an involution by taking pointwise complex conjugation, and given the supremum norm:

$$\|f\| = \sup_{x \in X} |f(x)|.$$

(日) (日) (日) (日) (日) (日) (日)

In fact, every commutative C*-algebra is of this form!

Recall that a *character* on an algebra A is a (unital) homomorphism $\varphi : A \to \mathbb{C}$. If A is a Banach algebra, then characters are always contractive maps.

Theorem (Gelfand)

Let A be a unital commutative C^* -algebra, and let Φ_A be the collection of characters on A, given the relative weak*-topology. Then Φ_A is a compact Hausdorff space, and the map

$$\mathcal{G}: \mathcal{A} \to \mathcal{C}(\Phi_{\mathcal{A}}); \quad \mathcal{G}(\mathcal{a})(\varphi) = \varphi(\mathcal{a}),$$

is an isometric isomorphism.

In short, commutative (unital) C*-algebras are all of the form C(X).

(日) (日) (日) (日) (日) (日) (日)

In fact, every commutative C*-algebra is of this form! Recall that a *character* on an algebra *A* is a (unital) homomorphism $\varphi : A \to \mathbb{C}$. If *A* is a Banach algebra, then characters are always contractive maps.

Theorem (Gelfand)

Let A be a unital commutative C^* -algebra, and let Φ_A be the collection of characters on A, given the relative weak*-topology. Then Φ_A is a compact Hausdorff space, and the map

$$\mathcal{G}: \mathcal{A} \to \mathcal{C}(\Phi_{\mathcal{A}}); \quad \mathcal{G}(\mathcal{a})(\varphi) = \varphi(\mathcal{a}),$$

is an isometric isomorphism.

In short, commutative (unital) C*-algebras are all of the form C(X).

In fact, every commutative C*-algebra is of this form! Recall that a *character* on an algebra *A* is a (unital) homomorphism $\varphi : A \to \mathbb{C}$. If *A* is a Banach algebra, then characters are always contractive maps.

Theorem (Gelfand)

Let A be a unital commutative C^* -algebra, and let Φ_A be the collection of characters on A, given the relative weak*-topology. Then Φ_A is a compact Hausdorff space, and the map

$$\mathcal{G}: \mathcal{A} \to \mathcal{C}(\Phi_{\mathcal{A}}); \quad \mathcal{G}(\mathbf{a})(\varphi) = \varphi(\mathbf{a}),$$

is an isometric isomorphism.

In short, commutative (unital) C*-algebras are all of the form C(X).

(ロ) (同) (三) (三) (三) (○) (○)

In fact, every commutative C*-algebra is of this form! Recall that a *character* on an algebra *A* is a (unital) homomorphism $\varphi : A \to \mathbb{C}$. If *A* is a Banach algebra, then characters are always contractive maps.

Theorem (Gelfand)

Let A be a unital commutative C^* -algebra, and let Φ_A be the collection of characters on A, given the relative weak*-topology. Then Φ_A is a compact Hausdorff space, and the map

$$\mathcal{G}: \mathcal{A} \to \mathcal{C}(\Phi_{\mathcal{A}}); \quad \mathcal{G}(\mathbf{a})(\varphi) = \varphi(\mathbf{a}),$$

is an isometric isomorphism.

In short, commutative (unital) C*-algebras are all of the form C(X).

- The natural maps between (unital) C*-algebras are bounded algebra homomorphisms, which preserve the involution (so are *-homomorphisms) and which are unital.
- In fact, C*-algebras are such rigid objects that any *-homomorphism is automatically bounded; in fact, automatically contractive (and if injective, is automatically an isometry).
- Given *T* : *A* → *B* a *-homomorphism, the "adjoint" or "dual" operator *T** sends characters to characters, and so induces a continuous map Φ_B → Φ_A.
- Conversely, given a continuous map $\phi : X \to Y$, the map $T : C(Y) \to C(X)$; $f \mapsto f \circ \phi$ is a unital *-homomorphism.
- ► These processes are mutual inverses.

- The natural maps between (unital) C*-algebras are bounded algebra homomorphisms, which preserve the involution (so are *-homomorphisms) and which are unital.
- In fact, C*-algebras are such rigid objects that any *-homomorphism is automatically bounded; in fact, automatically contractive (and if injective, is automatically an isometry).
- Given *T* : *A* → *B* a *-homomorphism, the "adjoint" or "dual" operator *T** sends characters to characters, and so induces a continuous map Φ_B → Φ_A.
- Conversely, given a continuous map $\phi : X \to Y$, the map $T : C(Y) \to C(X)$; $f \mapsto f \circ \phi$ is a unital *-homomorphism.
- ► These processes are mutual inverses.

- The natural maps between (unital) C*-algebras are bounded algebra homomorphisms, which preserve the involution (so are *-homomorphisms) and which are unital.
- In fact, C*-algebras are such rigid objects that any *-homomorphism is automatically bounded; in fact, automatically contractive (and if injective, is automatically an isometry).
- Given *T* : *A* → *B* a *-homomorphism, the "adjoint" or "dual" operator *T** sends characters to characters, and so induces a continuous map Φ_B → Φ_A.
- Conversely, given a continuous map $\phi : X \to Y$, the map $T : C(Y) \to C(X)$; $f \mapsto f \circ \phi$ is a unital *-homomorphism.
- These processes are mutual inverses.

- The natural maps between (unital) C*-algebras are bounded algebra homomorphisms, which preserve the involution (so are *-homomorphisms) and which are unital.
- In fact, C*-algebras are such rigid objects that any *-homomorphism is automatically bounded; in fact, automatically contractive (and if injective, is automatically an isometry).
- Given *T* : *A* → *B* a *-homomorphism, the "adjoint" or "dual" operator *T** sends characters to characters, and so induces a continuous map Φ_B → Φ_A.
- Conversely, given a continuous map $\phi : X \to Y$, the map $T : C(Y) \to C(X)$; $f \mapsto f \circ \phi$ is a unital *-homomorphism.

These processes are mutual inverses.

- The natural maps between (unital) C*-algebras are bounded algebra homomorphisms, which preserve the involution (so are *-homomorphisms) and which are unital.
- In fact, C*-algebras are such rigid objects that any *-homomorphism is automatically bounded; in fact, automatically contractive (and if injective, is automatically an isometry).
- Given *T* : *A* → *B* a *-homomorphism, the "adjoint" or "dual" operator *T** sends characters to characters, and so induces a continuous map Φ_B → Φ_A.
- Conversely, given a continuous map $\phi : X \to Y$, the map $T : C(Y) \to C(X)$; $f \mapsto f \circ \phi$ is a unital *-homomorphism.
- These processes are mutual inverses.

A little "dictionary"

Algebras	Spaces
A, C(X)	Φ _A , X
*-homomorphisms \leftrightarrow continuous map	
injection	surjection
surjection	injection
automorphism	homeomorphism
direct sum	disjoint union
tensor product	Cartesian product
closed ideal	closed subspace
linear functional	finite Borel measure
state	probability measure
separable	metrisable

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

- This is a *formal analogy*: we wish to use intuition and ideas from, and the language of, spaces to study non-commutative algebras.
- Alain Connes popularised the notion of "non-commtative geometry". But there you are interested in genuine "geometry"— so some notion of a differentiable manifold structure; end up looking at cohomology theories.
- I'm more interested in generalities; more interested in topological spaces than manifolds; more interested in all compact groups rather than Lie groups etc. One might call this "non-commutative topology".

- This is a formal analogy: we wish to use intuition and ideas from, and the language of, spaces to study non-commutative algebras.
- Alain Connes popularised the notion of "non-commtative geometry". But there you are interested in genuine "geometry"— so some notion of a differentiable manifold structure; end up looking at cohomology theories.
- I'm more interested in generalities; more interested in topological spaces than manifolds; more interested in all compact groups rather than Lie groups etc. One might call this "non-commutative topology".

- This is a *formal analogy*: we wish to use intuition and ideas from, and the language of, spaces to study non-commutative algebras.
- Alain Connes popularised the notion of "non-commtative geometry". But there you are interested in genuine "geometry"— so some notion of a differentiable manifold structure; end up looking at cohomology theories.
- I'm more interested in generalities; more interested in topological spaces than manifolds; more interested in all compact groups rather than Lie groups etc. One might call this "non-commutative topology".

- This is a *formal analogy*: we wish to use intuition and ideas from, and the language of, spaces to study non-commutative algebras.
- Alain Connes popularised the notion of "non-commtative geometry". But there you are interested in genuine "geometry"— so some notion of a differentiable manifold structure; end up looking at cohomology theories.
- I'm more interested in generalities; more interested in topological spaces than manifolds; more interested in all compact groups rather than Lie groups etc. One might call this "non-commutative topology".

Recap: algebra over \mathbb{C} , with involution $(ab)^* = b^*a^*$, and C*-condition: $||a^*a|| = ||a||^2$.

Let *H* be a Hilbert space, and let $\mathcal{B}(H)$ be the algebra of all bounded linear maps on *H*. Then taking the "adjoint" of an operator defines an involution on $\mathcal{B}(H)$; and this involution satisfies the C*-condition.

$$(T(\xi)|\eta) = (\xi|T^*(\eta)).$$

(日) (日) (日) (日) (日) (日) (日)

In fact, every C*-algebra arises as a norm closed, involution closed, subalgebra of $\mathcal{B}(H)$ for a suitable H. In this talk, it will be better to think of abstract algebras.

Recap: algebra over \mathbb{C} , with involution $(ab)^* = b^*a^*$, and C*-condition: $||a^*a|| = ||a||^2$. Let *H* be a Hilbert space, and let $\mathcal{B}(H)$ be the algebra of all

be the algebra of all bounded linear maps on H. Then taking the "adjoint" of an operator defines an involution on $\mathcal{B}(H)$; and this involution satisfies the C*-condition.

 $(T(\xi)|\eta) = (\xi|T^*(\eta)).$

In fact, every C*-algebra arises as a norm closed, involution closed, subalgebra of $\mathcal{B}(H)$ for a suitable H. In this talk, it will be better to think of abstract algebras.

Recap: algebra over \mathbb{C} , with involution $(ab)^* = b^*a^*$, and C*-condition: $||a^*a|| = ||a||^2$. Let *H* be a Hilbert space, and let $\mathcal{B}(H)$ be the algebra of all

bounded linear maps on *H*. Then taking the "adjoint" of an operator defines an involution on $\mathcal{B}(H)$; and this involution satisfies the C*-condition.

$$(T(\xi)|\eta) = (\xi|T^*(\eta)).$$

In fact, every C*-algebra arises as a norm closed, involution closed, subalgebra of $\mathcal{B}(H)$ for a suitable H.

・ロ・・母・・ヨ・・ヨ・ ヨー うへぐ

Recap: algebra over \mathbb{C} , with involution $(ab)^* = b^*a^*$, and \mathbb{C}^* -condition: $||a^*a|| = ||a||^2$. Let *H* be a Hilbert space, and let $\mathcal{B}(H)$ be the algebra of all bounded linear maps on *H*. Then taking the "adjoint" of an operator defines an involution on $\mathcal{B}(H)$; and this involution

satisfies the C*-condition.

$$(T(\xi)|\eta) = (\xi|T^*(\eta)).$$

In fact, every C*-algebra arises as a norm closed, involution closed, subalgebra of $\mathcal{B}(H)$ for a suitable H. In this talk, it will be better to think of abstract algebras.

Compact groups

A compact group is a group G which is also a compact Hausdorff space, such that the group operations

$$G imes G o G$$
; $(s, t) \mapsto st$; $G o G$; $s \mapsto s^{-1}$

are continuous.

- All finite groups.
- The circle group T = {e^{iθ} : θ ∈ ℝ} under multiplication; T ≃ ℝ/ℤ.

(日) (日) (日) (日) (日) (日) (日)

- Orthogonal and unitary groups.
- Disconnected groups, such as $\prod_I \mathbb{Z}/2\mathbb{Z}$.

Let *G* be a compact group. So we can consider the algebra A = C(G). How do we capture the group operations using *A*?

- Identify $C(G \times G)$ with $A \otimes A$.
- We always use the minimal, or spacial, tensor product.
- So the product map $G \times G \rightarrow G$ induces a *-homomorphism $\Delta : A \rightarrow A \otimes A$.
- That the product map is associative corresponds to Δ being *coassociative*: (Δ ⊗ ι)Δ = (ι ⊗ Δ)Δ.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Let *G* be a compact group. So we can consider the algebra A = C(G). How do we capture the group operations using *A*?

- Identify $C(G \times G)$ with $A \otimes A$.
- We always use the minimal, or spacial, tensor product.
- So the product map $G \times G \rightarrow G$ induces a *-homomorphism $\Delta : A \rightarrow A \otimes A$.
- That the product map is associative corresponds to Δ being *coassociative*: (Δ ⊗ ι)Δ = (ι ⊗ Δ)Δ.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Let *G* be a compact group. So we can consider the algebra A = C(G). How do we capture the group operations using *A*?

- Identify $C(G \times G)$ with $A \otimes A$.
- ► We always use the minimal, or spacial, tensor product.
- So the product map $G \times G \rightarrow G$ induces a *-homomorphism $\Delta : A \rightarrow A \otimes A$.
- That the product map is associative corresponds to Δ being *coassociative*: (Δ ⊗ ι)Δ = (ι ⊗ Δ)Δ.

(日) (日) (日) (日) (日) (日) (日)

Let *G* be a compact group. So we can consider the algebra A = C(G). How do we capture the group operations using *A*?

- Identify $C(G \times G)$ with $A \otimes A$.
- We always use the minimal, or spacial, tensor product.
- So the product map G × G → G induces a *-homomorphism Δ : A → A ⊗ A.
- That the product map is associative corresponds to Δ being *coassociative*: (Δ ⊗ ι)Δ = (ι ⊗ Δ)Δ.

(日) (日) (日) (日) (日) (日) (日)

Let *G* be a compact group. So we can consider the algebra A = C(G). How do we capture the group operations using *A*?

- Identify $C(G \times G)$ with $A \otimes A$.
- We always use the minimal, or spacial, tensor product.
- So the product map $G \times G \rightarrow G$ induces a *-homomorphism $\Delta : A \rightarrow A \otimes A$.
- That the product map is associative corresponds to Δ being *coassociative*: (Δ ⊗ ι)Δ = (ι ⊗ Δ)Δ.

(日) (日) (日) (日) (日) (日) (日)

Let *G* be a compact group. So we can consider the algebra A = C(G). How do we capture the group operations using *A*?

- Identify $C(G \times G)$ with $A \otimes A$.
- We always use the minimal, or spacial, tensor product.
- So the product map $G \times G \rightarrow G$ induces a *-homomorphism $\Delta : A \rightarrow A \otimes A$.
- That the product map is associative corresponds to Δ being *coassociative*: (Δ ⊗ ι)Δ = (ι ⊗ Δ)Δ.

(日) (日) (日) (日) (日) (日) (日)

- Suppose we just have a commutative C*-algebra A = C(S), and a coassociative map $\Delta : A \rightarrow A \otimes A$.
- This means that S is a compact semigroup.
- The Stone-Weierstrauss theorem shows that the subspaces

 $lin\{(a \otimes 1)\Delta(b) : a, b \in A\}, \quad lin\{(1 \otimes a)\Delta(b) : a, b \in A\}$

are dense in $A \otimes A = C(S \times S)$, if and only if we have the "cancellation conditions"

$$st = st' \implies t = t', \quad st = s't \implies s' = s.$$

- Suppose we just have a commutative C*-algebra A = C(S), and a coassociative map $\Delta : A \rightarrow A \otimes A$.
- ► This means that *S* is a compact semigroup.
- The Stone-Weierstrauss theorem shows that the subspaces

 $lin\{(a \otimes 1)\Delta(b) : a, b \in A\}, \quad lin\{(1 \otimes a)\Delta(b) : a, b \in A\}$

are dense in $A \otimes A = C(S \times S)$, if and only if we have the "cancellation conditions"

$$st = st' \implies t = t', \quad st = s't \implies s' = s.$$

- Suppose we just have a commutative C*-algebra A = C(S), and a coassociative map $\Delta : A \rightarrow A \otimes A$.
- ▶ This means that *S* is a compact semigroup.
- The Stone-Weierstrauss theorem shows that the subspaces

 $lin\{(a \otimes 1)\Delta(b) : a, b \in A\}, \quad lin\{(1 \otimes a)\Delta(b) : a, b \in A\}$

are dense in $A \otimes A = C(S \times S)$, if and only if we have the "cancellation conditions"

$$st = st' \implies t = t', \quad st = s't \implies s' = s.$$

- Suppose we just have a commutative C*-algebra A = C(S), and a coassociative map $\Delta : A \rightarrow A \otimes A$.
- ▶ This means that *S* is a compact semigroup.
- The Stone-Weierstrauss theorem shows that the subspaces

 $lin\{(a \otimes 1)\Delta(b) : a, b \in A\}, \quad lin\{(1 \otimes a)\Delta(b) : a, b \in A\}$

are dense in $A \otimes A = C(S \times S)$, if and only if we have the "cancellation conditions"

$$st = st' \implies t = t', \quad st = s't \implies s' = s.$$

Compact quantum groups

The following definition is due to Woronowicz:

Definition

A compact quantum group is a unital C*-algebra A together with a coassociative *-homomorphism $\Delta : A \to A \otimes A$, such that the sets

 $\{(a\otimes 1)\Delta(b): a,b\in A\}, \quad \{(1\otimes a)\Delta(b): a,b\in A\},$

(日) (日) (日) (日) (日) (日) (日)

are linearly dense in $A \otimes A$.

We've seen that if A = C(G) is commutative, then G is a compact group, and Δ comes from the group product.

"Quantum" \cong "Non-commutative"!

Compact quantum groups

The following definition is due to Woronowicz:

Definition

A compact quantum group is a unital C*-algebra A together with a coassociative *-homomorphism $\Delta : A \rightarrow A \otimes A$, such that the sets

 $\{(a \otimes 1)\Delta(b) : a, b \in A\}, \{(1 \otimes a)\Delta(b) : a, b \in A\},\$

are linearly dense in $A \otimes A$.

We've seen that if A = C(G) is commutative, then *G* is a compact group, and Δ comes from the group product.

"Quantum" \cong "Non-commutative"!

Compact quantum groups

The following definition is due to Woronowicz:

Definition

A compact quantum group is a unital C*-algebra A together with a coassociative *-homomorphism $\Delta : A \rightarrow A \otimes A$, such that the sets

 $\{(a \otimes 1)\Delta(b) : a, b \in A\}, \{(1 \otimes a)\Delta(b) : a, b \in A\},\$

(ロ) (同) (三) (三) (三) (○) (○)

are linearly dense in $A \otimes A$.

We've seen that if A = C(G) is commutative, then *G* is a compact group, and Δ comes from the group product.

```
"Quantum" \cong "Non-commutative"!
```

- Let Γ be a discrete group (i.e. Γ is any group; ignore topology).
- Consider the Hilbert space ℓ²(Γ) with canonical orthonormal basis (e_g)_{g∈Γ}.
- For each $g \in \Gamma$, let $\lambda(g)$ be the "left-translation map" $e_h \mapsto e_{gh}$.
- We have $\lambda(g)\lambda(h) = \lambda(gh)$ and $\lambda(g^{-1}) = \lambda(g)^*$.
- Let C^{*}_r(Γ) be the closed linear span of {λ(g) : g ∈ Γ}. This is a C^{*}-algebra. The "r" stands for "reduced".
- ► There is a *-homomorphism $\Delta : C_r^*(\Gamma) \to C_r^*(\Gamma) \otimes C_r^*(\Gamma) \cong C_r^*(\Gamma \times \Gamma)$ given by $\lambda(g) \mapsto \lambda(g) \otimes \lambda(g)$. Clearly Δ is coassociative.

- Let Γ be a discrete group (i.e. Γ is any group; ignore topology).
- Consider the Hilbert space ℓ²(Γ) with canonical orthonormal basis (e_g)_{g∈Γ}.
- For each $g \in \Gamma$, let $\lambda(g)$ be the "left-translation map" $e_h \mapsto e_{gh}$.
- We have $\lambda(g)\lambda(h) = \lambda(gh)$ and $\lambda(g^{-1}) = \lambda(g)^*$.
- Let C^{*}_r(Γ) be the closed linear span of {λ(g) : g ∈ Γ}. This is a C*-algebra. The "r" stands for "reduced".
- ► There is a *-homomorphism $\Delta : C_r^*(\Gamma) \to C_r^*(\Gamma) \otimes C_r^*(\Gamma) \cong C_r^*(\Gamma \times \Gamma)$ given by $\lambda(g) \mapsto \lambda(g) \otimes \lambda(g)$. Clearly Δ is coassociative.

- Let Γ be a discrete group (i.e. Γ is any group; ignore topology).
- Consider the Hilbert space ℓ²(Γ) with canonical orthonormal basis (e_g)_{g∈Γ}.
- For each $g \in \Gamma$, let $\lambda(g)$ be the "left-translation map" $e_h \mapsto e_{gh}$.
- We have $\lambda(g)\lambda(h) = \lambda(gh)$ and $\lambda(g^{-1}) = \lambda(g)^*$.
- Let C^{*}_r(Γ) be the closed linear span of {λ(g) : g ∈ Γ}. This is a C*-algebra. The "r" stands for "reduced".
- ► There is a *-homomorphism $\Delta : C_r^*(\Gamma) \to C_r^*(\Gamma) \otimes C_r^*(\Gamma) \cong C_r^*(\Gamma \times \Gamma)$ given by $\lambda(g) \mapsto \lambda(g) \otimes \lambda(g)$. Clearly Δ is coassociative.

- Let Γ be a discrete group (i.e. Γ is any group; ignore topology).
- Consider the Hilbert space ℓ²(Γ) with canonical orthonormal basis (e_g)_{g∈Γ}.
- For each $g \in \Gamma$, let $\lambda(g)$ be the "left-translation map" $e_h \mapsto e_{gh}$.
- We have $\lambda(g)\lambda(h) = \lambda(gh)$ and $\lambda(g^{-1}) = \lambda(g)^*$.
- Let C^{*}_r(Γ) be the closed linear span of {λ(g) : g ∈ Γ}. This is a C*-algebra. The "r" stands for "reduced".
- ► There is a *-homomorphism $\Delta : C_r^*(\Gamma) \to C_r^*(\Gamma) \otimes C_r^*(\Gamma) \cong C_r^*(\Gamma \times \Gamma)$ given by $\lambda(g) \mapsto \lambda(g) \otimes \lambda(g)$. Clearly Δ is coassociative.

- Let Γ be a discrete group (i.e. Γ is any group; ignore topology).
- Consider the Hilbert space ℓ²(Γ) with canonical orthonormal basis (e_g)_{g∈Γ}.
- For each $g \in \Gamma$, let $\lambda(g)$ be the "left-translation map" $e_h \mapsto e_{gh}$.
- We have $\lambda(g)\lambda(h) = \lambda(gh)$ and $\lambda(g^{-1}) = \lambda(g)^*$.
- Let C^{*}_r(Γ) be the closed linear span of {λ(g) : g ∈ Γ}. This is a C*-algebra. The "r" stands for "reduced".
- ► There is a *-homomorphism $\Delta : C_r^*(\Gamma) \to C_r^*(\Gamma) \otimes C_r^*(\Gamma) \cong C_r^*(\Gamma \times \Gamma)$ given by $\lambda(g) \mapsto \lambda(g) \otimes \lambda(g)$. Clearly Δ is coassociative.

- Let Γ be a discrete group (i.e. Γ is any group; ignore topology).
- Consider the Hilbert space ℓ²(Γ) with canonical orthonormal basis (e_g)_{g∈Γ}.
- For each $g \in \Gamma$, let $\lambda(g)$ be the "left-translation map" $e_h \mapsto e_{gh}$.
- We have $\lambda(g)\lambda(h) = \lambda(gh)$ and $\lambda(g^{-1}) = \lambda(g)^*$.
- Let C^{*}_r(Γ) be the closed linear span of {λ(g) : g ∈ Γ}. This is a C*-algebra. The "r" stands for "reduced".
- ► There is a *-homomorphism $\Delta : C_r^*(\Gamma) \to C_r^*(\Gamma) \otimes C_r^*(\Gamma) \cong C_r^*(\Gamma \times \Gamma)$ given by $\lambda(g) \mapsto \lambda(g) \otimes \lambda(g)$. Clearly Δ is coassociative.

First example (cont.)

We see that

li

$$egin{aligned} &\mathrm{in}\{(a\otimes 1)\Delta(b):a,b\in C^*_r(\Gamma)\}\ &=\mathrm{lin}\{\lambda(gh)\otimes\lambda(h):g,h\in\Gamma\}\ &=\mathrm{lin}\{\lambda(g)\otimes\lambda(h):g,h\in\Gamma\} \end{aligned}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

is obviously dense in $C_r^*(\Gamma \times \Gamma)$.

- Similarly we verify the other "cancellation" condition.
- So $(C_r^*(\Gamma), \Delta)$ is a compact quantum group.

First example (cont.)

We see that

$$egin{aligned} & \lim\{(a\otimes 1)\Delta(b):a,b\in C^*_r(\Gamma)\}\ &=\lim\{\lambda(gh)\otimes\lambda(h):g,h\in\Gamma\}\ &=\lim\{\lambda(g)\otimes\lambda(h):g,h\in\Gamma\} \end{aligned}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

is obviously dense in $C_r^*(\Gamma \times \Gamma)$.

- Similarly we verify the other "cancellation" condition.
- So $(C_r^*(\Gamma), \Delta)$ is a compact quantum group.

First example (cont.)

We see that

$$egin{aligned} & \lim\{(a\otimes 1)\Delta(b):a,b\in C^*_r(\Gamma)\}\ &=\lim\{\lambda(gh)\otimes\lambda(h):g,h\in\Gamma\}\ &=\lim\{\lambda(g)\otimes\lambda(h):g,h\in\Gamma\} \end{aligned}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

is obviously dense in $C_r^*(\Gamma \times \Gamma)$.

- Similarly we verify the other "cancellation" condition.
- So $(C_r^*(\Gamma), \Delta)$ is a compact quantum group.

Consider $\Gamma=\mathbb{Z}.$ The Fourier transform is the unitary map

$$\mathcal{F}: \ell^2(\mathbb{Z}) \to L^2(\mathbb{T}); \quad e_n \mapsto (e^{in\theta}).$$

- We give T the Lebesgue measure— a rotationally invariant probability measure.
- ► We can think of C(T) as being an algebra acting on L²(T) by multiplication of functions.
- Then the map

 $lin\{\lambda(n): n \in \mathbb{Z}\} \to C(\mathbb{T}); \quad \lambda(n) \mapsto \mathcal{F}\lambda(n)\mathcal{F}^{-1}$

extends continuously to an isometric *-isomorphism between $C_r^*(\mathbb{Z})$ and $C(\mathbb{T})$, say \mathcal{F}_0 .

- Then $(\mathcal{F}_0 \otimes \mathcal{F}_0) \Delta = \Delta \mathcal{F}_0$.
- So the quantum groups $C_r^*(\mathbb{Z})$ and $C(\mathbb{T})$ are isomorphic.

(日) (日) (日) (日) (日) (日) (日)

Consider $\Gamma = \mathbb{Z}$. The Fourier transform is the unitary map

$$\mathcal{F}: \ell^2(\mathbb{Z}) \to L^2(\mathbb{T}); \quad e_n \mapsto (e^{in\theta}).$$

- We give T the Lebesgue measure— a rotationally invariant probability measure.
- ► We can think of C(T) as being an algebra acting on L²(T) by multiplication of functions.
- Then the map

 $lin\{\lambda(n): n \in \mathbb{Z}\} \to C(\mathbb{T}); \quad \lambda(n) \mapsto \mathcal{F}\lambda(n)\mathcal{F}^{-1}$

extends continuously to an isometric *-isomorphism between $C_r^*(\mathbb{Z})$ and $C(\mathbb{T})$, say \mathcal{F}_0 .

- Then $(\mathcal{F}_0 \otimes \mathcal{F}_0) \Delta = \Delta \mathcal{F}_0$.
- So the quantum groups $C_r^*(\mathbb{Z})$ and $C(\mathbb{T})$ are isomorphic.

Consider $\Gamma = \mathbb{Z}$. The Fourier transform is the unitary map

$$\mathcal{F}: \ell^2(\mathbb{Z}) \to L^2(\mathbb{T}); \quad e_n \mapsto (e^{in\theta}).$$

- We give T the Lebesgue measure— a rotationally invariant probability measure.
- ► We can think of C(T) as being an algebra acting on L²(T) by multiplication of functions.
- Then the map

 $lin\{\lambda(n): n \in \mathbb{Z}\} \to C(\mathbb{T}); \quad \lambda(n) \mapsto \mathcal{F}\lambda(n)\mathcal{F}^{-1}$

extends continuously to an isometric *-isomorphism between $C_r^*(\mathbb{Z})$ and $C(\mathbb{T})$, say \mathcal{F}_0 .

- Then $(\mathcal{F}_0 \otimes \mathcal{F}_0) \Delta = \Delta \mathcal{F}_0$.
- So the quantum groups $C_r^*(\mathbb{Z})$ and $C(\mathbb{T})$ are isomorphic.

Consider $\Gamma = \mathbb{Z}$. The Fourier transform is the unitary map

$$\mathcal{F}: \ell^2(\mathbb{Z}) \to L^2(\mathbb{T}); \quad e_n \mapsto (e^{in\theta}).$$

- We give T the Lebesgue measure— a rotationally invariant probability measure.
- ► We can think of C(T) as being an algebra acting on L²(T) by multiplication of functions.
- Then the map

$$lin\{\lambda(n): n \in \mathbb{Z}\} \to C(\mathbb{T}); \quad \lambda(n) \mapsto \mathcal{F}\lambda(n)\mathcal{F}^{-1}$$

extends continuously to an isometric *-isomorphism between $C_r^*(\mathbb{Z})$ and $C(\mathbb{T})$, say \mathcal{F}_0 .

- Then $(\mathcal{F}_0 \otimes \mathcal{F}_0) \Delta = \Delta \mathcal{F}_0$.
- So the quantum groups $C_r^*(\mathbb{Z})$ and $C(\mathbb{T})$ are isomorphic.

Consider $\Gamma = \mathbb{Z}$. The Fourier transform is the unitary map

$$\mathcal{F}: \ell^2(\mathbb{Z}) \to L^2(\mathbb{T}); \quad e_n \mapsto (e^{in\theta}).$$

- We give T the Lebesgue measure— a rotationally invariant probability measure.
- ► We can think of C(T) as being an algebra acting on L²(T) by multiplication of functions.
- Then the map

$$lin\{\lambda(n): n \in \mathbb{Z}\} \to C(\mathbb{T}); \quad \lambda(n) \mapsto \mathcal{F}\lambda(n)\mathcal{F}^{-1}$$

extends continuously to an isometric *-isomorphism between $C_r^*(\mathbb{Z})$ and $C(\mathbb{T})$, say \mathcal{F}_0 .

- Then $(\mathcal{F}_0 \otimes \mathcal{F}_0)\Delta = \Delta \mathcal{F}_0$.
- So the quantum groups $C_r^*(\mathbb{Z})$ and $C(\mathbb{T})$ are isomorphic.

Consider $\Gamma = \mathbb{Z}$. The Fourier transform is the unitary map

$$\mathcal{F}: \ell^2(\mathbb{Z}) \to L^2(\mathbb{T}); \quad e_n \mapsto (e^{in\theta}).$$

- We give T the Lebesgue measure— a rotationally invariant probability measure.
- ► We can think of C(T) as being an algebra acting on L²(T) by multiplication of functions.
- Then the map

$$lin\{\lambda(n): n \in \mathbb{Z}\} \to C(\mathbb{T}); \quad \lambda(n) \mapsto \mathcal{F}\lambda(n)\mathcal{F}^{-1}$$

extends continuously to an isometric *-isomorphism between $C_r^*(\mathbb{Z})$ and $C(\mathbb{T})$, say \mathcal{F}_0 .

- Then $(\mathcal{F}_0 \otimes \mathcal{F}_0)\Delta = \Delta \mathcal{F}_0$.
- ▶ So the quantum groups $C_r^*(\mathbb{Z})$ and $C(\mathbb{T})$ are isomorphic.

Let's think about SU(2): these are 2 \times 2 complex matrices which are unitary, with determinant 1. That is,

$$SU(2) = \Big\{ egin{pmatrix} lpha & -\overline{\gamma} \ \gamma & \overline{lpha} \end{pmatrix} : lpha, \gamma \in \mathbb{C}, |lpha|^2 + |\gamma|^2 = 1 \Big\}.$$

- ▶ Let $a, c \in C(SU(2))$ be the evaluation maps $a(g) = \alpha$ and $c(g) = \gamma$. Thus $a^*a + c^*c = 1$.
- ► Then C(SU(2)) is the commutative unital C*-algebra generated by elements *a*, *c* with the relation that $a^*a + c^*c = 1$.
- Equivalently, C(SU(2)) is the (commutative) unital C*-algebra generated by elements a, c such that the matrix

$$u = \begin{pmatrix} a & -c^* \\ c & a^* \end{pmatrix}$$

(日) (日) (日) (日) (日) (日) (日)

Let's think about SU(2): these are 2 \times 2 complex matrices which are unitary, with determinant 1. That is,

$$SU(2) = \left\{ egin{pmatrix} lpha & -\overline{\gamma} \ \gamma & \overline{lpha} \end{pmatrix} : lpha, \gamma \in \mathbb{C}, |lpha|^2 + |\gamma|^2 = 1
ight\}.$$

- ► Let $a, c \in C(SU(2))$ be the evaluation maps $a(g) = \alpha$ and $c(g) = \gamma$. Thus $a^*a + c^*c = 1$.
- ► Then C(SU(2)) is the commutative unital C*-algebra generated by elements *a*, *c* with the relation that $a^*a + c^*c = 1$.
- Equivalently, C(SU(2)) is the (commutative) unital C*-algebra generated by elements a, c such that the matrix

$$u = \begin{pmatrix} a & -c^* \\ c & a^* \end{pmatrix}$$

(日) (日) (日) (日) (日) (日) (日)

Let's think about SU(2): these are 2 \times 2 complex matrices which are unitary, with determinant 1. That is,

$$SU(2) = \left\{ egin{pmatrix} lpha & -\overline{\gamma} \ \gamma & \overline{lpha} \end{pmatrix} : lpha, \gamma \in \mathbb{C}, |lpha|^2 + |\gamma|^2 = 1
ight\}$$

- ▶ Let $a, c \in C(SU(2))$ be the evaluation maps $a(g) = \alpha$ and $c(g) = \gamma$. Thus $a^*a + c^*c = 1$.
- ► Then C(SU(2)) is the commutative unital C*-algebra generated by elements a, c with the relation that a*a + c*c = 1.
- Equivalently, C(SU(2)) is the (commutative) unital C*-algebra generated by elements a, c such that the matrix

$$U = \begin{pmatrix} a & -C^* \\ c & a^* \end{pmatrix}$$

(日) (日) (日) (日) (日) (日) (日)

Let's think about SU(2): these are 2 \times 2 complex matrices which are unitary, with determinant 1. That is,

$$SU(2) = \left\{ egin{pmatrix} lpha & -\overline{\gamma} \ \gamma & \overline{lpha} \end{pmatrix} : lpha, \gamma \in \mathbb{C}, |lpha|^2 + |\gamma|^2 = 1
ight\}$$

- ▶ Let $a, c \in C(SU(2))$ be the evaluation maps $a(g) = \alpha$ and $c(g) = \gamma$. Thus $a^*a + c^*c = 1$.
- ► Then C(SU(2)) is the commutative unital C*-algebra generated by elements a, c with the relation that a*a + c*c = 1.
- Equivalently, C(SU(2)) is the (commutative) unital C*-algebra generated by elements a, c such that the matrix

$$u = \begin{pmatrix} a & -c^* \\ c & a^* \end{pmatrix}$$

Let $SU_{\mu}(2)$ be the universal unital C*-algebra generated by elements *a*, *c* such that the matrix

$$u = egin{pmatrix} \mathbf{a} & -\mu \mathbf{c}^* \ \mathbf{c} & \mathbf{a}^* \end{pmatrix}$$

is unitary; here $\mu \in [-1, 1] \setminus \{0\}$.

Here *universal* means that if *A* is any other C*-algebra containing elements a', c' satisfying the same conditions, then there is a *-homomorphism $SU_{\mu}(2) \rightarrow A$ which maps $a \mapsto a'$ and $c \mapsto c'$.

Unpacking this, we get the conditions:

$$a^*a + c^*c = 1$$
, $aa^* + \mu^2 c^*c = 1$,
 $c^*c = cc^*$, $ac = \mu ca$, $ac^* = \mu c^*a$

Let $SU_{\mu}(2)$ be the universal unital C*-algebra generated by elements *a*, *c* such that the matrix

$$m{u} = egin{pmatrix} m{a} & -\mum{c}^* \ m{c} & m{a}^* \end{pmatrix}$$

is unitary; here $\mu \in [-1, 1] \setminus \{0\}$.

Here *universal* means that if *A* is any other C*-algebra containing elements a', c' satisfying the same conditions, then there is a *-homomorphism $SU_{\mu}(2) \rightarrow A$ which maps $a \mapsto a'$ and $c \mapsto c'$.

Unpacking this, we get the conditions:

$$a^*a + c^*c = 1$$
, $aa^* + \mu^2 c^*c = 1$,
 $c^*c = cc^*$, $ac = \mu ca$, $ac^* = \mu c^*a$

Let $SU_{\mu}(2)$ be the universal unital C*-algebra generated by elements *a*, *c* such that the matrix

$$u=egin{pmatrix} a & -\mu c^* \ c & a^* \end{pmatrix}$$

is unitary; here $\mu \in [-1, 1] \setminus \{0\}$.

Here *universal* means that if *A* is any other C*-algebra containing elements a', c' satisfying the same conditions, then there is a *-homomorphism $SU_{\mu}(2) \rightarrow A$ which maps $a \mapsto a'$ and $c \mapsto c'$.

Unpacking this, we get the conditions:

$$a^*a + c^*c = 1$$
, $aa^* + \mu^2 c^*c = 1$,
 $c^*c = cc^*$, $ac = \mu ca$, $ac^* = \mu c^*a$

Let $SU_{\mu}(2)$ be the universal unital C*-algebra generated by elements *a*, *c* such that the matrix

$$u=egin{pmatrix} a & -\mu c^* \ c & a^* \end{pmatrix}$$

is unitary; here $\mu \in [-1, 1] \setminus \{0\}$.

Here *universal* means that if *A* is any other C*-algebra containing elements a', c' satisfying the same conditions, then there is a *-homomorphism $SU_{\mu}(2) \rightarrow A$ which maps $a \mapsto a'$ and $c \mapsto c'$.

Unpacking this, we get the conditions:

$$a^*a + c^*c = 1$$
, $aa^* + \mu^2 c^*c = 1$,
 $c^*c = cc^*$, $ac = \mu ca$, $ac^* = \mu c^*a$

Define Δ by

 $\Delta(a) = a \otimes a - \mu c^* \otimes c, \quad \Delta(c) = c \otimes a + a^* \otimes c.$

We can do this because if

$$a' = a \otimes a - \mu c^* \otimes c, \quad c' = c \otimes a + a^* \otimes c,$$

then in the algebra of 2 \times 2 matrices over $SU_{\mu}(2)\otimes SU_{\mu}(2)$, we find that

$$\begin{pmatrix} a' & -\mu c'^* \\ c' & a'^* \end{pmatrix}$$

is unitary. So by the universal property of $SU_{\mu}(2)$, the *-homomorphism Δ does exist.

Then $(SU_{\mu}(2), \Delta)$ is a compact quantum group (that the "cancellation" properties hold requires a bit of theory, or some messing about with generators).

Define Δ by

 $\Delta(a) = a \otimes a - \mu c^* \otimes c, \quad \Delta(c) = c \otimes a + a^* \otimes c.$

We can do this because if

$$a' = a \otimes a - \mu c^* \otimes c, \quad c' = c \otimes a + a^* \otimes c,$$

then in the algebra of 2 \times 2 matrices over $SU_{\mu}(2)\otimes SU_{\mu}(2),$ we find that

$$egin{pmatrix} (\emph{a}' & -\mu \emph{c}'^* \ \emph{c}' & \emph{a}'^* \end{pmatrix}$$

is unitary. So by the universal property of $SU_{\mu}(2)$, the *-homomorphism Δ does exist. Then $(SU_{\mu}(2), \Delta)$ is a compact quantum group (that the "cancellation" properties hold requires a bit of theory, or some messing about with generators).

Define Δ by

 $\Delta(a) = a \otimes a - \mu c^* \otimes c, \quad \Delta(c) = c \otimes a + a^* \otimes c.$

We can do this because if

$$a' = a \otimes a - \mu c^* \otimes c, \quad c' = c \otimes a + a^* \otimes c,$$

then in the algebra of 2 \times 2 matrices over $SU_{\mu}(2) \otimes SU_{\mu}(2)$, we find that

$$egin{pmatrix} {a'} & -\mu {c'}^* \ {c'} & {a'}^* \end{pmatrix}$$

is unitary. So by the universal property of $SU_{\mu}(2)$, the *-homomorphism Δ does exist.

Then $(SU_{\mu}(2), \Delta)$ is a compact quantum group (that the "cancellation" properties hold requires a bit of theory, or some messing about with generators).

Define Δ by

 $\Delta(a) = a \otimes a - \mu c^* \otimes c, \quad \Delta(c) = c \otimes a + a^* \otimes c.$

We can do this because if

$$a' = a \otimes a - \mu c^* \otimes c, \quad c' = c \otimes a + a^* \otimes c,$$

then in the algebra of 2 \times 2 matrices over $SU_{\mu}(2) \otimes SU_{\mu}(2)$, we find that

$$\begin{pmatrix} a' & -\mu c'^* \\ c' & a'^* \end{pmatrix}$$

is unitary. So by the universal property of $SU_{\mu}(2)$, the *-homomorphism Δ does exist.

Then $(SU_{\mu}(2), \Delta)$ is a compact quantum group (that the "cancellation" properties hold requires a bit of theory, or some messing about with generators).

Haar measure

Every compact group *G* admits a unique shift-invariant probability measure, called the *Haar measure*:

$$\int_G f(st) dt = \int_G f(t) dt.$$

• This measure induces a state h on C(G).

- An element of a C*-algebra is positive if it's of the form a*a.
- Then a state is a linear functional h : A → C with h(1) = 1 and h(a*a) ≥ 0 for all a.
- Always have Cauchy-Schwarz: $|h(a^*b)| \le h(a^*a)h(b^*b)$.
- That h is shift-invariant means that

 $(h \otimes \iota)\Delta(a) = (\iota \otimes h)\Delta(a) = h(a)$ 1 $(a \in A = C(G))$

Haar measure

Every compact group *G* admits a unique shift-invariant probability measure, called the *Haar measure*:

$$\int_G f(st) dt = \int_G f(t) dt.$$

- ▶ This measure induces a state *h* on *C*(*G*).
 - An element of a C*-algebra is positive if it's of the form a*a.
 - Then a state is a linear functional h : A → C with h(1) = 1 and h(a*a) ≥ 0 for all a.
 - Always have Cauchy-Schwarz: $|h(a^*b)| \le h(a^*a)h(b^*b)$.
- That h is shift-invariant means that

 $(h \otimes \iota) \Delta(a) = (\iota \otimes h) \Delta(a) = h(a) 1$ $(a \in A = C(G)).$

Haar measure

Every compact group *G* admits a unique shift-invariant probability measure, called the *Haar measure*:

$$\int_G f(st) dt = \int_G f(t) dt.$$

- ▶ This measure induces a state *h* on *C*(*G*).
 - An element of a C*-algebra is positive if it's of the form a*a.
 - Then a state is a linear functional h : A → C with h(1) = 1 and h(a*a) ≥ 0 for all a.
 - Always have Cauchy-Schwarz: $|h(a^*b)| \le h(a^*a)h(b^*b)$.
- That h is shift-invariant means that

 $(h \otimes \iota)\Delta(a) = (\iota \otimes h)\Delta(a) = h(a)1$ $(a \in A = C(G)).$

Theorem (Woronowicz, Van Daele)

Let (A, Δ) be a compact quantum group. There is a unique state h on A with $(h \otimes \iota)\Delta(a) = (\iota \otimes h)\Delta(a) = h(a)1$ for all $a \in A$.

For C(G), we get the usual Haar measure.

For $C_r^*(\Gamma)$, the Haar state is

$$h(a) = (a(e_{e_{\Gamma}})|e_{e_{\Gamma}}).$$

This means that $h(\lambda(g)) = 1$ for $g = e_{e_{\Gamma}}$, and 0 otherwise.

- ▶ In both these cases, *h* is a *trace*, meaning that h(ab) = h(ba) for all $a, b \in A$.
- ► This is not true in general; we'll comment more later.

Theorem (Woronowicz, Van Daele)

Let (A, Δ) be a compact quantum group. There is a unique state h on A with $(h \otimes \iota)\Delta(a) = (\iota \otimes h)\Delta(a) = h(a)1$ for all $a \in A$.

For C(G), we get the usual Haar measure.

For $C_r^*(\Gamma)$, the Haar state is

$$h(a) = (a(e_{e_{\Gamma}})|e_{e_{\Gamma}}).$$

This means that $h(\lambda(g)) = 1$ for $g = e_{e_{\Gamma}}$, and 0 otherwise.

(日) (日) (日) (日) (日) (日) (日)

- ▶ In both these cases, *h* is a *trace*, meaning that h(ab) = h(ba) for all $a, b \in A$.
- ► This is not true in general; we'll comment more later.

Theorem (Woronowicz, Van Daele)

Let (A, Δ) be a compact quantum group. There is a unique state h on A with $(h \otimes \iota)\Delta(a) = (\iota \otimes h)\Delta(a) = h(a)1$ for all $a \in A$.

- For C(G), we get the usual Haar measure.
- For $C_r^*(\Gamma)$, the Haar state is

$$h(a) = (a(e_{e_{\Gamma}})|e_{e_{\Gamma}}).$$

This means that $h(\lambda(g)) = 1$ for $g = e_{e_{\Gamma}}$, and 0 otherwise.

- ▶ In both these cases, *h* is a *trace*, meaning that h(ab) = h(ba) for all $a, b \in A$.
- ► This is not true in general; we'll comment more later.

Theorem (Woronowicz, Van Daele)

Let (A, Δ) be a compact quantum group. There is a unique state h on A with $(h \otimes \iota)\Delta(a) = (\iota \otimes h)\Delta(a) = h(a)1$ for all $a \in A$.

- For C(G), we get the usual Haar measure.
- For $C_r^*(\Gamma)$, the Haar state is

$$h(a) = (a(e_{e_{\Gamma}})|e_{e_{\Gamma}}).$$

This means that $h(\lambda(g)) = 1$ for $g = e_{e_{\Gamma}}$, and 0 otherwise.

- ▶ In both these cases, *h* is a *trace*, meaning that h(ab) = h(ba) for all $a, b \in A$.
- ► This is not true in general; we'll comment more later.

Every compact quantum group has a Haar state

Theorem (Woronowicz, Van Daele)

Let (A, Δ) be a compact quantum group. There is a unique state h on A with $(h \otimes \iota)\Delta(a) = (\iota \otimes h)\Delta(a) = h(a)1$ for all $a \in A$.

- For C(G), we get the usual Haar measure.
- For $C_r^*(\Gamma)$, the Haar state is

$$h(a) = (a(e_{e_{\Gamma}})|e_{e_{\Gamma}}).$$

This means that $h(\lambda(g)) = 1$ for $g = e_{e_{\Gamma}}$, and 0 otherwise.

- ▶ In both these cases, *h* is a *trace*, meaning that h(ab) = h(ba) for all $a, b \in A$.
- This is not true in general; we'll comment more later.

A *unitary representation* of a (compact) group *G* is a continuous group homomorphism π from *G* to the unitary matrices U(n) for some *n*.

- U(n) is nothing but the collection of unitary operators on a n-dimensional Hilbert space.
- Let the (i, j)th matrix entry of $\pi(g)$ be $U_{ij}(g)$.
- That π is *continuous* means that $U_{ij} \in C(G)$.
- That π(g) is unitary (for all g) means that (U_{ij}), considered as an n × n matrix over C(G), is unitary.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

A *unitary representation* of a (compact) group *G* is a continuous group homomorphism π from *G* to the unitary matrices U(n) for some *n*.

- U(n) is nothing but the collection of unitary operators on a n-dimensional Hilbert space.
- Let the (i, j)th matrix entry of $\pi(g)$ be $U_{ij}(g)$.
- That π is *continuous* means that $U_{ij} \in C(G)$.
- That π(g) is unitary (for all g) means that (U_{ij}), considered as an n × n matrix over C(G), is unitary.

(日) (日) (日) (日) (日) (日) (日)

A *unitary representation* of a (compact) group *G* is a continuous group homomorphism π from *G* to the unitary matrices U(n) for some *n*.

- U(n) is nothing but the collection of unitary operators on a n-dimensional Hilbert space.
- Let the (i, j)th matrix entry of $\pi(g)$ be $U_{ij}(g)$.
- That π is *continuous* means that $U_{ij} \in C(G)$.
- That π(g) is unitary (for all g) means that (U_{ij}), considered as an n × n matrix over C(G), is unitary.

(日) (日) (日) (日) (日) (日) (日)

A *unitary representation* of a (compact) group *G* is a continuous group homomorphism π from *G* to the unitary matrices U(n) for some *n*.

- U(n) is nothing but the collection of unitary operators on a n-dimensional Hilbert space.
- Let the (i, j)th matrix entry of $\pi(g)$ be $U_{ij}(g)$.
- That π is *continuous* means that $U_{ij} \in C(G)$.
- That π(g) is unitary (for all g) means that (U_{ij}), considered as an n × n matrix over C(G), is unitary.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

A *unitary representation* of a (compact) group *G* is a continuous group homomorphism π from *G* to the unitary matrices U(n) for some *n*.

- U(n) is nothing but the collection of unitary operators on a n-dimensional Hilbert space.
- Let the (i, j)th matrix entry of $\pi(g)$ be $U_{ij}(g)$.
- That π is *continuous* means that $U_{ij} \in C(G)$.
- ► That π(g) is unitary (for all g) means that (U_{ij}), considered as an n × n matrix over C(G), is unitary.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 $\pi: G \rightarrow U(n)$ corresponds to $U = (U_{ij}) \in \mathbb{M}_n(C(G))$.

• That $\pi(gh) = \pi(g)\pi(h)$ means that

$$U_{ij}(gh) = \Delta(U_{ij})(g,h) = \sum_{k} U_{ik}(g)U_{kj}(h).$$

So π a homomorphism is equivalent to

$$\Delta(U_{ij}) = \sum_{k} U_{ik} \otimes U_{kj}.$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Definition

A corepresentation of (A, Δ) is a unitary $U \in \mathbb{M}_n(A)$ such that $\Delta(U_{ij}) = \sum_k U_{ik} \otimes U_{kj}$.

 $\pi: G \rightarrow U(n)$ corresponds to $U = (U_{ij}) \in \mathbb{M}_n(\mathcal{C}(G)).$

• That $\pi(gh) = \pi(g)\pi(h)$ means that

$$U_{ij}(gh) = \Delta(U_{ij})(g,h) = \sum_k U_{ik}(g)U_{kj}(h).$$

So π a homomorphism is equivalent to

$$\Delta(U_{ij}) = \sum_{k} U_{ik} \otimes U_{kj}.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Definition

A corepresentation of (A, Δ) is a unitary $U \in \mathbb{M}_n(A)$ such that $\Delta(U_{ij}) = \sum_k U_{ik} \otimes U_{kj}$.

 $\pi: G \rightarrow U(n)$ corresponds to $U = (U_{ij}) \in \mathbb{M}_n(C(G)).$

• That $\pi(gh) = \pi(g)\pi(h)$ means that

$$U_{ij}(gh) = \Delta(U_{ij})(g,h) = \sum_k U_{ik}(g)U_{kj}(h).$$

So π a homomorphism is equivalent to

$$\Delta(U_{ij}) = \sum_{k} U_{ik} \otimes U_{kj}.$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Definition A *corepresentation* of (A, Δ) is a unitary $U \in \mathbb{M}_n(A)$ such that $\Delta(U_{ij}) = \sum_k U_{ik} \otimes U_{kj}$.

 $\pi: G \rightarrow U(n)$ corresponds to $U = (U_{ij}) \in \mathbb{M}_n(C(G)).$

• That $\pi(gh) = \pi(g)\pi(h)$ means that

$$U_{ij}(gh) = \Delta(U_{ij})(g,h) = \sum_k U_{ik}(g)U_{kj}(h).$$

So π a homomorphism is equivalent to

$$\Delta(U_{ij}) = \sum_{k} U_{ik} \otimes U_{kj}.$$

(日) (日) (日) (日) (日) (日) (日)

Definition

A corepresentation of (A, Δ) is a unitary $U \in \mathbb{M}_n(A)$ such that $\Delta(U_{ij}) = \sum_k U_{ik} \otimes U_{kj}$.

Just as for representations, we can define:

- Intertwining maps between two corepresentations;
- Isomorphisms between corepresentations;
- Invariant subspaces for corepresentations;
- What an irreducible corepresentation is.

We can also (with more work!) define infinite-dimensional corepresentations.

Then every corepresentation of a compact quantum group splits as a direct sum of *irreducible*, *finite-dimensional* unitary corepresentations.

The proofs are very similar to the compact group case– use the Haar state a lot.

Just as for representations, we can define:

- Intertwining maps between two corepresentations;
- Isomorphisms between corepresentations;
- Invariant subspaces for corepresentations;
- What an irreducible corepresentation is.

We can also (with more work!) define infinite-dimensional corepresentations.

Then every corepresentation of a compact quantum group splits as a direct sum of *irreducible*, *finite-dimensional* unitary corepresentations.

The proofs are very similar to the compact group case– use the Haar state a lot.

Just as for representations, we can define:

- Intertwining maps between two corepresentations;
- Isomorphisms between corepresentations;
- Invariant subspaces for corepresentations;
- What an irreducible corepresentation is.

We can also (with more work!) define infinite-dimensional corepresentations.

Then every corepresentation of a compact quantum group splits as a direct sum of *irreducible*, *finite-dimensional* unitary corepresentations.

The proofs are very similar to the compact group case– use the Haar state a lot.

Just as for representations, we can define:

- Intertwining maps between two corepresentations;
- Isomorphisms between corepresentations;
- Invariant subspaces for corepresentations;
- What an irreducible corepresentation is.

We can also (with more work!) define infinite-dimensional corepresentations.

Then every corepresentation of a compact quantum group splits as a direct sum of *irreducible*, *finite-dimensional* unitary corepresentations.

The proofs are very similar to the compact group case- use the Haar state a lot.

Given a unitary corepresentation $U = (U_{ij})$, the *matrix coefficients* of *U* is simply the linear span of the elements U_{ij} in *A*.

Take all the irreducible corepresentations, take all their matrix coefficients, and let A be the linear span.

- ► This turns out to be a *-algebra.
 - The product comes from the tensor product of corepresentations;
 - That it is *-closed is more mysterious.
- Δ restricts to a map $\mathcal{A} \to \mathcal{A} \otimes \mathcal{A}$ (because $\Delta(U_{ij}) = \sum_{k} U_{ik} \otimes U_{kj}$.
- ▶ *h* is a *faithful* state on A (so if $h(a^*a) = 0$ then a = 0).
- ▶ *A* is dense in *A*.

Given a unitary corepresentation $U = (U_{ij})$, the *matrix coefficients* of *U* is simply the linear span of the elements U_{ij} in *A*.

Take all the irreducible corepresentations, take all their matrix coefficients, and let ${\cal A}$ be the linear span.

- ► This turns out to be a *-algebra.
 - The product comes from the tensor product of corepresentations;
 - That it is *-closed is more mysterious.
- Δ restricts to a map $\mathcal{A} \to \mathcal{A} \otimes \mathcal{A}$ (because $\Delta(U_{ij}) = \sum_{k} U_{ik} \otimes U_{kj}$.
- ▶ *h* is a *faithful* state on A (so if $h(a^*a) = 0$ then a = 0).
- ► *A* is dense in *A*.

Given a unitary corepresentation $U = (U_{ij})$, the *matrix coefficients* of *U* is simply the linear span of the elements U_{ij} in *A*.

Take all the irreducible corepresentations, take all their matrix coefficients, and let ${\cal A}$ be the linear span.

This turns out to be a *-algebra.

- The product comes from the tensor product of corepresentations;
- That it is *-closed is more mysterious.
- Δ restricts to a map $\mathcal{A} \to \mathcal{A} \otimes \mathcal{A}$ (because $\Delta(U_{ij}) = \sum_{k} U_{ik} \otimes U_{kj}$.
- ▶ *h* is a *faithful* state on A (so if $h(a^*a) = 0$ then a = 0).

▶ *A* is dense in *A*.

Given a unitary corepresentation $U = (U_{ij})$, the *matrix coefficients* of *U* is simply the linear span of the elements U_{ij} in *A*.

Take all the irreducible corepresentations, take all their matrix coefficients, and let ${\cal A}$ be the linear span.

- This turns out to be a *-algebra.
 - The product comes from the tensor product of corepresentations;
 - That it is *-closed is more mysterious.
- Δ restricts to a map $\mathcal{A} \to \mathcal{A} \otimes \mathcal{A}$ (because $\Delta(U_{ij}) = \sum_{k} U_{ik} \otimes U_{kj}$.
- ▶ *h* is a *faithful* state on A (so if $h(a^*a) = 0$ then a = 0).
- ▶ *A* is dense in *A*.

Given a unitary corepresentation $U = (U_{ij})$, the *matrix coefficients* of *U* is simply the linear span of the elements U_{ij} in *A*.

Take all the irreducible corepresentations, take all their matrix coefficients, and let ${\cal A}$ be the linear span.

- This turns out to be a *-algebra.
 - The product comes from the tensor product of corepresentations;
 - That it is *-closed is more mysterious.
- Δ restricts to a map $\mathcal{A} \to \mathcal{A} \otimes \mathcal{A}$ (because $\Delta(U_{ij}) = \sum_{k} U_{ik} \otimes U_{kj}$.
- ▶ *h* is a *faithful* state on A (so if $h(a^*a) = 0$ then a = 0).

▶ *A* is dense in *A*.

Given a unitary corepresentation $U = (U_{ij})$, the *matrix coefficients* of *U* is simply the linear span of the elements U_{ij} in *A*.

Take all the irreducible corepresentations, take all their matrix coefficients, and let \mathcal{A} be the linear span.

- This turns out to be a *-algebra.
 - The product comes from the tensor product of corepresentations;
 - That it is *-closed is more mysterious.
- Δ restricts to a map $\mathcal{A} \to \mathcal{A} \otimes \mathcal{A}$ (because $\Delta(U_{ij}) = \sum_{k} U_{ik} \otimes U_{kj}$.
- ▶ *h* is a *faithful* state on A (so if $h(a^*a) = 0$ then a = 0).
- ▶ *A* is dense in *A*.

Given a unitary corepresentation $U = (U_{ij})$, the *matrix coefficients* of *U* is simply the linear span of the elements U_{ij} in *A*.

Take all the irreducible corepresentations, take all their matrix coefficients, and let \mathcal{A} be the linear span.

- This turns out to be a *-algebra.
 - The product comes from the tensor product of corepresentations;
 - That it is *-closed is more mysterious.
- Δ restricts to a map $\mathcal{A} \to \mathcal{A} \otimes \mathcal{A}$ (because $\Delta(U_{ij}) = \sum_{k} U_{ik} \otimes U_{kj}$.
- ▶ *h* is a *faithful* state on A (so if $h(a^*a) = 0$ then a = 0).

► *A* is dense in *A*.

Given a unitary corepresentation $U = (U_{ij})$, the *matrix coefficients* of *U* is simply the linear span of the elements U_{ij} in *A*.

Take all the irreducible corepresentations, take all their matrix coefficients, and let \mathcal{A} be the linear span.

- This turns out to be a *-algebra.
 - The product comes from the tensor product of corepresentations;
 - That it is *-closed is more mysterious.
- Δ restricts to a map $\mathcal{A} \to \mathcal{A} \otimes \mathcal{A}$ (because $\Delta(U_{ij}) = \sum_{k} U_{ik} \otimes U_{kj}$.
- ▶ *h* is a *faithful* state on A (so if $h(a^*a) = 0$ then a = 0).
- A is dense in A.

We have a *counit*, a character $\epsilon : A \to \mathbb{C}$, playing the role of the group identity

$$(\epsilon \otimes \iota)\Delta(a) = a = (\iota \otimes \epsilon)\Delta(a).$$

This might not be bounded, so might not extend to *A*. (Already happens for $C_r^*(\Gamma)$, when Γ not *amenable*). We have an *anitpode*, playing the role of the group inverse

$$m(\kappa \otimes \iota)\Delta = \epsilon = m(\iota \otimes \kappa)\Delta$$

Here $m : \mathcal{A} \otimes \mathcal{A} \to \mathcal{A}$ is multiplication. Again, κ may fail to be bounded. In general,

$$\kappa(\mathit{ab}) = \kappa(\mathit{b})\kappa(\mathit{a}), \quad \kappaig(\kappa(\mathit{a})^*ig)^* = \mathit{a}.$$

We have a *counit*, a character $\epsilon : A \to \mathbb{C}$, playing the role of the group identity

$$(\epsilon \otimes \iota)\Delta(a) = a = (\iota \otimes \epsilon)\Delta(a).$$

This might not be bounded, so might not extend to *A*. (Already happens for $C_r^*(\Gamma)$, when Γ not *amenable*).

We have an *anitpode*, playing the role of the group inverse

$$m(\kappa \otimes \iota)\Delta = \epsilon = m(\iota \otimes \kappa)\Delta.$$

Here $m : \mathcal{A} \otimes \mathcal{A} \to \mathcal{A}$ is multiplication. Again, κ may fail to be bounded. In general,

$$\kappa(\mathit{ab}) = \kappa(\mathit{b})\kappa(\mathit{a}), \quad \kappaig(\kappa(\mathit{a})^*ig)^* = \mathit{a}.$$

We have a *counit*, a character $\epsilon : A \to \mathbb{C}$, playing the role of the group identity

$$(\epsilon \otimes \iota)\Delta(a) = a = (\iota \otimes \epsilon)\Delta(a).$$

This might not be bounded, so might not extend to *A*. (Already happens for $C_r^*(\Gamma)$, when Γ not *amenable*). We have an *anitpode*, playing the role of the group inverse

$$m(\kappa \otimes \iota)\Delta = \epsilon = m(\iota \otimes \kappa)\Delta.$$

Here $m : \mathcal{A} \otimes \mathcal{A} \rightarrow \mathcal{A}$ is multiplication. Again, κ may fail to be bounded. In general,

$$\kappa({ extbf{ab}})=\kappa({ extbf{b}})\kappa({ extbf{a}}),\quad\kappaig(\kappa({ extbf{a}})^*ig)^*={ extbf{a}}.$$

(日) (日) (日) (日) (日) (日) (日)

We have a *counit*, a character $\epsilon : A \to \mathbb{C}$, playing the role of the group identity

$$(\epsilon \otimes \iota)\Delta(a) = a = (\iota \otimes \epsilon)\Delta(a).$$

This might not be bounded, so might not extend to *A*. (Already happens for $C_r^*(\Gamma)$, when Γ not *amenable*). We have an *anitpode*, playing the role of the group inverse

$$m(\kappa \otimes \iota)\Delta = \epsilon = m(\iota \otimes \kappa)\Delta$$

Here $m : \mathcal{A} \otimes \mathcal{A} \rightarrow \mathcal{A}$ is multiplication. Again, κ may fail to be bounded. In general,

$$\kappa(ab) = \kappa(b)\kappa(a), \quad \kappa(\kappa(a)^*)^* = a.$$

There is an automorphism $\sigma : \mathcal{A} \to \mathcal{A}$ with

$$h(ab) = h(\sigma(b)a)$$
 $(a, b \in A).$

- So *h* is "nearly" a trace.
- σ is actually the analytic generator of the Modular Automorphism Group of h on A
 – coming from Tomita–Takesaki Theory.
- But we can construct σ purely from the corepresentation theory of (A, Δ) .

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

There is an automorphism $\sigma : \mathcal{A} \to \mathcal{A}$ with

$$h(ab) = h(\sigma(b)a)$$
 $(a, b \in A).$

So *h* is "nearly" a trace.

- σ is actually the analytic generator of the Modular Automorphism Group of h on A
 – coming from Tomita–Takesaki Theory.
- But we can construct σ purely from the corepresentation theory of (A, Δ) .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

There is an automorphism $\sigma : \mathcal{A} \to \mathcal{A}$ with

$$h(ab) = h(\sigma(b)a)$$
 $(a, b \in A).$

- So *h* is "nearly" a trace.
- σ is actually the analytic generator of the Modular Automorphism Group of *h* on *A*– coming from Tomita–Takesaki Theory.
- But we can construct σ purely from the corepresentation theory of (A, Δ) .

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

There is an automorphism $\sigma : \mathcal{A} \to \mathcal{A}$ with

$$h(ab) = h(\sigma(b)a)$$
 $(a, b \in A).$

- So *h* is "nearly" a trace.
- σ is actually the analytic generator of the Modular Automorphism Group of *h* on *A*– coming from Tomita–Takesaki Theory.
- But we can construct *σ* purely from the corepresentation theory of (*A*, Δ).

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

So we did something quite unpromising– we encoded the group product of a compact group G into a C*-algebra, abstracted the "density conditions", and then deleted the word "commutative".

- Amazingly, this works!
- We can construct a Haar state.
- The corepresentation theory is every bit as rich as the representation theory of compact groups.
- We even find Tomita-Takesaki theory turning up, but coming both from the analytic side—the C*-algebra— and from the group side— the corepresentations.

So we did something quite unpromising– we encoded the group product of a compact group G into a C*-algebra, abstracted the "density conditions", and then deleted the word "commutative".

Amazingly, this works!

- We can construct a Haar state.
- The corepresentation theory is every bit as rich as the representation theory of compact groups.
- We even find Tomita-Takesaki theory turning up, but coming both from the analytic side—the C*-algebra— and from the group side— the corepresentations.

So we did something quite unpromising– we encoded the group product of a compact group G into a C*-algebra, abstracted the "density conditions", and then deleted the word "commutative".

- Amazingly, this works!
- We can construct a Haar state.
- The corepresentation theory is every bit as rich as the representation theory of compact groups.
- We even find Tomita-Takesaki theory turning up, but coming both from the analytic side—the C*-algebra— and from the group side— the corepresentations.

So we did something quite unpromising– we encoded the group product of a compact group G into a C*-algebra, abstracted the "density conditions", and then deleted the word "commutative".

- Amazingly, this works!
- We can construct a Haar state.
- The corepresentation theory is every bit as rich as the representation theory of compact groups.
- We even find Tomita-Takesaki theory turning up, but coming both from the analytic side—the C*-algebra— and from the group side— the corepresentations.

(日) (日) (日) (日) (日) (日) (日)

So we did something quite unpromising– we encoded the group product of a compact group G into a C*-algebra, abstracted the "density conditions", and then deleted the word "commutative".

- Amazingly, this works!
- We can construct a Haar state.
- The corepresentation theory is every bit as rich as the representation theory of compact groups.
- We even find Tomita-Takesaki theory turning up, but coming *both* from the analytic side—the C*-algebra— and from the group side— the corepresentations.

Algebra

• The data $(\mathcal{A}, \Delta, \epsilon, \kappa)$ is a Hopf *-algebra.

You can characterise which Hopf *-algebras arise from compact quantum groups by looking at their corepresentations.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

So can study compact quantum groups purely from algebra— increasingly the subject has moved in this direction.

Algebra

- The data $(\mathcal{A}, \Delta, \epsilon, \kappa)$ is a Hopf *-algebra.
- You can characterise which Hopf *-algebras arise from compact quantum groups by looking at their corepresentations.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

So can study compact quantum groups purely from algebra— increasingly the subject has moved in this direction.

Algebra

- The data $(\mathcal{A}, \Delta, \epsilon, \kappa)$ is a Hopf *-algebra.
- You can characterise which Hopf *-algebras arise from compact quantum groups by looking at their corepresentations.

(ロ) (同) (三) (三) (三) (○) (○)

 So can study compact quantum groups purely from algebra

– increasingly the subject has moved in this direction.

- If G is a locally compact, but not compact, group (e.g. ℝ) then natural to look at C₀(G), the algebra of continuous functions which vanish at ∞.
- The multiplier algebra of $A = C_0(\mathbb{R})$ is $MA = C^b(\mathbb{R})$:
 - so if *F* ∈ *MA*, *a* ∈ *A* then *aF*, *Fa* ∈ *A*.
 - *MA* is not "too large": if $F \in MA$ with Fa = 0 = aF for all $a \in A$, then F = 0.
- ▶ Notice that if $a \in C_0(G)$ then $\Delta(a)(g, h) = a(gh)$ will only be in $C^b(G \times G)$ (as $\Delta(a)(g, g^{-1}h) = a(h)$ for any g).
- ▶ At the level of algebra, looking at non-unital A together with a coassociative $\Delta : A \to M(A \otimes A)$ (where Δ must have "nice" cancellation properties) we get van Daele's notion of a "multiplier Hopf algebra".
- To get a nice theory, need to assume the existence of Haar states.

- If G is a locally compact, but not compact, group (e.g. ℝ) then natural to look at C₀(G), the algebra of continuous functions which vanish at ∞.
- The multiplier algebra of $A = C_0(\mathbb{R})$ is $MA = C^b(\mathbb{R})$:
 - ▶ so if $F \in MA$, $a \in A$ then aF, $Fa \in A$.
 - ▶ *MA* is not "too large": if $F \in MA$ with Fa = 0 = aF for all $a \in A$, then F = 0.
- ▶ Notice that if $a \in C_0(G)$ then $\Delta(a)(g, h) = a(gh)$ will only be in $C^b(G \times G)$ (as $\Delta(a)(g, g^{-1}h) = a(h)$ for any g).
- ▶ At the level of algebra, looking at non-unital A together with a coassociative $\Delta : A \to M(A \otimes A)$ (where Δ must have "nice" cancellation properties) we get van Daele's notion of a "multiplier Hopf algebra".
- To get a nice theory, need to assume the existence of Haar states.

- If G is a locally compact, but not compact, group (e.g. ℝ) then natural to look at C₀(G), the algebra of continuous functions which vanish at ∞.
- The multiplier algebra of $A = C_0(\mathbb{R})$ is $MA = C^b(\mathbb{R})$:
 - so if *F* ∈ *MA*, *a* ∈ *A* then *aF*, *Fa* ∈ *A*.
 - *MA* is not "too large": if $F \in MA$ with Fa = 0 = aF for all $a \in A$, then F = 0.
- ▶ Notice that if $a \in C_0(G)$ then $\Delta(a)(g,h) = a(gh)$ will only be in $C^b(G \times G)$ (as $\Delta(a)(g,g^{-1}h) = a(h)$ for any g).
- ▶ At the level of algebra, looking at non-unital A together with a coassociative $\Delta : A \to M(A \otimes A)$ (where Δ must have "nice" cancellation properties) we get van Daele's notion of a "multiplier Hopf algebra".
- To get a nice theory, need to assume the existence of Haar states.

- If G is a locally compact, but not compact, group (e.g. ℝ) then natural to look at C₀(G), the algebra of continuous functions which vanish at ∞.
- The multiplier algebra of $A = C_0(\mathbb{R})$ is $MA = C^b(\mathbb{R})$:
 - so if *F* ∈ *MA*, *a* ∈ *A* then *aF*, *Fa* ∈ *A*.
 - ► *MA* is not "too large": if $F \in MA$ with Fa = 0 = aF for all $a \in A$, then F = 0.
- ▶ Notice that if $a \in C_0(G)$ then $\Delta(a)(g, h) = a(gh)$ will only be in $C^b(G \times G)$ (as $\Delta(a)(g, g^{-1}h) = a(h)$ for any g).
- ▶ At the level of algebra, looking at non-unital A together with a coassociative $\Delta : A \to M(A \otimes A)$ (where Δ must have "nice" cancellation properties) we get van Daele's notion of a "multiplier Hopf algebra".
- To get a nice theory, need to assume the existence of Haar states.

- If G is a locally compact, but not compact, group (e.g. ℝ) then natural to look at C₀(G), the algebra of continuous functions which vanish at ∞.
- The multiplier algebra of $A = C_0(\mathbb{R})$ is $MA = C^b(\mathbb{R})$:
 - so if *F* ∈ *MA*, *a* ∈ *A* then *aF*, *Fa* ∈ *A*.
 - *MA* is not "too large": if $F \in MA$ with Fa = 0 = aF for all $a \in A$, then F = 0.
- Notice that if a ∈ C₀(G) then Δ(a)(g, h) = a(gh) will only be in C^b(G × G) (as Δ(a)(g, g⁻¹h) = a(h) for any g).
- ▶ At the level of algebra, looking at non-unital A together with a coassociative $\Delta : A \to M(A \otimes A)$ (where Δ must have "nice" cancellation properties) we get van Daele's notion of a "multiplier Hopf algebra".
- To get a nice theory, need to assume the existence of Haar states.

- If G is a locally compact, but not compact, group (e.g. ℝ) then natural to look at C₀(G), the algebra of continuous functions which vanish at ∞.
- The multiplier algebra of $A = C_0(\mathbb{R})$ is $MA = C^b(\mathbb{R})$:
 - so if *F* ∈ *MA*, *a* ∈ *A* then *aF*, *Fa* ∈ *A*.
 - *MA* is not "too large": if $F \in MA$ with Fa = 0 = aF for all $a \in A$, then F = 0.
- Notice that if a ∈ C₀(G) then Δ(a)(g, h) = a(gh) will only be in C^b(G × G) (as Δ(a)(g, g⁻¹h) = a(h) for any g).
- At the level of algebra, looking at non-unital A together with a coassociative ∆ : A → M(A ⊗ A) (where ∆ must have "nice" cancellation properties) we get van Daele's notion of a "multiplier Hopf algebra".
- To get a nice theory, need to assume the existence of Haar states.

- If G is a locally compact, but not compact, group (e.g. ℝ) then natural to look at C₀(G), the algebra of continuous functions which vanish at ∞.
- The multiplier algebra of $A = C_0(\mathbb{R})$ is $MA = C^b(\mathbb{R})$:
 - so if *F* ∈ *MA*, *a* ∈ *A* then *aF*, *Fa* ∈ *A*.
 - *MA* is not "too large": if $F \in MA$ with Fa = 0 = aF for all $a \in A$, then F = 0.
- Notice that if a ∈ C₀(G) then Δ(a)(g, h) = a(gh) will only be in C^b(G × G) (as Δ(a)(g, g⁻¹h) = a(h) for any g).
- At the level of algebra, looking at non-unital A together with a coassociative ∆ : A → M(A ⊗ A) (where ∆ must have "nice" cancellation properties) we get van Daele's notion of a "multiplier Hopf algebra".
- To get a nice theory, need to assume the existence of Haar states.

Similarly, we can work with non-unital C*-algebras *A* and a coassociative $\Delta : A \rightarrow M(A \otimes A)$.

- Again, we now need to assume the existence of Haar weights (which will be unbounded– Haar measure is not finite unless G is compact).
- ► This gives the notion of a *locally compact quantum group* (lcqg).
- Of interest is that to every lcqg (A, △) we find a "dual" (Â, Â). If we form the bidual, we get back to (A, △).

• If
$$A = C_0(G)$$
 then $\hat{A} = C_r^*(G)$; so

$$A = C_0(\mathbb{Z}), \quad \hat{A} = C_r^*(\mathbb{Z}) \cong C(\mathbb{T}),$$

and we have generalised the Fourier transform!

Similarly, we can work with non-unital C*-algebras *A* and a coassociative $\Delta : A \rightarrow M(A \otimes A)$.

- Again, we now need to assume the existence of Haar weights (which will be unbounded– Haar measure is not finite unless G is compact).
- This gives the notion of a *locally compact quantum group* (lcqg).
- Of interest is that to every lcqg (A, △) we find a "dual" (Â, Â). If we form the bidual, we get back to (A, △).

• If
$$A = C_0(G)$$
 then $\hat{A} = C_r^*(G)$; so

$$A = C_0(\mathbb{Z}), \quad \hat{A} = C_r^*(\mathbb{Z}) \cong C(\mathbb{T}),$$

and we have generalised the Fourier transform!

Similarly, we can work with non-unital C*-algebras *A* and a coassociative $\Delta : A \rightarrow M(A \otimes A)$.

- Again, we now need to assume the existence of Haar weights (which will be unbounded– Haar measure is not finite unless G is compact).
- This gives the notion of a *locally compact quantum group* (lcqg).
- Of interest is that to every lcqg (A, △) we find a "dual" (Â, Â). If we form the bidual, we get back to (A, △).

• If
$$A = C_0(G)$$
 then $\hat{A} = C_r^*(G)$; so

$$A = C_0(\mathbb{Z}), \quad \hat{A} = C_r^*(\mathbb{Z}) \cong C(\mathbb{T}),$$

and we have generalised the Fourier transform!

Similarly, we can work with non-unital C*-algebras *A* and a coassociative $\Delta : A \rightarrow M(A \otimes A)$.

- Again, we now need to assume the existence of Haar weights (which will be unbounded– Haar measure is not finite unless G is compact).
- This gives the notion of a *locally compact quantum group* (lcqg).
- Of interest is that to every lcqg (A, Δ) we find a "dual" (Â, Â). If we form the bidual, we get back to (A, Δ).
- If $A = C_0(G)$ then $\hat{A} = C_r^*(G)$; so

$$A = C_0(\mathbb{Z}), \quad \hat{A} = C_r^*(\mathbb{Z}) \cong C(\mathbb{T}),$$

and we have generalised the Fourier transform!

Similarly, we can work with non-unital C*-algebras *A* and a coassociative $\Delta : A \rightarrow M(A \otimes A)$.

- Again, we now need to assume the existence of Haar weights (which will be unbounded– Haar measure is not finite unless G is compact).
- This gives the notion of a *locally compact quantum group* (lcqg).
- Of interest is that to every lcqg (A, Δ) we find a "dual" (Â, Â). If we form the bidual, we get back to (A, Δ).

• If
$$A = C_0(G)$$
 then $\hat{A} = C_r^*(G)$; so

$$A = C_0(\mathbb{Z}), \quad \hat{A} = C_r^*(\mathbb{Z}) \cong C(\mathbb{T}),$$

and we have generalised the Fourier transform!

Similarly, we can work with non-unital C*-algebras *A* and a coassociative $\Delta : A \rightarrow M(A \otimes A)$.

- Again, we now need to assume the existence of Haar weights (which will be unbounded– Haar measure is not finite unless G is compact).
- This gives the notion of a *locally compact quantum group* (lcqg).
- Of interest is that to every lcqg (A, Δ) we find a "dual" (Â, Â). If we form the bidual, we get back to (A, Δ).

• If
$$A = C_0(G)$$
 then $\hat{A} = C_r^*(G)$; so

$$A = C_0(\mathbb{Z}), \quad \hat{A} = C_r^*(\mathbb{Z}) \cong C(\mathbb{T}),$$

and we have generalised the Fourier transform!

Let (A, Δ) be a compact quantum group. Then *A* becomes a pre-inner-product space for the sesquilinear form $(a|b) = h(b^*a)$. (GNS construction).

- Complete to get a Hilbert space, $L^2(A)$.
- ► Then A acts on L²(A) by left multiplication. This realises (a quotient of) A as a subalgebra of B(L²(A)).
- Given $\xi, \eta \in L^2(A)$, we get a linear functional

$$\omega_{\xi,\eta}: \mathbf{A} \to \mathbb{C}; \quad \mathbf{a} \mapsto (\mathbf{a}(\xi)|\eta).$$

Let $L^1(A)$ be the closed linear span of such functionals.

We turn A* into a Banach algebra for the product

$$(\mu\lambda)(\mathbf{a}) = (\mu \otimes \lambda)\Delta(\mathbf{a}).$$

Then $L^1(A)$ becomes an ideal in A^* .

Let (A, Δ) be a compact quantum group. Then *A* becomes a pre-inner-product space for the sesquilinear form $(a|b) = h(b^*a)$. (GNS construction).

• Complete to get a Hilbert space, $L^2(A)$.

- ► Then A acts on L²(A) by left multiplication. This realises (a quotient of) A as a subalgebra of B(L²(A)).
- Given $\xi, \eta \in L^2(A)$, we get a linear functional

$$\omega_{\xi,\eta}: \mathbf{A} \to \mathbb{C}; \quad \mathbf{a} \mapsto (\mathbf{a}(\xi)|\eta).$$

Let $L^1(A)$ be the closed linear span of such functionals.

We turn A* into a Banach algebra for the product

$$(\mu\lambda)(\mathbf{a}) = (\mu \otimes \lambda)\Delta(\mathbf{a}).$$

Then $L^1(A)$ becomes an ideal in A^* .

Let (A, Δ) be a compact quantum group. Then *A* becomes a pre-inner-product space for the sesquilinear form $(a|b) = h(b^*a)$. (GNS construction).

- Complete to get a Hilbert space, $L^2(A)$.
- ► Then A acts on L²(A) by left multiplication. This realises (a quotient of) A as a subalgebra of B(L²(A)).
- Given $\xi, \eta \in L^2(A)$, we get a linear functional

 $\omega_{\xi,\eta}: \mathbf{A} \to \mathbb{C}; \quad \mathbf{a} \mapsto (\mathbf{a}(\xi)|\eta).$

Let $L^1(A)$ be the closed linear span of such functionals.

We turn A* into a Banach algebra for the product

$$(\mu\lambda)(\mathbf{a}) = (\mu \otimes \lambda)\Delta(\mathbf{a}).$$

Then $L^1(A)$ becomes an ideal in A^* .

Let (A, Δ) be a compact quantum group. Then *A* becomes a pre-inner-product space for the sesquilinear form $(a|b) = h(b^*a)$. (GNS construction).

- Complete to get a Hilbert space, $L^2(A)$.
- ► Then A acts on L²(A) by left multiplication. This realises (a quotient of) A as a subalgebra of B(L²(A)).
- Given $\xi, \eta \in L^2(A)$, we get a linear functional

$$\omega_{\xi,\eta}: \mathbf{A} \to \mathbb{C}; \quad \mathbf{a} \mapsto (\mathbf{a}(\xi)|\eta).$$

Let $L^1(A)$ be the closed linear span of such functionals.

We turn A* into a Banach algebra for the product

$$(\mu\lambda)(\mathbf{a}) = (\mu \otimes \lambda)\Delta(\mathbf{a}).$$

Then $L^1(A)$ becomes an ideal in A^* .

Let (A, Δ) be a compact quantum group. Then *A* becomes a pre-inner-product space for the sesquilinear form $(a|b) = h(b^*a)$. (GNS construction).

- Complete to get a Hilbert space, $L^2(A)$.
- ► Then A acts on L²(A) by left multiplication. This realises (a quotient of) A as a subalgebra of B(L²(A)).
- Given $\xi, \eta \in L^2(A)$, we get a linear functional

$$\omega_{\xi,\eta}: \mathbf{A} \to \mathbb{C}; \quad \mathbf{a} \mapsto (\mathbf{a}(\xi)|\eta).$$

Let $L^1(A)$ be the closed linear span of such functionals.

We turn A* into a Banach algebra for the product

$$(\mu\lambda)(a) = (\mu \otimes \lambda)\Delta(a).$$

Then $L^1(A)$ becomes an ideal in A^* .

Let (A, Δ) be a compact quantum group. Then *A* becomes a pre-inner-product space for the sesquilinear form $(a|b) = h(b^*a)$. (GNS construction).

• Complete to get a Hilbert space, $L^2(A)$.

- ► Then A acts on L²(A) by left multiplication. This realises (a quotient of) A as a subalgebra of B(L²(A)).
- Given $\xi, \eta \in L^2(A)$, we get a linear functional

$$\omega_{\xi,\eta}: \mathbf{A} \to \mathbb{C}; \quad \mathbf{a} \mapsto (\mathbf{a}(\xi)|\eta).$$

Let $L^1(A)$ be the closed linear span of such functionals.

We turn A* into a Banach algebra for the product

$$(\mu\lambda)(a) = (\mu \otimes \lambda)\Delta(a).$$

Then $L^1(A)$ becomes an ideal in A^* .