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C∗-algebras

A C∗-algebra is a complex algebra with:
I An involution, (ab)∗ = b∗a∗ and (ta)∗ = ta∗.
I A complete norm with:

I ‖ab‖ ≤ ‖a‖‖b‖;
I ‖a∗a‖ = ‖a‖2.

In this talk, I’ll mostly stick to unital algebras.
Let X be a compact Hausdorff space, and consider C(X ), the
space of complex-valued continuous functions on X , made into
an algebra with pointwise operations, given an involution by
taking pointwise complex conjugation, and given the supremum
norm:

‖f‖ = sup
x∈X
|f (x)|.

This gives a commutative C∗-algebra.
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Gelfand Theory

In fact, every commutative C∗-algebra is of this form!
Recall that a character on an algebra A is a (unital)
homomorphism ϕ : A→ C. If A is a Banach algebra, then
characters are always contractive maps.

Theorem (Gelfand)
Let A be a unital commutative C∗-algebra, and let ΦA be the
collection of characters on A, given the relative weak∗-topology.
Then ΦA is a compact Hausdorff space, and the map

G : A→ C(ΦA); G(a)(ϕ) = ϕ(a),

is an isometric isomorphism.
In short, commutative (unital) C∗-algebras are all of the form
C(X ).
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∗-homomorphisms

I The natural maps between (unital) C∗-algebras are
bounded algebra homomorphisms, which preserve the
involution (so are ∗-homomorphisms) and which are unital.

I In fact, C∗-algebras are such rigid objects that any
∗-homomorphism is automatically bounded; in fact,
automatically contractive (and if injective, is automatically
an isometry).

I Given T : A→ B a ∗-homomorphism, the “adjoint” or “dual”
operator T ∗ sends characters to characters, and so
induces a continuous map ΦB → ΦA.

I Conversely, given a continuous map φ : X → Y , the map
T : C(Y )→ C(X ); f 7→ f ◦ φ is a unital ∗-homomorphism.

I These processes are mutual inverses.
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A little “dictionary”

Algebras Spaces
A,C(X ) ΦA,X

∗-homomorphisms↔ continuous map
injection surjection

surjection injection
automorphism homeomorphism

direct sum disjoint union
tensor product Cartesian product
closed ideal closed subspace

linear functional finite Borel measure
state probability measure

separable metrisable



Rough philosophy: non-commutative topology

A non-commutative unital C∗-algebra can be thought of as the
algebra of continuous functions on some “non-commutative”
space (which does not really exist!)

I This is a formal analogy: we wish to use intuition and ideas
from, and the language of, spaces to study
non-commutative algebras.

I Alain Connes popularised the notion of “non-commtative
geometry”. But there you are interested in genuine
“geometry”– so some notion of a differentiable manifold
structure; end up looking at cohomology theories.

I I’m more interested in generalities; more interested in
topological spaces than manifolds; more interested in all
compact groups rather than Lie groups etc. One might call
this “non-commutative topology”.
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What is a non-commutative C∗-algebra anyway?

Recap: algebra over C, with involution (ab)∗ = b∗a∗, and
C∗-condition: ‖a∗a‖ = ‖a‖2.
Let H be a Hilbert space, and let B(H) be the algebra of all
bounded linear maps on H. Then taking the “adjoint” of an
operator defines an involution on B(H); and this involution
satisfies the C∗-condition.

(T (ξ)|η) = (ξ|T ∗(η)).

In fact, every C∗-algebra arises as a norm closed, involution
closed, subalgebra of B(H) for a suitable H.
In this talk, it will be better to think of abstract algebras.
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Compact groups

A compact group is a group G which is also a compact
Hausdorff space, such that the group operations

G ×G→ G; (s, t) 7→ st ; G→ G; s 7→ s−1

are continuous.

I All finite groups.
I The circle group T = {eiθ : θ ∈ R} under multiplication;

T ∼= R/Z.
I Orthogonal and unitary groups.
I Disconnected groups, such as

∏
I Z/2Z.



As C∗-algebras

Let G be a compact group. So we can consider the algebra
A = C(G). How do we capture the group operations using A?

I Identify C(G ×G) with A⊗ A.
I We always use the minimal, or spacial, tensor product.
I So the product map G ×G→ G induces a
∗-homomorphism ∆ : A→ A⊗ A.

I That the product map is associative corresponds to ∆
being coassociative: (∆⊗ ι)∆ = (ι⊗∆)∆.

I For now, we ignore the inverse and group identity.
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Cancellation properties

I Suppose we just have a commutative C∗-algebra
A = C(S), and a coassociative map ∆ : A→ A⊗ A.

I This means that S is a compact semigroup.
I The Stone-Weierstrauss theorem shows that the

subspaces

lin{(a⊗ 1)∆(b) : a,b ∈ A}, lin{(1⊗ a)∆(b) : a,b ∈ A}

are dense in A⊗ A = C(S × S), if and only if we have the
“cancellation conditions”

st = st ′ =⇒ t = t ′, st = s′t =⇒ s′ = s.

I A fun exercise is to show that a compact semigroup has
cancellation if and only if it is a group. (Easier is to show
this for a finite semigroup).
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Compact quantum groups

The following definition is due to Woronowicz:

Definition
A compact quantum group is a unital C∗-algebra A together
with a coassociative ∗-homomorphism ∆ : A→ A⊗ A, such
that the sets

{(a⊗ 1)∆(b) : a,b ∈ A}, {(1⊗ a)∆(b) : a,b ∈ A},

are linearly dense in A⊗ A.
We’ve seen that if A = C(G) is commutative, then G is a
compact group, and ∆ comes from the group product.

“Quantum” ∼= “Non-commutative”!
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First example

I Let Γ be a discrete group (i.e. Γ is any group; ignore
topology).

I Consider the Hilbert space `2(Γ) with canonical
orthonormal basis (eg)g∈Γ.

I For each g ∈ Γ, let λ(g) be the “left-translation map”
eh 7→ egh.

I We have λ(g)λ(h) = λ(gh) and λ(g−1) = λ(g)∗.
I Let C∗r (Γ) be the closed linear span of {λ(g) : g ∈ Γ}. This

is a C∗-algebra. The “r” stands for “reduced”.
I There is a ∗-homomorphism

∆ : C∗r (Γ)→ C∗r (Γ)⊗ C∗r (Γ) ∼= C∗r (Γ× Γ) given by
λ(g) 7→ λ(g)⊗ λ(g). Clearly ∆ is coassociative.
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First example (cont.)

I We see that

lin{(a⊗ 1)∆(b) :a,b ∈ C∗r (Γ)}
= lin{λ(gh)⊗ λ(h) : g,h ∈ Γ}
= lin{λ(g)⊗ λ(h) : g,h ∈ Γ}

is obviously dense in C∗r (Γ× Γ).
I Similarly we verify the other “cancellation” condition.
I So (C∗r (Γ),∆) is a compact quantum group.
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Fourier transform
Consider Γ = Z. The Fourier transform is the unitary map

F : `2(Z)→ L2(T); en 7→
(
einθ).

I We give T the Lebesgue measure– a rotationally invariant
probability measure.

I We can think of C(T) as being an algebra acting on L2(T)
by multiplication of functions.

I Then the map

lin{λ(n) : n ∈ Z} → C(T); λ(n) 7→ Fλ(n)F−1

extends continuously to an isometric ∗-isomorphism
between C∗r (Z) and C(T), say F0.

I Then (F0 ⊗F0)∆ = ∆F0.
I So the quantum groups C∗r (Z) and C(T) are isomorphic.
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Towards a genuinely quantum example
Let’s think about SU(2): these are 2× 2 complex matrices
which are unitary, with determinant 1. That is,

SU(2) =
{(α −γ

γ α

)
: α, γ ∈ C, |α|2 + |γ|2 = 1

}
.

I Let a, c ∈ C(SU(2)) be the evaluation maps a(g) = α and
c(g) = γ. Thus a∗a + c∗c = 1.

I Then C(SU(2)) is the commutative unital C∗-algebra
generated by elements a, c with the relation that
a∗a + c∗c = 1.

I Equivalently, C(SU(2)) is the (commutative) unital
C∗-algebra generated by elements a, c such that the matrix

u =

(
a −c∗

c a∗

)
is unitary.
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Twisted SU(2)
Let SUµ(2) be the universal unital C∗-algebra generated by
elements a, c such that the matrix

u =

(
a −µc∗

c a∗

)
is unitary; here µ ∈ [−1,1] \ {0}.
Here universal means that if A is any other C∗-algebra
containing elements a′, c′ satisfying the same conditions, then
there is a ∗-homomorphism SUµ(2)→ A which maps a 7→ a′

and c 7→ c′.
Unpacking this, we get the conditions:

a∗a + c∗c = 1, aa∗ + µ2c∗c = 1,
c∗c = cc∗, ac = µca, ac∗ = µc∗a

Notice that if µ = 1 then SUµ(2) must be commutative, and so
must actually be C(SU(2)).
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Twisted SU(2) cont

Define ∆ by

∆(a) = a⊗ a− µc∗ ⊗ c, ∆(c) = c ⊗ a + a∗ ⊗ c.

We can do this because if

a′ = a⊗ a− µc∗ ⊗ c, c′ = c ⊗ a + a∗ ⊗ c,

then in the algebra of 2× 2 matrices over SUµ(2)⊗ SUµ(2), we
find that (

a′ −µc′∗

c′ a′∗

)
is unitary. So by the universal property of SUµ(2), the
∗-homomorphism ∆ does exist.
Then (SUµ(2),∆) is a compact quantum group (that the
“cancellation” properties hold requires a bit of theory, or some
messing about with generators).
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Haar measure

Every compact group G admits a unique shift-invariant
probability measure, called the Haar measure:∫

G
f (st) dt =

∫
G

f (t) dt .

I This measure induces a state h on C(G).
I An element of a C∗-algebra is positive if it’s of the form a∗a.
I Then a state is a linear functional h : A→ C with h(1) = 1

and h(a∗a) ≥ 0 for all a.
I Always have Cauchy-Schwarz: |h(a∗b)| ≤ h(a∗a)h(b∗b).

I That h is shift-invariant means that

(h ⊗ ι)∆(a) = (ι⊗ h)∆(a) = h(a)1 (a ∈ A = C(G)).
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Every compact quantum group has a Haar state

Theorem (Woronowicz, Van Daele)
Let (A,∆) be a compact quantum group. There is a unique
state h on A with (h ⊗ ι)∆(a) = (ι⊗ h)∆(a) = h(a)1 for all
a ∈ A.

I For C(G), we get the usual Haar measure.
I For C∗r (Γ), the Haar state is

h(a) =
(
a(eeΓ

)
∣∣eeΓ

)
.

This means that h(λ(g)) = 1 for g = eeΓ
, and 0 otherwise.

I In both these cases, h is a trace, meaning that
h(ab) = h(ba) for all a,b ∈ A.

I This is not true in general; we’ll comment more later.
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Representations

A unitary representation of a (compact) group G is a continuous
group homomorphism π from G to the unitary matrices U(n) for
some n.

I U(n) is nothing but the collection of unitary operators on a
n-dimensional Hilbert space.

I Let the (i , j)th matrix entry of π(g) be Uij(g).
I That π is continuous means that Uij ∈ C(G).
I That π(g) is unitary (for all g) means that (Uij), considered

as an n × n matrix over C(G), is unitary.
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Corepresentations

π : G→ U(n) corresponds to U = (Uij) ∈Mn(C(G)).

I That π(gh) = π(g)π(h) means that

Uij(gh) = ∆(Uij)(g,h) =
∑

k

Uik (g)Ukj(h).

I So π a homomorphism is equivalent to

∆(Uij) =
∑

k

Uik ⊗ Ukj .

Definition
A corepresentation of (A,∆) is a unitary U ∈Mn(A) such that
∆(Uij) =

∑
k Uik ⊗ Ukj .



Corepresentations

π : G→ U(n) corresponds to U = (Uij) ∈Mn(C(G)).

I That π(gh) = π(g)π(h) means that

Uij(gh) = ∆(Uij)(g,h) =
∑

k

Uik (g)Ukj(h).

I So π a homomorphism is equivalent to

∆(Uij) =
∑

k

Uik ⊗ Ukj .

Definition
A corepresentation of (A,∆) is a unitary U ∈Mn(A) such that
∆(Uij) =

∑
k Uik ⊗ Ukj .



Corepresentations

π : G→ U(n) corresponds to U = (Uij) ∈Mn(C(G)).

I That π(gh) = π(g)π(h) means that

Uij(gh) = ∆(Uij)(g,h) =
∑

k

Uik (g)Ukj(h).

I So π a homomorphism is equivalent to

∆(Uij) =
∑

k

Uik ⊗ Ukj .

Definition
A corepresentation of (A,∆) is a unitary U ∈Mn(A) such that
∆(Uij) =

∑
k Uik ⊗ Ukj .



Corepresentations

π : G→ U(n) corresponds to U = (Uij) ∈Mn(C(G)).

I That π(gh) = π(g)π(h) means that

Uij(gh) = ∆(Uij)(g,h) =
∑

k

Uik (g)Ukj(h).

I So π a homomorphism is equivalent to

∆(Uij) =
∑

k

Uik ⊗ Ukj .

Definition
A corepresentation of (A,∆) is a unitary U ∈Mn(A) such that
∆(Uij) =

∑
k Uik ⊗ Ukj .



Intertwiners, irreducibles etc.

Just as for representations, we can define:
I Intertwining maps between two corepresentations;
I Isomorphisms between corepresentations;
I Invariant subspaces for corepresentations;
I What an irreducible corepresentation is.

We can also (with more work!) define infinite-dimensional
corepresentations.
Then every corepresentation of a compact quantum group
splits as a direct sum of irreducible, finite-dimensional unitary
corepresentations.
The proofs are very similar to the compact group case– use the
Haar state a lot.
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Haar state a lot.



Matrix coefficients

Given a unitary corepresentation U = (Uij), the matrix
coefficients of U is simply the linear span of the elements Uij in
A.
Take all the irreducible corepresentations, take all their matrix
coefficients, and let A be the linear span.

I This turns out to be a ∗-algebra.
I The product comes from the tensor product of

corepresentations;
I That it is ∗-closed is more mysterious.

I ∆ restricts to a map A → A⊗A (because
∆(Uij) =

∑
k Uik ⊗ Ukj .

I h is a faithful state on A (so if h(a∗a) = 0 then a = 0).
I A is dense in A.
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Hopf algebra

We have a counit, a character ε : A → C, playing the role of the
group identity

(ε⊗ ι)∆(a) = a = (ι⊗ ε)∆(a).

This might not be bounded, so might not extend to A. (Already
happens for C∗r (Γ), when Γ not amenable).
We have an anitpode, playing the role of the group inverse

m(κ⊗ ι)∆ = ε = m(ι⊗ κ)∆.

Here m : A⊗A → A is multiplication.
Again, κ may fail to be bounded. In general,

κ(ab) = κ(b)κ(a), κ
(
κ(a)∗

)∗
= a.

We already see this behaviour for SUµ(2).
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Modular properties of Haar state

There is an automorphism σ : A → A with

h(ab) = h(σ(b)a) (a,b ∈ A).

I So h is “nearly” a trace.
I σ is actually the analytic generator of the Modular

Automorphism Group of h on A– coming from
Tomita–Takesaki Theory.

I But we can construct σ purely from the corepresentation
theory of (A,∆).
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Summary

So we did something quite unpromising– we encoded the group
product of a compact group G into a C∗-algebra, abstracted the
“density conditions”, and then deleted the word “commutative”.

I Amazingly, this works!
I We can construct a Haar state.
I The corepresentation theory is every bit as rich as the

representation theory of compact groups.
I We even find Tomita-Takesaki theory turning up, but

coming both from the analytic side–the C∗-algebra– and
from the group side– the corepresentations.
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Algebra

I The data (A,∆, ε, κ) is a Hopf ∗-algebra.
I You can characterise which Hopf ∗-algebras arise from

compact quantum groups by looking at their
corepresentations.

I So can study compact quantum groups purely from
algebra– increasingly the subject has moved in this
direction.
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Multiplier algebras

I If G is a locally compact, but not compact, group (e.g. R)
then natural to look at C0(G), the algebra of continuous
functions which vanish at∞.

I The multiplier algebra of A = C0(R) is MA = Cb(R):
I so if F ∈ MA,a ∈ A then aF ,Fa ∈ A.
I MA is not “too large”: if F ∈ MA with Fa = 0 = aF for all

a ∈ A, then F = 0.
I Notice that if a ∈ C0(G) then ∆(a)(g,h) = a(gh) will only

be in Cb(G ×G) (as ∆(a)(g,g−1h) = a(h) for any g).
I At the level of algebra, looking at non-unital A together

with a coassociative ∆ : A → M(A⊗A) (where ∆ must
have “nice” cancellation properties) we get van Daele’s
notion of a “multiplier Hopf algebra”.

I To get a nice theory, need to assume the existence of Haar
states.
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More analysis
Similarly, we can work with non-unital C∗-algebras A and a
coassociative ∆ : A→ M(A⊗ A).

I Again, we now need to assume the existence of Haar
weights (which will be unbounded– Haar measure is not
finite unless G is compact).

I This gives the notion of a locally compact quantum group
(lcqg).

I Of interest is that to every lcqg (A,∆) we find a “dual”
(Â, ∆̂). If we form the bidual, we get back to (A,∆).

I If A = C0(G) then Â = C∗r (G); so

A = C0(Z), Â = C∗r (Z) ∼= C(T),

and we have generalised the Fourier transform!
I In fact, this was the original motivation– what’s an operator

algebraic setting in which to study non-abelian Fourier
transforms?
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(Â, ∆̂). If we form the bidual, we get back to (A,∆).

I If A = C0(G) then Â = C∗r (G); so
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Convolution algebras
Let (A,∆) be a compact quantum group. Then A becomes a
pre-inner-product space for the sesquilinear form
(a|b) = h(b∗a). (GNS construction).

I Complete to get a Hilbert space, L2(A).
I Then A acts on L2(A) by left mutliplication. This realises (a

quotient of) A as a subalgebra of B(L2(A)).
I Given ξ, η ∈ L2(A), we get a linear functional

ωξ,η : A→ C; a 7→ (a(ξ)|η).

Let L1(A) be the closed linear span of such functionals.
I We turn A∗ into a Banach algebra for the product

(µλ)(a) = (µ⊗ λ)∆(a).

Then L1(A) becomes an ideal in A∗.
I If A = C0(G), then L1(A) is just L1(G) with the convolution

product. If A = C∗r (Γ), then L1(A) is just A(Γ), the Fourier
algebra of Γ.
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I Given ξ, η ∈ L2(A), we get a linear functional

ωξ,η : A→ C; a 7→ (a(ξ)|η).

Let L1(A) be the closed linear span of such functionals.
I We turn A∗ into a Banach algebra for the product

(µλ)(a) = (µ⊗ λ)∆(a).

Then L1(A) becomes an ideal in A∗.
I If A = C0(G), then L1(A) is just L1(G) with the convolution

product. If A = C∗r (Γ), then L1(A) is just A(Γ), the Fourier
algebra of Γ.
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