Analysis in "non-commutative" mathematics

Matthew Daws

22 March 2012

Outline

C*-algebras as non-commutative spaces

Compact quantum groups

Moving on

C*-algebras

A C^{*}-algebra is a complex algebra with:

- An involution, $(a b)^{*}=b^{*} a^{*}$ and $(t a)^{*}=\bar{t} a^{*}$.
- A complete norm with:
- \|ab\| $\leq\|a\|\|b\|$;
- $\left\|a^{*} a\right\|=\|a\|^{2}$.

In this talk, l'll mostly stick to unital algebras.
Let X be a compact Hausdorff space, and consider $C(X)$, the space of complex-valued continuous functions on X, made into an algebra with pointwise operations, given an involution by taking pointwise complex conjugation, and given the supremum norm:

This gives a commutative C*-algebra.

C*-algebras

A C^{*}-algebra is a complex algebra with:

- An involution, $(a b)^{*}=b^{*} a^{*}$ and $(t a)^{*}=\bar{t} a^{*}$.
- A complete norm with:
- \|ab\| $\leq\|a\|\|b\|$;
- $\left\|a^{*} a\right\|=\|a\|^{2}$.

In this talk, l'll mostly stick to unital algebras.
Let X be a compact Hausdorff space, and consider $C(X)$, the space of complex-valued continuous functions on X, made into an algebra with pointwise operations, given an involution by taking pointwise complex conjugation, and given the supremum norm:

This gives a commutative C*-algebra.

C*-algebras

A C^{*}-algebra is a complex algebra with:

- An involution, $(a b)^{*}=b^{*} a^{*}$ and $(t a)^{*}=\bar{t} a^{*}$.
- A complete norm with:
- $\|a b\| \leq\|a\|\|b\|$;
- $\left\|a^{*} a\right\|=\|a\|^{2}$.

In this talk, l'll mostly stick to unital algebras.
Let X be a compact Hausdorff space, and consider $C(X)$, the space of complex-valued continuous functions on X, made into an algebra with pointwise operations, given an involution by taking pointwise complex conjugation, and given the supremum norm:

$$
\|f\|=\sup _{x \in X}|f(x)| .
$$

This gives a commutative C*-algebra.

C*-algebras

A C^{*}-algebra is a complex algebra with:

- An involution, $(a b)^{*}=b^{*} a^{*}$ and $(t a)^{*}=\bar{t} a^{*}$.
- A complete norm with:
- \|ab\| $\leq\|a\|\|b\|$;
- $\left\|a^{*} a\right\|=\|a\|^{2}$.

In this talk, l'll mostly stick to unital algebras.
Let X be a compact Hausdorff space, and consider $C(X)$, the space of complex-valued continuous functions on X, made into an algebra with pointwise operations, given an involution by taking pointwise complex conjugation, and given the supremum norm:

$$
\|f\|=\sup _{x \in X}|f(x)| .
$$

This gives a commutative C^{*}-algebra.

Gelfand Theory

In fact, every commutative C^{*}-algebra is of this form!
Recall that a character on an algebra A is a (unital) homomorphism $\varphi: A \rightarrow \mathbb{C}$. If A is a Banach algebra, then
characters are always contractive maps.
Theorem (Gelfand)
Let A be a unital commutative C^{*}-algebra, and let Φ_{A} be the collection of characters on A, given the relative weak*-topology. Then Φ_{A} is a compact Hausdorff space, and the map

$$
\mathcal{G}: A \rightarrow C\left(\Phi_{A}\right) ; \quad \mathcal{G}(a)(\varphi)=\varphi(a)
$$

is an isometric isomorphism.
In short, commutative (unital) C*-algebras are all of the form $C(X)$.

Gelfand Theory

In fact, every commutative C^{*}-algebra is of this form! Recall that a character on an algebra A is a (unital) homomorphism $\varphi: A \rightarrow \mathbb{C}$. If A is a Banach algebra, then characters are always contractive maps.
Theorem (Gelfand)
Let A be a unital commutative C^{*}-algebra, and let ϕ_{A} be the collection of characters on A, given the relative weak*-topology. Then Φ_{A} is a compact Hausdorff space, and the map

$$
\mathcal{G}: A \rightarrow C\left(\Phi_{A}\right) ; \quad \mathcal{G}(a)(\varphi)=\varphi(a),
$$

is an isometric isomorphism.
In short, commutative (unital) C*-algebras are all of the form $C(X)$.

Gelfand Theory

In fact, every commutative C^{*}-algebra is of this form!
Recall that a character on an algebra A is a (unital) homomorphism $\varphi: A \rightarrow \mathbb{C}$. If A is a Banach algebra, then characters are always contractive maps.

Theorem (Gelfand)

Let A be a unital commutative C^{*}-algebra, and let Φ_{A} be the collection of characters on A, given the relative weak*-topology. Then Φ_{A} is a compact Hausdorff space, and the map

$$
\mathcal{G}: A \rightarrow C\left(\Phi_{A}\right) ; \quad \mathcal{G}(a)(\varphi)=\varphi(a)
$$

is an isometric isomorphism.
in short, commutative (unital) C*-algebras are all of the form

Gelfand Theory

In fact, every commutative C^{*}-algebra is of this form!
Recall that a character on an algebra A is a (unital) homomorphism $\varphi: A \rightarrow \mathbb{C}$. If A is a Banach algebra, then characters are always contractive maps.

Theorem (Gelfand)

Let A be a unital commutative C^{*}-algebra, and let Φ_{A} be the collection of characters on A, given the relative weak*-topology. Then Φ_{A} is a compact Hausdorff space, and the map

$$
\mathcal{G}: A \rightarrow C\left(\Phi_{A}\right) ; \quad \mathcal{G}(a)(\varphi)=\varphi(a)
$$

is an isometric isomorphism.
In short, commutative (unital) C^{*}-algebras are all of the form $C(X)$.

*-homomorphisms

- The natural maps between (unital) C^{*}-algebras are bounded algebra homomorphisms, which preserve the involution (so are *-homomorphisms) and which are unital.
- In fact, C*-algebras are such rigid objects that any *-homomorphism is automatically bounded; in fact, automatically contractive (and if injective, is automatically an isometry).
- Given $T: A \rightarrow B$ a $*$-homomorphism, the "adjoint" or "dual" operator T^{*} sends characters to characters, and so induces a continuous map $\Phi_{B} \rightarrow \Phi_{A}$.
- Conversely, given a continuous map $\phi: X \rightarrow Y$, the map $T: C(Y) \rightarrow C(X) ; f \mapsto f \circ \phi$ is a unital $*$-homomorphism.
- These processes are mutual inverses.

*-homomorphisms

- The natural maps between (unital) C*-algebras are bounded algebra homomorphisms, which preserve the involution (so are *-homomorphisms) and which are unital.
- In fact, C^{*}-algebras are such rigid objects that any *-homomorphism is automatically bounded; in fact, automatically contractive (and if injective, is automatically an isometry).
- Given $T: A \rightarrow B$ a $*$-homomorphism, the "adjoint" or "dual"
operator T^{*} sends characters to characters, and so
induces a continuous map $\Phi_{B} \rightarrow \Phi_{A}$.
- Conversely, given a continuous map $\phi: X \rightarrow Y$, the map $T: C(Y) \rightarrow C(X) ; f \mapsto f \circ \phi$ is a unital $*$-homomorphism.
- These processes are mutual inverses.

*-homomorphisms

- The natural maps between (unital) C*-algebras are bounded algebra homomorphisms, which preserve the involution (so are *-homomorphisms) and which are unital.
- In fact, C^{*}-algebras are such rigid objects that any *-homomorphism is automatically bounded; in fact, automatically contractive (and if injective, is automatically an isometry).
- Given $T: A \rightarrow B$ a $*$-homomorphism, the "adjoint" or "dual" operator T^{*} sends characters to characters, and so induces a continuous map $\Phi_{B} \rightarrow \Phi_{A}$.
- Conversely, given a continuous map $\phi: X \rightarrow Y$, the map $T: C(Y) \rightarrow C(X) ; f \mapsto f \circ \phi$ is a unital

- These processes are mutual inverses.

*-homomorphisms

- The natural maps between (unital) C*-algebras are bounded algebra homomorphisms, which preserve the involution (so are *-homomorphisms) and which are unital.
- In fact, C^{*}-algebras are such rigid objects that any *-homomorphism is automatically bounded; in fact, automatically contractive (and if injective, is automatically an isometry).
- Given $T: A \rightarrow B$ a $*$-homomorphism, the "adjoint" or "dual" operator T^{*} sends characters to characters, and so induces a continuous map $\Phi_{B} \rightarrow \Phi_{A}$.
- Conversely, given a continuous map $\phi: X \rightarrow Y$, the map $T: C(Y) \rightarrow C(X) ; f \mapsto f \circ \phi$ is a unital $*$-homomorphism.
- These processes are mutual inverses.

*-homomorphisms

- The natural maps between (unital) C*-algebras are bounded algebra homomorphisms, which preserve the involution (so are *-homomorphisms) and which are unital.
- In fact, C*-algebras are such rigid objects that any *-homomorphism is automatically bounded; in fact, automatically contractive (and if injective, is automatically an isometry).
- Given $T: A \rightarrow B$ a *-homomorphism, the "adjoint" or "dual" operator T^{*} sends characters to characters, and so induces a continuous map $\Phi_{B} \rightarrow \Phi_{A}$.
- Conversely, given a continuous map $\phi: X \rightarrow Y$, the map $T: C(Y) \rightarrow C(X) ; f \mapsto f \circ \phi$ is a unital $*$-homomorphism.
- These processes are mutual inverses.

A little "dictionary"

Algebras	Spaces
$A, C(X)$	Φ_{A}, X
$*$-homomorphisms \leftrightarrow continuous map	
injection	surjection
surjection	injection
automorphism	homeomorphism
direct sum	disjoint union
tensor product	Cartesian product
closed ideal	closed subspace
linear functional	finite Borel measure
state	probability measure
separable	metrisable

Rough philosophy: non-commutative topology

A non-commutative unital C*-algebra can be thought of as the algebra of continuous functions on some "non-commutative" space (which does not really exist!)

```
- This is a formal analogy: we wish to use intuition and ideas
    from, and the language of, spaces to study
non-commutative algebras.
- Alain Connes popularised the notion of "non-commtative
geometry". But there you are interested in genuine
"geometry"- so some notion of a differentiable manifold
structure; end up looking at cohomology theories.
- I'm more interested in generalities; more interested in
topological spaces than manifolds; more interested in al
compact groups rather than Lie groups etc. One might call
this "non-commutative topology"
```


Rough philosophy: non-commutative topology

A non-commutative unital C*-algebra can be thought of as the algebra of continuous functions on some "non-commutative" space (which does not really exist!)

- This is a formal analogy: we wish to use intuition and ideas from, and the language of, spaces to study non-commutative algebras.

Rough philosophy: non-commutative topology

A non-commutative unital C*-algebra can be thought of as the algebra of continuous functions on some "non-commutative" space (which does not really exist!)

- This is a formal analogy: we wish to use intuition and ideas from, and the language of, spaces to study non-commutative algebras.
- Alain Connes popularised the notion of "non-commtative geometry". But there you are interested in genuine "geometry"- so some notion of a differentiable manifold structure; end up looking at cohomology theories.
- I'm more interested in generalities; more interested in topological spaces than manifolds; more interested in all compact groups rather than Lie groups etc. One might call this "non-commutative topology"

Rough philosophy: non-commutative topology

A non-commutative unital C*-algebra can be thought of as the algebra of continuous functions on some "non-commutative" space (which does not really exist!)

- This is a formal analogy: we wish to use intuition and ideas from, and the language of, spaces to study non-commutative algebras.
- Alain Connes popularised the notion of "non-commtative geometry". But there you are interested in genuine "geometry"- so some notion of a differentiable manifold structure; end up looking at cohomology theories.
- I'm more interested in generalities; more interested in topological spaces than manifolds; more interested in all compact groups rather than Lie groups etc. One might call this "non-commutative topology".

What is a non-commutative C*-algebra anyway?

Recap: algebra over \mathbb{C}, with involution $(a b)^{*}=b^{*} a^{*}$, and C^{*}-condition: $\left\|a^{*} a\right\|=\|a\|^{2}$.
Let H be a Hilbert space, and let $\mathcal{B}(H)$ be the algebra of all bounded linear maps on H. Then taking the "adjoint" of an operator defines an involution on $\mathcal{B}(H)$; and this involution satisfies the C^{*}-condition.

$$
(T(\xi) \mid \eta)=\left(\xi \mid T^{*}(\eta)\right)
$$

In fact, every C^{*}-algebra arises as a norm closed, involution closed, subalgebra of $\mathcal{B}(H)$ for a suitable H.
In this talk, it will be better to think of abstract algebras.

What is a non-commutative C*-algebra anyway?

Recap: algebra over \mathbb{C}, with involution $(a b)^{*}=b^{*} a^{*}$, and C*-condition: $\left\|a^{*} a\right\|=\|a\|^{2}$.
Let H be a Hilbert space, and let $\mathcal{B}(H)$ be the algebra of all bounded linear maps on H. Then taking the "adjoint" of an operator defines an involution on $\mathcal{B}(H)$; and this involution satisfies the C^{*}-condition.

$$
(T(\xi) \mid \eta)=\left(\xi \mid T^{*}(\eta)\right)
$$

In fact, every C*-algebra arises as a norm closed, involution
closed, subalgebra of $\mathcal{B}(H)$ for a suitable H.
In this talk, it will be better to think of abstract algebras.

What is a non-commutative C*-algebra anyway?

Recap: algebra over \mathbb{C}, with involution $(a b)^{*}=b^{*} a^{*}$, and C*-condition: $\left\|a^{*} a\right\|=\|a\|^{2}$.
Let H be a Hilbert space, and let $\mathcal{B}(H)$ be the algebra of all bounded linear maps on H. Then taking the "adjoint" of an operator defines an involution on $\mathcal{B}(H)$; and this involution satisfies the C^{*}-condition.

$$
(T(\xi) \mid \eta)=\left(\xi \mid T^{*}(\eta)\right)
$$

In fact, every C^{*}-algebra arises as a norm closed, involution closed, subalgebra of $\mathcal{B}(H)$ for a suitable H.

What is a non-commutative C*-algebra anyway?

Recap: algebra over \mathbb{C}, with involution $(a b)^{*}=b^{*} a^{*}$, and C*-condition: $\left\|a^{*} a\right\|=\|a\|^{2}$.
Let H be a Hilbert space, and let $\mathcal{B}(H)$ be the algebra of all bounded linear maps on H. Then taking the "adjoint" of an operator defines an involution on $\mathcal{B}(H)$; and this involution satisfies the C^{*}-condition.

$$
(T(\xi) \mid \eta)=\left(\xi \mid T^{*}(\eta)\right)
$$

In fact, every C^{*}-algebra arises as a norm closed, involution closed, subalgebra of $\mathcal{B}(H)$ for a suitable H. In this talk, it will be better to think of abstract algebras.

Compact groups

A compact group is a group G which is also a compact Hausdorff space, such that the group operations

$$
G \times G \rightarrow G ;(s, t) \mapsto s t ; \quad G \rightarrow G ; s \mapsto s^{-1}
$$

are continuous.

- All finite groups.
- The circle group $\mathbb{T}=\left\{\boldsymbol{e}^{i \theta}: \theta \in \mathbb{R}\right\}$ under multiplication; $\mathbb{T} \cong \mathbb{R} / \mathbb{Z}$.
- Orthogonal and unitary groups.
- Disconnected groups, such as $\prod_{i} \mathbb{Z} / 2 \mathbb{Z}$.

As C*-algebras

Let G be a compact group. So we can consider the algebra $A=C(G)$. How do we capture the group operations using A ?

- Identify $C(G \times G)$ with $A \otimes A$.
- We always use the minimal, or spacial, tensor product.
- So the product map $G \times G \rightarrow G$ induces a *-homomorphism $\triangle: A \rightarrow A \otimes A$.
- That the product map is associative corresponds to Δ being coassociative: $(\Delta \otimes \iota) \Delta=(\iota \otimes \Delta) \Delta$.
- For now, we ignore the inverse and group identity.

As C*-algebras

Let G be a compact group. So we can consider the algebra $A=C(G)$. How do we capture the group operations using A ?

- Identify $C(G \times G)$ with $A \otimes A$.
- We always use the minimal, or spacial, tensor product.
- So the product map $G \times G \rightarrow G$ induces a *-homomorphism $\Delta: A \rightarrow A \otimes A$.
- That the product map is associative corresponds to \triangle being coassociative: $(\Delta \otimes \iota) \Delta=(\iota \otimes \Delta) \Delta$.
- For now, we ignore the inverse and group identity.

As C*-algebras

Let G be a compact group. So we can consider the algebra $A=C(G)$. How do we capture the group operations using A ?

- Identify $C(G \times G)$ with $A \otimes A$.
- We always use the minimal, or spacial, tensor product.
- So the product map $G \times G \rightarrow G$ induces a *-homomorphism $\Delta: A \rightarrow A \otimes A$.
- That the product map is associative corresponds to \triangle being coassociative: $(\Delta \otimes \iota) \Delta=(\iota \otimes \Delta) \Delta$.
- For now, we ignore the inverse and group identity.

As C*-algebras

Let G be a compact group. So we can consider the algebra $A=C(G)$. How do we capture the group operations using A ?

- Identify $C(G \times G)$ with $A \otimes A$.
- We always use the minimal, or spacial, tensor product.
- So the product map $G \times G \rightarrow G$ induces a *-homomorphism $\Delta: A \rightarrow A \otimes A$.
- That the product map is associative corresponds to \triangle being coassociative: $(\Delta \otimes \iota) \Delta=(\iota \otimes \Delta) \Delta$.
- For now, we ignore the inverse and group identity.

As C*-algebras

Let G be a compact group. So we can consider the algebra $A=C(G)$. How do we capture the group operations using A ?

- Identify $C(G \times G)$ with $A \otimes A$.
- We always use the minimal, or spacial, tensor product.
- So the product map $G \times G \rightarrow G$ induces a *-homomorphism $\Delta: A \rightarrow A \otimes A$.
- That the product map is associative corresponds to Δ being coassociative: $(\Delta \otimes \iota) \Delta=(\iota \otimes \Delta) \Delta$.
- For now, we ignore the inverse and group identity.

As C*-algebras

Let G be a compact group. So we can consider the algebra $A=C(G)$. How do we capture the group operations using A ?

- Identify $C(G \times G)$ with $A \otimes A$.
- We always use the minimal, or spacial, tensor product.
- So the product map $G \times G \rightarrow G$ induces a *-homomorphism $\Delta: A \rightarrow A \otimes A$.
- That the product map is associative corresponds to Δ being coassociative: $(\Delta \otimes \iota) \Delta=(\iota \otimes \Delta) \Delta$.
- For now, we ignore the inverse and group identity.

Cancellation properties

- Suppose we just have a commutative C^{*}-algebra $A=C(S)$, and a coassociative map $\Delta: A \rightarrow A \otimes A$.
- This means that S is a compact semigroup.
- The Stone-Weierstrauss theorem shows that the subspaces

$$
\operatorname{lin}\{(a \otimes 1) \Delta(b): a, b \in A\}, \quad \operatorname{lin}\{(1 \otimes a) \Delta(b): a, b \in A\}
$$

are dense in $A \otimes A=C(S \times S)$, if and only if we have the "cancellation conditions"

$$
s t=s t^{\prime} \Longrightarrow t=t^{\prime}, \quad s t=s^{\prime} t \Longrightarrow s^{\prime}=s
$$

- A fun exercise is to show that a compact semigroup has cancellation if and only if it is a group. (Easier is to show this for a finite semigroup).

Cancellation properties

- Suppose we just have a commutative C^{*}-algebra $A=C(S)$, and a coassociative map $\Delta: A \rightarrow A \otimes A$.
- This means that S is a compact semigroup.
- The Stone-Weierstrauss theorem shows that the subspaces

$$
\operatorname{lin}\{(a \otimes 1) \Delta(b): a, b \in A\}, \quad \operatorname{lin}\{(1 \otimes a) \Delta(b): a, b \in A\}
$$

are dense in $A \otimes A=C(S \times S)$, if and only if we have the "cancellation conditions"

$$
s t=s t^{\prime} \Longrightarrow t=t^{\prime}, \quad s t=s^{\prime} t \Longrightarrow s^{\prime}=s
$$

- A fun exercise is to show that a compact semigroup has cancellation if and only if it is a group. (Easier is to show this for a finite semigroup).

Cancellation properties

- Suppose we just have a commutative C^{*}-algebra $A=C(S)$, and a coassociative map $\Delta: A \rightarrow A \otimes A$.
- This means that S is a compact semigroup.
- The Stone-Weierstrauss theorem shows that the subspaces

$$
\operatorname{lin}\{(a \otimes 1) \Delta(b): a, b \in A\}, \quad \operatorname{lin}\{(1 \otimes a) \Delta(b): a, b \in A\}
$$

are dense in $A \otimes A=C(S \times S)$, if and only if we have the "cancellation conditions"

$$
s t=s t^{\prime} \Longrightarrow t=t^{\prime}, \quad s t=s^{\prime} t \Longrightarrow s^{\prime}=s
$$

- A fun exercise is to show that a compact semigroup has cancellation if and only if it is a group. (Easier is to show this for a finite semigroup).

Cancellation properties

- Suppose we just have a commutative C^{*}-algebra $A=C(S)$, and a coassociative map $\Delta: A \rightarrow A \otimes A$.
- This means that S is a compact semigroup.
- The Stone-Weierstrauss theorem shows that the subspaces

$$
\operatorname{lin}\{(a \otimes 1) \Delta(b): a, b \in A\}, \quad \operatorname{lin}\{(1 \otimes a) \Delta(b): a, b \in A\}
$$

are dense in $A \otimes A=C(S \times S)$, if and only if we have the "cancellation conditions"

$$
s t=s t^{\prime} \Longrightarrow t=t^{\prime}, \quad s t=s^{\prime} t \Longrightarrow s^{\prime}=s
$$

- A fun exercise is to show that a compact semigroup has cancellation if and only if it is a group. (Easier is to show this for a finite semigroup).

Compact quantum groups

The following definition is due to Woronowicz:
Definition
A compact quantum group is a unital C^{*}-algebra A together with a coassociative $*$-homomorphism $\Delta: A \rightarrow A \otimes A$, such that the sets

$$
\{(a \otimes 1) \Delta(b): a, b \in A\}, \quad\{(1 \otimes a) \Delta(b): a, b \in A\}
$$

are linearly dense in $A \otimes A$.
We've seen that if $A=C(G)$ is commutative, then G is a
compact group, and Δ comes from the group product.
"Quantum" $\cong " N o n-c o m m u t a t i v e "!$

Compact quantum groups

The following definition is due to Woronowicz:
Definition
A compact quantum group is a unital C^{*}-algebra A together with a coassociative $*$-homomorphism $\Delta: A \rightarrow A \otimes A$, such that the sets

$$
\{(a \otimes 1) \Delta(b): a, b \in A\}, \quad\{(1 \otimes a) \Delta(b): a, b \in A\}
$$

are linearly dense in $A \otimes A$.
We've seen that if $A=C(G)$ is commutative, then G is a compact group, and Δ comes from the group product.
"Quantum" $\cong " N o n-c o m m u t a t i v e "!$

Compact quantum groups

The following definition is due to Woronowicz:
Definition
A compact quantum group is a unital C^{*}-algebra A together with a coassociative $*$-homomorphism $\Delta: A \rightarrow A \otimes A$, such that the sets

$$
\{(a \otimes 1) \Delta(b): a, b \in A\}, \quad\{(1 \otimes a) \Delta(b): a, b \in A\}
$$

are linearly dense in $A \otimes A$.
We've seen that if $A=C(G)$ is commutative, then G is a compact group, and Δ comes from the group product.
"Quantum" \cong "Non-commutative"!

First example

- Let Γ be a discrete group (i.e. Γ is any group; ignore topology).
- Consider the Hilbert space $\ell^{2}(\Gamma)$ with canonical orthonormal basis $\left(e_{g}\right)_{g \in \Gamma}$.
- For each $g \in \Gamma$, let $\lambda(g)$ be the "left-translation map" $e_{h} \mapsto e_{g h}$.
- We have $\lambda(g) \lambda(h)=\lambda(g h)$ and $\lambda\left(g^{-1}\right)=\lambda(g)^{*}$.
- Let $C_{r}^{*}(\Gamma)$ be the closed linear span of $\{\lambda(g): g \in \Gamma\}$. This is a C*-algebra. The "r" stands for "reduced".
- There is a $*$-homomorphism

$\lambda(g) \mapsto \lambda(g) \otimes \lambda(g)$. Clearly Δ is coassociative.

First example

- Let Γ be a discrete group (i.e. Γ is any group; ignore topology).
- Consider the Hilbert space $\ell^{2}(\Gamma)$ with canonical orthonormal basis $\left(e_{g}\right)_{g \in \Gamma}$.
* For each $g \in \Gamma$, let $\lambda(g)$ be the "left-translation map" $e_{h} \mapsto e_{g h}$.
- We have $\lambda(g) \lambda(h)=\lambda(g h)$ and $\lambda\left(g^{-1}\right)=\lambda(g)^{*}$.
- Let $C_{r}^{*}(\Gamma)$ be the closed linear span of $\{\lambda(g): g \in \Gamma\}$. This is a C^{*}-algebra. The " r " stands for "reduced".
- There is a $*$-homomorphism

First example

- Let Γ be a discrete group (i.e. Γ is any group; ignore topology).
- Consider the Hilbert space $\ell^{2}(\Gamma)$ with canonical orthonormal basis $\left(e_{g}\right)_{g \in \Gamma}$.
- For each $g \in \Gamma$, let $\lambda(g)$ be the "left-translation map" $e_{h} \mapsto e_{g h}$.
- We have $\lambda(g) \lambda(h)=\lambda(g h)$ and $\lambda\left(g^{-1}\right)=\lambda(g)^{*}$.
- Let $C_{r}^{*}(\Gamma)$ be the closed linear span of $\{\lambda(g): g \in \Gamma\}$. This is a C^{*}-algebra. The " r " stands for "reduced".
- There is a *-homomorphism $\Delta: C_{r}^{*}(\Gamma) \rightarrow C_{r}^{*}(\Gamma) \otimes C_{r}^{*}(\Gamma) \cong C_{r}^{*}(\Gamma \times \Gamma)$ given by
$\lambda(g) \mapsto \lambda(g) \otimes \lambda(g)$. Clearly Δ is coassociative.

First example

- Let Γ be a discrete group (i.e. Γ is any group; ignore topology).
- Consider the Hilbert space $\ell^{2}(\Gamma)$ with canonical orthonormal basis $\left(e_{g}\right)_{g \in \Gamma}$.
- For each $g \in \Gamma$, let $\lambda(g)$ be the "left-translation map" $e_{h} \mapsto e_{g h}$.
- We have $\lambda(g) \lambda(h)=\lambda(g h)$ and $\lambda\left(g^{-1}\right)=\lambda(g)^{*}$.
- Let $C_{r}^{*}(\Gamma)$ be the closed linear span of $\{\lambda(g): g \in \Gamma\}$. This is a C^{*}-algebra. The " r " stands for "reduced".
- There is a *-homomorphism

First example

- Let Γ be a discrete group (i.e. Γ is any group; ignore topology).
- Consider the Hilbert space $\ell^{2}(\Gamma)$ with canonical orthonormal basis $\left(e_{g}\right)_{g \in \Gamma}$.
- For each $g \in \Gamma$, let $\lambda(g)$ be the "left-translation map" $e_{h} \mapsto e_{g h}$.
- We have $\lambda(g) \lambda(h)=\lambda(g h)$ and $\lambda\left(g^{-1}\right)=\lambda(g)^{*}$.
- Let $C_{r}^{*}(\Gamma)$ be the closed linear span of $\{\lambda(g): g \in \Gamma\}$. This is a C^{*}-algebra. The " r " stands for "reduced".
- There is a $*$-homomorphism

First example

- Let Γ be a discrete group (i.e. Γ is any group; ignore topology).
- Consider the Hilbert space $\ell^{2}(\Gamma)$ with canonical orthonormal basis $\left(e_{g}\right)_{g \in \Gamma}$.
- For each $g \in \Gamma$, let $\lambda(g)$ be the "left-translation map" $e_{h} \mapsto e_{g h}$.
- We have $\lambda(g) \lambda(h)=\lambda(g h)$ and $\lambda\left(g^{-1}\right)=\lambda(g)^{*}$.
- Let $C_{r}^{*}(\Gamma)$ be the closed linear span of $\{\lambda(g): g \in \Gamma\}$. This is a C^{*}-algebra. The " r " stands for "reduced".
- There is a $*$-homomorphism $\Delta: C_{r}^{*}(\Gamma) \rightarrow C_{r}^{*}(\Gamma) \otimes C_{r}^{*}(\Gamma) \cong C_{r}^{*}(\Gamma \times \Gamma)$ given by $\lambda(g) \mapsto \lambda(g) \otimes \lambda(g)$. Clearly Δ is coassociative.

First example (cont.)

- We see that

$$
\begin{aligned}
& \operatorname{lin}\left\{(a \otimes 1) \Delta(b): a, b \in C_{r}^{*}(\Gamma)\right\} \\
&=\operatorname{lin}\{\lambda(g h) \otimes \lambda(h): g, h \in \Gamma\} \\
&=\operatorname{lin}\{\lambda(g) \otimes \lambda(h): g, h \in \Gamma\}
\end{aligned}
$$

is obviously dense in $C_{r}^{*}(\Gamma \times \Gamma)$.

- Similarly we verify the other "cancellation" condition.
- So $\left(C_{r}^{*}(\Gamma), \Delta\right)$ is a compact quantum group.

First example (cont.)

- We see that

$$
\begin{aligned}
& \operatorname{lin}\left\{(a \otimes 1) \Delta(b): a, b \in C_{r}^{*}(\Gamma)\right\} \\
&=\operatorname{lin}\{\lambda(g h) \otimes \lambda(h): g, h \in \Gamma\} \\
&=\operatorname{lin}\{\lambda(g) \otimes \lambda(h): g, h \in \Gamma\}
\end{aligned}
$$

is obviously dense in $C_{r}^{*}(\Gamma \times \Gamma)$.

- Similarly we verify the other "cancellation" condition.
- So $\left(C_{\Gamma}^{*}(\Gamma), \Delta\right)$ is a compact quantum group.

First example (cont.)

- We see that

$$
\begin{aligned}
& \operatorname{lin}\left\{(a \otimes 1) \Delta(b): a, b \in C_{r}^{*}(\Gamma)\right\} \\
&=\operatorname{lin}\{\lambda(g h) \otimes \lambda(h): g, h \in \Gamma\} \\
&=\operatorname{lin}\{\lambda(g) \otimes \lambda(h): g, h \in \Gamma\}
\end{aligned}
$$

is obviously dense in $C_{r}^{*}(\Gamma \times \Gamma)$.

- Similarly we verify the other "cancellation" condition.
- So $\left(C_{r}^{*}(\Gamma), \Delta\right)$ is a compact quantum group.

Fourier transform

Consider $\Gamma=\mathbb{Z}$. The Fourier transform is the unitary map

$$
\mathcal{F}: \ell^{2}(\mathbb{Z}) \rightarrow L^{2}(\mathbb{T}) ; \quad e_{n} \mapsto\left(e^{i n \theta}\right)
$$

> - We give \mathbb{T} the Lebesgue measure- a rotationally invariant probability measure.
> - We can think of $C(\mathbb{T})$ as being an algebra acting on $L^{2}(\mathbb{T})$ by multiplication of functions.
> - Then the map

$$
\operatorname{lin}\{\lambda(n): n \in \mathbb{Z}\} \rightarrow C(\mathbb{T}) ; \quad \lambda(n) \mapsto \mathcal{F} \lambda(n) \mathcal{F}^{-1}
$$

extends continuously to an isometric $*$-isomorphism between $C_{r}^{*}(\mathbb{Z})$ and $C(\mathbb{T})$, say \mathcal{F}_{0}.
\Rightarrow Then $\left(\mathcal{F}_{0} \otimes \mathcal{F}_{0}\right) \Delta=\Delta \mathcal{F}_{0}$.

- So the quantum groups $C_{r}^{*}(\mathbb{Z})$ and $C(\mathbb{T})$ are isomorphic.

Fourier transform

Consider $\Gamma=\mathbb{Z}$. The Fourier transform is the unitary map

$$
\mathcal{F}: \ell^{2}(\mathbb{Z}) \rightarrow L^{2}(\mathbb{T}) ; \quad e_{n} \mapsto\left(e^{i n \theta}\right)
$$

- We give \mathbb{T} the Lebesgue measure- a rotationally invariant probability measure.
- We can think of $C(\mathbb{T})$ as being an algebra acting on $L^{2}(\mathbb{T})$ by multiplication of functions.
- Then the map

extends continuously to an isometric $*$-isomorphism between $C_{r}^{*}(\mathbb{Z})$ and $C(\mathbb{T})$, say \mathcal{F}_{0}.
\Rightarrow Then $\left(\mathcal{F}_{0} \otimes \mathcal{F}_{0}\right) \Delta=\Delta \mathcal{F}_{0}$.
- So the quantum groups $C_{r}^{*}(\mathbb{Z})$ and $C(\mathbb{T})$ are isomorphic.

Fourier transform

Consider $\Gamma=\mathbb{Z}$. The Fourier transform is the unitary map

$$
\mathcal{F}: \ell^{2}(\mathbb{Z}) \rightarrow L^{2}(\mathbb{T}) ; \quad e_{n} \mapsto\left(e^{i n \theta}\right)
$$

- We give \mathbb{T} the Lebesgue measure- a rotationally invariant probability measure.
- We can think of $C(\mathbb{T})$ as being an algebra acting on $L^{2}(\mathbb{T})$ by multiplication of functions.
- Then the map

extends continuously to an isometric $*$-isomorphism between $C_{r}^{*}(\mathbb{Z})$ and $C(\mathbb{T})$, say \mathcal{F}_{0}.
- Then $\left(\mathcal{F}_{0} \otimes \mathcal{F}_{0}\right) \Delta=\Delta \mathcal{F}_{0}$.
- So the quantum groups $C_{r}^{*}(\mathbb{Z})$ and $C(\mathbb{T})$ are isomorphic.

Fourier transform

Consider $\Gamma=\mathbb{Z}$. The Fourier transform is the unitary map

$$
\mathcal{F}: \ell^{2}(\mathbb{Z}) \rightarrow L^{2}(\mathbb{T}) ; \quad e_{n} \mapsto\left(e^{i n \theta}\right)
$$

- We give \mathbb{T} the Lebesgue measure- a rotationally invariant probability measure.
- We can think of $C(\mathbb{T})$ as being an algebra acting on $L^{2}(\mathbb{T})$ by multiplication of functions.
- Then the map

$$
\operatorname{lin}\{\lambda(n): n \in \mathbb{Z}\} \rightarrow C(\mathbb{T}) ; \quad \lambda(n) \mapsto \mathcal{F} \lambda(n) \mathcal{F}^{-1}
$$

extends continuously to an isometric $*$-isomorphism between $C_{r}^{*}(\mathbb{Z})$ and $C(\mathbb{T})$, say \mathcal{F}_{0}.

Fourier transform

Consider $\Gamma=\mathbb{Z}$. The Fourier transform is the unitary map

$$
\mathcal{F}: \ell^{2}(\mathbb{Z}) \rightarrow L^{2}(\mathbb{T}) ; \quad e_{n} \mapsto\left(e^{i n \theta}\right)
$$

- We give \mathbb{T} the Lebesgue measure- a rotationally invariant probability measure.
- We can think of $C(\mathbb{T})$ as being an algebra acting on $L^{2}(\mathbb{T})$ by multiplication of functions.
- Then the map

$$
\operatorname{lin}\{\lambda(n): n \in \mathbb{Z}\} \rightarrow C(\mathbb{T}) ; \quad \lambda(n) \mapsto \mathcal{F} \lambda(n) \mathcal{F}^{-1}
$$

extends continuously to an isometric $*$-isomorphism between $C_{r}^{*}(\mathbb{Z})$ and $C(\mathbb{T})$, say \mathcal{F}_{0}.

- Then $\left(\mathcal{F}_{0} \otimes \mathcal{F}_{0}\right) \Delta=\Delta \mathcal{F}_{0}$.
- So the quantum groups $C_{r}^{*}(\mathbb{Z})$ and $C(\mathbb{T})$ are isomorphic.

Fourier transform

Consider $\Gamma=\mathbb{Z}$. The Fourier transform is the unitary map

$$
\mathcal{F}: \ell^{2}(\mathbb{Z}) \rightarrow L^{2}(\mathbb{T}) ; \quad e_{n} \mapsto\left(e^{i n \theta}\right)
$$

- We give \mathbb{T} the Lebesgue measure- a rotationally invariant probability measure.
- We can think of $C(\mathbb{T})$ as being an algebra acting on $L^{2}(\mathbb{T})$ by multiplication of functions.
- Then the map

$$
\operatorname{lin}\{\lambda(n): n \in \mathbb{Z}\} \rightarrow C(\mathbb{T}) ; \quad \lambda(n) \mapsto \mathcal{F} \lambda(n) \mathcal{F}^{-1}
$$

extends continuously to an isometric $*$-isomorphism between $C_{r}^{*}(\mathbb{Z})$ and $C(\mathbb{T})$, say \mathcal{F}_{0}.

- Then $\left(\mathcal{F}_{0} \otimes \mathcal{F}_{0}\right) \Delta=\Delta \mathcal{F}_{0}$.
- So the quantum groups $C_{r}^{*}(\mathbb{Z})$ and $C(\mathbb{T})$ are isomorphic.

Towards a genuinely quantum example

Let's think about $S U(2)$: these are 2×2 complex matrices which are unitary, with determinant 1 . That is,

$$
S U(2)=\left\{\left(\begin{array}{cc}
\alpha & -\bar{\gamma} \\
\gamma & \bar{\alpha}
\end{array}\right): \alpha, \gamma \in \mathbb{C},|\alpha|^{2}+|\gamma|^{2}=1\right\} .
$$

- Let $a, c \in C(S U(2))$ be the evaluation maps $a(g)=\alpha$ and $c(g)=\gamma$. Thus $a^{*} a+c^{*} c=1$.
- Then $C(S U(2))$ is the commutative unital C^{*}-algebra generated by elements a, c with the relation that $a^{*} a+c^{*} c=1$.
- Equivalently, $C(S U(2))$ is the (commutative) unital C^{*}-algebra generated by elements a, c such that the matrix

Towards a genuinely quantum example

Let's think about $S U(2)$: these are 2×2 complex matrices which are unitary, with determinant 1 . That is,

$$
S U(2)=\left\{\left(\begin{array}{cc}
\alpha & -\bar{\gamma} \\
\gamma & \bar{\alpha}
\end{array}\right): \alpha, \gamma \in \mathbb{C},|\alpha|^{2}+|\gamma|^{2}=1\right\} .
$$

- Let $a, c \in C(S U(2))$ be the evaluation maps $a(g)=\alpha$ and $c(g)=\gamma$. Thus $a^{*} a+c^{*} c=1$.
- Then $C(S U(2))$ is the commutative unital C^{*}-algebra generated by elements a, c with the relation that
- Equivalently, $C(S U(2))$ is the (commutative) unital C^{*}-algebra generated by elements a, c such that the matrix

Towards a genuinely quantum example

Let's think about $S U(2)$: these are 2×2 complex matrices which are unitary, with determinant 1 . That is,

$$
S U(2)=\left\{\left(\begin{array}{cc}
\alpha & -\bar{\gamma} \\
\gamma & \bar{\alpha}
\end{array}\right): \alpha, \gamma \in \mathbb{C},|\alpha|^{2}+|\gamma|^{2}=1\right\} .
$$

- Let $a, c \in C(S U(2))$ be the evaluation maps $a(g)=\alpha$ and $c(g)=\gamma$. Thus $a^{*} a+c^{*} c=1$.
- Then $C(S U(2))$ is the commutative unital C^{*}-algebra generated by elements a, c with the relation that $a^{*} a+c^{*} c=1$.
- Equivalently, $C(S U(2))$ is the (commutative) unital
C**-algebra generated by elements a, c such that the matrix $^{\text {a }}$

Towards a genuinely quantum example

Let's think about $S U(2)$: these are 2×2 complex matrices which are unitary, with determinant 1 . That is,

$$
S U(2)=\left\{\left(\begin{array}{cc}
\alpha & -\bar{\gamma} \\
\gamma & \bar{\alpha}
\end{array}\right): \alpha, \gamma \in \mathbb{C},|\alpha|^{2}+|\gamma|^{2}=1\right\} .
$$

- Let $a, c \in C(S U(2))$ be the evaluation maps $a(g)=\alpha$ and $c(g)=\gamma$. Thus $a^{*} a+c^{*} c=1$.
- Then $C(S U(2))$ is the commutative unital C^{*}-algebra generated by elements a, c with the relation that $a^{*} a+c^{*} c=1$.
- Equivalently, $C(S U(2))$ is the (commutative) unital C^{*}-algebra generated by elements a, c such that the matrix

$$
u=\left(\begin{array}{cc}
a & -c^{*} \\
c & a^{*}
\end{array}\right)
$$

is unitary.

Twisted SU(2)

Let $S U_{\mu}(2)$ be the universal unital C^{*}-algebra generated by elements a, c such that the matrix

$$
u=\left(\begin{array}{cc}
a & -\mu c^{*} \\
c & a^{*}
\end{array}\right)
$$

is unitary; here $\mu \in[-1,1] \backslash\{0\}$.
Here universal means that if A is any other C^{*}-algebra
containing elements a^{\prime}, c^{\prime} satisfying the same conditions, then
there is a $*$-homomorphism $S U_{\mu}(2) \rightarrow A$ which maps $a \mapsto a^{\prime}$
and $c \mapsto c^{\prime}$.
Unpacking this, we get the condittions:

Notice that if $\mu=1$ then $S U_{\mu}(2)$ must be commutative, and so must actually be $C(S U(2))$.

Twisted SU(2)

Let $S U_{\mu}(2)$ be the universal unital C^{*}-algebra generated by elements a, c such that the matrix

$$
u=\left(\begin{array}{cc}
a & -\mu c^{*} \\
c & a^{*}
\end{array}\right)
$$

is unitary; here $\mu \in[-1,1] \backslash\{0\}$. Here universal means that if A is any other C^{*}-algebra containing elements a^{\prime}, c^{\prime} satisfying the same conditions, then there is a $*$-homomorphism $S U_{\mu}(2) \rightarrow A$ which maps $a \mapsto a^{\prime}$ and $c \mapsto c^{\prime}$.
Unpacking this, we get the conditions:

Notice that if $\mu=1$ then $S U_{\mu}(2)$ must be commutative, and so must actually be $C(S U(2))$.

Twisted $S U(2)$

Let $S U_{\mu}(2)$ be the universal unital C^{*}-algebra generated by elements a, c such that the matrix

$$
u=\left(\begin{array}{cc}
a & -\mu c^{*} \\
c & a^{*}
\end{array}\right)
$$

is unitary; here $\mu \in[-1,1] \backslash\{0\}$.
Here universal means that if A is any other C^{*}-algebra containing elements a^{\prime}, c^{\prime} satisfying the same conditions, then there is a $*$-homomorphism $S U_{\mu}(2) \rightarrow A$ which maps $a \mapsto a^{\prime}$ and $c \mapsto c^{\prime}$.
Unpacking this, we get the conditions:

$$
\begin{gathered}
a^{*} a+c^{*} c=1, \quad a a^{*}+\mu^{2} c^{*} c=1, \\
c^{*} c=c c^{*}, \quad a c=\mu c a, \quad a c^{*}=\mu c^{*} a
\end{gathered}
$$

Notice that if $\mu=1$ then $S U_{\mu}(2)$ must be commutative, and so must actually be $C(S U(2))$.

Twisted $S U(2)$

Let $S U_{\mu}(2)$ be the universal unital C^{*}-algebra generated by elements a, c such that the matrix

$$
u=\left(\begin{array}{cc}
a & -\mu c^{*} \\
c & a^{*}
\end{array}\right)
$$

is unitary; here $\mu \in[-1,1] \backslash\{0\}$.
Here universal means that if A is any other C^{*}-algebra containing elements a^{\prime}, c^{\prime} satisfying the same conditions, then there is a $*$-homomorphism $S U_{\mu}(2) \rightarrow A$ which maps $a \mapsto a^{\prime}$ and $c \mapsto c^{\prime}$.
Unpacking this, we get the conditions:

$$
\begin{gathered}
a^{*} a+c^{*} c=1, \quad a a^{*}+\mu^{2} c^{*} c=1, \\
c^{*} c=c c^{*}, \quad a c=\mu c a, \quad a c^{*}=\mu c^{*} a
\end{gathered}
$$

Notice that if $\mu=1$ then $S U_{\mu}(2)$ must be commutative, and so must actually be $C(S U(2))$.

Twisted SU(2) cont

Define Δ by

$$
\Delta(a)=a \otimes a-\mu c^{*} \otimes c, \quad \Delta(c)=c \otimes a+a^{*} \otimes c .
$$

We can do this because if

$$
a^{\prime}=a \otimes a-\mu c^{*} \otimes c, \quad c^{\prime}=c \otimes a+a^{*} \otimes c,
$$

then in the algebra of 2×2 matrices over $S U_{\mu}(2) \otimes S U_{\mu}(2)$, we find that

$$
\left(\begin{array}{cc}
a^{\prime} & -\mu c^{\prime *} \\
d^{\prime} & a^{\prime *}
\end{array}\right)
$$

is unitary. So by the universal property of $S U_{\mu}(2)$, the *-homomorphism Δ does exist.
Then ($\left.S U_{\mu}(2), \Delta\right)$ is a compact quantum group (that the "cancellation" properties hold requires a bit of theory, or some messing about with generators).

Twisted SU(2) cont

Define Δ by

$$
\Delta(a)=a \otimes a-\mu c^{*} \otimes c, \quad \Delta(c)=c \otimes a+a^{*} \otimes c
$$

We can do this because if

$$
a^{\prime}=a \otimes a-\mu c^{*} \otimes c, \quad c^{\prime}=c \otimes a+a^{*} \otimes c
$$

then in the algebra of 2×2 matrices over $S U_{\mu}(2) \otimes S U_{\mu}(2)$, we find that

$$
\left(\begin{array}{cc}
a^{\prime} & -\mu c^{\prime *} \\
c^{\prime} & a^{\prime *}
\end{array}\right)
$$

is unitary. So by the universal property of $S U_{\mu}(2)$, the
*-homomorphism Δ does exist.
Then $\left(S U_{\mu}(2), \Delta\right)$ is a compact quantum group (that the
"cancellation" properties hold requires a bit of theory, or sorne messing about with generators).

Twisted SU(2) cont

Define Δ by

$$
\Delta(a)=a \otimes a-\mu c^{*} \otimes c, \quad \Delta(c)=c \otimes a+a^{*} \otimes c .
$$

We can do this because if

$$
a^{\prime}=a \otimes a-\mu c^{*} \otimes c, \quad c^{\prime}=c \otimes a+a^{*} \otimes c,
$$

then in the algebra of 2×2 matrices over $S U_{\mu}(2) \otimes S U_{\mu}(2)$, we find that

$$
\left(\begin{array}{cc}
a^{\prime} & -\mu c^{\prime *} \\
c^{\prime} & a^{\prime *}
\end{array}\right)
$$

is unitary. So by the universal property of $S U_{\mu}(2)$, the *-homomorphism Δ does exist.

> Then $\left(S U_{\mu}(2), \Delta\right)$ is a compact quantum group (that the
> "cancellation" properties hold requires a bit of theory, or some messing about with generators).

Twisted $S U(2)$ cont

Define Δ by

$$
\Delta(a)=a \otimes a-\mu c^{*} \otimes c, \quad \Delta(c)=c \otimes a+a^{*} \otimes c .
$$

We can do this because if

$$
a^{\prime}=a \otimes a-\mu c^{*} \otimes c, \quad c^{\prime}=c \otimes a+a^{*} \otimes c
$$

then in the algebra of 2×2 matrices over $S U_{\mu}(2) \otimes S U_{\mu}(2)$, we find that

$$
\left(\begin{array}{cc}
a^{\prime} & -\mu c^{\prime *} \\
c^{\prime} & a^{* *}
\end{array}\right)
$$

is unitary. So by the universal property of $S U_{\mu}(2)$, the *-homomorphism Δ does exist.
Then $\left(S U_{\mu}(2), \Delta\right)$ is a compact quantum group (that the "cancellation" properties hold requires a bit of theory, or some messing about with generators).

Haar measure

Every compact group G admits a unique shift-invariant probability measure, called the Haar measure:

$$
\int_{G} f(s t) d t=\int_{G} f(t) d t .
$$

- This measure induces a state h on $C(G)$.
- An element of a C^{*}-algebra is positive if it's of the form $a^{*} a$.
- Then a state is a linear functional $h: A \rightarrow \mathbb{C}$ with $h(1)=1$ and $h\left(a^{*} a\right) \geq 0$ for all a.
- Always have Cauchy-Schwarz: $\left|h\left(a^{*} b\right)\right| \leq h\left(a^{*} a\right) h\left(b^{*} b\right)$.

That h is shift-invariant means that

$$
(h \otimes \iota) \Delta(a)=(\iota \otimes h) \Delta(a)=h(a) 1 \quad(a \in A=C(G))
$$

Haar measure

Every compact group G admits a unique shift-invariant probability measure, called the Haar measure:

$$
\int_{G} f(s t) d t=\int_{G} f(t) d t .
$$

- This measure induces a state h on $C(G)$.
- An element of a C^{*}-algebra is positive if it's of the form $a^{*} a$.
- Then a state is a linear functional $h: A \rightarrow \mathbb{C}$ with $h(1)=1$ and $h\left(a^{*} a\right) \geq 0$ for all a.
- Always have Cauchy-Schwarz: $\left|h\left(a^{*} b\right)\right| \leq h\left(a^{*} a\right) h\left(b^{*} b\right)$.
- That h is shift-invariant means that

$$
(h \otimes \iota) \Delta(a)=(\iota \otimes h) \Delta(a)=h(a) 1
$$

Haar measure

Every compact group G admits a unique shift-invariant probability measure, called the Haar measure:

$$
\int_{G} f(s t) d t=\int_{G} f(t) d t .
$$

- This measure induces a state h on $C(G)$.
- An element of a C^{*}-algebra is positive if it's of the form a^{*} a.
- Then a state is a linear functional $h: A \rightarrow \mathbb{C}$ with $h(1)=1$ and $h\left(a^{*} a\right) \geq 0$ for all a.
- Always have Cauchy-Schwarz: $\left|h\left(a^{*} b\right)\right| \leq h\left(a^{*} a\right) h\left(b^{*} b\right)$.
- That h is shift-invariant means that

$$
(h \otimes \iota) \Delta(a)=(\iota \otimes h) \Delta(a)=h(a) 1 \quad(a \in A=C(G)) .
$$

Every compact quantum group has a Haar state

Theorem (Woronowicz, Van Daele)
Let (A, Δ) be a compact quantum group. There is a unique state h on A with $(h \otimes \iota) \Delta(a)=(\iota \otimes h) \Delta(a)=h(a) 1$ for all $a \in A$.

$$
h(a)=\left(a\left(e_{e_{\Gamma}}\right) \mid e_{e_{\Gamma}}\right) .
$$

This means that $h(\lambda(g))=1$ for $g=e_{e_{\mathrm{T}}}$, and 0 otherwise.

- In both these cases, h is a trace, meaning that
$h(a b)=h(b a)$ for all $a, b \in A$.
- This is not true in general; we'll comment more later.

Every compact quantum group has a Haar state

Theorem (Woronowicz, Van Daele)
Let (A, Δ) be a compact quantum group. There is a unique state h on A with $(h \otimes \iota) \Delta(a)=(\iota \otimes h) \Delta(a)=h(a) 1$ for all $a \in A$.

- For $C(G)$, we get the usual Haar measure.
- For $C_{r}^{*}(\Gamma)$, the Haar state is

$$
h(a)=\left(a\left(e_{e_{\mathrm{r}}}\right) \mid e_{e_{\mathrm{r}}}\right) .
$$

This means that $h(\lambda(g))=1$ for $g=e_{e_{\Gamma}}$, and 0 otherwise.

- In both these cases, h is a trace, meaning that
$h(a b)=h(b a)$ for all $a, b \in A$.
- This is not true in general; we'll comment more later.

Every compact quantum group has a Haar state

Theorem (Woronowicz, Van Daele)
Let (A, Δ) be a compact quantum group. There is a unique state h on A with $(h \otimes \iota) \Delta(a)=(\iota \otimes h) \Delta(a)=h(a) 1$ for all $a \in A$.

- For $C(G)$, we get the usual Haar measure.
- For $C_{r}^{*}(\Gamma)$, the Haar state is

$$
h(a)=\left(a\left(e_{e_{\mathrm{r}}}\right) \mid e_{e_{\mathrm{r}}}\right) .
$$

This means that $h(\lambda(g))=1$ for $g=e_{e_{\Gamma}}$, and 0 otherwise.

- In both these cases, h is a trace, meaning that
$h(a b)=h(b a)$ for all $a, b \in A$.
- This is not true in general; we'll comment more later.

Every compact quantum group has a Haar state

Theorem (Woronowicz, Van Daele)
Let (A, Δ) be a compact quantum group. There is a unique state h on A with $(h \otimes \iota) \Delta(a)=(\iota \otimes h) \Delta(a)=h(a) 1$ for all $a \in A$.

- For $C(G)$, we get the usual Haar measure.
- For $C_{r}^{*}(\Gamma)$, the Haar state is

$$
h(a)=\left(a\left(e_{e_{\mathrm{r}}}\right) \mid e_{e_{\mathrm{r}}}\right) .
$$

This means that $h(\lambda(g))=1$ for $g=e_{e_{\Gamma}}$, and 0 otherwise.

- In both these cases, h is a trace, meaning that $h(a b)=h(b a)$ for all $a, b \in A$.
- This is not true in general; we'll comment more later.

Every compact quantum group has a Haar state

Theorem (Woronowicz, Van Daele)
Let (A, Δ) be a compact quantum group. There is a unique state h on A with $(h \otimes \iota) \Delta(a)=(\iota \otimes h) \Delta(a)=h(a) 1$ for all $a \in A$.

- For $C(G)$, we get the usual Haar measure.
- For $C_{r}^{*}(\Gamma)$, the Haar state is

$$
h(a)=\left(a\left(e_{e_{\mathrm{r}}}\right) \mid e_{e_{\mathrm{r}}}\right) .
$$

This means that $h(\lambda(g))=1$ for $g=e_{e_{\Gamma}}$, and 0 otherwise.

- In both these cases, h is a trace, meaning that $h(a b)=h(b a)$ for all $a, b \in A$.
- This is not true in general; we'll comment more later.

Representations

A unitary representation of a (compact) group G is a continuous group homomorphism π from G to the unitary matrices $U(n)$ for some n.
> $\Rightarrow U(n)$ is nothing but the collection of unitary operators on a n-dimensional Hilbert space.
> - Let the (i, j) th matrix entry of $\pi(g)$ be $U_{i j}(g)$.
> - That π is continuous means that $\bigcup_{i j} \in C(G)$.
> - That $\pi(g)$ is unitary (for all g) means that $\left(U_{i j}\right)$, considered as an $n \times n$ matrix over $C(G)$, is unitary.

Representations

A unitary representation of a (compact) group G is a continuous group homomorphism π from G to the unitary matrices $U(n)$ for some n.

- $U(n)$ is nothing but the collection of unitary operators on a n-dimensional Hilbert space.
- Let the (i, j) th matrix entry of $\pi(g)$ be $U_{i j}(g)$.
- That π is continuous means that $U_{i j} \in C(G)$.
- That $\pi(g)$ is unitary (for all g) means that $\left(U_{i j}\right)$, considered as an $n \times n$ matrix over $C(G)$, is unitary.

Representations

A unitary representation of a (compact) group G is a continuous group homomorphism π from G to the unitary matrices $U(n)$ for some n.

- $U(n)$ is nothing but the collection of unitary operators on a n-dimensional Hilbert space.
- Let the (i, j) th matrix entry of $\pi(g)$ be $U_{i j}(g)$.
- That π is continuous means that $U_{i j} \in C(G)$.
- That $\pi(g)$ is unitary (for all g) means that $\left(U_{i j}\right)$, considered as an $n \times n$ matrix over $C(G)$, is unitary.

Representations

A unitary representation of a (compact) group G is a continuous group homomorphism π from G to the unitary matrices $U(n)$ for some n.

- $U(n)$ is nothing but the collection of unitary operators on a n-dimensional Hilbert space.
- Let the (i, j) th matrix entry of $\pi(g)$ be $U_{i j}(g)$.
- That π is continuous means that $U_{i j} \in C(G)$.
- That $\pi(g)$ is unitary (for all g) means that $\left(U_{i j}\right)$, considered as an $n \times n$ matrix over $C(G)$, is unitary.

Representations

A unitary representation of a (compact) group G is a continuous group homomorphism π from G to the unitary matrices $U(n)$ for some n.

- $U(n)$ is nothing but the collection of unitary operators on a n-dimensional Hilbert space.
- Let the (i, j) th matrix entry of $\pi(g)$ be $U_{i j}(g)$.
- That π is continuous means that $U_{i j} \in C(G)$.
- That $\pi(g)$ is unitary (for all g) means that $\left(U_{i j}\right)$, considered as an $n \times n$ matrix over $C(G)$, is unitary.

Corepresentations

$\pi: G \rightarrow U(n)$ corresponds to $U=\left(U_{i j}\right) \in \mathbb{M}_{n}(C(G))$.

- That $\pi(g h)=\pi(g) \pi(h)$ means that

$$
U_{i j}(g h)=\Delta\left(U_{i j}\right)(g, h)=\sum_{k} U_{i k}(g) U_{k j}(h) .
$$

- So π a homomorphism is equivalent to

Definition
A corepresentation of (A, \triangle) is a unitary $U \in \mathbb{M}_{n}(A)$ such that $\Delta\left(U_{i j}\right)=\sum_{k} U_{i k} \otimes U_{k j}$.

Corepresentations

$\pi: G \rightarrow U(n)$ corresponds to $U=\left(U_{i j}\right) \in \mathbb{M}_{n}(C(G))$.

- That $\pi(g h)=\pi(g) \pi(h)$ means that

$$
U_{i j}(g h)=\Delta\left(U_{i j}\right)(g, h)=\sum_{k} U_{i k}(g) U_{k j}(h) .
$$

- So π a homomorphism is equivalent to

Definition
A corepresentation of (A, \triangle) is a unitary $U \in \mathbb{M}_{n}(A)$ such that $\Delta\left(U_{i j}\right)=\sum_{k} U_{i k} \otimes U_{k j}$.

Corepresentations

$\pi: G \rightarrow U(n)$ corresponds to $U=\left(U_{i j}\right) \in \mathbb{M}_{n}(C(G))$.

- That $\pi(g h)=\pi(g) \pi(h)$ means that

$$
U_{i j}(g h)=\Delta\left(U_{i j}\right)(g, h)=\sum_{k} U_{i k}(g) U_{k j}(h) .
$$

- So π a homomorphism is equivalent to

$$
\Delta\left(U_{i j}\right)=\sum_{k} U_{i k} \otimes U_{k j} .
$$

A corepresentation of (A, Δ) is a unitary $U \in \mathbb{M}_{n}(A)$ such that $\Delta\left(U_{i j}\right)=\sum_{k} U_{i k} \otimes U_{k j}$.

Corepresentations

$\pi: G \rightarrow U(n)$ corresponds to $U=\left(U_{i j}\right) \in \mathbb{M}_{n}(C(G))$.

- That $\pi(g h)=\pi(g) \pi(h)$ means that

$$
U_{i j}(g h)=\Delta\left(U_{i j}\right)(g, h)=\sum_{k} U_{i k}(g) U_{k j}(h) .
$$

- So π a homomorphism is equivalent to

$$
\Delta\left(U_{i j}\right)=\sum_{k} U_{i k} \otimes U_{k j} .
$$

Definition
A corepresentation of (A, Δ) is a unitary $U \in \mathbb{M}_{n}(A)$ such that $\Delta\left(U_{i j}\right)=\sum_{k} U_{i k} \otimes U_{k j}$.

Intertwiners, irreducibles etc.

Just as for representations, we can define:

- Intertwining maps between two corepresentations;
- Isomorphisms between corepresentations;
- Invariant subspaces for corepresentations;
- What an irreducible corepresentation is.

> We can also (with more work!) define infinite-dimensional
> corepresentations.
> Then every coreprese ntation of a compact quantum group splits as a direct sum of irreducible, finite-dimensional unitary
> corepresentations.
> The proofs are very similar to the compact group case- use the Haar state a lot.

Intertwiners, irreducibles etc.

Just as for representations, we can define:

- Intertwining maps between two corepresentations;
- Isomorphisms between corepresentations;
- Invariant subspaces for corepresentations;
- What an irreducible corepresentation is.

We can also (with more work!) define infinite-dimensional corepresentations.

> Then every corepresentation of a compact quantum group splits as a direct sum of irreducible, finite-dimensional unitary
> corepresentations.
> The proofs are very similar to the compact group case- use the Haar state a lot.

Intertwiners, irreducibles etc.

Just as for representations, we can define:

- Intertwining maps between two corepresentations;
- Isomorphisms between corepresentations;
- Invariant subspaces for corepresentations;
- What an irreducible corepresentation is.

We can also (with more work!) define infinite-dimensional corepresentations.
Then every corepresentation of a compact quantum group splits as a direct sum of irreducible, finite-dimensional unitary corepresentations.

Intertwiners, irreducibles etc.

Just as for representations, we can define:

- Intertwining maps between two corepresentations;
- Isomorphisms between corepresentations;
- Invariant subspaces for corepresentations;
- What an irreducible corepresentation is.

We can also (with more work!) define infinite-dimensional corepresentations.
Then every corepresentation of a compact quantum group splits as a direct sum of irreducible, finite-dimensional unitary corepresentations.
The proofs are very similar to the compact group case- use the Haar state a lot.

Matrix coefficients

Given a unitary corepresentation $U=\left(U_{i j}\right)$, the matrix coefficients of U is simply the linear span of the elements $U_{i j}$ in A.

Take all the irreducible corepresentations, take all their matrix coefficients, and let \mathcal{A} be the linear span.

- This turns out to be a $*$-algebra.
- The product comes from the tensor product of corepresentations;
- \triangle restricts to a map $\mathcal{A} \rightarrow \mathcal{A} \otimes \mathcal{A}$ (because $\Delta\left(U_{i j}\right)=\sum_{k} U_{i k} \otimes U_{k j}$.
- h is a faithful state on $\mathcal{A}\left(\right.$ so if $h\left(a^{*} a\right)=0$ then $\left.a=0\right)$.
- \mathcal{A} is dense in A.

Matrix coefficients

Given a unitary corepresentation $U=\left(U_{i j}\right)$, the matrix coefficients of U is simply the linear span of the elements $U_{i j}$ in A.

Take all the irreducible corepresentations, take all their matrix coefficients, and let \mathcal{A} be the linear span.

Matrix coefficients

Given a unitary corepresentation $U=\left(U_{i j}\right)$, the matrix coefficients of U is simply the linear span of the elements $U_{i j}$ in A.

Take all the irreducible corepresentations, take all their matrix coefficients, and let \mathcal{A} be the linear span.

- This turns out to be a $*$-algebra.
- The product comes from the tensor product of
corepresentations;
- That it is *-closed is more mysterious.
- Δ restricts to a map $\mathcal{A} \rightarrow \mathcal{A} \otimes \mathcal{A}$ (because
- h is a faithful state on \mathcal{A} (so if $h\left(a^{*} a\right)=0$ then $a=0$).
- \mathcal{A} is dense in A.

Matrix coefficients

Given a unitary corepresentation $U=\left(U_{i j}\right)$, the matrix coefficients of U is simply the linear span of the elements $U_{i j}$ in A.

Take all the irreducible corepresentations, take all their matrix coefficients, and let \mathcal{A} be the linear span.

- This turns out to be a $*$-algebra.
- The product comes from the tensor product of corepresentations;
- Δ restricts to a map $\mathcal{A} \rightarrow \mathcal{A} \otimes \mathcal{A}$ (because
- h is a failthrul state on \mathcal{A} (so if $h\left(a^{*} a\right)=0$ then $a=0$).
- \mathcal{A} is dense in A.

Matrix coefficients

Given a unitary corepresentation $U=\left(U_{i j}\right)$, the matrix coefficients of U is simply the linear span of the elements $U_{i j}$ in A.

Take all the irreducible corepresentations, take all their matrix coefficients, and let \mathcal{A} be the linear span.

- This turns out to be a *-algebra.
- The product comes from the tensor product of corepresentations;
- That it is $*$-closed is more mysterious.
$\begin{aligned} & \text { - } \Delta \text { restricts to a map } \mathcal{A} \rightarrow \mathcal{A} \otimes \mathcal{A} \text { (because } \\ & \Delta\left(U_{i j}\right)=\sum_{k} U_{i k} \otimes U_{k j} . \\ &\left.\text { - } h \text { is a faithful state on } \mathcal{A} \text { (so if } h\left(a^{*} a\right)=0 \text { then } a=0\right) .\end{aligned}$
- \mathcal{A} is dense in A.

Matrix coefficients

Given a unitary corepresentation $U=\left(U_{i j}\right)$, the matrix coefficients of U is simply the linear span of the elements $U_{i j}$ in A.

Take all the irreducible corepresentations, take all their matrix coefficients, and let \mathcal{A} be the linear span.

- This turns out to be a *-algebra.
- The product comes from the tensor product of corepresentations;
- That it is $*$-closed is more mysterious.
- Δ restricts to a map $\mathcal{A} \rightarrow \mathcal{A} \otimes \mathcal{A}$ (because $\Delta\left(U_{i j}\right)=\sum_{k} U_{i k} \otimes U_{k j}$.
$\Rightarrow h$ is a faithful state on \mathcal{A} (so if $h\left(a^{*} a\right)=0$ then $\left.a=0\right)$.
- \mathcal{A} is dense in A.

Matrix coefficients

Given a unitary corepresentation $U=\left(U_{i j}\right)$, the matrix coefficients of U is simply the linear span of the elements $U_{i j}$ in A.

Take all the irreducible corepresentations, take all their matrix coefficients, and let \mathcal{A} be the linear span.

- This turns out to be a *-algebra.
- The product comes from the tensor product of corepresentations;
- That it is $*$-closed is more mysterious.
- Δ restricts to a map $\mathcal{A} \rightarrow \mathcal{A} \otimes \mathcal{A}$ (because

$$
\Delta\left(U_{i j}\right)=\sum_{k} U_{i k} \otimes U_{k j}
$$

- h is a faithful state on \mathcal{A} (so if $h\left(a^{*} a\right)=0$ then $a=0$).
- \mathcal{A} is dense in A.

Matrix coefficients

Given a unitary corepresentation $U=\left(U_{i j}\right)$, the matrix coefficients of U is simply the linear span of the elements $U_{i j}$ in A.

Take all the irreducible corepresentations, take all their matrix coefficients, and let \mathcal{A} be the linear span.

- This turns out to be a *-algebra.
- The product comes from the tensor product of corepresentations;
- That it is $*$-closed is more mysterious.
- Δ restricts to a map $\mathcal{A} \rightarrow \mathcal{A} \otimes \mathcal{A}$ (because

$$
\Delta\left(U_{i j}\right)=\sum_{k} U_{i k} \otimes U_{k j}
$$

- h is a faithful state on \mathcal{A} (so if $h\left(a^{*} a\right)=0$ then $a=0$).
- \mathcal{A} is dense in A.

Hopf algebra

We have a counit, a character $\epsilon: \mathcal{A} \rightarrow \mathbb{C}$, playing the role of the group identity

$$
(\epsilon \otimes \iota) \Delta(a)=a=(\iota \otimes \epsilon) \Delta(a)
$$

This might not be bounded, so might not extend to A. (Already happens for $C_{r}^{*}(\Gamma)$, when Γ not amenable). We have an anitpode, playing the role of the group inverse $m(\kappa \otimes \iota) \Delta=\epsilon=m(\iota \otimes \kappa) \Delta$.

Here $m: \mathcal{A} \otimes \mathcal{A} \rightarrow \mathcal{A}$ is multiplication.
Again, κ may fail to be bounded. In general,

$$
\kappa(a b)=\kappa(b) \kappa(a), \quad \kappa\left(\kappa(a)^{*}\right)^{*}=a .
$$

We already see this behaviour for $S U_{\mu}(2)$.

Hopf algebra

We have a counit, a character $\epsilon: \mathcal{A} \rightarrow \mathbb{C}$, playing the role of the group identity

$$
(\epsilon \otimes \iota) \Delta(a)=a=(\iota \otimes \epsilon) \Delta(a)
$$

This might not be bounded, so might not extend to A. (Already happens for $C_{r}^{*}(\Gamma)$, when Γ not amenable).
We have an anitpode, playing the role of the group inverse
$m(\kappa \otimes \iota) \Delta=\epsilon=m(\iota \otimes \kappa) \Delta$.
Here $m: \mathcal{A} \otimes \mathcal{A} \rightarrow \mathcal{A}$ is multiplication.
Again, κ may fail to be bounded. In general,
$\kappa(a b)=\kappa(b) \kappa(a), \quad \kappa\left(\kappa(a)^{*}\right)^{*}=a$.
We already see this behaviour for $\operatorname{SU}_{\mu}(2)$.

Hopf algebra

We have a counit, a character $\epsilon: \mathcal{A} \rightarrow \mathbb{C}$, playing the role of the group identity

$$
(\epsilon \otimes \iota) \Delta(a)=a=(\iota \otimes \epsilon) \Delta(a) .
$$

This might not be bounded, so might not extend to A. (Already happens for $C_{r}^{*}(\Gamma)$, when Γ not amenable). We have an anitpode, playing the role of the group inverse

$$
m(\kappa \otimes \iota) \Delta=\epsilon=m(\iota \otimes \kappa) \Delta .
$$

Here $m: \mathcal{A} \otimes \mathcal{A} \rightarrow \mathcal{A}$ is multiplication.
Again, κ may fail to be bounded. In general,

We already see this behaviour for $S U_{\mu}(2)$.

Hopf algebra

We have a counit, a character $\epsilon: \mathcal{A} \rightarrow \mathbb{C}$, playing the role of the group identity

$$
(\epsilon \otimes \iota) \Delta(a)=a=(\iota \otimes \epsilon) \Delta(a) .
$$

This might not be bounded, so might not extend to A. (Already happens for $C_{r}^{*}(\Gamma)$, when Γ not amenable). We have an anitpode, playing the role of the group inverse

$$
m(\kappa \otimes \iota) \Delta=\epsilon=m(\iota \otimes \kappa) \Delta .
$$

Here $m: \mathcal{A} \otimes \mathcal{A} \rightarrow \mathcal{A}$ is multiplication.
Again, κ may fail to be bounded. In general,

$$
\kappa(a b)=\kappa(b) \kappa(a), \quad \kappa\left(\kappa(a)^{*}\right)^{*}=a .
$$

We already see this behaviour for $\mathrm{SU}_{\mu}(2)$.

Modular properties of Haar state

There is an automorphism $\sigma: \mathcal{A} \rightarrow \mathcal{A}$ with

$$
h(a b)=h(\sigma(b) a) \quad(a, b \in \mathcal{A})
$$

- So h is "nearly" a trace.
- σ is actually the analytic generator of the Modular Automorphism Group of h on $A-$ coming from Tomita-Takesaki Theory.
- But we can construct σ purely from the corepresentation theory of (A, Δ).

Modular properties of Haar state

There is an automorphism $\sigma: \mathcal{A} \rightarrow \mathcal{A}$ with

$$
h(a b)=h(\sigma(b) a) \quad(a, b \in \mathcal{A})
$$

- So h is "nearly" a trace.
- σ is actually the analytic generator of the Modular Automorphism Group of h on A - coming from Tomita-Takesaki Theory.
- But we can construct σ purely from the corepresentation theory of (A, Δ).

Modular properties of Haar state

There is an automorphism $\sigma: \mathcal{A} \rightarrow \mathcal{A}$ with

$$
h(a b)=h(\sigma(b) a) \quad(a, b \in \mathcal{A}) .
$$

- So h is "nearly" a trace.
- σ is actually the analytic generator of the Modular Automorphism Group of h on A - coming from Tomita-Takesaki Theory.
- But we can construct σ purely from the corepresentation theory of (A, Δ).

Modular properties of Haar state

There is an automorphism $\sigma: \mathcal{A} \rightarrow \mathcal{A}$ with

$$
h(a b)=h(\sigma(b) a) \quad(a, b \in \mathcal{A}) .
$$

- So h is "nearly" a trace.
- σ is actually the analytic generator of the Modular Automorphism Group of h on A - coming from Tomita-Takesaki Theory.
- But we can construct σ purely from the corepresentation theory of (A, Δ).

Summary

So we did something quite unpromising- we encoded the group product of a compact group G into a C^{*}-algebra, abstracted the "density conditions", and then deleted the word "commutative".
> - Amazingly, this works!
> - We can construct a Haar state.
> - The corepresentation theory is every bit as rich as the representation theory of compact groups.
> - We even find Tomita-Takesaki theory turning up, but coming both from the analytic side-the C^{*}-algebra- and from the group side- the corepresentations.

Summary

So we did something quite unpromising- we encoded the group product of a compact group G into a C*-algebra, abstracted the "density conditions", and then deleted the word "commutative".

- Amazingly, this works!
- We can construct a Haar state.
- The corepresentation theory is every bit as rich as the representation theory of compact groups.
- We even find Tomita-Takesaki theory turning up, but coming both from the analytic side-the C^{*}-algebra- and from the group side- the corepresentations.

Summary

So we did something quite unpromising- we encoded the group product of a compact group G into a C*-algebra, abstracted the "density conditions", and then deleted the word "commutative".

- Amazingly, this works!
- We can construct a Haar state.

The corepresentation theory is every bit as rich as the
representation theory of compact groups.
We even find Tomita-Takesaki theory turning up, but
coming both from the analytic side-the C*-algebra- and
from the group side- the corepresentations.

Summary

So we did something quite unpromising- we encoded the group product of a compact group G into a C^{*}-algebra, abstracted the "density conditions", and then deleted the word "commutative".

- Amazingly, this works!
- We can construct a Haar state.
- The corepresentation theory is every bit as rich as the representation theory of compact groups.
- We even find Tomita-Takesaki theory turning up, but coming both from the analytic side-the C^{*}-algebra- and from the group side- the corepresentations.

Summary

So we did something quite unpromising- we encoded the group product of a compact group G into a C^{*}-algebra, abstracted the "density conditions", and then deleted the word "commutative".

- Amazingly, this works!
- We can construct a Haar state.
- The corepresentation theory is every bit as rich as the representation theory of compact groups.
- We even find Tomita-Takesaki theory turning up, but coming both from the analytic side-the C^{*}-algebra- and from the group side- the corepresentations.

Algebra

- The data $(\mathcal{A}, \Delta, \epsilon, \kappa)$ is a Hopf $*$-algebra.
- You can characterise which Hopf *-algebras arise from compact quantum groups by looking at their corepresentations.
- So can study compact quantum groups purely from algebra- increasingly the subject has moved in this direction.

Algebra

- The data $(\mathcal{A}, \Delta, \epsilon, \kappa)$ is a Hopf $*$-algebra.
- You can characterise which Hopf $*$-algebras arise from compact quantum groups by looking at their corepresentations.
- So can study compact quantum groups purely from algebra- increasingly the subject has moved in this direction.

Algebra

- The data $(\mathcal{A}, \Delta, \epsilon, \kappa)$ is a Hopf $*$-algebra.
- You can characterise which Hopf $*$-algebras arise from compact quantum groups by looking at their corepresentations.
- So can study compact quantum groups purely from algebra- increasingly the subject has moved in this direction.

Multiplier algebras

- If G is a locally compact, but not compact, group (e.g. \mathbb{R}) then natural to look at $C_{0}(G)$, the algebra of continuous functions which vanish at ∞.
- The multiplier algebra of $A=C_{0}(\mathbb{R})$ is $M A=C^{b}(\mathbb{R})$: - so if $F \in M A, a \in A$ then $a F, F a \in A$. - MA is not "too large": if $F \in M A$ with $F a=0=a F$ for all $a \in A$, then $F=0$.
- Notice that if $a \in C_{0}(G)$ then $\Delta(a)(g, h)=a(g h)$ will only be in $C^{b}(G \times G)$ (as $\Delta(a)\left(g, g^{-1} h\right)=a(h)$ for any $\left.g\right)$.
- At the level of algebra, looking at non-unital \mathcal{A} together with a coassociative $\Delta: \mathcal{A} \rightarrow M(\mathcal{A} \otimes \mathcal{A})$ (where \triangle must have "nice" cancellation properties) we get van Daele's notion of a "multiplier Hopf algebra".
- To get a nice theory, need to assume the existence of Haar states.

Multiplier algebras

- If G is a locally compact, but not compact, group (e.g. \mathbb{R}) then natural to look at $C_{0}(G)$, the algebra of continuous functions which vanish at ∞.
- The multiplier algebra of $A=C_{0}(\mathbb{R})$ is $M A=C^{b}(\mathbb{R})$:

```
* so If F G MA, a\inA then aF, Fa\inA.
* MA is not "too large": if F}\inMA\mathrm{ with Fa=0=aF for all
a\inA, then F=0.
```

- Notice that if $a \in C_{0}(G)$ then $\Delta(a)(g, h)=a(g h)$ will only be in $C^{b}(G \times G)\left(\right.$ as $\Delta(a)\left(g, g^{-1} h\right)=a(h)$ for any $\left.g\right)$.
- At the level of alaebra, looking at non-unital \mathcal{A} together with a coassociative $\Delta: \mathcal{A} \rightarrow M(\mathcal{A} \otimes \mathcal{A})$ (where Δ must have "nice" cancellation properties) we get van Daele's notion of a "multiplier Hopf algebra"
- To get a nice theory, need to assume the existence of Haar states.

Multiplier algebras

- If G is a locally compact, but not compact, group (e.g. \mathbb{R}) then natural to look at $C_{0}(G)$, the algebra of continuous functions which vanish at ∞.
- The multiplier algebra of $A=C_{0}(\mathbb{R})$ is $M A=C^{b}(\mathbb{R})$:
- so if $F \in M A, a \in A$ then $a F, F a \in A$.

```
a\inA, then F=0
```

- Notice that if $a \in C_{0}(G)$ then $\Delta(a)(g, h)=a(g h)$ will only
- At the level of algebra, looking at non-unital \mathcal{A} together with a coassociative $\Delta: \mathcal{A} \rightarrow M(\mathcal{A} \otimes \mathcal{A})$ (where Δ must have "nice" cancellation properties) we get van Daele's notion of a "multiplier Hopf algebra"
- To get a nice theory, need to assume the existence of Haar states.

Multiplier algebras

- If G is a locally compact, but not compact, group (e.g. \mathbb{R}) then natural to look at $C_{0}(G)$, the algebra of continuous functions which vanish at ∞.
- The multiplier algebra of $A=C_{0}(\mathbb{R})$ is $M A=C^{b}(\mathbb{R})$:
- so if $F \in M A, a \in A$ then $a F, F a \in A$.
- MA is not "too large": if $F \in M A$ with $F a=0=a F$ for all $a \in A$, then $F=0$.
- At the level of algebra, looking at non-unital \mathcal{A} together with a coassociative $\Delta: \mathcal{A} \rightarrow M(\mathcal{A} \otimes \mathcal{A})$ (where Δ must have "nice" cancellation properties) we get van Daele's notion of a "multiplier Hopf algebra"
- To get a nice theory, need to assume the existence of Haar states.

Multiplier algebras

- If G is a locally compact, but not compact, group (e.g. \mathbb{R}) then natural to look at $C_{0}(G)$, the algebra of continuous functions which vanish at ∞.
- The multiplier algebra of $A=C_{0}(\mathbb{R})$ is $M A=C^{b}(\mathbb{R})$:
- so if $F \in M A, a \in A$ then $a F, F a \in A$.
- MA is not "too large": if $F \in M A$ with $F a=0=a F$ for all $a \in A$, then $F=0$.
- Notice that if $a \in C_{0}(G)$ then $\Delta(a)(g, h)=a(g h)$ will only be in $C^{b}(G \times G)$ (as $\Delta(a)\left(g, g^{-1} h\right)=a(h)$ for any $\left.g\right)$.

Multiplier algebras

- If G is a locally compact, but not compact, group (e.g. \mathbb{R}) then natural to look at $C_{0}(G)$, the algebra of continuous functions which vanish at ∞.
- The multiplier algebra of $A=C_{0}(\mathbb{R})$ is $M A=C^{b}(\mathbb{R})$:
- so if $F \in M A, a \in A$ then $a F, F a \in A$.
- MA is not "too large": if $F \in M A$ with $F a=0=a F$ for all $a \in A$, then $F=0$.
- Notice that if $a \in C_{0}(G)$ then $\Delta(a)(g, h)=a(g h)$ will only be in $C^{b}(G \times G)$ (as $\Delta(a)\left(g, g^{-1} h\right)=a(h)$ for any $\left.g\right)$.
- At the level of algebra, looking at non-unital \mathcal{A} together with a coassociative $\Delta: \mathcal{A} \rightarrow M(\mathcal{A} \otimes \mathcal{A})$ (where Δ must have "nice" cancellation properties) we get van Daele's notion of a "multiplier Hopf algebra".

Multiplier algebras

- If G is a locally compact, but not compact, group (e.g. \mathbb{R}) then natural to look at $C_{0}(G)$, the algebra of continuous functions which vanish at ∞.
- The multiplier algebra of $A=C_{0}(\mathbb{R})$ is $M A=C^{b}(\mathbb{R})$:
- so if $F \in M A, a \in A$ then $a F, F a \in A$.
- MA is not "too large": if $F \in M A$ with $F a=0=a F$ for all $a \in A$, then $F=0$.
- Notice that if $a \in C_{0}(G)$ then $\Delta(a)(g, h)=a(g h)$ will only be in $C^{b}(G \times G)$ (as $\Delta(a)\left(g, g^{-1} h\right)=a(h)$ for any $\left.g\right)$.
- At the level of algebra, looking at non-unital \mathcal{A} together with a coassociative $\Delta: \mathcal{A} \rightarrow M(\mathcal{A} \otimes \mathcal{A})$ (where Δ must have "nice" cancellation properties) we get van Daele's notion of a "multiplier Hopf algebra".
- To get a nice theory, need to assume the existence of Haar states.

More analysis

Similarly, we can work with non-unital C^{*}-algebras A and a coassociative $\Delta: A \rightarrow M(A \otimes A)$.

- Again, we now need to assume the existence of Haar weights (which will be unbounded- Haar measure is not finite unless G is compact).
- This gives the notion of a locally compact quantum group (lcqg).
- Of interes is that to every $\operatorname{lcag}(A, \Delta)$ we find a "dual" $(\hat{A}, \hat{\Delta})$. If we form the bidual, we get back to (A, Δ).
- If $A=C_{0}(G)$ then $\hat{A}=C_{r}^{*}(G)$; so

$$
A=C_{0}(\mathbb{Z}), \quad \hat{A}=C_{r}^{*}(\mathbb{Z}) \cong C(\mathbb{T}),
$$

and we have generalised the Fourier transform!

- In fact, this was the original motivation- what's an operator algebraic setting in which to study non-abelian Fourier transforms?

More analysis

Similarly, we can work with non-unital C^{*}-algebras A and a coassociative $\Delta: A \rightarrow M(A \otimes A)$.

- Again, we now need to assume the existence of Haar weights (which will be unbounded- Haar measure is not finite unless G is compact).
- This gives the notion of a locally compact quantum group (lcqg).
- Of interes is that to every lcag (A, Δ) we find a "dual" ($\hat{A}, \hat{\Delta}$). If we form the bidual, we get back to (A, Δ).
- If $A=C_{0}(G)$ then $\hat{A}=C_{r}^{*}(G)$; so

$$
A=C_{0}(\mathbb{Z}), \quad \hat{A}=C_{r}^{*}(\mathbb{Z}) \cong C(\mathbb{T}),
$$

and we have generalised the Fourier transform!

- In fact, this was the oriainal motivation- what's an operator algebraic setting in which to study non-abelian Fourier transforms?

More analysis

Similarly, we can work with non-unital C^{*}-algebras A and a coassociative $\Delta: A \rightarrow M(A \otimes A)$.

- Again, we now need to assume the existence of Haar weights (which will be unbounded- Haar measure is not finite unless G is compact).
- This gives the notion of a locally compact quantum group (lcqg).
- Of interest is that to every $\operatorname{lcqg}(A, \Delta)$ we find a "dual" ($\hat{A}, \hat{\Delta}$). If we form the bidual, we get back to (A, Δ).
- If $A=C_{0}(G)$ then $\hat{A}=C_{r}^{*}(G)$; so

$$
A=C_{0}(\mathbb{Z}), \quad \hat{A}=C_{r}^{*}(\mathbb{Z}) \cong C(\mathbb{T}),
$$

and we have generalised the Fourier transform!

- In fact, this was the oriqinal motivation- what's an operator algebraic setting in which to study non-abelian Fourier transforms?

More analysis

Similarly, we can work with non-unital C^{*}-algebras A and a coassociative $\Delta: A \rightarrow M(A \otimes A)$.

- Again, we now need to assume the existence of Haar weights (which will be unbounded- Haar measure is not finite unless G is compact).
- This gives the notion of a locally compact quantum group (lcqg).
- Of interest is that to every Icqg (A, Δ) we find a "dual" $(\hat{A}, \hat{\Delta})$. If we form the bidual, we get back to (A, Δ).
- If $A=C_{0}(G)$ then $\hat{A}=C_{r}^{*}(G)$; so

and we have generalised the Fourier transform!
- In fact, this was the original motivation- what's an operator algebraic setting in which to study non-abelian Fourier transforms?

More analysis

Similarly, we can work with non-unital C^{*}-algebras A and a coassociative $\Delta: A \rightarrow M(A \otimes A)$.

- Again, we now need to assume the existence of Haar weights (which will be unbounded- Haar measure is not finite unless G is compact).
- This gives the notion of a locally compact quantum group (lcqg).
- Of interest is that to every Icqg (A, Δ) we find a "dual" ($\hat{A}, \hat{\Delta}$). If we form the bidual, we get back to (A, Δ).
- If $A=C_{0}(G)$ then $\hat{A}=C_{r}^{*}(G)$; so

$$
A=C_{0}(\mathbb{Z}), \quad \hat{A}=C_{r}^{*}(\mathbb{Z}) \cong C(\mathbb{T})
$$

and we have generalised the Fourier transform!

- In fact, this was the original motivation- what's an operator algebraic setting in which to study non-abelian Fourier transforms?

More analysis

Similarly, we can work with non-unital C^{*}-algebras A and a coassociative $\Delta: A \rightarrow M(A \otimes A)$.

- Again, we now need to assume the existence of Haar weights (which will be unbounded- Haar measure is not finite unless G is compact).
- This gives the notion of a locally compact quantum group (lcqg).
- Of interest is that to every Icqg (A, Δ) we find a "dual" ($\hat{A}, \hat{\Delta}$). If we form the bidual, we get back to (A, Δ).
- If $A=C_{0}(G)$ then $\hat{A}=C_{r}^{*}(G)$; so

$$
A=C_{0}(\mathbb{Z}), \quad \hat{A}=C_{r}^{*}(\mathbb{Z}) \cong C(\mathbb{T})
$$

and we have generalised the Fourier transform!

- In fact, this was the original motivation-what's an operator algebraic setting in which to study non-abelian Fourier transforms?

Convolution algebras

Let (A, Δ) be a compact quantum group. Then A becomes a pre-inner-product space for the sesquilinear form $(a \mid b)=h\left(b^{*} a\right)$. (GNS construction).

Convolution algebras

Let (A, Δ) be a compact quantum group. Then A becomes a pre-inner-product space for the sesquilinear form $(a \mid b)=h\left(b^{*} a\right)$. (GNS construction).

- Complete to get a Hilbert space, $L^{2}(A)$.

Convolution algebras

Let (A, Δ) be a compact quantum group. Then A becomes a pre-inner-product space for the sesquilinear form $(a \mid b)=h\left(b^{*} a\right)$. (GNS construction).

- Complete to get a Hilbert space, $L^{2}(A)$.
- Then A acts on $L^{2}(A)$ by left mutliplication. This realises (a quotient of) A as a subalgebra of $\mathcal{B}\left(L^{2}(A)\right)$.

Convolution algebras

Let (A, Δ) be a compact quantum group. Then A becomes a pre-inner-product space for the sesquilinear form $(a \mid b)=h\left(b^{*} a\right)$. (GNS construction).

- Complete to get a Hilbert space, $L^{2}(A)$.
- Then A acts on $L^{2}(A)$ by left mutliplication. This realises (a quotient of) A as a subalgebra of $\mathcal{B}\left(L^{2}(A)\right)$.
- Given $\xi, \eta \in L^{2}(A)$, we get a linear functional

$$
\omega_{\xi, \eta}: A \rightarrow \mathbb{C} ; \quad a \mapsto(a(\xi) \mid \eta) .
$$

Let $L^{1}(A)$ be the closed linear span of such functionals.

Then $L^{1}(A)$ becomes an ideal in A^{*}

- If $A=C_{0}(G)$, then $L^{1}(A)$ is just $L^{1}(G)$ with the convolution product. If $A=C_{r}^{*(~}(\Gamma)$, then $L^{1}(A)$ is just $A(\Gamma)$, the Fourier algebra of Γ.

Convolution algebras

Let (A, Δ) be a compact quantum group. Then A becomes a pre-inner-product space for the sesquilinear form $(a \mid b)=h\left(b^{*} a\right)$. (GNS construction).

- Complete to get a Hilbert space, $L^{2}(A)$.
- Then A acts on $L^{2}(A)$ by left mutliplication. This realises (a quotient of) A as a subalgebra of $\mathcal{B}\left(L^{2}(A)\right)$.
- Given $\xi, \eta \in L^{2}(A)$, we get a linear functional

$$
\omega_{\xi, \eta}: A \rightarrow \mathbb{C} ; \quad a \mapsto(a(\xi) \mid \eta) .
$$

Let $L^{1}(A)$ be the closed linear span of such functionals.

- We turn A^{*} into a Banach algebra for the product

$$
(\mu \lambda)(a)=(\mu \otimes \lambda) \Delta(a) .
$$

Then $L^{1}(A)$ becomes an ideal in A^{*}.

Convolution algebras

Let (A, Δ) be a compact quantum group. Then A becomes a pre-inner-product space for the sesquilinear form $(a \mid b)=h\left(b^{*} a\right)$. (GNS construction).

- Complete to get a Hilbert space, $L^{2}(A)$.
- Then A acts on $L^{2}(A)$ by left mutliplication. This realises (a quotient of) A as a subalgebra of $\mathcal{B}\left(L^{2}(A)\right)$.
- Given $\xi, \eta \in L^{2}(A)$, we get a linear functional

$$
\omega_{\xi, \eta}: A \rightarrow \mathbb{C} ; \quad a \mapsto(a(\xi) \mid \eta) .
$$

Let $L^{1}(A)$ be the closed linear span of such functionals.

- We turn A^{*} into a Banach algebra for the product

$$
(\mu \lambda)(a)=(\mu \otimes \lambda) \Delta(a) .
$$

Then $L^{1}(A)$ becomes an ideal in A^{*}.

- If $A=C_{0}(G)$, then $L^{1}(A)$ is just $L^{1}(G)$ with the convolution product. If $A=C_{r}^{*}(\Gamma)$, then $L^{1}(A)$ is just $A(\Gamma)$, the Fourier algebra of Γ.

