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Centralisers

For an algebra A, let M(A) be the space of double centralisers, that is,
pairs of linear maps (L,R) of A → A with{

L(ab) = L(a)b, R(ab) = aR(b),

aL(b) = R(a)b
(a,b ∈ A).

We always assume that A is faithful, meaning that if a ∈ A with bac = 0 for
any b, c ∈ A, then a = 0.
When A is a Banach algebra, we naturally ask that L and R are linear
and bounded. However. . .
A Closed Graph argument shows that if (L,R) is a pair of maps A → A
with

aL(b) = R(a)b (a,b ∈ A),

then already (L,R) ∈ M(A).
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Centralisers continued

Then M(A) becomes a Banach algebra for the product

(L,R)(L′,R′) = (LL′,R′R).

We can identify A as a subalgebra of M(A) by

a 7→ (La,Ra), La(b) = ab, Ra(b) = ba (a,b ∈ A).

M(A) is a well understood and useful tool in the C∗-algebra world.
If A is a Banach algebra with a bounded approximate identity, then
most of what we expect from the C∗-world works for M(A).
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Dual Banach algebras and multipliers

A dual Banach algebra is a Banach algebra A which is (isomorphic to)
the dual of some Banach space A∗, such that the product on A is
separately weak∗-continuous.
The multiplier algebra of a C∗-algebra is rarely a dual Banach algebra:

M(c0) = `∞ = (`1)∗, M(C0(K )) = Cb(K ) ∼= C(βK ).

For a locally compact group G,

M(L1(G)) = M(G) = C0(G)∗,

where for each (L,R) ∈ M(L1(G)), there exists µ ∈ M(G),

L(a) = µ ∗ a, R(a) = a ∗ µ (a ∈ L1(G)).
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The Fourier Algebra

For a locally compact group G let λ be the left regular representation(
λ(s)ξ

)
(t) = ξ(s−1t) (s, t ∈ G, ξ ∈ L2(G)).

This induces a homomorphism λ : L1(G)→ B(L2(G)).
Let C∗λ(G) and VN(G) be the norm and σ-weak closures of λ(L1(G)),
respectively. So VN(G) = C∗λ(G)′′.
Let A(G) be the predual of VN(G). As VN(G) is in standard position
on L2(G), for each ω ∈ A(G), there exist ξ, η ∈ L2(G) with

ω = ωξ,η 〈x , ω〉 =
(
x(ξ)|η

)
(x ∈ VN(G)).
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Fourier Algebra: The product

As {λ(s) : s ∈ G} also generates VN(G), we see that
{〈λ(s), ω〉 : s ∈ G} determines ω ∈ A(G). For ωξ,η ∈ A(G) and s ∈ G,

〈λ(s), ωξ,η〉 =

∫
ξ(s−1t)η(t) dt = η ∗ ξ̌(s).

Here ξ̌(s) = ξ(s−1).
It’s not hard to see that η ∗ ξ̌ ∈ C0(G), and so we have an injection

Φ : A(G)→ C0(G).

Then Φ(A(G)) is a subalgebra of C0(G), and A(G) is a Banach
algebra, [Eymard].
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Multipliers

So we can form MA(G):
MA(G) = {f ∈ Cb(G) : fa ∈ A(G) (a ∈ A(G))};
MA(G) = B(G), the Fourier-Stieltjes algebra, if and only if G is
amenable [Losert].

As the predual of a von Neumann algebra, A(G) is an operator space.
Actually a completely contractive Banach algebra. Hence natural to
consider the completely bounded multipliers, written Mcb(A(G)).
[De Canniere, Haagerup]: For f ∈ MA(G), TFAE:

f ∈ McbA(G);
f ⊗ 1K ∈ MA(G × K ) for all compact groups K ;
f ⊗ 1K ∈ MA(G × K ) for K = SU(2).

Matthew Daws (Leeds) Multipliers and the Fourier algebra July 2009 8 / 28



Multipliers

So we can form MA(G):
MA(G) = {f ∈ Cb(G) : fa ∈ A(G) (a ∈ A(G))};
MA(G) = B(G), the Fourier-Stieltjes algebra, if and only if G is
amenable [Losert].

As the predual of a von Neumann algebra, A(G) is an operator space.
Actually a completely contractive Banach algebra. Hence natural to
consider the completely bounded multipliers, written Mcb(A(G)).
[De Canniere, Haagerup]: For f ∈ MA(G), TFAE:

f ∈ McbA(G);
f ⊗ 1K ∈ MA(G × K ) for all compact groups K ;
f ⊗ 1K ∈ MA(G × K ) for K = SU(2).

Matthew Daws (Leeds) Multipliers and the Fourier algebra July 2009 8 / 28



Multipliers

So we can form MA(G):
MA(G) = {f ∈ Cb(G) : fa ∈ A(G) (a ∈ A(G))};
MA(G) = B(G), the Fourier-Stieltjes algebra, if and only if G is
amenable [Losert].

As the predual of a von Neumann algebra, A(G) is an operator space.
Actually a completely contractive Banach algebra. Hence natural to
consider the completely bounded multipliers, written Mcb(A(G)).
[De Canniere, Haagerup]: For f ∈ MA(G), TFAE:

f ∈ McbA(G);
f ⊗ 1K ∈ MA(G × K ) for all compact groups K ;
f ⊗ 1K ∈ MA(G × K ) for K = SU(2).

Matthew Daws (Leeds) Multipliers and the Fourier algebra July 2009 8 / 28



Multipliers

So we can form MA(G):
MA(G) = {f ∈ Cb(G) : fa ∈ A(G) (a ∈ A(G))};
MA(G) = B(G), the Fourier-Stieltjes algebra, if and only if G is
amenable [Losert].

As the predual of a von Neumann algebra, A(G) is an operator space.
Actually a completely contractive Banach algebra. Hence natural to
consider the completely bounded multipliers, written Mcb(A(G)).
[De Canniere, Haagerup]: For f ∈ MA(G), TFAE:

f ∈ McbA(G);
f ⊗ 1K ∈ MA(G × K ) for all compact groups K ;
f ⊗ 1K ∈ MA(G × K ) for K = SU(2).

Matthew Daws (Leeds) Multipliers and the Fourier algebra July 2009 8 / 28



Multipliers

So we can form MA(G):
MA(G) = {f ∈ Cb(G) : fa ∈ A(G) (a ∈ A(G))};
MA(G) = B(G), the Fourier-Stieltjes algebra, if and only if G is
amenable [Losert].

As the predual of a von Neumann algebra, A(G) is an operator space.
Actually a completely contractive Banach algebra. Hence natural to
consider the completely bounded multipliers, written Mcb(A(G)).
[De Canniere, Haagerup]: For f ∈ MA(G), TFAE:

f ∈ McbA(G);
f ⊗ 1K ∈ MA(G × K ) for all compact groups K ;
f ⊗ 1K ∈ MA(G × K ) for K = SU(2).

Matthew Daws (Leeds) Multipliers and the Fourier algebra July 2009 8 / 28



MA(G) and McbA(G) are dual

[De Canniere, Haagerup]: Let Q be the completion of L1(G) under the
norm

‖f‖Q = sup
{∣∣∣ ∫ f (s)a(s) ds

∣∣∣ : a ∈ MA(G), ‖a‖ ≤ 1
}
.

Then Q∗ = MA(G).
Let Q0 be the completion of L1(G) under the norm

‖f‖Q0 = sup
{∣∣∣ ∫ f (s)a(s) ds

∣∣∣ : a ∈ McbA(G), ‖a‖ ≤ 1
}
.

Then Q∗0 = McbA(G).
Easy to check that MA(G) and McbA(G) hence become dual Banach
algebras.
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An abstract approach

Notice that A(G) = lin{ab : a,b ∈ A(G)}. Let

ι : A(G)→ B(G)

be the isometric inclusion map; so ι(A(G)) is an essential ideal.
We hence get a map θ : B(G)→ MA(G),

θ(a) : A(G)→ A(G); b 7→ ab (a ∈ B(G),b ∈ A(G)).

As A(G) is faithful, ι(A(G)) being essential is equivalent to θ being
injective.

Matthew Daws (Leeds) Multipliers and the Fourier algebra July 2009 10 / 28



An abstract approach

Notice that A(G) = lin{ab : a,b ∈ A(G)}. Let

ι : A(G)→ B(G)

be the isometric inclusion map; so ι(A(G)) is an essential ideal.
We hence get a map θ : B(G)→ MA(G),

θ(a) : A(G)→ A(G); b 7→ ab (a ∈ B(G),b ∈ A(G)).

As A(G) is faithful, ι(A(G)) being essential is equivalent to θ being
injective.

Matthew Daws (Leeds) Multipliers and the Fourier algebra July 2009 10 / 28



An abstract approach

Notice that A(G) = lin{ab : a,b ∈ A(G)}. Let

ι : A(G)→ B(G)

be the isometric inclusion map; so ι(A(G)) is an essential ideal.
We hence get a map θ : B(G)→ MA(G),

θ(a) : A(G)→ A(G); b 7→ ab (a ∈ B(G),b ∈ A(G)).

As A(G) is faithful, ι(A(G)) being essential is equivalent to θ being
injective.

Matthew Daws (Leeds) Multipliers and the Fourier algebra July 2009 10 / 28



An abstract approach, cont.

ι : A(G)→ B(G), θ : B(G)→ MA(G).

Theorem
MA(G) admits a weak∗-topology such that MA(G) becomes a dual
Banach algebra.

Proof.
Consider X0 = (A(G)⊗̂C∗(G))⊕1 (A(G)⊗̂C∗(G)) which has dual
space B(A(G),B(G))⊕∞ B(A(G),B(G)). Let X ⊆ X0 be the closed
linear span of

(b ⊗ x · ι(a))⊕ (−a⊗ ι(b) · x),

for a,b ∈ A(G), x ∈ C∗(G). A calculation shows that

X⊥ = {(ιL, ιR) : (L,R) ∈ MA(G)}.
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Comments

Theorem
The weak∗-topology on MA(G) is unique such that:

MA(G) is a dual Banach algebra;
We have that bα → b weak∗ in B(G) if and only if θ(bα)→ θ(b)
weak∗ in MA(G).

So this gives the same predual as DeCanniere and Haagerup. Also,
we could have used B∗λ(G) = C∗λ(G)∗ instead of B(G).
If we want McbA(G) then simply work in the category of Operator
Spaces!
All this works, with essentially no change, for locally compact quantum
groups.
Inspired by [Selivanov].
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Representations

Results of [Daws] in the Banach space case, and [Uygul] in the
Operator space case give:

Theorem
Let A be a (completely contractive) dual Banach algebra. Then there
exists a reflexive Operator / Banach space E and a (completely)
isometric, weak∗-weak∗-continuous homomorphism π : A → B(E).

If we know more about A (say, A = M(L1(G)) or MA(G)) can we
choose E in a “nice” way?
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An idea of Young

Fix a group G. Let (pn) ⊆ (1,∞) be a sequence tending to 1, and let

E = `2 −
⊕

n

Lpn (G).

L1(G) acts by convolution on each Lpn (G), and hence on E .
Similarly M(G) acts by convolution on E , extending the action of
L1(G).
Actually, the homomorphism π : M(G)→ B(E) is an isometry, and
is weak∗-weak∗ continuous.
The image of M(G) in B(E) is the idealiser of π(L1(G)):

π(M(G)) =
{

T ∈ B(E) :
Tπ(a), π(a)T ∈ π(L1(G))

(a ∈ L1(G))

}
.
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Abstracting the construction

It is well-known that Lp(G) can be realised as the complex interpolation
space, of parameter 1/p, between L∞(G) and L1(G).
I won’t explain this in detail but observe that:

We regard L∞ = L∞(G) and L1 = L1(G) as spaces of functions on
G, so it makes sense to talk about L∞ ∩ L1 and L∞ + L1.
We have inclusions L∞ ∩ L1 ⊆ Lp ⊆ L∞ + L1;
(Riesz-Thorin) If T : L∞ + L1 → L∞ + L1 is linear, and restricts to
give map L1 → L1 and L∞ → L∞, then

‖T : Lp → Lp‖ ≤ ‖T : L∞ → L∞‖1−1/p‖T : L1 → L1‖1/p.

Matthew Daws (Leeds) Multipliers and the Fourier algebra July 2009 15 / 28



Abstracting the construction

It is well-known that Lp(G) can be realised as the complex interpolation
space, of parameter 1/p, between L∞(G) and L1(G).
I won’t explain this in detail but observe that:

We regard L∞ = L∞(G) and L1 = L1(G) as spaces of functions on
G, so it makes sense to talk about L∞ ∩ L1 and L∞ + L1.
We have inclusions L∞ ∩ L1 ⊆ Lp ⊆ L∞ + L1;
(Riesz-Thorin) If T : L∞ + L1 → L∞ + L1 is linear, and restricts to
give map L1 → L1 and L∞ → L∞, then

‖T : Lp → Lp‖ ≤ ‖T : L∞ → L∞‖1−1/p‖T : L1 → L1‖1/p.

Matthew Daws (Leeds) Multipliers and the Fourier algebra July 2009 15 / 28



Abstracting the construction

It is well-known that Lp(G) can be realised as the complex interpolation
space, of parameter 1/p, between L∞(G) and L1(G).
I won’t explain this in detail but observe that:

We regard L∞ = L∞(G) and L1 = L1(G) as spaces of functions on
G, so it makes sense to talk about L∞ ∩ L1 and L∞ + L1.
We have inclusions L∞ ∩ L1 ⊆ Lp ⊆ L∞ + L1;
(Riesz-Thorin) If T : L∞ + L1 → L∞ + L1 is linear, and restricts to
give map L1 → L1 and L∞ → L∞, then

‖T : Lp → Lp‖ ≤ ‖T : L∞ → L∞‖1−1/p‖T : L1 → L1‖1/p.

Matthew Daws (Leeds) Multipliers and the Fourier algebra July 2009 15 / 28



Abstracting the construction

It is well-known that Lp(G) can be realised as the complex interpolation
space, of parameter 1/p, between L∞(G) and L1(G).
I won’t explain this in detail but observe that:

We regard L∞ = L∞(G) and L1 = L1(G) as spaces of functions on
G, so it makes sense to talk about L∞ ∩ L1 and L∞ + L1.
We have inclusions L∞ ∩ L1 ⊆ Lp ⊆ L∞ + L1;
(Riesz-Thorin) If T : L∞ + L1 → L∞ + L1 is linear, and restricts to
give map L1 → L1 and L∞ → L∞, then

‖T : Lp → Lp‖ ≤ ‖T : L∞ → L∞‖1−1/p‖T : L1 → L1‖1/p.

Matthew Daws (Leeds) Multipliers and the Fourier algebra July 2009 15 / 28



Convolution action

For µ ∈ M(G), we have a convolution action of µ on L1(G) and L∞(G).
Interpolating gives the convolution action on Lp(G).
However, from an abstract point of view, this is actually a little odd:

M(G) acts entirely naturally on L1(G) as M(L1(G)) = M(G).
L∞(G) is the dual space of L1(G).
So we have the dual (technically, adjoint) action of M(G) on
L∞(G).
This is not the usual convolution action of M(G) on L∞(G).

So, if we are to generalise this, we need a new idea.
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Analogous ideas for A(G)

So for the Fourier algebra, we might proceed as follows:

Find some way to embed A(G) and VN(G) into a Hausdorff
topological space;
so we can form VN(G) ∩ A(G) and VN(G) + A(G).
Use the complex interpolation method with parameter 1/p.
Find some module action of MA(G) on VN(G) which agrees with
the standard action of MA(G) on A(G) in VN(G) ∩ A(G).
Then do the same again at the Operator Space level!

Bizarrely the last point suggests a novel way to get the module actions.
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Non-commutative Lp spaces

Using the complex interpolation method applied to von Neumann
algebras is a well established way to construct non-commutative Lp

spaces, say Lp(VN(G)).

If G is discrete, then VN(G) admits a finite trace: ϕ : x 7→ (xδe|δe)
for x ∈ VN(G). Then Lp(VN(G)) is the completion of VN(G) under
the norm ‖x‖p = ϕ(|x |p)1/p, where |x | = (x∗x)1/2.
In general, VN(G) only admits a weight, which satisfies
ϕ(λ(f ∗ g)) = (f ∗ g)(e) for, say, f ,g ∈ C00(G).
If G is compact, then

VN(G) ∼=
∏

i

Mni , Lp(VN(G)) ∼= `p −
⊕

i

Sp
ni
,

where Sp
n is Mn equipped with the pth Schatten-class norm.
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Operator Space Structures

For further details on the complex interpolation approach to
non-commutative Lp spaces, see [Kosaki], [Terp] and [Izumi].
Eventually we want a natural Operator Space structure on Lp(VN(G)):

Under favourable circumstances, we except that non-commutative
L2 is a Hilbert space;
A Hilbert space is self-dual;
The unique Operator Space structure on a Hilbert space with this
property is Pisier’s Operator Hilbert Space;
To recover this, we need to interpolate between a von Neumann
algebra M and Mop

∗ , see [Pisier].
Here Mop

∗ is the predual of M equipped with the opposite structure,

‖(ωij)‖Mop
∗

= ‖(ωji)‖M∗ .
(
(ωij) ∈Mn(M∗)

)
.
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Standard position
The trick, following [Junge, Ruan, Xu], is to use that VN(G) is in
standard position on L2(G). There is a map

J : L2(G)→ L2(G); Jξ(s) = ξ(s−1)∇(s)−1/2.

Then

JVN(G)J = VN(G)′ = VNr (G), JVNr (G)J = VN(G).

Here VNr (G) is the right group von Neumann algebra, generated by
the right regular representation.
Then we have a normal completely isometric isomorphism

φ : VN(G)→ VNr (G)op; x 7→ Jx∗J.

The pre-adjoint is

φ∗ : Ar (G)op → A(G); ωξ,η 7→ ωJη,Jξ.
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The spaces

So if we privilege A(G), it makes sense to interpolate between VNr (G)
and Ar (G)op ∼= A(G).
If we follow Terp’s interpolation method through, then in
A(G) ∩ VNr (G), we find that

a = ρ
(
∇−1/2a

) (
a ∈ A(G) ∩ C00(G)2).

Here ρ is the right regular representation.
Obviously A(G) acts on itself by pointwise multiplication; the above
suggests that A(G) should act on VNr (G) in such a way that

a · ρ(f ) = ρ(af ) (a ∈ A(G), f ∈ L1(G)).
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The module action
Let K be the linear version of J,

K ξ(s) = ξ(s−1)∇(s)−1/2 (ξ ∈ L2(G), s ∈ G).

Then we can form a normal completely isometric isomorphism,

φ̂ : VN(G)→ VNr (G); x 7→ KxK ,

and similarly this drops to a complete isometry

φ̂∗ : Ar (G)→ A(G); ωξ,η 7→ ωK ξ,Kη.

Now, naturally, VNr (G) is a completely contractive Ar (G) module, and
so using (φ̂∗)

−1, we see that VNr (G) is a completely contractive A(G)
module, which satisfies

a · ρ(f ) = ρ(af ) (a ∈ A(G), f ∈ L1(G)).
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The spaces

So we interpolate between VNr (G) and A(G), leading to Lp(Ĝ) say. If
G is abelian, this is the Lp space of the dual group Ĝ.
We interpolate the module actions, so Lp(Ĝ) becomes a (completely
contractive) A(G) module. A similar argument establishes that MA(G)
and McbA(G) act on Lp(Ĝ), extending the action of A(G).
[Izumi] implies that there is a natural dual pairing between Lp(Ĝ) and
Lp′(Ĝ), where p−1 + p′−1 = 1.
By taking the adjoint, we get a map

Lp(Ĝ)⊗̂Lp′(Ĝ)→ MA(G)∗,

which actually takes values in Q, showing that the action of MA(G) on
Lp(Ĝ) is weak∗-weak∗ continuous. The same idea applies to McbA(G).
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Lp(Ĝ)⊗̂Lp′(Ĝ)→ MA(G)∗,

which actually takes values in Q, showing that the action of MA(G) on
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Links with work of Forrest, Lee and Samei

These authors interpolate between VN(G) and A(G)op, leading to
OLp(VN(G)), say. Then they define

Lp(VN(G)) =

{
OLp(VN(G))op : 1 < p ≤ 2,
OLp(VN(G)) : 2 ≤ p <∞.

An A(G)-module action is defined by working with L2(G) ∼= L2(VN(G)),
and using row and column Hilbert spaces, and interpolation.

Theorem

For 1 < p ≤ 2, Lp(VN(G)) ∼= Lp(Ĝ), as A(G) modules, by interpolating
the map

φ : VN(G)→ VNr (G)op; x 7→ Jx∗J.

For 2 ≤ p <∞, Lp(VN(G)) ∼= Lp(Ĝ), this time using φ̂.
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The theorem

Let (pn) be a sequence in (1,∞) tending to 1. Let

E = `2 −
⊕

n

Lpn (Ĝ).

Let π : MA(G)→ B(E) be the diagonal action.

Theorem
The homomorphism π is an isometric, weak∗-weak∗-continuous
isomorphism onto its range, which is equal to the idealiser of π(A(G))
in B(E),

π(MA(G)) =
{

T ∈ B(E) :
Tπ(a), π(a)T ∈ π(A(G))

(a ∈ A(G))

}
.
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Let π : MA(G)→ B(E) be the diagonal action.

Theorem
The homomorphism π is an isometric, weak∗-weak∗-continuous
isomorphism onto its range, which is equal to the idealiser of π(A(G))
in B(E),

π(MA(G)) =
{

T ∈ B(E) :
Tπ(a), π(a)T ∈ π(A(G))

(a ∈ A(G))

}
.

Matthew Daws (Leeds) Multipliers and the Fourier algebra July 2009 25 / 28



Completely bounded case

Give each Lpn (Ĝ) its canonical operator space structure. Then

`∞ −
⊕

n

Lpn (Ĝ), `∞ −
⊕

n

Lpn (Ĝ)∗,

both carry natural operator space structures. Then

`1 −
⊕

n

Lpn (Ĝ) ⊆
(
`∞ −

⊕
n

Lpn (Ĝ)∗
)∗
,

and hence has an operator space structure. Then

E = `2 −
⊕

n

Lpn (Ĝ)

is a complex interpolation between the `∞ and `1 direct sums, and so
has an operator space structure, see [Pisier] and [Xu].
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Lpn (Ĝ), `∞ −
⊕

n

Lpn (Ĝ)∗,
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)∗
,

and hence has an operator space structure. Then

E = `2 −
⊕

n

Lpn (Ĝ)
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Completely bounded case (cont.)

E = `2 −
⊕

n

Lpn (Ĝ)

Let π : McbA(G)→ CB(E) be the diagonal map.

Theorem
The homomorphism π is a completely isometric,
weak∗-weak∗-continuous isomorphism onto its range, which is equal to
the idealiser of π(A(G)) in CB(E),

π(McbA(G)) =
{

T ∈ CB(E) :
Tπ(a), π(a)T ∈ π(A(G))

(a ∈ A(G))

}
.

Notice that E , and the A(G) action, is the same in either case. The
idealiser in B(E) is MA(G), while the idealiser in CB(E) is McbA(G).

Matthew Daws (Leeds) Multipliers and the Fourier algebra July 2009 27 / 28



Completely bounded case (cont.)

E = `2 −
⊕

n

Lpn (Ĝ)
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Figa-Talamanca–Herz algebras

The adjoint of the action of A(G) on Lp(Ĝ) gives a map

πp
∗ : Lp(Ĝ)⊗̂Lp′(Ĝ)→ A(G)∗ = VN(G),

which takes values in C∗λ(G).
Let Ap(Ĝ) be the image of πp

∗ in C∗λ(G), equipped with the norm as a
quotient of Lp(Ĝ)⊗̂Lp′(Ĝ).

Theorem

A2(Ĝ) = λ(L1(G)) in C∗λ(G), with the A2(Ĝ) norm being equal to the
L1(G) norm.

Again, if G is abelian, then A2(Ĝ) = A(Ĝ) = L1(G).

Is Ap(Ĝ) an algebra for p 6= 2?
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A2(Ĝ) = λ(L1(G)) in C∗λ(G), with the A2(Ĝ) norm being equal to the
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