Multipliers and the Fourier algebra

Matthew Daws

Leeds

$$
\text { July } 2009
$$MultipliersDual Banach algebrasNon-commutative L^{p} spaces

Centralisers

For an algebra \mathcal{A}, let $M(\mathcal{A})$ be the space of double centralisers, that is, pairs of linear maps (L, R) of $\mathcal{A} \rightarrow \mathcal{A}$ with

$$
\left\{\begin{array}{c}
L(a b)=L(a) b, \quad R(a b)=a R(b), \\
a L(b)=R(a) b
\end{array} \quad(a, b \in \mathcal{A})\right.
$$

We always assume that \mathcal{A} is faithful, meaning that if $a \in \mathcal{A}$ with bac $=0$ for any $b, c \in \mathcal{A}$, then $a=0$.
When \mathcal{A} is a Banach algebra, we naturally ask that L and R are linear and bounded. However...
A Closed Graph argument shows that if (L, R) is a pair of maps $\mathcal{A} \rightarrow \mathcal{A}$ with

$$
a L(b)=R(a) b \quad(a, b \in \mathcal{A})
$$

then already $(L, R) \in M(\mathcal{A})$.

Centralisers continued

We can identify \mathcal{A} as a subalgebra of $M(\mathcal{A})$ by

Then $M(\mathcal{A})$ becomes a Banach algebra for the product

$$
(L, R)\left(L^{\prime}, R^{\prime}\right)=\left(L L^{\prime}, R^{\prime} R\right)
$$

$$
a \mapsto\left(L_{a}, R_{a}\right), \quad L_{a}(b)=a b, R_{a}(b)=b a \quad(a, b \in \mathcal{A})
$$

$M(\mathcal{A})$ is a well understood and useful tool in the C^{*}-algebra world. If \mathcal{A} is a Banach algebra with a bounded approximate identity, then most of what we expect from the C^{*}-world works for $M(\mathcal{A})$.

Centralisers / Multipliers?

If \mathcal{A} is commutative, then $L=R$, and so

$$
M(\mathcal{A})=\{T: \mathcal{A} \rightarrow \mathcal{A}: T(a b)=a T(b)(a, b \in \mathcal{A})\}
$$

Let X be a locally compact space, and suppose that \mathcal{A} is a commutative algebra of functions on X which separates the points of X. Then each $T \in M(\mathcal{A})$ gives rise to a function $f: X \rightarrow \mathbb{C}$ with $T(a)=$ fa for $a \in \mathcal{A}$. Thus

$$
M(\mathcal{A})=\{f: X \rightarrow \mathbb{C}: f a \in \mathcal{A}(a \in \mathcal{A})\}
$$

Hence $M(\mathcal{A})$ is the algebra of functions on X which "multiply \mathcal{A} into \mathcal{A} ". I shall henceforth not distinguish between multipliers and centralisers.

The Fourier Algebra

For a locally compact group G let λ be the left regular representation

$$
(\lambda(s) \xi)(t)=\xi\left(s^{-1} t\right) \quad\left(s, t \in G, \xi \in L^{2}(G)\right)
$$

This induces a homomorphism $\lambda: L^{1}(G) \rightarrow \mathcal{B}\left(L^{2}(G)\right)$.
Let $C_{\lambda}^{*}(G)$ and $V N(G)$ be the norm and σ-weak closures of $\lambda\left(L^{1}(G)\right)$, respectively. So $V N(G)=C_{\lambda}^{*}(G)^{\prime \prime}$.
Let $A(G)$ be the predual of $V N(G)$. As $V N(G)$ is in standard position on $L^{2}(G)$, for each $\omega \in A(G)$, there exist $\xi, \eta \in L^{2}(G)$ with

$$
\omega=\omega_{\xi, \eta} \quad\langle x, \omega\rangle=(x(\xi) \mid \eta) \quad(x \in V N(G))
$$

Dual Banach algebras and multipliers

A dual Banach algebra is a Banach algebra \mathcal{A} which is (isomorphic to) the dual of some Banach space \mathcal{A}_{*}, such that the product on \mathcal{A} is separately weak*-continuous.
The multiplier algebra of a C^{*}-algebra is rarely a dual Banach algebra:

$$
M\left(c_{0}\right)=\ell^{\infty}=\left(\ell^{1}\right)^{*}, \quad M\left(C_{0}(K)\right)=C^{b}(K) \cong C(\beta K)
$$

For a locally compact group G,

$$
M\left(L^{1}(G)\right)=M(G)=C_{0}(G)^{*}
$$

where for each $(L, R) \in M\left(L^{1}(G)\right)$, there exists $\mu \in M(G)$,

$$
L(a)=\mu * a, \quad R(a)=a * \mu \quad\left(a \in L^{1}(G)\right)
$$

Fourier Algebra: The product

As $\{\lambda(s): s \in G\}$ also generates $V N(G)$, we see that $\{\langle\lambda(s), \omega\rangle: s \in G\}$ determines $\omega \in A(G)$. For $\omega_{\xi, \eta} \in A(G)$ and $s \in G$,

$$
\left\langle\lambda(s), \omega_{\xi, \eta}\right\rangle=\int \xi\left(s^{-1} t\right) \overline{\eta(t)} d t=\bar{\eta} * \check{\xi}(s)
$$

Here $\check{\xi}(s)=\xi\left(s^{-1}\right)$.
It's not hard to see that $\bar{\eta} * \check{\xi} \in C_{0}(G)$, and so we have an injection

$$
\Phi: A(G) \rightarrow C_{0}(G)
$$

Then $\Phi(A(G))$ is a subalgebra of $C_{0}(G)$, and $A(G)$ is a Banach algebra, [Eymard].

Multipliers

So we can form $M A(G)$:

- $M A(G)=\left\{f \in C^{b}(G): f a \in A(G)(a \in A(G))\right\}$;
- $M A(G)=B(G)$, the Fourier-Stieltjes algebra, if and only if G is amenable [Losert].
As the predual of a von Neumann algebra, $A(G)$ is an operator space.
Actually a completely contractive Banach algebra. Hence natural to consider the completely bounded multipliers, written $M_{c b}(A(G))$.
[De Canniere, Haagerup]: For $f \in M A(G)$, TFAE:
- $f \in M_{c b} A(G)$;
- $f \otimes 1_{K} \in M A(G \times K)$ for all compact groups K;
- $f \otimes 1_{K} \in M A(G \times K)$ for $K=S U(2)$.

An abstract approach

Notice that $A(G)=\overline{\operatorname{lin}}\{a b: a, b \in A(G)\}$. Let

$$
\iota: A(G) \rightarrow B(G)
$$

be the isometric inclusion map; so $\iota(A(G))$ is an essential ideal. We hence get a map $\theta: B(G) \rightarrow M A(G)$,

$$
\theta(a): A(G) \rightarrow A(G) ; b \mapsto a b \quad(a \in B(G), b \in A(G))
$$

As $A(G)$ is faithful, $\iota(A(G))$ being essential is equivalent to θ being injective.

$M A(G)$ and $M_{c b} A(G)$ are dual

[De Canniere, Haagerup]: Let Q be the completion of $L^{1}(G)$ under the norm

$$
\|f\|_{Q}=\sup \left\{\left|\int f(s) a(s) d s\right|: a \in M A(G),\|a\| \leq 1\right\}
$$

Then $Q^{*}=M A(G)$.
Let Q_{0} be the completion of $L^{1}(G)$ under the norm

$$
\|f\|_{Q_{0}}=\sup \left\{\left|\int f(s) a(s) d s\right|: a \in M_{c b} A(G),\|a\| \leq 1\right\} .
$$

Then $Q_{0}^{*}=M_{c b} A(G)$.
Easy to check that $M A(G)$ and $M_{c b} A(G)$ hence become dual Banach algebras.

An abstract approach, cont.

$$
\iota: A(G) \rightarrow B(G), \quad \theta: B(G) \rightarrow M A(G)
$$

Theorem

$M A(G)$ admits a weak*-topology such that $M A(G)$ becomes a dual Banach algebra.

Proof.

Consider $X_{0}=\left(A(G) \widehat{\otimes} C^{*}(G)\right) \oplus_{1}\left(A(G) \widehat{\otimes} C^{*}(G)\right)$ which has dual space $\mathcal{B}(A(G), B(G)) \oplus_{\infty} \mathcal{B}(A(G), B(G))$. Let $X \subseteq X_{0}$ be the closed linear span of

$$
(b \otimes x \cdot \iota(a)) \oplus(-a \otimes \iota(b) \cdot x)
$$

for $a, b \in A(G), x \in C^{*}(G)$. A calculation shows that

$$
X^{\perp}=\{(\iota L, \iota R):(L, R) \in M A(G)\}
$$

Comments

Theorem

The weak*-topology on $\operatorname{MA}(G)$ is unique such that:

- $M A(G)$ is a dual Banach algebra;
- We have that $b_{\alpha} \rightarrow b$ weak* in $B(G)$ if and only if $\theta\left(b_{\alpha}\right) \rightarrow \theta(b)$ weak* in $M A(G)$.

So this gives the same predual as DeCanniere and Haagerup. Also, we could have used $B_{\lambda}^{*}(G)=C_{\lambda}^{*}(G)^{*}$ instead of $B(G)$.
If we want $M_{c b} A(G)$ then simply work in the category of Operator

Spaces!

All this works, with essentially no change, for locally compact quantum groups.
Inspired by [Selivanov].

An idea of Young

Fix a group G. Let $\left(p_{n}\right) \subseteq(1, \infty)$ be a sequence tending to 1 , and let

$$
E=\ell^{2}-\bigoplus_{n} L^{p_{n}}(G)
$$

- $L^{1}(G)$ acts by convolution on each $L^{p_{n}}(G)$, and hence on E.
- Similarly $M(G)$ acts by convolution on E, extending the action of $L^{1}(G)$.
- Actually, the homomorphism $\pi: M(G) \rightarrow \mathcal{B}(E)$ is an isometry, and is weak*-weak* continuous.
- The image of $M(G)$ in $\mathcal{B}(E)$ is the idealiser of $\pi\left(L^{1}(G)\right)$:

$$
\pi(M(G))=\left\{T \in \mathcal{B}(E): \begin{array}{c}
T \pi(a), \pi(a) T \in \pi\left(L^{1}(G)\right) \\
\left(a \in L^{1}(G)\right)
\end{array}\right\}
$$

Representations

Results of [Daws] in the Banach space case, and [Uygul] in the Operator space case give:

Theorem

Let \mathcal{A} be a (completely contractive) dual Banach algebra. Then there exists a reflexive Operator / Banach space E and a (completely) isometric, weak*-weak*-continuous homomorphism $\pi: \mathcal{A} \rightarrow \mathcal{B}(E)$.

If we know more about \mathcal{A} (say, $\mathcal{A}=M\left(L^{1}(G)\right)$ or $M A(G)$) can we choose E in a "nice" way?

The details

Let $\mu \in M(G), p \in(1, \infty), \xi \in L^{p}(G)$ and $\eta \in L^{p^{\prime}}(G)$, so

$$
\begin{aligned}
\langle\pi(\mu) \xi, \eta\rangle & =\int d \mu(s) \xi\left(s^{-1} t\right) \eta(t) d t \\
& =\iint \xi\left(s^{-1} t\right) \eta(t) d t d \mu(s)=\langle\mu, \eta * \check{\xi}\rangle
\end{aligned}
$$

Here $\eta * \check{\xi} \in A_{p}(G)$, the Figa-Talamanca-Herz algebra.

- For $\xi, \eta \in C_{00}(G)$, we have $\lim _{p \rightarrow 1}\|\eta * \breve{\xi}\|_{A_{p}}=\|\eta * \breve{\xi}\|_{\infty}$.
- As $C_{00}(G)^{2}$ dense in $C_{0}(G)$, this shows that $\pi: M(G) \rightarrow \mathcal{B}(E)$ is an isometry (as $p_{n} \rightarrow 1$).
- This also shows that π is weak*-weak*-continuous: the preadjoint is the direct sum of the maps

$$
L^{p_{n}}(G) \widehat{\otimes} L^{p_{n}^{\prime}}(G) \rightarrow A_{p_{n}}(G) \rightarrow C_{0}(G)
$$

Abstracting the construction

It is well-known that $L^{p}(G)$ can be realised as the complex interpolation space, of parameter $1 / p$, between $L^{\infty}(G)$ and $L^{1}(G)$.
I won't explain this in detail but observe that:

- We regard $L^{\infty}=L^{\infty}(G)$ and $L^{1}=L^{1}(G)$ as spaces of functions on G, so it makes sense to talk about $L^{\infty} \cap L^{1}$ and $L^{\infty}+L^{1}$.
- We have inclusions $L^{\infty} \cap L^{1} \subseteq L^{p} \subseteq L^{\infty}+L^{1}$;
- (Riesz-Thorin) If $T: L^{\infty}+L^{1} \rightarrow L^{\infty}+L^{1}$ is linear, and restricts to give map $L^{1} \rightarrow L^{1}$ and $L^{\infty} \rightarrow L^{\infty}$, then

$$
\left\|T: L^{p} \rightarrow L^{p}\right\| \leq\left\|T: L^{\infty} \rightarrow L^{\infty}\right\|^{1-1 / p}\left\|T: L^{1} \rightarrow L^{1}\right\|^{1 / p}
$$

Convolution action

For $\mu \in M(G)$, we have a convolution action of μ on $L^{1}(G)$ and $L^{\infty}(G)$. Interpolating gives the convolution action on $L^{p}(G)$.
However, from an abstract point of view, this is actually a little odd:

- $M(G)$ acts entirely naturally on $L^{1}(G)$ as $M\left(L^{1}(G)\right)=M(G)$.
- $L^{\infty}(G)$ is the dual space of $L^{1}(G)$.
- So we have the dual (technically, adjoint) action of $M(G)$ on $L^{\infty}(G)$.
- This is not the usual convolution action of $M(G)$ on $L^{\infty}(G)$.

So, if we are to generalise this, we need a new idea.

Analogous ideas for $A(G)$

So for the Fourier algebra, we might proceed as follows:

- Find some way to embed $A(G)$ and $V N(G)$ into a Hausdorff topological space;
- so we can form $V N(G) \cap A(G)$ and $V N(G)+A(G)$.
- Use the complex interpolation method with parameter 1/p.
- Find some module action of $M A(G)$ on $V N(G)$ which agrees with the standard action of $M A(G)$ on $A(G)$ in $V N(G) \cap A(G)$.
- Then do the same again at the Operator Space level!

Bizarrely the last point suggests a novel way to get the module actions.

Non-commutative L^{p} spaces

Using the complex interpolation method applied to von Neumann algebras is a well established way to construct non-commutative L^{p} spaces, say $L^{p}(V N(G))$.

- If G is discrete, then $V N(G)$ admits a finite trace: $\varphi: x \mapsto\left(x \delta_{e} \mid \delta_{e}\right)$ for $x \in V N(G)$. Then $L^{p}(V N(G))$ is the completion of $V N(G)$ under the norm $\|x\|_{p}=\varphi\left(|x|^{p}\right)^{1 / p}$, where $|x|=\left(x^{*} x\right)^{1 / 2}$.
- In general, $V N(G)$ only admits a weight, which satisfies $\varphi(\lambda(f * g))=(f * g)(e)$ for, say, $f, g \in C_{00}(G)$.
- If G is compact, then

$$
V N(G) \cong \prod_{i} \mathbb{M}_{n_{i}}, \quad L^{p}(V N(G)) \cong \ell^{p}-\bigoplus_{i} S_{n_{i}}^{p}
$$

where S_{n}^{p} is \mathbb{M}_{n} equipped with the p th Schatten-class norm.

Operator Space Structures

For further details on the complex interpolation approach to non-commutative L^{p} spaces, see [Kosaki], [Terp] and [Izumi].
Eventually we want a natural Operator Space structure on $L^{p}(V N(G))$:

- Under favourable circumstances, we except that non-commutative L^{2} is a Hilbert space;
- A Hilbert space is self-dual;
- The unique Operator Space structure on a Hilbert space with this property is Pisier's Operator Hilbert Space;
- To recover this, we need to interpolate between a von Neumann algebra M and $M_{*}^{o p}$, see [Pisier].
- Here $M_{*}^{o p}$ is the predual of M equipped with the opposite structure,

$$
\left\|\left(\omega_{i j}\right)\right\|_{M_{*}^{\mathrm{op}}}=\left\|\left(\omega_{j i}\right)\right\|_{M_{*}} . \quad\left(\left(\omega_{i j}\right) \in \mathbb{M}_{n}\left(M_{*}\right)\right) .
$$

The spaces

So if we privilege $A(G)$, it makes sense to interpolate between $V N_{r}(G)$ and $A_{r}(G)^{\mathrm{op}} \cong A(G)$.
If we follow Terp's interpolation method through, then in
$A(G) \cap V N_{r}(G)$, we find that

$$
a=\rho\left(\nabla^{-1 / 2} a\right) \quad\left(a \in A(G) \cap C_{00}(G)^{2}\right) .
$$

Here ρ is the right regular representation.
Obviously $A(G)$ acts on itself by pointwise multiplication; the above suggests that $A(G)$ should act on $V N_{r}(G)$ in such a way that

$$
a \cdot \rho(f)=\rho(a f) \quad\left(a \in A(G), f \in L^{1}(G)\right) .
$$

Standard position

The trick, following [Junge, Ruan, Xu], is to use that $\operatorname{VN}(G)$ is in standard position on $L^{2}(G)$. There is a map

$$
J: L^{2}(G) \rightarrow L^{2}(G) ; \quad J \xi(s)=\overline{\xi\left(s^{-1}\right)} \nabla(s)^{-1 / 2} .
$$

Then

$$
J V N(G) J=V N(G)^{\prime}=V N_{r}(G), \quad J V N_{r}(G) J=V N(G) .
$$

Here $V N_{r}(G)$ is the right group von Neumann algebra, generated by the right regular representation.
Then we have a normal completely isometric isomorphism

$$
\phi: V N(G) \rightarrow V N_{r}(G)^{\mathrm{op}} ; \quad x \mapsto J x^{*} J .
$$

The pre-adjoint is

$$
\phi_{*}: A_{r}(G)^{\mathrm{op}} \rightarrow A(G) ; \quad \omega_{\xi, \eta} \mapsto \omega_{J \eta, J \xi}
$$

The module action

Let K be the linear version of J,

$$
K \xi(s)=\xi\left(s^{-1}\right) \nabla(s)^{-1 / 2} \quad\left(\xi \in L^{2}(G), s \in G\right) .
$$

Then we can form a normal completely isometric isomorphism,

$$
\hat{\phi}: V N(G) \rightarrow V N_{r}(G) ; \quad x \mapsto K x K,
$$

and similarly this drops to a complete isometry

$$
\hat{\phi}_{*}: A_{r}(G) \rightarrow A(G) ; \quad \omega_{\xi, \eta} \mapsto \omega_{K \xi, K \eta}
$$

Now, naturally, $V N_{r}(G)$ is a completely contractive $A_{r}(G)$ module, and so using $\left(\hat{\phi}_{*}\right)^{-1}$, we see that $V N_{r}(G)$ is a completely contractive $A(G)$ module, which satisfies

$$
a \cdot \rho(f)=\rho(a f) \quad\left(a \in A(G), f \in L^{1}(G)\right) .
$$

The spaces

So we interpolate between $V N_{r}(G)$ and $A(G)$, leading to $L^{P}(\hat{G})$ say. If G is abelian, this is the L^{p} space of the dual group \hat{G}.
We interpolate the module actions, so $L^{p}(\hat{G})$ becomes a (completely contractive) $A(G)$ module. A similar argument establishes that $M A(G)$ and $M_{c b} A(G)$ act on $L^{p}(\hat{G})$, extending the action of $A(G)$.
[Izumi] implies that there is a natural dual pairing between $L^{p}(\hat{G})$ and $L^{p^{\prime}}(\hat{G})$, where $p^{-1}+p^{\prime-1}=1$.
By taking the adjoint, we get a map

$$
L^{p}(\hat{G}) \widehat{\otimes} L^{p^{\prime}}(\hat{G}) \rightarrow M A(G)^{*},
$$

which actually takes values in Q, showing that the action of $M A(G)$ on $L^{p}(\hat{G})$ is weak ${ }^{*}$-weak ${ }^{*}$ continuous. The same idea applies to $M_{c b} A(G)$.

The theorem

Let $\left(p_{n}\right)$ be a sequence in $(1, \infty)$ tending to 1 . Let

$$
E=\ell^{2}-\bigoplus_{n} L^{p_{n}}(\hat{G}) .
$$

Let $\pi: M A(G) \rightarrow \mathcal{B}(E)$ be the diagonal action.

Theorem

The homomorphism π is an isometric, weak*-weak*-continuous isomorphism onto its range, which is equal to the idealiser of $\pi(A(G))$ in $\mathcal{B}(E)$,

$$
\pi(M A(G))=\left\{T \in \mathcal{B}(E): \begin{array}{c}
T \pi(a), \pi(a) T \in \pi(A(G)) \\
(a \in A(G))
\end{array}\right\} .
$$

Links with work of Forrest, Lee and Samei

These authors interpolate between $V N(G)$ and $A(G)^{\text {op }}$, leading to $O L^{p}(V N(G))$, say. Then they define

$$
L^{p}(V N(G))= \begin{cases}O L^{p}(V N(G))^{o p} & : 1<p \leq 2 \\ O L^{p}(V N(G)) & : 2 \leq p<\infty\end{cases}
$$

An $A(G)$-module action is defined by working with $L^{2}(G) \cong L^{2}(V N(G))$, and using row and column Hilbert spaces, and interpolation.

Theorem

For $1<p \leq 2, L^{p}(V N(G)) \cong L^{p}(\hat{G})$, as $A(G)$ modules, by interpolating the map

$$
\phi: V N(G) \rightarrow V N_{r}(G)^{o p} ; \quad x \mapsto J x^{*} J .
$$

For $2 \leq p<\infty, L^{p}(V N(G)) \cong L^{p}(\hat{G})$, this time using $\hat{\phi}$.

Completely bounded case

Give each $L^{\rho_{n}}(\hat{G})$ its canonical operator space structure. Then

$$
\ell^{\infty}-\bigoplus_{n} L^{p_{n}}(\hat{G}), \quad \ell^{\infty}-\bigoplus_{n} L^{p_{n}}(\hat{G})^{*}
$$

both carry natural operator space structures. Then

$$
\ell^{1}-\bigoplus_{n} L^{p_{n}}(\hat{G}) \subseteq\left(\ell^{\infty}-\bigoplus_{n} L^{p_{n}}(\hat{G})^{*}\right)^{*},
$$

and hence has an operator space structure. Then

$$
E=\ell^{2}-\bigoplus_{n} L^{p_{n}}(\hat{G})
$$

is a complex interpolation between the ℓ^{∞} and ℓ^{1} direct sums, and so has an operator space structure, see [Pisier] and [Xu].

Completely bounded case (cont.)

$$
E=\ell^{2}-\bigoplus_{n} L^{p_{n}}(\hat{G})
$$

Let $\pi: M_{C b} A(G) \rightarrow \mathcal{C B}(E)$ be the diagonal map.

Theorem

The homomorphism π is a completely isometric,
weak*-weak*-continuous isomorphism onto its range, which is equal to the idealiser of $\pi(A(G))$ in $\mathcal{C B}(E)$,

$$
\pi\left(M_{c b} A(G)\right)=\left\{T \in \mathcal{C B}(E): \begin{array}{c}
T \pi(a), \pi(a) T \in \pi(A(G)) \\
(a \in A(G))
\end{array}\right\}
$$

Notice that E, and the $A(G)$ action, is the same in either case. The idealiser in $\mathcal{B}(E)$ is $M A(G)$, while the idealiser in $\mathcal{C B}(E)$ is $M_{c b} A(G)$.

Figa-Talamanca-Herz algebras
The adjoint of the action of $A(G)$ on $L^{p}(\hat{G})$ gives a map

$$
\pi_{*}^{p}: L^{p}(\hat{G}) \widehat{\otimes} L^{p^{\prime}}(\hat{G}) \rightarrow A(G)^{*}=V N(G)
$$

which takes values in $C_{\lambda}^{*}(G)$.
Let $A_{p}(\hat{G})$ be the image of π_{*}^{p} in $C_{\lambda}^{*}(G)$, equipped with the norm as a quotient of $L^{p}(\hat{G}) \widehat{\otimes} L^{p^{\prime}}(\hat{G})$.

Theorem

$A_{2}(\hat{G})=\lambda\left(L^{1}(G)\right)$ in $C_{\lambda}^{*}(G)$, with the $A_{2}(\hat{G})$ norm being equal to the $L^{1}(G)$ norm.
Again, if G is abelian, then $A_{2}(\hat{G})=A(\hat{G})=L^{1}(G)$.
Is $A_{p}(\hat{G})$ an algebra for $p \neq 2$?

