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Compact spaces

Given a space X , how might we study X ?

We might study maps on X , or maps from X to something else.

As an analyst, I'm interested in \distance", \continuity",

\topology".

So I might look at the space C (X ,C) = C (X ) of continuous

functions from X to the complex numbers.

Complex because I'm also interested in algebra.

Theorem (Urysohn)

If X is a normal (in particular, compact Hausdor�) topological

space then give disjoint closed subsets A,B there is a continuous

function f : X → [0, 1] with f ≡ 0 on A and f ≡ 1 on B.

So C (X ) \sees the topology".
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C
∗-Algebras

From now on, X is a compact (Hausdor�) space.

We turn C (X ) into a vector space via pointwise operations.

We turn C (X ) into an algebra via pointwise operations.

We give C (X ) a norm via ‖f ‖ = supx∈X |f (x )|.
1 ‖f ‖ ≥ 0 and = 0 i� f = 0;
2 ‖tf ‖ = |t |‖f ‖ for scalars t ;
3 ‖f + g‖ ≤ ‖f ‖+ ‖g‖.

d(f , g) = ‖f − g‖ de�nes a metric.

Then C (X ) is complete.

We give C (X ) an involution f 7→ f ∗ via pointwise complex

conjugation.

C ∗-identity: ‖f ∗f ‖ = ‖f ‖2.
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Abstract C ∗-Algebras

A complex algebra A,

which has a norm with ‖ab‖ ≤ ‖a‖‖b‖,
which is complete,

which satis�es the C ∗-condition: ‖a∗a‖ = ‖a‖2.

Theorem (Gelfand)

Let A be a unital commutative C∗-algebra. Then there is a

compact Hausdor� space X such that A is isomorphic to C (X ).

\isomorphic" means all the structure is preserved.
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Gelfand theory

A character on A is a non-zero homomorphism φ : A→ C.
(Characters are always continuous, indeed, ‖φ‖ ≤ 1 always.)

The collection of all characters forms our space X .

Give X the \topology of pointwise convergence".

Little exercise: If X is compact, then every character on C (X ) is

of the form: \evaluate at some point of X ".

Example

Let X be a non-locally compact metric space. This is a \nice" space,

and we can form Cb(X ) the algebra of bounded continuous functions.

The \character space" of Cb(X ) is then the Stone-Cech

compacti�cation of X , the largest compact space containing a dense

copy of X .
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A little category theory

Suppose X and Y are compact, and α : X → Y is a continuous map.

Then we get an algebra homomorphism α∗ : C (Y )→ C (X ) given by

α∗(f )(x ) = f (α(x )) (f ∈ C (Y ), x ∈ X ).

Theorem

Let φ : C (Y )→ C (X ) be a unital ∗-homomorphism. Then there is

a continuous map α : X → Y with φ = α∗.

In this way, the category of compact Hausdor� spaces and the

opposite to the category of unital commutative C ∗-algebras are

isomorphic.

To construct α, just observe that φ, composed with evaluation at

x ∈ X , gives a character on C (Y ), that is, a point α(x ) ∈ Y .
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A dictionary...

Will I have time??
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Towards groups

Suppose our spaces have extra structure: for example, let G be a

compact group.

If we form C (G) then we lose a huge amount of information.

For example, if G is �nite C0(G) only \remembers" the

cardinality of G.

Instead, let's take a representation theory approach.

Fix a �nite group G .
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Inner-product spaces

Consider (column) vectors in Cn with the inner-product

(f |g) =

n∑
i=1

figi (f , g ∈ Cn).

This induces a norm by ‖f ‖ =
√

(f |f ).

Linear maps on Cn \are" matrices in Mn(C).

Have the notion of the \hermitian transpose" or \adjoint" of a

matrix. Satis�es: (Af |g) = (f |A∗g).

Instead of using 1, 2, · · · ,n as a basis, use G as a basis.

Write L2(G) for C|G | with this inner-product and norm.

Write L(L2(G)) for the matrix algebra M|G | with the operator

norm

‖A‖ = max
{
‖Af ‖ : f ∈ L2(G), ‖f ‖ ≤ 1

}
.
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Left regular representation

Form the space L2(G). For f ∈ L2(G), s ∈ G let

λ(s)(f ) ∈ L2(G) be the function t 7→ f (s−1t).

Then λ(s) is linear.

Also λ(s) is an isometry:

‖λ(s)(f )‖ =
(∑
t∈G

|f (s−1t)|2
)1/2

=
(∑
t∈G

|f (t)|2
)1/2

= ‖f ‖.

λ(s)λ(t) = λ(st); s 7→ λ(s) is a homomorphism.

λ(s−1) = λ(s)∗.

Matthew Daws (Leeds) Fourier algebras She�eld, Nov 2014 10 / 25



Group algebras

Consider the group algebra C[G ].

This has each element of G as a basis element, and we then take

the C linear span. Just a di�erent take on C|G |.

Typical element: a =
∑

s∈G ass with (as) ⊆ C.
Turn into an algebra by \multiplying in G":

ab =
(∑
s∈G

ass
)(∑

t∈G
bt t
)

=
∑
s,t

asbtst =
∑
s

(∑
t

atbt−1s

)
s ,

\convolution product".

C[G ] is a ∗-algebra: (∑
s

ass
)∗

=
∑
s

ass
−1.
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The group C ∗-algebra

Left-regular representation: represent C[G] on L2(G),∑
s

ass 7→∑
s

asλ(s).

This is a ∗-homomorphism C[G ]→ L(L2(G)).

Let C ∗r (G) be the image: \reduced group C ∗-algebra".

So this is just a copy of C[G ], but now equipped with the norm

coming from L(L2(G)).
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Dual spaces and norms.

Let E be a normed vector space.

The dual space of E , denoted E∗, is the vector space of all

continuous linear maps µ : E → C.
A linear map is continuous if and only if it is bounded: for some

K > 0 we have |µ(x )| ≤ K‖x‖ for all x ∈ E .

‖µ‖ = sup{|µ(x )| : ‖x‖ ≤ 1} de�nes a complete norm on E∗.
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The \Fourier Algebra"

Let's consider C ∗r (G)∗ the dual space.

Call this A(G), the Fourier Algebra.

As a vector space, is just C|G | again; but has a new norm!

(Slightly big stick =⇒ ) For any ω ∈ A(G), we can �nd vectors

f , g ∈ L2(G) so the functional is

ω : C ∗r (G)→ C; x 7→ (x (f )|g).

Furthermore, ‖ω‖ = min ‖f ‖‖g‖.
As {λ(s) : s ∈ G} spans C ∗r (G), any such ω is determined by the

values

ω(s) := ω(λ(s))

So can view A(G) as (being equal to) C (G), but with a new norm.
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Why Fourier, I

Fourier transform: for f a function on T = [0, 1],

F(f )(n) =

∫
1

0

f (t)e2πint dt (n ∈ Z).

Get a \sequence" aka a function Z→ C.

Pontryagin duality theory: a \character" on G is a (continuous)

group homomorphism G → T.
E.g. every character on Z is of the form n 7→ e2πint for some

0 ≤ t < 1.

E.g. every character on T is of the form [0, 1] 3 t 7→ e2πint for

some n ∈ Z.
Write Ĝ for the collection of characters on G , made into a

(semi)group for the pointwise operations.

If G a �nite abelian group, then
̂̂
G = G in a canonical way.
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Why Fourier, II
Let G be a �nite abelian group. De�ne F : L2(G)→ L2(Ĝ)

F(f )(γ) =
∑
s∈G

f (s)γ(s) (f ∈ L2(G), γ ∈ Ĝ).

(Plancherel:) This sets up a unitary between the Hilbert spaces

L2(G) and L2(Ĝ).

So we can conjugate to move an operator on L2(Ĝ) to an operator

on L2(G); say x 7→ F−1xF .
This gives a ∗-isomorphism between C ∗r (Ĝ) and C (G); here

C (G) acts on L2(G) by mutliplication.

So also get an isometry between the dual spaces: A(Ĝ) ∼= L1(G).

L1(G) is the functions G → C with the norm

‖f ‖1 =
∑
s∈G

|f (s)|.

L1(G) is an algebra for the convolution product,

‖f ∗ g‖1 ≤ ‖f ‖1‖g‖1.
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General case: why an algebra?

The (C-linear) tensor product of algebras is easy to interpret:

C[G ]⊗ C[G] ∼= C[G ×G ].

There is an injective ∗-homomorphism

∆ : C[G ]→ C[G ×G ]; ∆(s) = s ⊗ s (s ∈ G).

As a vector space, A(G) = C[G ]∗, and so the \transpose" of ∆

gives a map

∆∗ : A(G)⊗A(G)→ A(G).

Notice that as (∆⊗ id)∆ = (id⊗∆)∆ the binary product given by

∆∗ is associative.

The product is \pointwise": ∆∗(ω1 ⊗ω2)(s) = (ω1 ⊗ω2)(∆(s)) =

(ω1 ⊗ω2)(s ⊗ s) = ω1(s)ω2(s).
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Remembering the group

So A(G) = C (G) as an algebra.

But with a di�erent norm!

Theorem (Walter)

Let A(G) be isometrically isomorphic to A(H ). Then G is

isomorphic to either H or the opposite group to H .

C (G) fails to remember G ; but A(G) does rememeber G.
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Discrete groups

Now let G be a discrete, maybe in�nite, group.

We now let L2(G) be the space of functions f : G → C with

‖f ‖22 =
∑
s∈G

|f (s)|2 <∞.
This is still an inner-product space, (f |g) =

∑
s
f (s)g(s).

We now get a Hilbert Space: a complete inner-product space.

Now let L(L2(G)) be the space of continuous linear maps on

L2(G).

A linear map is continuous if and only if it is bounded: there is

K > 0 with ‖T (f )‖ ≤ K‖f ‖ for all f . The minimal K is the norm

‖T‖. L(L2(G)) becomes a complete normed space.

(Riesz) Any T ∈ L(L2(G)) has an adjoint: T ∗ ∈ L(L2(G)) such

that (T (f )|g) = (f |T ∗(g)).
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Group algebras

Can still form C[G ], where we just consider families (as) which

are non-zero for only �nitely many choices of s .

Still have the representation C[G]→ L(L2(G)), which is injective.

The image is a subalgebra of L(L2(G)), but it's not (in general)

closed.

So we can take the closure (add in all limit points) to get C ∗r (G)

the reduced group C ∗-algebra.

We could instead consider all possible C ∗-algebra norms on C[G ]

and take the biggest one.

Same as considering all unitary representations of G on any

Hilbert space.

This gives C ∗(G).

G is amenable if and only if C ∗r (G) = C ∗(G).

Z is amenable; F2 is not.
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Di�erent topologies

The norm topology on B(L2(G)) is very strong.

A suitable \pointwise" topology is the strong operator topology

(SOT): Tn → T if and only if

‖Tn(f ) −T (f )‖→ 0 (f ∈ `2(G)).

Suppose we close up C[G ] in the SOT? Then we get the group

von Neumann algebra VN (G).

Consider the functionals VN (G)→ C, which are SOT continuous.

(Slightly big stick =⇒ ) For any such ω, we can �nd vectors

f , g ∈ `2(G) so the functional is

ω : VN (G)→ C; x 7→ (x (f )|g).

(Can you write down a functional not of this form?)
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The \Fourier Algebra"

Let A(G) be the collection of all these functionals.

Each ω ∈ A(G) de�nes a function

G → C; s 7→ ω(λ(s)) =: ω(s).

Given the special form of such ω, a calculation shows that

ω(s)→ 0 as s →∞.

So A(G) is a subspace of C0(G), but is not all of C0(G).

But it has a norm coming from action on VN (G).
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Why an algebra?

We need to complete our tensor products.

For Hilbert spaces, we de�ne the obvious inner-product on

L2(G)⊗ L2(G), and then we complete the inner-product space to

get a Hilbert space.

In this concrete setting, we get L2(G ×G).

For von Neumann algebras, we have that VN (G) acts on L2(G),

so VN (G)⊗VN (G) acts on L2(G ×G), and the SOT closure

gives VN (G)⊗VN (G), which is just VN (G ×G).

The induced norm on A(G)⊗A(G) is more mysterious and leads

to the area called \Operator Spaces".

Can still form ∆ : VN (G)→ VN (G)⊗VN (G); λ(s) 7→ λ(s)⊗ λ(s)
which induces an associative product A(G)⊗A(G)→ A(G).
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Even for locally compact groups

Let G be a locally compact group.

Need to replace sums with integrals.

A topological group is locally compact if and only if it admits a

\nice" left-invariant measure.

Replace C[G ] with e.g. continuous functions with compact

support, still with the convolution product.

Run the same programme.

Theorem (Eymard, Walter)

A(G) is a Banach algebra of functions, dense in C0(G). Every

character on A(G) is given by point evaluation at some point of

G. The character space of A(G) is G.

A(G) is isometrically isomorphic to A(H ) if and only if G is

isomorphic to H (or its opposite).
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\Topological" quantum groups

Some of you will now be thinking \Bialgebras".

A \Hopf von Neumann algebra" is a pair (M , ∆) where:
I M is a von Neumann algebra, and
I ∆ : M →M⊗M is a (normal) injective ∗-homomorphism, with
I (∆⊗ id)∆ = (id⊗∆)∆.

After a long history, Kustermans and Vaes gave an axiomatisation,

subsuming Woronowicz's earlier work on compact quantum

groups.

Turns out the correct extra piece of data to assume is analogues of

the left (and right) Haar measures{ these are now axioms not the

result of a theorem

Can then construct maps which behave like an antipode, and

counit{ but these are in general unbounded, and not everywhere

de�ned.
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