Almost periodic functionals

Matthew Daws

Leeds

Sweden, July 2013

Almost periodic functionals

Let A be a Banach algebra and turn A^* into an A-bimodule:

$$\langle \mathsf{a} \cdot \mu, \mathsf{b}
angle = \langle \mu, \mathsf{b} \mathsf{a}
angle, \quad \langle \mu \cdot \mathsf{a}, \mathsf{b}
angle = \langle \mu, \mathsf{a} \mathsf{b}
angle \qquad (\mathsf{a}, \mathsf{b} \in \mathsf{A}, \mu \in \mathsf{A}^*).$$

Then consider the "orbit maps"

$$L_{\mu}: A \rightarrow A^*$$
; $a \mapsto a \cdot \mu$, $R_{\mu}: A \rightarrow A^*$; $a \mapsto \mu \cdot a$.

Definition

Say that $\mu \in A^*$ is (weakly) almost periodic, $\mu \in \operatorname{ap}(A)$ if L_{μ} is a (weakly) compact operator (i.e. $\{a \cdot \mu : \|a\| \le 1\}$ is relatively (weakly) compact in A^*). (Equivalently can use R_{μ} .)

Turning into an algebra

Choose bounded nets $(a_i), (b_i)$ converging weak* to $\Phi, \Psi \in A^{**}$ respectively. Then we have two choices for a product:

$$\Phi \Box \Psi = \lim_{i} \lim_{j} a_i b_j, \quad \Phi \Diamond \Psi = \lim_{j} \lim_{i} a_i b_j.$$

These are the Arens products.

Consider $\mu \in ap(A)$, so we may assume $b_j \cdot \mu \rightarrow \lambda$ in norm. Then:

$$\begin{split} \langle \Phi \Box \Psi, \mu \rangle &= \lim_{i} \lim_{j} \langle b_{j} \cdot \mu, a_{i} \rangle = \lim_{i} \langle \lambda, a_{i} \rangle = \langle \Phi, \lambda \rangle \\ &= \lim_{j} \langle \Phi, b_{j} \cdot \mu \rangle = \langle \Phi \Diamond \Psi, \mu \rangle. \end{split}$$

But more is true:

$$\lim_{i} \langle \mu, a_{i} b_{i} \rangle = \lim_{i} \langle b_{i} \cdot \mu, a_{i} \rangle = \lim_{i} \langle \lambda, a_{i} \rangle = \langle \Phi \Box \Psi, \mu \rangle.$$

Universal property; link with dual Banach algebras

Theorem (Lau, Loy, Runde, ...?)

By separate weak*-continuity, the product on A extends to $ap(A)^*$, turning $ap(A)^*$ into a dual Banach algebra. The product on $ap(A)^*$ is jointly weak*-continuous (on bounded set). This is the universal object for "jointly continuous" dual Banach algebras.

That is, if B is a dual Banach algebra with jointly continuous multiplication, and $\theta: A \to B$ a bounded homomorphism, then there is a unique $\tilde{\theta}: \operatorname{ap}(A)^* \to B$, a weak*-continuous homomorphism, with:

For group algebras

Let G be a locally compact group and consider $A = L^1(G)$.

Theorem (Lau, (Wong, Ulger))

 $F \in L^{\infty}(G) = A^*$ with be almost periodic if and only if the set of (left, or right) translates of F forms a relatively norm compact subset of $L^{\infty}(\mathbb{G})$. In this case, $F \in C^b(G)$.

- Easy to see that ap(A) ⊆ C^b(G) ⊆ L[∞](G) will be a unital (commutative) C*-algebra.
- Let G^{ap} be the (compact, Hausdorff) character space, so $ap(A) = C(G^{ap})$.

The (semi)group G^{ap}

$$\operatorname{ap}(L^1(G))=C(G^{\operatorname{ap}}), \qquad \operatorname{ap}(L^1(G))^*=M(G^{\operatorname{ap}}).$$

- Point-evaluation gives a continuous dense-range map $G \rightarrow G^{ap}$.
- Product on $M(G^{ap})$ determined by map $L^1(G) \to M(G^{ap})$.
- These maps are compatible.
- Can show that product of point masses in $M(G^{ap})$ is again a point-mass.
- So G^{ap} is a semigroup and $G \rightarrow G^{ap}$ a homomorphism.
- Product on G^{ap} is jointly continuous; contains dense subgroup; so is a group.

Universal property

- Using some Banach algebra techniques, we started with a locally compact group G, and formed a compact group G^{ap} .
- G^{ap} is universal in the sense that if T is any compact topological (semi)group then have:

$$\begin{array}{ccc} G & \longrightarrow & T & & G^{ap} \text{ is the "Bohr compactification" of } G \\ & & & \uparrow^{\exists !} & \\ & & & & G^{ap} \end{array}$$

• As G^{ap} is a compact group, Peter-Weyl tells us that functions of the form

$$G^{\mathsf{ap}} o \mathbb{C}; \quad s \mapsto (\pi(s)\xi|\eta),$$

are dense in $C(G^{ap})$. Here $\pi : G^{ap} \to U(n)$ is a finite-dimensional unitary representation, and $\xi, \eta \in \mathbb{C}^n$.

Such π are in 1-1 correspondence with finite-dimensional unitary representations of G. So such continuous functions are dense in ap(L¹(G)). Not clear how to see this directly...

Matthew Daws (Leeds)

Non-commutative world

Let G be a locally compact group, and let $\pi : G \to U(H)$ be the universal, strongly continuous, unitary representation of G (direct sum over "all" such representations).

• We can "integrate" this to a map $\pi: L^1(G) o \mathcal{B}(H)$

$$\pi(f)\xi = \int_{\mathcal{G}} f(s)\pi(s)\xi \,\,ds \qquad (f\in L^1(\mathcal{G}),\xi\in H).$$

- This is a *-homomorphism of $L^1(G)$; it's the universal one.
- The closure of $\pi(L^1(G))$ is $C^*(G)$ the universal group C*-algebra.
- If we replace π by λ the left-regular representation on L²(G), we get the reduced group C*-algebra C^{*}_r(G).
- $C^*(G) \to C^*_r(G)$ is an isomorphism precisely when G is amenable.
- Finally, define $VN(G) = C_r^*(G)''$ the group von Neumann algebra.

Fourier theory

If G is an abelian group, then we have the Pontryagin dual \widehat{G} . The Fourier transform gives a unitary map

$$\mathcal{F}: L^2(G) \to L^2(\widehat{G}).$$

- Let $C_0(G)$ act on $L^2(G)$ by multiplication, say $f \leftrightarrow M_f$.
- The conjugation map $M_f \mapsto \mathcal{F}M_f \mathcal{F}^{-1}$ gives a *-isomorphism $C_0(G) \to C_r^*(\widehat{G}).$
- It also gives a normal *-isomorphism $L^{\infty}(G) \to VN(\widehat{G})$.
- So the predual $VN(\widehat{G})_*$ is isomorphic to the algebra $L^1(G)$.
- By biduality, $VN(G)_* \cong L^1(\widehat{G})$.
- What happens when G is not abelian?

Hopf von Neumann algebras

There is a normal *-homomorphism

 $\Delta: VN(G) \to VN(G) \overline{\otimes} VN(G); \quad \lambda(s) \mapsto \lambda(s) \otimes \lambda(s).$

- That this exists is most easily seen by finding a unitary operator W on L²(G × G) with Δ(x) = W*(1 ⊗ x)W.
- Δ is coassociative: $(\Delta \otimes id)\Delta = (id \otimes \Delta)\Delta$.
- Let the predual of VN(G) by A(G); the predual of Δ gives an associative product

$$\Delta_*: A(G) \times A(G) \to A(G).$$

- This is the Fourier algebra; the map A(G) → C₀(G); ω ↦ (⟨λ(s), ω⟩) is a contractive algebra homomorphism.
- So A(G) is a commutative Banach algebra; it is semisimple (and regular, Tauberian) with character space G.

Almost periodic for the Fourier algebra

Question

What is ap(A(G))? What relation does it have to a "compactification"?

Let $C^*_{\delta}(G)$ be the C*-algebra generated by $\{\lambda(s) : s \in G\}$ inside VN(G).

- If G is discrete, then $C^*_{\delta}(G) = C^*_r(G)$.
- If G is discrete and amenable, or G is abelian, then $ap(A(G)) = C^*_{\delta}(G)$.

Compact quantum groups

Unital C*-algebra A and coassociative $\Delta : A \rightarrow A \otimes A$ with "cancellation":

 $lin{\Delta(a)(1 \otimes b) : a, b \in A}, lin{\Delta(a)(b \otimes 1) : a, b \in A}$

are dense in $A \otimes A$.

- G compact gives C(G) with $\Delta(f)(s,t) = f(st)$;
- G discrete gives $C_r^*(G)$ with Δ as before.

Natural morphisms are the "Hopf *-homomorphisms"; a morphism (A, Δ_A) to (B, Δ_B) is a *-homomorphism $\theta : B \to A$ with $\Delta_A \circ \theta = (\theta \otimes \theta) \circ \Delta_B$.

• If $\phi : G \to H$ is a continuous group homomorphism, then may define $\theta : C(H) \to C(G)$ by $\theta(f) = f \circ \phi$.

Can extend this to the non-compact world by considering multiplier algebras.

Quantum Bohr compactification

Soltan (2005) considered "compactifications" in this category. In particular, $C^*_{\delta}(G)$ is the universal object for $C^*_r(G)$. For any compact quantum group (A, Δ_A) , we have:

This gives a justification for looking at $C^*_{\delta}(G)$.

Counter-example

It's easy to see that always $C^*_{\delta}(G) \subseteq \operatorname{ap}(A(G))$.

Theorem (Chou ('90), Rindler ('92))

There are compact (connected, if you wish) groups G such that $ap(A(G)) \neq C^*_{\delta}(G)$.

As G is compact, the constant functions are members of $L^2(G)$. Let E be the orthogonal projection onto the constants; then $E = \lambda(1_G) \in MC_r^*(G)$.

- $E \in ap(A(G))$ if and only if G is tall.
- E ∈ C^{*}_δ(G) if and only if G does not have the weak-mean-zero containment property: there is a net of unit vectors (ξ_i) in ker E with ||λ(s)ξ_i − ξ_i||₂ → 0 for each s ∈ G.
- [Rindler] Clever choice of G...

Stronger forms of "compact"

VN(G) is naturally an *operator space*: we have a family of norms on $M_n(VN(G))$. Then A(G) is also an operator space. The natural morphisms are the *completely bounded* maps: those whose matrix dilations are uniformly bounded.

- There are various notions of being "completely compact"; they do not interact well with taking adjoints.
- [Runde, 2011] defined x ∈ A(G)* to be "completely almost periodic" if both orbit maps L_x and R_x are completely compact.
- If G is amenable, or connected, then

 $\mathsf{cap}(A(G)) = \{ x \in VN(G) : \Delta(x) \in VN(G) \otimes VN(G) \},\$

here \otimes is the C*-spatial product.

So x ∈ cap(A(G)) if and only if Δ(x) can be norm approximated by a finite sum ∑ⁿ_{i=1} a_i ⊗ b_i.

Stronger forms of "compact" cont.

Theorem (D.)

Let G be discrete. Then $\Delta(x) \in VN(G) \otimes VN(G)$ if and only if $x \in C^*_{\delta}(G)$.

Theorem (D.)

Let G be a [SIN] group (compact, discrete, abelian...). Then $\Delta^2(x) \in VN(G) \otimes VN(G) \otimes VN(G)$ if and only if $x \in C^*_{\delta}(G)$.

Theorem (Woronowicz, 92)

Let \mathbb{G} be quantum E(2) (for $\mu \in (0,1)$). Then $\Delta(C_0(\mathbb{G})) \subseteq C_0(\mathbb{G}) \otimes C_0(\mathbb{G})$, and so $C_0(\mathbb{G}) \subseteq \cap(L^{\infty}(\mathbb{G}))$. However, the quantum Bohr compactification of \mathbb{G} is \mathbb{T} . So $cap(L^1(\mathbb{G}))$ is (far) too large.

Even stronger forms of "compact"

Definition

Say that $\mu \in A^*$ is "periodic" if $L_{\mu} : A \to A^*$ is a finite-rank operator. Say that μ is "strongly almost periodic" if L_{μ} can be cb-norm approximated by operators of the form $L_{\mu'}$ with μ' periodic.

For A(G), equivalently, x is strongly almost periodic if $\Delta(x - x')$ can be made arbitrarily small with $\Delta(x')$ finite-rank.

Theorem (Chou, D.)

 $x \in VN(G)$ is strongly almost periodic if and only if $x \in C^*_{\delta}(G)$.

- (D.) An analogous result holds for all Kac algebras.
- For a locally compact quantum group, also need to assume things are in $D(S) \cap D(S^*)$, which is rather messy...