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Graphs

A graph consists of a (finite) set of vertices V and a collection of
edges E CV x V.

o A graph is undirected if (z,y) € E & (y,z) € E.
e We allow self-loops, that is, allow (z,z) € E.

Notice that a graph G = (V, E) is exactly a relation on the set V. An
undirected graph gives a symmetric relation; having a loop on each
vertex gives a reflexive relation.
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Quantum relations, a la Weaver, Kuperberg

Definition

Let M C B(H) be a von Neumann algebra. A quantum relation on M
is a weak*-closed subspace S C B(H) with M'SM’' C S.
The relation is:

Q refleriveif M'C S (& 1€ 8),
Q symmetric if S* = S where S* ={z*:z € S}

Q transitive if $2 C S where §> =1lin"” {zy:z,y € S).

@ Why a bimodule over M’ and not M?
@ There is a dependence on the embedding M C B(H) ...

@ but as S is a bimodule over M’, given a new embedding
M C B(Hy) we get a canonical order preserving bijection between
quantum relations in B(H) and those in B(Hy).

Weaver also has an “intrinsic” characterisation.
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Quantum relations over a commutative algebra

Definition

A quantum relation on M is a weak*-closed subspace S C B(H) with
M'SM’'CS.

Take M ={>®°(X) C B({?(X))so M' = M.
e Think of B({?(X)) as X x X matrices.

@ Any {*°(X) bimodule is spanned (weak*) by the matrix units it
contains.

So we obtain a bijection between the usual meaning of “relation” on X
and quantum relations on M, given by
S =Hn" {esy: 2 ~ v},
{(z,y):z~yl={(z,y) : €ay € 5}
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Quantum graphs

As a graph on a (finite) vertex set V' is simply a relation, and
o undirected graph corresponds to a symmetric relation;

o a reflexive relation corresponds to having a “loop” at every vertex.

Definition (Weaver)

A quantum graph on a von Neumann algebra M C B(H) is a reflexive,
symmetric quantum relation. That is, a unital, self-adjoint,
weak*-closed subspace S C B(H), which is an M ’-bimodule

(M'SM' C 8S).

If M = B(H) with H finite-dimensional, then as M’ = C, a quantum
graph is just an operator system: this was also explored by [Duan,
Severini, Winter; Stahlke].
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Adjacency matrices

Given a graph G = (V, E) consider the {0, 1}-valued matrix A with

1 :(47)€ B
Ai’j:{ (4,) € B,

0 :otherwise,

the adjacency matriz of G.
o A is idempotent for the Schur product;
o G is undirected if and only if A is self-adjoint;
o A has 1s down the diagonal when G has a loop at every vertex.

We can think of A as an operator on ¢?( V). This is the GNS space for
the C*-algebra {*°( V') for the state induced by the uniform measure.
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General C*-algebras

Let B be a finite-dimensional C*-algebra, and let ¢ be a faithful state

on B, with GNS space L?(B). Thus B bijects with L?(B) as a vector
space, and so we get:

o The multiplication on B induces a map
m: L?(B)® L*(B) — L?(B);

o Using the inner product on L?(B) we can form m*, and then
interpret this as a map B — B ® B;

@ The unit in B induces a map 1 : C — L?(B);
@ Again form n*, but notice this is just ¢ : B — C.
We get an analogue of the Schur product:

zey=m(zoy)m* (z,y € B(L*(B))).
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Quantum adjacency matrix

Definition (Many authors)

A quantum adjacency matriz is a self-adjoint A € B(L?(B)) with:
Q@ m(A® A)m* = A (so Schur product idempotent);
QO (1"m)(1® A1) (m M ®1)=A4;
Q@ m(A®1)m* =id (a “loop at every vertex”);

The middle axiom is a little mysterious: it roughly corresponds to
“undirected”.

I want to sketch why this definition is equivalent to the previous
notion of a “quantum graph”.
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Subspaces to projections

Fix a finite-dimensional C*-algebra (von Neumann algebra) M.
Start with S C B(H) is a bimodule over M'. As H is
finite-dimensional, B(H) is a Hilbert space for

(zly) = tr(z™y).

Then M ® M°P is represented on B(H) via

n: M M®P — B(BH));, nley): T— zTy.

@ The commutant of 71(M ® M°P) is naturally M’ @ (M')°P.
@ So an M’-bimodule of B(H) corresponds to an

M’ ® (M')°P-invariant subspace of the Hilbert space B(H);
@ Which corresponds to a projection in M ® M°P.
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Operators to algebras

So how can we relate:
Operators A € B(L?(M)) with Projections in M ® M°P?
Recall the GNS construction for a (faithful) traczal state 1 on M:
At M — L2(M); (Alz)IA(y) = b(z"y).

As L?(M) is finite-dimensional, A is bijective, and every operator on
L?(M) is a linear combination of rank-one operators of the form

Oa(a) () & (A(a)IE)A(D) (£ € L*(M)).
Define a bijection
\PB(Lz(M)) — M @ M°P, e/\(a))/\(b) =b®a",

and extend by linearity!
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Operators to algebras 2

WB(Lz(M)) —)M@MOP; G,\(a)y,\(b) :b®a,*,
e V¥ is a homomorphism for the “Schur product” on B(L?(M)),
recall A; @ Ay = m(A; ® Ay)m*;

e A (1en'm)(1® A®1)(m*n®1) transformed by ¥ to the
anti-homomorphism 0:a ® b — b ® a;

o A+ A* corresponds to e — o(e)*.

Let A be a quantum adjacency matrix, and set e = W(A). Then:

So e is a projection with e = o(e). BuT: There is no clean one-to-one
correspondence between the axioms.
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Non-tracial case

Some partial references: [Musto, Reutter, Verdon], [Gromada],
[Chirvasitu, Wasilewski|, [Matsuda], [BCEHPSM].

If the functional 1 on M is not tracial, then this correspondence fails.
(But see [Matsuda].)

However:

Theorem (D.)

There 1s a byection between:
e “Schur idempotent”, self-adjoint operators A on L?(M);
@ e € M ® M with e? = e and e = o(e)*;

o self-adjoint M'-bimodules S C B(H) such that there is another
self-adjoint M'-bimodule Sq with S & Sy = B(H)
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KMS States

Any faithful state { is KMS: there is an automorphism o’ of M with
Y(ad) =¥(bo’(a))  (a,be M).

Indeed, there is @ € M positive and invertible with
P(a) =tr(Qa)  o'(a) = QaQ .

Theorem (D.)

Twisting our bijection Y using o’ allows us to establish a bijection
between:

o A€ B(L?(M)) self-adjoint with azioms (1) and (2);
@ projections e € M @ M°P with e = o(e) and (¢' ® 0’)(e) = e;
o self-adjoint M'-bimodules S C B(H) with QSQ ' =S.

So this is more restrictive than the tracial case.
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Complete positivity and reality
Following [Chirvasitu, Wasilewski].

Definition (Matsuda)

Let A € B(L?(M)) be interpretted as the linear map Ag: M — M. We
say that A is real when Aq(z*) = Ag(z)* for z € M.

Theorem (D.)
A byection stmilar to V¥, again twisting by KMS %-automorphism,
gwes a bijection between:

o Ap being completely positive with m(A @ A)m™* = A,

o A being real with m(A® A)m™* = A.

Similarly, we can look a A being self-adjoint and with axiom (2).
Arguably, this “reality” condition is more natural than being
self-adjoint and satisfying axiom (2).
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Pullbacks

Let 8 : M — N be a normal CP map between von Neumann algebras

M C B(Hy) and N C B(Hy). The Stinespring dilation tales a special
form:

o thereis K and U : Hy — Hy ® K,
0 0(z)=U*(z®1)U forz e M C B(Hy);

o there is a normal *-homomorphism p: N/ — Hy ® K with
Uz’ =p(z")U for z’ € N'.

Given S C B(Hy) a Quantum (Graph/Relation) over M, define
? = weak™-closure{U*zU : z € SQB(K)}.

<_
Use of p shows that S is a Quantum (Graph/Relation) over N, the
“pullback”. [Weaver; D.]

Matthew Daws Quantum Graphs June 2023 15/ 18



Pullbacks: Kraus forms; Pushfowards

When M, N are finite-dimensional, 6 : M — N has a Kraus form

0(z) = i bizb;.
i=1

(Notice I have swapped to considering UCP maps, not TPCP maps.)
Then we recover Weaver’s original definition S C B(Hjy)

F
S =lin{bjzb; : z € Si}.
Given S, C B(Hy) a quantum relation over N, also
S> = lin{b,zb? : © € Sy}

is a quantum relation over M, the “pushforward”.
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Homomorphisms

[Stahkle] defines 6 : M — N to be a homomorphism between S; and
S> when Sy C S;. [Weaver] calls this a CP-morphism.

Theorem (Stahkle)

Let 0: C(Vy) > C(Vg) be a UCP map gwving a homomorphism G
to H (that 1s, with Sg C Sy ). Then there is some map
f: Vg — Vg which s a (classical) homomorphism.

o In general 0 need not be directly related to f.

o However, often we just care about the existence of a
homomorphism.

o E.g. a k-colouring of G corresponds to some homomorphism
G — Ky, the complete graph.
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Questions

<_
Take S = M’ and 0: M — N and form the pullback S, a quantum
graph over N.

@ Which quantum graphs can so arise?
@ [Duan] shows that for N = M, all quantum graphs arise in this
way.
[Brannan, Ganesan, Harris| consider a “quantum to classical” game
which ends up with a stronger notion of “homomorphism”.
Here we have worked exclusively with the operator bimodule picture of
Quantum Graphs.

o Can we say something useful about homomorphisms and
“adjacency matrices”?

M. Daws, “Quantum graphs: different perspectives, homomorphisms and
quantum automorphisms”, arXiv:2203.08716 [math.OA].
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