Shift invariant preduals of group algebras

Matthew Daws

Leeds

Banach Algebras 2011

Banach spaces and duality

A first course in Banach spaces (not Hilbert spaces!) will introduce the Banach spaces $\ell^1 = \ell^1(\mathbb{N})$, and $c_0 = c_0(\mathbb{N})$:

$$\ell^{1} = \left\{ (a_{n}) : \|(a_{n})\|_{1} = \sum_{n} |a_{n}| < \infty \right\}$$

$$c_{0} = \left\{ (a_{n}) : \lim_{n} a_{n} = 0 \right\} \text{ with } \|(a_{n})\|_{\infty} = \sup_{n} |a_{n}|.$$

Then $c_0^* = \ell^1$. To be precise, for each $f \in c_0^*$ there exists $(f_n) \in \ell^1$ such that

$$f((a_n)) = \sum_n f_n a_n \qquad ((a_n) \in c_0),$$

and with $||f|| = ||(f_n)||_1$.

Banach spaces and duality

A first course in Banach spaces (not Hilbert spaces!) will introduce the Banach spaces $\ell^1 = \ell^1(\mathbb{N})$, and $c_0 = c_0(\mathbb{N})$:

$$\ell^{1} = \left\{ (a_{n}) : \|(a_{n})\|_{1} = \sum_{n} |a_{n}| < \infty \right\}$$

$$c_{0} = \left\{ (a_{n}) : \lim_{n} a_{n} = 0 \right\} \text{ with } \|(a_{n})\|_{\infty} = \sup_{n} |a_{n}|.$$

Then $c_0^* = \ell^1$. To be precise, for each $f \in c_0^*$ there exists $(f_n) \in \ell^1$ such that

$$f((a_n)) = \sum_n f_n a_n \qquad ((a_n) \in c_0),$$

and with $||f|| = ||(f_n)||_1$.

Let *K* be a compact Hausdorff space; form C(K) and M(K).

Then each member of $C(K)^*$ arises from integrating against a member of M(K). So we can write $C(K)^* = M(K)$.

Now suppose that *K* is countable– we can enumerate *K* as $K = \{k_n : n \in \mathbb{N}\}$ say. Then any $\mu \in M(K)$ is countably additive, and so for $f \in C(K)$,

$$\int_{K} f \, d\mu = \sum_{n} f(k_n) \mu(\{k_n\}).$$

$$\theta_a(f) = \sum_n f(k_n) a_n \qquad (f \in C(K)).$$

Let *K* be a compact Hausdorff space; form C(K) and M(K). Then each member of $C(K)^*$ arises from integrating against a member of M(K). So we can write $C(K)^* = M(K)$.

Now suppose that *K* is countable– we can enumerate *K* as $K = \{k_n : n \in \mathbb{N}\}$ say. Then any $\mu \in M(K)$ is countably additive, and so for $f \in C(K)$,

$$\int_{K} f d\mu = \sum_{n} f(k_n) \mu(\{k_n\}).$$

$$\theta_a(f) = \sum_n f(k_n) a_n \qquad (f \in C(K)).$$

Let *K* be a compact Hausdorff space; form C(K) and M(K). Then each member of $C(K)^*$ arises from integrating against a member of M(K). So we can write $C(K)^* = M(K)$. Now suppose that *K* is countable– we can enumerate *K* as $K = \{k_n : n \in \mathbb{N}\}$ say. Then any $\mu \in M(K)$ is countably additive, and so for $f \in C(K)$,

$$\int_{K} f \, d\mu = \sum_{n} f(k_n) \mu(\{k_n\}).$$

$$\theta_a(f) = \sum_n f(k_n) a_n \qquad (f \in C(K)).$$

Let *K* be a compact Hausdorff space; form C(K) and M(K).

Then each member of $C(K)^*$ arises from integrating against a member of M(K). So we can write $C(K)^* = M(K)$.

Now suppose that *K* is countable– we can enumerate *K* as $K = \{k_n : n \in \mathbb{N}\}$ say. Then any $\mu \in M(K)$ is countably additive, and so for $f \in C(K)$,

$$\int_{K} f d\mu = \sum_{n} f(k_n) \mu(\{k_n\}).$$

$$\theta_a(f) = \sum_n f(k_n) a_n \qquad (f \in C(K)).$$

Let *K* be a compact Hausdorff space; form C(K) and M(K).

Then each member of $C(K)^*$ arises from integrating against a member of M(K). So we can write $C(K)^* = M(K)$.

Now suppose that *K* is countable– we can enumerate *K* as $K = \{k_n : n \in \mathbb{N}\}$ say. Then any $\mu \in M(K)$ is countably additive, and so for $f \in C(K)$,

$$\int_{K} f d\mu = \sum_{n} f(k_n) \mu(\{k_n\}).$$

$$\theta_a(f) = \sum_n f(k_n) a_n \qquad (f \in C(K)).$$

We have a dual pairing $\ell^1 \times C(K) \to \mathbb{C}$

$$\langle a,f\rangle = \sum_n f(k_n)a_n \qquad (f \in C(K), a \in \ell^1).$$

This induces a weak*-topology on ℓ^1 .

For example, as *K* is compact, we have non-trivial limiting sequences– say $(k_{n_i}) \rightarrow k_n$ as $i \rightarrow \infty$.

Write δ_k for the "point-mass" in ℓ^1 at k- that is, the sequence which is 0 except for a 1 in the *k*th place. Thus for $f \in C(K)$,

$$\lim_{i} \langle \delta_{k_{n_i}}, f \rangle = \lim_{i} f(k_{n_i}) = f(k_n) = \langle \delta_{k_n}, f \rangle,$$

We have a dual pairing $\ell^1 \times C(K) \to \mathbb{C}$

$$\langle a,f\rangle = \sum_n f(k_n)a_n \qquad (f \in C(K), a \in \ell^1).$$

This induces a weak*-topology on ℓ^1 .

For example, as *K* is compact, we have non-trivial limiting sequences– say $(k_{n_i}) \rightarrow k_n$ as $i \rightarrow \infty$.

Write δ_k for the "point-mass" in ℓ^1 at k- that is, the sequence which is 0 except for a 1 in the *k*th place. Thus for $f \in C(K)$,

$$\lim_{i} \langle \delta_{k_{n_i}}, f \rangle = \lim_{i} f(k_{n_i}) = f(k_n) = \langle \delta_{k_n}, f \rangle,$$

We have a dual pairing $\ell^1 \times C(K) \to \mathbb{C}$

$$\langle a,f\rangle = \sum_n f(k_n)a_n \qquad (f \in C(K), a \in \ell^1).$$

This induces a weak*-topology on ℓ^1 .

For example, as *K* is compact, we have non-trivial limiting sequences– say $(k_{n_i}) \rightarrow k_n$ as $i \rightarrow \infty$.

Write δ_k for the "point-mass" in ℓ^1 at k- that is, the sequence which is 0 except for a 1 in the *k*th place. Thus for $f \in C(K)$,

$$\lim_{i} \langle \delta_{k_{n_i}}, f \rangle = \lim_{i} f(k_{n_i}) = f(k_n) = \langle \delta_{k_n}, f \rangle,$$

We have a dual pairing $\ell^1 \times C(K) \to \mathbb{C}$

$$\langle a,f\rangle = \sum_n f(k_n)a_n \qquad (f \in C(K), a \in \ell^1).$$

This induces a weak*-topology on ℓ^1 .

For example, as *K* is compact, we have non-trivial limiting sequences– say $(k_{n_i}) \rightarrow k_n$ as $i \rightarrow \infty$.

Write δ_k for the "point-mass" in ℓ^1 at k- that is, the sequence which is 0 except for a 1 in the *k*th place. Thus for $f \in C(K)$,

$$\lim_{i} \langle \delta_{k_{n_i}}, f \rangle = \lim_{i} f(k_{n_i}) = f(k_n) = \langle \delta_{k_n}, f \rangle,$$

We have a dual pairing $\ell^1 \times C(K) \to \mathbb{C}$

$$\langle a,f\rangle = \sum_n f(k_n)a_n \qquad (f \in C(K), a \in \ell^1).$$

This induces a weak*-topology on ℓ^1 .

For example, as *K* is compact, we have non-trivial limiting sequences– say $(k_{n_i}) \rightarrow k_n$ as $i \rightarrow \infty$.

Write δ_k for the "point-mass" in ℓ^1 at k- that is, the sequence which is 0 except for a 1 in the *k*th place. Thus for $f \in C(K)$,

$$\lim_{i} \langle \delta_{k_{n_i}}, f \rangle = \lim_{i} f(k_{n_i}) = f(k_n) = \langle \delta_{k_n}, f \rangle,$$

- Note that the map θ is very important.
- It seems reasonable to say that two preduals "are the same" if they induce the same weak*-topology on *E*.
- As usual, we identify *F* with a closed subspace of its bidual *F*^{**}, and so we can talk about the image of *F* under the adjoint map θ^{*} : *F*^{**} → *E*^{*}. Call this *F*₀.
- Then $F_0 \subseteq E^*$ is a closed subspace such that:
 - F_0 separates the points of E;
 - every functional $\mu \in F_0^*$ is given by some element of *E*.
- We call such a subspace $F_0 \subseteq E^*$ a *concrete predual*.
- It's not hard to see that two concrete preduals F_0, F_1 induce the same weak*-topology on *E* if and only if $F_0 = F_1$.

Given a Banach space *E*, a *predual* for *E* is a Banach space *F* together with an isomorphism (not assumed isometric) $\theta : E \to F^*$.

• Note that the map θ is very important.

- It seems reasonable to say that two preduals "are the same" if they induce the same weak*-topology on *E*.
- As usual, we identify *F* with a closed subspace of its bidual *F*^{**}, and so we can talk about the image of *F* under the adjoint map θ^{*} : *F*^{**} → *E*^{*}. Call this *F*₀.
- Then $F_0 \subseteq E^*$ is a closed subspace such that:
 - F_0 separates the points of E;
 - every functional $\mu \in F_0^*$ is given by some element of *E*.
- We call such a subspace $F_0 \subseteq E^*$ a *concrete predual*.
- It's not hard to see that two concrete preduals F_0, F_1 induce the same weak*-topology on *E* if and only if $F_0 = F_1$.

- Note that the map θ is very important.
- It seems reasonable to say that two preduals "are the same" if they induce the same weak*-topology on *E*.
- As usual, we identify *F* with a closed subspace of its bidual *F*^{**}, and so we can talk about the image of *F* under the adjoint map θ^{*} : *F*^{**} → *E*^{*}. Call this *F*₀.
- Then $F_0 \subseteq E^*$ is a closed subspace such that:
 - F_0 separates the points of E;
 - every functional $\mu \in F_0^*$ is given by some element of *E*.
- We call such a subspace $F_0 \subseteq E^*$ a *concrete predual*.
- It's not hard to see that two concrete preduals F_0, F_1 induce the same weak*-topology on *E* if and only if $F_0 = F_1$.

- Note that the map θ is very important.
- It seems reasonable to say that two preduals "are the same" if they induce the same weak*-topology on *E*.
- As usual, we identify *F* with a closed subspace of its bidual *F*^{**}, and so we can talk about the image of *F* under the adjoint map θ^{*} : *F*^{**} → *E*^{*}. Call this *F*₀.
- Then $F_0 \subseteq E^*$ is a closed subspace such that:
 - F_0 separates the points of E;
 - every functional $\mu \in F_0^*$ is given by some element of *E*.
- We call such a subspace $F_0 \subseteq E^*$ a *concrete predual*.
- It's not hard to see that two concrete preduals F_0, F_1 induce the same weak*-topology on *E* if and only if $F_0 = F_1$.

- Note that the map θ is very important.
- It seems reasonable to say that two preduals "are the same" if they induce the same weak*-topology on *E*.
- As usual, we identify *F* with a closed subspace of its bidual *F*^{**}, and so we can talk about the image of *F* under the adjoint map θ^{*} : *F*^{**} → *E*^{*}. Call this *F*₀.
- Then $F_0 \subseteq E^*$ is a closed subspace such that:
 - F_0 separates the points of E;
 - every functional $\mu \in F_0^*$ is given by some element of *E*.
- We call such a subspace $F_0 \subseteq E^*$ a *concrete predual*.
- It's not hard to see that two concrete preduals F_0, F_1 induce the same weak*-topology on *E* if and only if $F_0 = F_1$.

- Note that the map θ is very important.
- It seems reasonable to say that two preduals "are the same" if they induce the same weak*-topology on *E*.
- As usual, we identify *F* with a closed subspace of its bidual *F*^{**}, and so we can talk about the image of *F* under the adjoint map θ^{*} : *F*^{**} → *E*^{*}. Call this *F*₀.
- Then $F_0 \subseteq E^*$ is a closed subspace such that:
 - F_0 separates the points of E;
 - every functional $\mu \in F_0^*$ is given by some element of *E*.
- We call such a subspace $F_0 \subseteq E^*$ a *concrete predual*.
- It's not hard to see that two concrete preduals F_0, F_1 induce the same weak*-topology on *E* if and only if $F_0 = F_1$.

- Note that the map θ is very important.
- It seems reasonable to say that two preduals "are the same" if they induce the same weak*-topology on *E*.
- As usual, we identify *F* with a closed subspace of its bidual *F*^{**}, and so we can talk about the image of *F* under the adjoint map θ^{*} : *F*^{**} → *E*^{*}. Call this *F*₀.
- Then $F_0 \subseteq E^*$ is a closed subspace such that:
 - F_0 separates the points of E;
 - every functional $\mu \in F_0^*$ is given by some element of *E*.
- We call such a subspace $F_0 \subseteq E^*$ a *concrete predual*.
- It's not hard to see that two concrete preduals F_0, F_1 induce the same weak*-topology on *E* if and only if $F_0 = F_1$.

- If we identify A_* as a subspace of A^* , then we equivalently can ask that A_* is an A-submodule of A^* .
- For example, let *G* be a locally compact group, and let M(G) be the space of regular measures on *G* with the convolution product. This has predual $C_0(G)$, and is a dual Banach algebra.
- When G is discrete, this example becomes $\ell^1(G)$ with the convolution product, equipped with the predual $c_0(G)$.
- It's not hard to see that a predual E of l¹(G) makes l¹(G) into a dual Banach algebra if and only if E ⊆ l[∞](G) is "shift-invariant" for the left and right actions of G on l[∞](G).

- If we identify A_* as a subspace of A^* , then we equivalently can ask that A_* is an A-submodule of A^* .
- For example, let *G* be a locally compact group, and let M(G) be the space of regular measures on *G* with the convolution product. This has predual $C_0(G)$, and is a dual Banach algebra.
- When G is discrete, this example becomes $\ell^1(G)$ with the convolution product, equipped with the predual $c_0(G)$.
- It's not hard to see that a predual E of l¹(G) makes l¹(G) into a dual Banach algebra if and only if E ⊆ l[∞](G) is "shift-invariant" for the left and right actions of G on l[∞](G).

- If we identify A_* as a subspace of A^* , then we equivalently can ask that A_* is an A-submodule of A^* .
- For example, let *G* be a locally compact group, and let M(G) be the space of regular measures on *G* with the convolution product. This has predual $C_0(G)$, and is a dual Banach algebra.
- When G is discrete, this example becomes $\ell^1(G)$ with the convolution product, equipped with the predual $c_0(G)$.
- It's not hard to see that a predual E of l¹(G) makes l¹(G) into a dual Banach algebra if and only if E ⊆ l[∞](G) is "shift-invariant" for the left and right actions of G on l[∞](G).

- If we identify A_* as a subspace of A^* , then we equivalently can ask that A_* is an A-submodule of A^* .
- For example, let G be a locally compact group, and let M(G) be the space of regular measures on G with the convolution product. This has predual $C_0(G)$, and is a dual Banach algebra.
- When G is discrete, this example becomes $\ell^1(G)$ with the convolution product, equipped with the predual $c_0(G)$.
- It's not hard to see that a predual E of l¹(G) makes l¹(G) into a dual Banach algebra if and only if E ⊆ l[∞](G) is "shift-invariant" for the left and right actions of G on l[∞](G).

- If we identify A_* as a subspace of A^* , then we equivalently can ask that A_* is an A-submodule of A^* .
- For example, let *G* be a locally compact group, and let M(G) be the space of regular measures on *G* with the convolution product. This has predual $C_0(G)$, and is a dual Banach algebra.
- When G is discrete, this example becomes $\ell^1(G)$ with the convolution product, equipped with the predual $c_0(G)$.
- It's not hard to see that a predual E of l¹(G) makes l¹(G) into a dual Banach algebra if and only if E ⊆ l[∞](G) is "shift-invariant" for the left and right actions of G on l[∞](G).

Let *G* be a countable discrete group. Can we find a dual Banach algebra predual *E* for $\ell^1(G)$ which differs from $c_0(G)$?

- Well, if *K* is compact Hausdorff and countable, then C(K) is a Banach space predual for $\ell^1(K) \cong \ell^1(G)$. Equivalently, we just choose a compact Hausdorff topology on *G*.
- Well, G would then be a Baire Space, and hence would have some g ∈ G with {g} being open.
- The identification of C(G) as a closed subspace of $\ell^{\infty}(G)$ is simply the identification of functions. So C(G) will be shift-invariant if and only if the action of G on itself is continuous.
- But then, by shifting, {g} is open for *every* g.
- So actually *G* has the discrete topology, and we just get back $c_0(G)$.

Let *G* be a countable discrete group. Can we find a dual Banach algebra predual *E* for $\ell^1(G)$ which differs from $c_0(G)$?

- Well, if *K* is compact Hausdorff and countable, then C(K) is a Banach space predual for $\ell^1(K) \cong \ell^1(G)$. Equivalently, we just choose a compact Hausdorff topology on *G*.
- Well, G would then be a Baire Space, and hence would have some g ∈ G with {g} being open.
- The identification of C(G) as a closed subspace of $\ell^{\infty}(G)$ is simply the identification of functions. So C(G) will be shift-invariant if and only if the action of G on itself is continuous.
- But then, by shifting, $\{g\}$ is open for *every* g.
- So actually *G* has the discrete topology, and we just get back $c_0(G)$.

Let *G* be a countable discrete group. Can we find a dual Banach algebra predual *E* for $\ell^1(G)$ which differs from $c_0(G)$?

- Well, if *K* is compact Hausdorff and countable, then C(K) is a Banach space predual for $\ell^1(K) \cong \ell^1(G)$. Equivalently, we just choose a compact Hausdorff topology on *G*.
- Well, G would then be a Baire Space, and hence would have some g ∈ G with {g} being open.
- The identification of C(G) as a closed subspace of $\ell^{\infty}(G)$ is simply the identification of functions. So C(G) will be shift-invariant if and only if the action of G on itself is continuous.
- But then, by shifting, $\{g\}$ is open for *every* g.
- So actually *G* has the discrete topology, and we just get back $c_0(G)$.

Let *G* be a countable discrete group. Can we find a dual Banach algebra predual *E* for $\ell^1(G)$ which differs from $c_0(G)$?

- Well, if *K* is compact Hausdorff and countable, then C(K) is a Banach space predual for $\ell^1(K) \cong \ell^1(G)$. Equivalently, we just choose a compact Hausdorff topology on *G*.
- Well, G would then be a Baire Space, and hence would have some g ∈ G with {g} being open.
- The identification of C(G) as a closed subspace of $\ell^{\infty}(G)$ is simply the identification of functions. So C(G) will be shift-invariant if and only if the action of G on itself is continuous.
- But then, by shifting, {g} is open for *every* g.
- So actually *G* has the discrete topology, and we just get back $c_0(G)$.

Let *G* be a countable discrete group. Can we find a dual Banach algebra predual *E* for $\ell^1(G)$ which differs from $c_0(G)$?

- Well, if *K* is compact Hausdorff and countable, then C(K) is a Banach space predual for $\ell^1(K) \cong \ell^1(G)$. Equivalently, we just choose a compact Hausdorff topology on *G*.
- Well, G would then be a Baire Space, and hence would have some g ∈ G with {g} being open.
- The identification of C(G) as a closed subspace of $\ell^{\infty}(G)$ is simply the identification of functions. So C(G) will be shift-invariant if and only if the action of G on itself is continuous.
- But then, by shifting, $\{g\}$ is open for *every* g.
- So actually *G* has the discrete topology, and we just get back $c_0(G)$.

Let *G* be a countable discrete group. Can we find a dual Banach algebra predual *E* for $\ell^1(G)$ which differs from $c_0(G)$?

- Well, if *K* is compact Hausdorff and countable, then C(K) is a Banach space predual for $\ell^1(K) \cong \ell^1(G)$. Equivalently, we just choose a compact Hausdorff topology on *G*.
- Well, G would then be a Baire Space, and hence would have some g ∈ G with {g} being open.
- The identification of C(G) as a closed subspace of $\ell^{\infty}(G)$ is simply the identification of functions. So C(G) will be shift-invariant if and only if the action of G on itself is continuous.
- But then, by shifting, $\{g\}$ is open for *every* g.
- So actually G has the discrete topology, and we just get back $c_0(G)$.

Let *G* be a countable discrete group. Can we find a dual Banach algebra predual *E* for $\ell^1(G)$ which differs from $c_0(G)$?

- Well, if *K* is compact Hausdorff and countable, then C(K) is a Banach space predual for $\ell^1(K) \cong \ell^1(G)$. Equivalently, we just choose a compact Hausdorff topology on *G*.
- Well, G would then be a Baire Space, and hence would have some g ∈ G with {g} being open.
- The identification of C(G) as a closed subspace of $\ell^{\infty}(G)$ is simply the identification of functions. So C(G) will be shift-invariant if and only if the action of G on itself is continuous.
- But then, by shifting, $\{g\}$ is open for *every* g.
- So actually G has the discrete topology, and we just get back $c_0(G)$.

Unique preduals

Theorem (D., Le Pham, White)

Let G be a locally compact group, and let $E \subseteq M(G)^*$ be a concrete predual for M(G). Suppose that E is a subalgebra of $M(G)^* = C_0(G)^{**}$, and that M(G) becomes a dual Banach algebra with respect to E. Then $E = C_0(G)$.

Theorem (Le Pham)

Let G be a compact (quantum) group, and let $E \subseteq M(G)^*$ be a concrete predual for M(G), turning M(G) into a dual Banach algebra. Then E = C(G).

Unique preduals

Theorem (D., Le Pham, White)

Let G be a locally compact group, and let $E \subseteq M(G)^*$ be a concrete predual for M(G). Suppose that E is a subalgebra of $M(G)^* = C_0(G)^{**}$, and that M(G) becomes a dual Banach algebra with respect to E. Then $E = C_0(G)$.

Theorem (Le Pham)

Let G be a compact (quantum) group, and let $E \subseteq M(G)^*$ be a concrete predual for M(G), turning M(G) into a dual Banach algebra. Then E = C(G).

For semigroups

Together with Le Pham and White, we showed that for semigroups, the situation is very different.

Theorem (D., Le Pham, White)

With $S = \mathbb{Z} \times \mathbb{Z}_+$, consider the Banach algebra $\ell^1(S)$. There are a continuum of preduals of $\ell^1(S)$ which all turn $\ell^1(S)$ into a dual Banach algebra, and which are all subalgebras of $\ell^{\infty}(S)$.

My intuition here is that a group is too "symmetric" so there's no place to hide a strange limit point (and if G is compact, you can't even hide the limit point in the Banach space geometry). For a semigroup, we can introduce limit points.

For semigroups

Together with Le Pham and White, we showed that for semigroups, the situation is very different.

Theorem (D., Le Pham, White)

With $S = \mathbb{Z} \times \mathbb{Z}_+$, consider the Banach algebra $\ell^1(S)$. There are a continuum of preduals of $\ell^1(S)$ which all turn $\ell^1(S)$ into a dual Banach algebra, and which are all subalgebras of $\ell^{\infty}(S)$.

My intuition here is that a group is too "symmetric" so there's no place to hide a strange limit point (and if G is compact, you can't even hide the limit point in the Banach space geometry). For a semigroup, we can introduce limit points.
A bit more general theory

For a Banach algebra A we turn A^* into a bimodule via

$$\langle a \cdot \mu, b \rangle = \langle \mu, ba \rangle, \quad \langle \mu \cdot a, b \rangle = \langle \mu, ab \rangle \qquad (a, b \in A, \mu \in A^*).$$

A functional $\mu \in A^*$ is *weakly almost periodic* if the map

 $A \to A^*; \quad a \mapsto a \cdot \mu$

is weakly compact (we can equivalently use $\mu \cdot a$).

When $A = L^1(G)$, then $F \in L^{\infty}(G)$ is weakly almost periodic if the collection of functions

$$\left\{(t\mapsto F(st)):s\in G\right\}$$

forms a relatively weakly compact subset of $L^\infty(G)$ (and then $F\in C^b(G)$).

A bit more general theory

For a Banach algebra A we turn A^* into a bimodule via

$$\langle a \cdot \mu, b
angle = \langle \mu, ba
angle, \quad \langle \mu \cdot a, b
angle = \langle \mu, ab
angle \qquad (a, b \in A, \mu \in A^*).$$

A functional $\mu \in A^*$ is *weakly almost periodic* if the map

$$A \to A^*; \quad a \mapsto a \cdot \mu$$

is weakly compact (we can equivalently use $\mu \cdot a$).

When $A = L^1(G)$, then $F \in L^{\infty}(G)$ is weakly almost periodic if the collection of functions

$$\{(t\mapsto F(st)):s\in G\}$$

forms a relatively weakly compact subset of $L^\infty(G)$ (and then $F\in C^b(G)$).

A bit more general theory

For a Banach algebra A we turn A^* into a bimodule via

$$\langle a \cdot \mu, b
angle = \langle \mu, ba
angle, \quad \langle \mu \cdot a, b
angle = \langle \mu, ab
angle \qquad (a, b \in A, \mu \in A^*).$$

A functional $\mu \in A^*$ is *weakly almost periodic* if the map

$$A \to A^*; \quad a \mapsto a \cdot \mu$$

is weakly compact (we can equivalently use $\mu \cdot a$).

When $A = L^1(G)$, then $F \in L^{\infty}(G)$ is weakly almost periodic if the collection of functions

$$\left\{(t\mapsto F(st)):s\in G\right\}$$

forms a relatively weakly compact subset of $L^{\infty}(G)$ (and then $F \in C^{b}(G)$).

Write wap(*A*) for the collection of weakly almost periodic functionals on *A*. If *A* is a dual Banach algebra with predual $E \subseteq A^*$, then automatically $E \subseteq wap(A)$.

Theorem (D., Le Pham, White)

Let $S = \mathbb{N}$ equipped with the semigroup product max. Then $\ell^1(S)$ is a dual Banach algebra with respect to $c_0(S)$. If B is a dual Banach algebra and $\theta : \ell^1(S) \to B$ is an isomorphism which is an algebra homomorphism, then necessarily θ is weak*-continuous.

Sketch proof.

The key point is that wap $(\ell^1(S)) = c_0(S) \oplus \mathbb{C}1 \subseteq \ell^{\infty}(S)$.

Write wap(*A*) for the collection of weakly almost periodic functionals on *A*. If *A* is a dual Banach algebra with predual $E \subseteq A^*$, then automatically $E \subseteq wap(A)$.

Theorem (D., Le Pham, White)

Let $S = \mathbb{N}$ equipped with the semigroup product max. Then $\ell^1(S)$ is a dual Banach algebra with respect to $c_0(S)$. If B is a dual Banach algebra and $\theta : \ell^1(S) \to B$ is an isomorphism which is an algebra homomorphism, then necessarily θ is weak*-continuous.

Sketch proof.

The key point is that wap $(\ell^1(S)) = c_0(S) \oplus \mathbb{C}1 \subseteq \ell^{\infty}(S)$.

Write wap(*A*) for the collection of weakly almost periodic functionals on *A*. If *A* is a dual Banach algebra with predual $E \subseteq A^*$, then automatically $E \subseteq wap(A)$.

Theorem (D., Le Pham, White)

Let $S = \mathbb{N}$ equipped with the semigroup product max. Then $\ell^1(S)$ is a dual Banach algebra with respect to $c_0(S)$. If B is a dual Banach algebra and $\theta : \ell^1(S) \to B$ is an isomorphism which is an algebra homomorphism, then necessarily θ is weak*-continuous.

Sketch proof.

The key point is that wap $(\ell^1(S)) = c_0(S) \oplus \mathbb{C}1 \subseteq \ell^{\infty}(S)$.

Write wap(*A*) for the collection of weakly almost periodic functionals on *A*. If *A* is a dual Banach algebra with predual $E \subseteq A^*$, then automatically $E \subseteq wap(A)$.

Theorem (D., Le Pham, White)

Let $S = \mathbb{N}$ equipped with the semigroup product max. Then $\ell^1(S)$ is a dual Banach algebra with respect to $c_0(S)$. If B is a dual Banach algebra and $\theta : \ell^1(S) \to B$ is an isomorphism which is an algebra homomorphism, then necessarily θ is weak*-continuous.

Sketch proof.

The key point is that wap $(\ell^1(S)) = c_0(S) \oplus \mathbb{C}1 \subseteq \ell^{\infty}(S)$.

Let *G* be a (discrete) group and consider again wap($\ell^1(G)$); those functions $f \in \ell^{\infty}(G)$ whose (left) translates form a relatively weakly compact subset of $\ell^{\infty}(G)$. Write wap(*G*) for this collection.

• A result of Grothendieck shows that $f \in wap(G)$ if and only if

$$\lim_{n}\lim_{m}f(s_{n}t_{m})=\lim_{m}\lim_{n}f(s_{n}t_{m}),$$

- It follows easily that wap(G) is a unital C*-subalgebra of $\ell^{\infty}(G)$.
- So wap(G) = C(K), where K is the character space of wap(G).
- You can lift the group product from *G* to *K* (think: Arens Products!)
- Then *K* becomes a semigroup, and the product is separately continuous (semitopological). Write *G*^{wap} for *K* (and then *G*^{wap} is the largest semitopological semigroup containing a dense homomorphic image of *G*).

Let *G* be a (discrete) group and consider again wap($\ell^1(G)$); those functions $f \in \ell^{\infty}(G)$ whose (left) translates form a relatively weakly compact subset of $\ell^{\infty}(G)$. Write wap(*G*) for this collection.

• A result of Grothendieck shows that $f \in wap(G)$ if and only if

$$\lim_{n}\lim_{m}f(s_{n}t_{m})=\lim_{m}\lim_{n}f(s_{n}t_{m}),$$

- It follows easily that wap(G) is a unital C*-subalgebra of $\ell^{\infty}(G)$.
- So wap(G) = C(K), where K is the character space of wap(G).
- You can lift the group product from *G* to *K* (think: Arens Products!)
- Then *K* becomes a semigroup, and the product is separately continuous (semitopological). Write *G*^{wap} for *K* (and then *G*^{wap} is the largest semitopological semigroup containing a dense homomorphic image of *G*).

Let *G* be a (discrete) group and consider again wap($\ell^1(G)$); those functions $f \in \ell^{\infty}(G)$ whose (left) translates form a relatively weakly compact subset of $\ell^{\infty}(G)$. Write wap(*G*) for this collection.

• A result of Grothendieck shows that $f \in wap(G)$ if and only if

$$\lim_{n}\lim_{m}f(s_{n}t_{m})=\lim_{m}\lim_{n}f(s_{n}t_{m}),$$

- It follows easily that wap(G) is a unital C*-subalgebra of $\ell^{\infty}(G)$.
- So wap(G) = C(K), where K is the character space of wap(G).
- You can lift the group product from G to K (think: Arens Products!)
- Then *K* becomes a semigroup, and the product is separately continuous (semitopological). Write *G*^{wap} for *K* (and then *G*^{wap} is the largest semitopological semigroup containing a dense homomorphic image of *G*).

Let *G* be a (discrete) group and consider again wap($\ell^1(G)$); those functions $f \in \ell^{\infty}(G)$ whose (left) translates form a relatively weakly compact subset of $\ell^{\infty}(G)$. Write wap(*G*) for this collection.

• A result of Grothendieck shows that $f \in wap(G)$ if and only if

$$\lim_{n}\lim_{m}f(s_{n}t_{m})=\lim_{m}\lim_{n}f(s_{n}t_{m}),$$

- It follows easily that wap(G) is a unital C*-subalgebra of $\ell^{\infty}(G)$.
- So wap(G) = C(K), where K is the character space of wap(G).
- You can lift the group product from G to K (think: Arens Products!)
- Then *K* becomes a semigroup, and the product is separately continuous (semitopological). Write *G*^{wap} for *K* (and then *G*^{wap} is the largest semitopological semigroup containing a dense homomorphic image of *G*).

Let *G* be a (discrete) group and consider again wap($\ell^1(G)$); those functions $f \in \ell^{\infty}(G)$ whose (left) translates form a relatively weakly compact subset of $\ell^{\infty}(G)$. Write wap(*G*) for this collection.

• A result of Grothendieck shows that $f \in wap(G)$ if and only if

$$\lim_{n}\lim_{m}f(s_{n}t_{m})=\lim_{m}\lim_{n}f(s_{n}t_{m}),$$

- It follows easily that wap(G) is a unital C*-subalgebra of $\ell^{\infty}(G)$.
- So wap(G) = C(K), where K is the character space of wap(G).
- You can lift the group product from *G* to *K* (think: Arens Products!)
- Then *K* becomes a semigroup, and the product is separately continuous (semitopological). Write *G*^{wap} for *K* (and then *G*^{wap} is the largest semitopological semigroup containing a dense homomorphic image of *G*).

Let *G* be a (discrete) group and consider again wap($\ell^1(G)$); those functions $f \in \ell^{\infty}(G)$ whose (left) translates form a relatively weakly compact subset of $\ell^{\infty}(G)$. Write wap(*G*) for this collection.

• A result of Grothendieck shows that $f \in wap(G)$ if and only if

$$\lim_{n}\lim_{m}f(s_{n}t_{m})=\lim_{m}\lim_{n}f(s_{n}t_{m}),$$

- It follows easily that wap(G) is a unital C*-subalgebra of $\ell^{\infty}(G)$.
- So wap(G) = C(K), where K is the character space of wap(G).
- You can lift the group product from *G* to *K* (think: Arens Products!)
- Then *K* becomes a semigroup, and the product is separately continuous (semitopological). Write *G*^{wap} for *K* (and then *G*^{wap} is the largest semitopological semigroup containing a dense homomorphic image of *G*).

Characterising preduals

Let's specialise to the case when $G = \mathbb{Z}$.

Theorem (D., Haydon, Schlumprecht, White)

Let $E \subseteq \ell^{\infty}(\mathbb{Z})$ be a dual Banach algebra predual for $\ell^{1}(\mathbb{Z})$. Then there is a semitopological semigroup K containing \mathbb{Z} as a dense subgroup, and a bounded projection $\Theta : M(K) \to \ell^{1}(\mathbb{Z})$ which is an algebra homomorphism, such that $E = {}^{\perp} \ker \Theta$.

As $\mathbb{Z} \subseteq K$ densely, the restriction map $C(K) \to \ell^{\infty}(\mathbb{Z})$ is an isomorphism onto its range. Hence we can regard

^{$$\perp$$} ker $\Theta = \{ f \in C(K) : \langle \mu, f \rangle = 0 \ (\Theta(\mu) = 0) \}$

as a subspace of $\ell^{\infty}(\mathbb{Z})$.

Characterising preduals

Let's specialise to the case when $G = \mathbb{Z}$.

Theorem (D., Haydon, Schlumprecht, White)

Let $E \subseteq \ell^{\infty}(\mathbb{Z})$ be a dual Banach algebra predual for $\ell^{1}(\mathbb{Z})$. Then there is a semitopological semigroup K containing \mathbb{Z} as a dense subgroup, and a bounded projection $\Theta : M(K) \to \ell^{1}(\mathbb{Z})$ which is an algebra homomorphism, such that $E = {}^{\perp} \ker \Theta$.

As $\mathbb{Z} \subseteq K$ densely, the restriction map $C(K) \to \ell^{\infty}(\mathbb{Z})$ is an isomorphism onto its range. Hence we can regard

^{$$\perp$$} ker $\Theta = \{ f \in C(K) : \langle \mu, f \rangle = 0 \ (\Theta(\mu) = 0) \}$

as a subspace of $\ell^{\infty}(\mathbb{Z})$.

Theorem

- Given a predual E ⊆ l[∞](Z), we consider the unital C*-algebra formed by E, which will have spectrum K.
- Arens products argument gives K a semigroup structure.
- By construction, E ⊆ C(K). For μ ∈ M(K) = C(K)*, the restriction of μ to *E* forms a member of E* = ℓ¹(ℤ). This gives the map Θ: M(K) → ℓ¹(ℤ).
- The rest is a careful check.

Theorem

- Given a predual *E* ⊆ *l*[∞](ℤ), we consider the unital C*-algebra formed by *E*, which will have spectrum *K*.
- Arens products argument gives *K* a semigroup structure.
- By construction, E ⊆ C(K). For μ ∈ M(K) = C(K)*, the restriction of μ to E forms a member of E* = ℓ¹(Z). This gives the map Θ: M(K) → ℓ¹(Z).
- The rest is a careful check.

Theorem

- Given a predual *E* ⊆ *l*[∞](ℤ), we consider the unital C*-algebra formed by *E*, which will have spectrum *K*.
- Arens products argument gives *K* a semigroup structure.
- By construction, E ⊆ C(K). For μ ∈ M(K) = C(K)*, the restriction of μ to *E* forms a member of E* = ℓ¹(ℤ). This gives the map Θ: M(K) → ℓ¹(ℤ).
- The rest is a careful check.

Theorem

- Given a predual *E* ⊆ *l*[∞](ℤ), we consider the unital C*-algebra formed by *E*, which will have spectrum *K*.
- Arens products argument gives *K* a semigroup structure.
- By construction, E ⊆ C(K). For μ ∈ M(K) = C(K)*, the restriction of μ to *E* forms a member of E* = ℓ¹(ℤ). This gives the map Θ: M(K) → ℓ¹(ℤ).
- The rest is a careful check.

Constructing preduals

We can reverse the argument.

Theorem

Let K be a semitopological semigroup containing \mathbb{Z} as a dense subgroup, and suppose there is a bounded projection $\Theta : M(K) \to \ell^1(\mathbb{Z})$ which is an algebra homomorphism. Supposing that ker Θ is weak*-closed, the space

^{$$\perp$$} ker $\Theta = \{ f \in C(K) \subseteq \ell^{\infty}(\mathbb{Z}) : \langle \mu, f \rangle = 0 \; (\Theta(\mu) = 0) \}$

is a Banach algebra predual for $\ell^1(\mathbb{Z})$.

Let $K = \mathbb{Z} \times \mathbb{Z}^+ \cup \{\infty\}$ where ∞ is a "semigroup zero" $x + \infty = \infty + x = \infty$ for any $x \in K$.

If $\Theta : M(K) \to \ell^1(\mathbb{Z})$ is a projection, and an algebra homomorphism, then once we fix $a_1 = \Theta(\delta_{(0,1)}) \in \ell^1(\mathbb{Z})$, we see that Θ is completely determined. Indeed, then

$$\Theta(\delta_{(n,m)}) = \Theta(\delta_{(n,0)}\delta_{(0,m)}) = \Theta(\delta_{(n,0)})\Theta(\delta_{(0,m)}) = \delta_n a_1^m.$$

Also, $\Theta(\infty)$ must be 0. If a_1 is power bounded then Θ will be bounded.

Lemma

Supposing that

$$\lim_n \|a_1^n\|_\infty = 0,$$

Let $K = \mathbb{Z} \times \mathbb{Z}^+ \cup \{\infty\}$ where ∞ is a "semigroup zero"– $x + \infty = \infty + x = \infty$ for any $x \in K$. If $\Theta : M(K) \to \ell^1(\mathbb{Z})$ is a projection, and an algebra homomorphism, then once we fix $a_1 = \Theta(\delta_{(0,1)}) \in \ell^1(\mathbb{Z})$, we see that Θ is completely determined. Indeed, then

$$\Theta(\delta_{(n,m)}) = \Theta(\delta_{(n,0)}\delta_{(0,m)}) = \Theta(\delta_{(n,0)})\Theta(\delta_{(0,m)}) = \delta_n a_1^m.$$

Also, $\Theta(\infty)$ must be 0. If a_1 is power bounded then Θ will be bounded.

Lemma

Supposing that

$$\lim_n \|a_1^n\|_\infty = 0,$$

Let $K = \mathbb{Z} \times \mathbb{Z}^+ \cup \{\infty\}$ where ∞ is a "semigroup zero"– $x + \infty = \infty + x = \infty$ for any $x \in K$. If $\Theta : M(K) \to \ell^1(\mathbb{Z})$ is a projection, and an algebra homomorphism, then once we fix $a_1 = \Theta(\delta_{(0,1)}) \in \ell^1(\mathbb{Z})$, we see that Θ is completely determined. Indeed, then

$$\Theta(\delta_{(n,m)}) = \Theta(\delta_{(n,0)}\delta_{(0,m)}) = \Theta(\delta_{(n,0)})\Theta(\delta_{(0,m)}) = \delta_n a_1^m.$$

Also, $\Theta(\infty)$ must be 0. If a_1 is power bounded then Θ will be bounded.

Lemma

Supposing that

$$\lim_n \|a_1^n\|_{\infty} = 0,$$

Let $K = \mathbb{Z} \times \mathbb{Z}^+ \cup \{\infty\}$ where ∞ is a "semigroup zero"– $x + \infty = \infty + x = \infty$ for any $x \in K$. If $\Theta : M(K) \to \ell^1(\mathbb{Z})$ is a projection, and an algebra homomorphism, then once we fix $a_1 = \Theta(\delta_{(0,1)}) \in \ell^1(\mathbb{Z})$, we see that Θ is completely determined. Indeed, then

$$\Theta(\delta_{(n,m)}) = \Theta(\delta_{(n,0)}\delta_{(0,m)}) = \Theta(\delta_{(n,0)})\Theta(\delta_{(0,m)}) = \delta_n a_1^m.$$

Also, $\Theta(\infty)$ must be 0. If a_1 is power bounded then Θ will be bounded.

Lemma

Supposing that

$$\lim_n \|a_1^n\|_\infty = 0,$$

Let $K = \mathbb{Z} \times \mathbb{Z}^+ \cup \{\infty\}$ where ∞ is a "semigroup zero"– $x + \infty = \infty + x = \infty$ for any $x \in K$. If $\Theta : M(K) \to \ell^1(\mathbb{Z})$ is a projection, and an algebra homomorphism, then once we fix $a_1 = \Theta(\delta_{(0,1)}) \in \ell^1(\mathbb{Z})$, we see that Θ is completely determined. Indeed, then

$$\Theta(\delta_{(n,m)}) = \Theta(\delta_{(n,0)}\delta_{(0,m)}) = \Theta(\delta_{(n,0)})\Theta(\delta_{(0,m)}) = \delta_n a_1^m.$$

Also, $\Theta(\infty)$ must be 0. If a_1 is power bounded then Θ will be bounded.

Lemma

Supposing that

$$\lim_n \|a_1^n\|_\infty = 0,$$

We construct a suitable locally compact topology on $\mathbb{Z} \times \mathbb{Z}^+$, and then *K* will be the one-point compactification. We will now construct a topology base.

• Fix $J \subseteq \mathbb{Z}$ an infinite set.

• For $\gamma = (\gamma_0, \gamma_1) \in \mathbb{Z} \times \mathbb{Z}^+$ and $n \in \mathbb{N}$, let $V_{\gamma,n}$ be the collection of points (β_0, β_1) such that $\beta_1 \leq \gamma_1$, and

$$\beta_0 = \gamma_0 + \sum_{r=1}^{\gamma_1 - \beta_1} j_r,$$

where $(j_r) \subseteq J$ and $n < |j_1| < |j_2| < \cdots$.

We get a suitable topology with these sets as a base if and only if, whenever *a*, *b* ∈ Z⁺ and *t* ∈ Z, there is *n* ∈ N such that, if

$$\sum_{r=1}^{a} j_r = t + \sum_{s=1}^{b} l_s$$

We construct a suitable locally compact topology on $\mathbb{Z} \times \mathbb{Z}^+$, and then *K* will be the one-point compactification. We will now construct a topology base.

- Fix $J \subseteq \mathbb{Z}$ an infinite set.
- For $\gamma = (\gamma_0, \gamma_1) \in \mathbb{Z} \times \mathbb{Z}^+$ and $n \in \mathbb{N}$, let $V_{\gamma,n}$ be the collection of points (β_0, β_1) such that $\beta_1 \leq \gamma_1$, and

$$\beta_0 = \gamma_0 + \sum_{r=1}^{\gamma_1 - \beta_1} j_r,$$

where $(j_r) \subseteq J$ and $n < |j_1| < |j_2| < \cdots$.

We get a suitable topology with these sets as a base if and only if, whenever *a*, *b* ∈ Z⁺ and *t* ∈ Z, there is *n* ∈ N such that, if

$$\sum_{r=1}^{a} j_r = t + \sum_{s=1}^{b} l_s$$

We construct a suitable locally compact topology on $\mathbb{Z} \times \mathbb{Z}^+$, and then *K* will be the one-point compactification. We will now construct a topology base.

- Fix $J \subseteq \mathbb{Z}$ an infinite set.
- For γ = (γ₀, γ₁) ∈ ℤ × ℤ⁺ and n ∈ ℕ, let V_{γ,n} be the collection of points (β₀, β₁) such that β₁ ≤ γ₁, and

$$eta_0=\gamma_0+\sum_{r=1}^{\gamma_1-eta_1}j_r,$$

where $(j_r) \subseteq J$ and $n < |j_1| < |j_2| < \cdots$.

We get a suitable topology with these sets as a base if and only if, whenever *a*, *b* ∈ Z⁺ and *t* ∈ Z, there is *n* ∈ N such that, if

$$\sum_{r=1}^{a} j_r = t + \sum_{s=1}^{b} l_s$$

We construct a suitable locally compact topology on $\mathbb{Z} \times \mathbb{Z}^+$, and then *K* will be the one-point compactification. We will now construct a topology base.

- Fix $J \subseteq \mathbb{Z}$ an infinite set.
- For γ = (γ₀, γ₁) ∈ ℤ × ℤ⁺ and n ∈ ℕ, let V_{γ,n} be the collection of points (β₀, β₁) such that β₁ ≤ γ₁, and

$$\beta_0 = \gamma_0 + \sum_{r=1}^{\gamma_1 - \beta_1} j_r,$$

where $(j_r) \subseteq J$ and $n < |j_1| < |j_2| < \cdots$.

We get a suitable topology with these sets as a base if and only if, whenever *a*, *b* ∈ Z⁺ and *t* ∈ Z, there is *n* ∈ N such that, if

$$\sum_{r=1}^{a} j_r = t + \sum_{s=1}^{b} l_s$$

- The map Θ is determined by setting $a_1 = \Theta(\delta_{(0,1)}) \in \ell^1(\mathbb{Z})$.
- The topology on *K* is determined by the set $J \subseteq \mathbb{Z}$.
- The general theory builds a predual E for $\ell^1(\mathbb{Z})$ turning $\ell^1(\mathbb{Z})$ into a dual Banach algebra.
- The resulting weak*-topology is such that $(\delta_j)_{j \in J}$ has a_1 as a weak*-limit.
- So if $a_1 \neq 0$, the predual is not c_0 .

Recall that $K = \mathbb{Z} \times \mathbb{Z}^+ \cup \{\infty\}$ and we have $\Theta : M(K) \to \ell^1(\mathbb{Z})$.

• The map Θ is determined by setting $a_1 = \Theta(\delta_{(0,1)}) \in \ell^1(\mathbb{Z})$.

- The topology on *K* is determined by the set $J \subseteq \mathbb{Z}$.
- The general theory builds a predual E for $\ell^1(\mathbb{Z})$ turning $\ell^1(\mathbb{Z})$ into a dual Banach algebra.
- The resulting weak*-topology is such that $(\delta_j)_{j \in J}$ has a_1 as a weak*-limit.
- So if $a_1 \neq 0$, the predual is not c_0 .

- The map Θ is determined by setting $a_1 = \Theta(\delta_{(0,1)}) \in \ell^1(\mathbb{Z})$.
- The topology on *K* is determined by the set $J \subseteq \mathbb{Z}$.
- The general theory builds a predual E for $\ell^1(\mathbb{Z})$ turning $\ell^1(\mathbb{Z})$ into a dual Banach algebra.
- The resulting weak*-topology is such that $(\delta_j)_{j \in J}$ has a_1 as a weak*-limit.
- So if $a_1 \neq 0$, the predual is not c_0 .

- The map Θ is determined by setting $a_1 = \Theta(\delta_{(0,1)}) \in \ell^1(\mathbb{Z})$.
- The topology on *K* is determined by the set $J \subseteq \mathbb{Z}$.
- The general theory builds a predual E for $\ell^1(\mathbb{Z})$ turning $\ell^1(\mathbb{Z})$ into a dual Banach algebra.
- The resulting weak*-topology is such that $(\delta_j)_{j \in J}$ has a_1 as a weak*-limit.
- So if $a_1 \neq 0$, the predual is not c_0 .

- The map Θ is determined by setting $a_1 = \Theta(\delta_{(0,1)}) \in \ell^1(\mathbb{Z})$.
- The topology on *K* is determined by the set $J \subseteq \mathbb{Z}$.
- The general theory builds a predual E for $\ell^1(\mathbb{Z})$ turning $\ell^1(\mathbb{Z})$ into a dual Banach algebra.
- The resulting weak*-topology is such that $(\delta_j)_{j \in J}$ has a_1 as a weak*-limit.
- So if $a_1 \neq 0$, the predual is not c_0 .

- The map Θ is determined by setting $a_1 = \Theta(\delta_{(0,1)}) \in \ell^1(\mathbb{Z})$.
- The topology on *K* is determined by the set $J \subseteq \mathbb{Z}$.
- The general theory builds a predual E for $\ell^1(\mathbb{Z})$ turning $\ell^1(\mathbb{Z})$ into a dual Banach algebra.
- The resulting weak*-topology is such that $(\delta_j)_{j \in J}$ has a_1 as a weak*-limit.
- So if $a_1 \neq 0$, the predual is not c_0 .

An example

The condition on *J* is (roughly)

$$\sum_{r=1}^{a} j_r = t + \sum_{s=1}^{b} l_s \quad \Rightarrow ? \quad t = 0, a = b.$$

The condition on a_1 is

$$\sup_n \|a_1^n\|_1 < \infty, \qquad \lim_n \|a_1^n\|_\infty = 0.$$

- For example, take $J = \{2^n\}$ and $a_1 = \lambda \delta_0$ for some $|\lambda| < 1$.
- We have analysed this example in depth– the resulting space *E* is isomorphic (but not isometric) to some *C*(*K*) space. Calculating the Szlenk index of *K* proves possible, and we conclude that *E* is isomorphic to *c*₀.
- Of course, the dual pairing between $E \cong c_0$ and $\ell^1(\mathbb{Z})$ is very strange!
An example

The condition on J is (roughly)

$$\sum_{r=1}^{a} j_r = t + \sum_{s=1}^{b} l_s \quad \Rightarrow ? \quad t = 0, a = b.$$

The condition on a_1 is

$$\sup_n \|a_1^n\|_1 < \infty, \qquad \lim_n \|a_1^n\|_\infty = 0.$$

- For example, take $J = \{2^n\}$ and $a_1 = \lambda \delta_0$ for some $|\lambda| < 1$.
- We have analysed this example in depth– the resulting space *E* is isomorphic (but not isometric) to some *C*(*K*) space. Calculating the Szlenk index of *K* proves possible, and we conclude that *E* is isomorphic to *c*₀.
- Of course, the dual pairing between $E \cong c_0$ and $\ell^1(\mathbb{Z})$ is very strange!

An example

The condition on *J* is (roughly)

$$\sum_{r=1}^{a} j_r = t + \sum_{s=1}^{b} l_s \quad \Rightarrow ? \quad t = 0, a = b.$$

The condition on a_1 is

$$\sup_n \|a_1^n\|_1 < \infty, \qquad \lim_n \|a_1^n\|_\infty = 0.$$

- For example, take $J = \{2^n\}$ and $a_1 = \lambda \delta_0$ for some $|\lambda| < 1$.
- We have analysed this example in depth– the resulting space *E* is isomorphic (but not isometric) to some C(K) space. Calculating the Szlenk index of *K* proves possible, and we conclude that *E* is isomorphic to c_0 .
- Of course, the dual pairing between $E \cong c_0$ and $\ell^1(\mathbb{Z})$ is very strange!

An example

The condition on *J* is (roughly)

$$\sum_{r=1}^{a} j_r = t + \sum_{s=1}^{b} l_s \quad \Rightarrow ? \quad t = 0, a = b.$$

The condition on a_1 is

$$\sup_n \|a_1^n\|_1 < \infty, \qquad \lim_n \|a_1^n\|_\infty = 0.$$

- For example, take $J = \{2^n\}$ and $a_1 = \lambda \delta_0$ for some $|\lambda| < 1$.
- We have analysed this example in depth– the resulting space *E* is isomorphic (but not isometric) to some C(K) space. Calculating the Szlenk index of *K* proves possible, and we conclude that *E* is isomorphic to c_0 .
- Of course, the dual pairing between $E \cong c_0$ and $\ell^1(\mathbb{Z})$ is very strange!

• Again take $J = \{2^n\}$, but now set $a_1 = \frac{1}{2}(\delta_0 + \delta_1)$.

- Now a little calculation shows that it is true that convolution powers of a_1 tend to 0 in the ∞ -norm; but of course they don't in the 1-norm.
- Some general Banach space theory (Szlenk index again!) shows that the resulting predual *E* cannot be isomorphic to *c*₀.
- Now take $a_1 = 5^{-1/2} (\delta_0 + \delta_1 \delta_2)$.
- Old work of Newman can be used to show that a_1 is power bounded in $\ell^1(\mathbb{Z})$, and a little Fourier analysis shows that $a_1^n \to 0$ in the ∞ -norm.
- This leads to a predual E which is not *isometric*, in the sense that the isomorphism ℓ¹(ℤ) ≅ E* is not an isometry.

- Again take $J = \{2^n\}$, but now set $a_1 = \frac{1}{2}(\delta_0 + \delta_1)$.
- Now a little calculation shows that it is true that convolution powers of a_1 tend to 0 in the ∞ -norm; but of course they don't in the 1-norm.
- Some general Banach space theory (Szlenk index again!) shows that the resulting predual E cannot be isomorphic to c_0 .
- Now take $a_1 = 5^{-1/2} (\delta_0 + \delta_1 \delta_2)$.
- Old work of Newman can be used to show that a_1 is power bounded in $\ell^1(\mathbb{Z})$, and a little Fourier analysis shows that $a_1^n \to 0$ in the ∞ -norm.
- This leads to a predual E which is not *isometric*, in the sense that the isomorphism ℓ¹(ℤ) ≅ E* is not an isometry.

- Again take $J = \{2^n\}$, but now set $a_1 = \frac{1}{2}(\delta_0 + \delta_1)$.
- Now a little calculation shows that it is true that convolution powers of a_1 tend to 0 in the ∞ -norm; but of course they don't in the 1-norm.
- Some general Banach space theory (Szlenk index again!) shows that the resulting predual E cannot be isomorphic to c_0 .
- Now take $a_1 = 5^{-1/2} (\delta_0 + \delta_1 \delta_2)$.
- Old work of Newman can be used to show that a_1 is power bounded in $\ell^1(\mathbb{Z})$, and a little Fourier analysis shows that $a_1^n \to 0$ in the ∞ -norm.
- This leads to a predual E which is not *isometric*, in the sense that the isomorphism ℓ¹(ℤ) ≅ E* is not an isometry.

- Again take $J = \{2^n\}$, but now set $a_1 = \frac{1}{2}(\delta_0 + \delta_1)$.
- Now a little calculation shows that it is true that convolution powers of a_1 tend to 0 in the ∞ -norm; but of course they don't in the 1-norm.
- Some general Banach space theory (Szlenk index again!) shows that the resulting predual E cannot be isomorphic to c_0 .
- Now take $a_1 = 5^{-1/2}(\delta_0 + \delta_1 \delta_2)$.
- Old work of Newman can be used to show that a_1 is power bounded in $\ell^1(\mathbb{Z})$, and a little Fourier analysis shows that $a_1^n \to 0$ in the ∞ -norm.
- This leads to a predual E which is not *isometric*, in the sense that the isomorphism ℓ¹(ℤ) ≅ E* is not an isometry.

- Again take $J = \{2^n\}$, but now set $a_1 = \frac{1}{2}(\delta_0 + \delta_1)$.
- Now a little calculation shows that it is true that convolution powers of a_1 tend to 0 in the ∞ -norm; but of course they don't in the 1-norm.
- Some general Banach space theory (Szlenk index again!) shows that the resulting predual E cannot be isomorphic to c_0 .
- Now take $a_1 = 5^{-1/2}(\delta_0 + \delta_1 \delta_2)$.
- Old work of Newman can be used to show that a_1 is power bounded in $\ell^1(\mathbb{Z})$, and a little Fourier analysis shows that $a_1^n \to 0$ in the ∞ -norm.
- This leads to a predual E which is not *isometric*, in the sense that the isomorphism l¹(ℤ) ≅ E* is not an isometry.

- Again take $J = \{2^n\}$, but now set $a_1 = \frac{1}{2}(\delta_0 + \delta_1)$.
- Now a little calculation shows that it is true that convolution powers of a_1 tend to 0 in the ∞ -norm; but of course they don't in the 1-norm.
- Some general Banach space theory (Szlenk index again!) shows that the resulting predual E cannot be isomorphic to c_0 .
- Now take $a_1 = 5^{-1/2}(\delta_0 + \delta_1 \delta_2)$.
- Old work of Newman can be used to show that a_1 is power bounded in $\ell^1(\mathbb{Z})$, and a little Fourier analysis shows that $a_1^n \to 0$ in the ∞ -norm.
- This leads to a predual *E* which is not *isometric*, in the sense that the isomorphism $\ell^1(\mathbb{Z}) \cong E^*$ is not an isometry.

- A Banach algebra predual *E* of ℓ¹(ℤ) is associated with a compact semigroup *K* what *K* can occur?
- What Banach spaces *E* can occur?
- Produce "interesting" examples for other groups *G* (the basic theory goes through).
- For example, can we do this for F₂ and get unusual weak*-cohomological properties for l¹(F₂)? E.g. make it Connes-amenable for a new predual?

- A Banach algebra predual *E* of ℓ¹(ℤ) is associated with a compact semigroup *K* what *K* can occur?
- What Banach spaces *E* can occur?
- Produce "interesting" examples for other groups *G* (the basic theory goes through).
- For example, can we do this for F₂ and get unusual weak*-cohomological properties for l¹(F₂)? E.g. make it Connes-amenable for a new predual?

- A Banach algebra predual *E* of ℓ¹(ℤ) is associated with a compact semigroup *K* what *K* can occur?
- What Banach spaces *E* can occur?
- Produce "interesting" examples for other groups *G* (the basic theory goes through).
- For example, can we do this for F₂ and get unusual weak*-cohomological properties for l¹(F₂)? E.g. make it Connes-amenable for a new predual?

- A Banach algebra predual *E* of ℓ¹(ℤ) is associated with a compact semigroup *K* what *K* can occur?
- What Banach spaces *E* can occur?
- Produce "interesting" examples for other groups *G* (the basic theory goes through).
- For example, can we do this for F₂ and get unusual weak*-cohomological properties for ℓ¹(F₂)? E.g. make it Connes-amenable for a new predual?