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Banach spaces and duality

A first course in Banach spaces (not Hilbert spaces!) will introduce the
Banach spaces `1 = `1(N), and c0 = c0(N):

`1 =
{
(an) : ‖(an)‖1 =

∑
n

|an| <∞}
c0 =

{
(an) : lim

n
an = 0

}
with ‖(an)‖∞ = sup

n
|an|.

Then c∗0 = `1. To be precise, for each f ∈ c∗0 there exists (fn) ∈ `1 such that

f ((an)) =
∑

n

fnan ((an) ∈ c0),

and with ‖f‖ = ‖(fn)‖1.
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Other preduals of `1

Let K be a compact Hausdorff space; form C(K) and M(K).
Then each member of C(K)∗ arises from integrating against a member of
M(K). So we can write C(K)∗ = M(K).
Now suppose that K is countable– we can enumerate K as K = {kn : n ∈ N}
say. Then any µ ∈ M(K) is countably additive, and so for f ∈ C(K),∫

K
f dµ =

∑
n

f (kn)µ({kn}).

Hence we have an isometric isomorphism θ : `1 → C(K)∗ which sends
a = (an) ∈ `1 to the functional θa ∈ C(K)∗ given by

θa(f ) =
∑

n

f (kn)an (f ∈ C(K)).
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The weak∗-topology

We have a dual pairing `1 × C(K)→ C

〈a, f 〉 =
∑

n

f (kn)an (f ∈ C(K), a ∈ `1).

This induces a weak∗-topology on `1.
For example, as K is compact, we have non-trivial limiting sequences– say
(kni)→ kn as i→∞.
Write δk for the “point-mass” in `1 at k– that is, the sequence which is 0
except for a 1 in the kth place. Thus for f ∈ C(K),

lim
i
〈δkni

, f 〉 = lim
i

f
(
kni

)
= f (kn) = 〈δkn , f 〉,

and so δkni
→ δkn weak∗. Of course, this does not hold for the “usual”

weak∗-topology induced by c∗0 = `1.
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Think more abstractly about preduals
Given a Banach space E, a predual for E is a Banach space F together with an
isomorphism (not assumed isometric) θ : E → F∗.

Note that the map θ is very important.

It seems reasonable to say that two preduals “are the same” if they
induce the same weak∗-topology on E.

As usual, we identify F with a closed subspace of its bidual F∗∗, and so
we can talk about the image of F under the adjoint map θ∗ : F∗∗ → E∗.
Call this F0.
Then F0 ⊆ E∗ is a closed subspace such that:

I F0 separates the points of E;
I every functional µ ∈ F∗

0 is given by some element of E.

We call such a subspace F0 ⊆ E∗ a concrete predual.

It’s not hard to see that two concrete preduals F0,F1 induce the same
weak∗-topology on E if and only if F0 = F1.
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Dual Banach algebras

A dual Banach algebra is a Banach algebra A which has a predual A∗ such that
the resulting weak∗-topology on A makes the product separately
weak∗-continuous.

If we identify A∗ as a subspace of A∗, then we equivalently can ask that
A∗ is an A-submodule of A∗.

For example, let G be a locally compact group, and let M(G) be the
space of regular measures on G with the convolution product. This has
predual C0(G), and is a dual Banach algebra.

When G is discrete, this example becomes `1(G) with the convolution
product, equipped with the predual c0(G).

It’s not hard to see that a predual E of `1(G) makes `1(G) into a dual
Banach algebra if and only if E ⊆ `∞(G) is “shift-invariant” for the left
and right actions of G on `∞(G).
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Easy examples?

Let G be a countable discrete group. Can we find a dual Banach algebra
predual E for `1(G) which differs from c0(G)?

Well, if K is compact Hausdorff and countable, then C(K) is a Banach
space predual for `1(K) ∼= `1(G). Equivalently, we just choose a compact
Hausdorff topology on G.

Well, G would then be a Baire Space, and hence would have some g ∈ G
with {g} being open.

The identification of C(G) as a closed subspace of `∞(G) is simply the
identification of functions. So C(G) will be shift-invariant if and only if
the action of G on itself is continuous.

But then, by shifting, {g} is open for every g.

So actually G has the discrete topology, and we just get back c0(G).

(Hat tip to Yemon Choi for this simple argument).
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Unique preduals

Theorem (D., Le Pham, White)
Let G be a locally compact group, and let E ⊆ M(G)∗ be a concrete predual
for M(G). Suppose that E is a subalgebra of M(G)∗ = C0(G)∗∗, and that
M(G) becomes a dual Banach algebra with respect to E. Then E = C0(G).

Theorem (Le Pham)
Let G be a compact (quantum) group, and let E ⊆ M(G)∗ be a concrete
predual for M(G), turning M(G) into a dual Banach algebra. Then
E = C(G).
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For semigroups

Together with Le Pham and White, we showed that for semigroups, the
situation is very different.

Theorem (D., Le Pham, White)
With S = Z× Z+, consider the Banach algebra `1(S). There are a continuum
of preduals of `1(S) which all turn `1(S) into a dual Banach algebra, and
which are all subalgebras of `∞(S).

My intuition here is that a group is too “symmetric” so there’s no place to hide
a strange limit point (and if G is compact, you can’t even hide the limit point
in the Banach space geometry). For a semigroup, we can introduce limit
points.
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A bit more general theory

For a Banach algebra A we turn A∗ into a bimodule via

〈a · µ, b〉 = 〈µ, ba〉, 〈µ · a, b〉 = 〈µ, ab〉 (a, b ∈ A, µ ∈ A∗).

A functional µ ∈ A∗ is weakly almost periodic if the map

A→ A∗; a 7→ a · µ

is weakly compact (we can equivalently use µ · a).
When A = L1(G), then F ∈ L∞(G) is weakly almost periodic if the collection
of functions {

(t 7→ F(st)) : s ∈ G
}

forms a relatively weakly compact subset of L∞(G) (and then F ∈ Cb(G)).
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Applying this

Write wap(A) for the collection of weakly almost periodic functionals on A. If
A is a dual Banach algebra with predual E ⊆ A∗, then automatically
E ⊆ wap(A).

Theorem (D., Le Pham, White)
Let S = N equipped with the semigroup product max. Then `1(S) is a dual
Banach algebra with respect to c0(S). If B is a dual Banach algebra and
θ : `1(S)→ B is an isomorphism which is an algebra homomorphism, then
necessarily θ is weak∗-continuous.

Sketch proof.

The key point is that wap(`1(S)) = c0(S)⊕ C1 ⊆ `∞(S).

For a discrete group G, Chou showed that wap(`1(G))/c0(G) contains an
isometric copy of `∞.
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More on weakly almost periodic functions
Let G be a (discrete) group and consider again wap(`1(G)); those functions
f ∈ `∞(G) whose (left) translates form a relatively weakly compact subset of
`∞(G). Write wap(G) for this collection.

A result of Grothendieck shows that f ∈ wap(G) if and only if

lim
n

lim
m

f (sntm) = lim
m

lim
n

f (sntm),

whenever (sn) and (tm) are sequences in G such that all the limits exist.

It follows easily that wap(G) is a unital C∗-subalgebra of `∞(G).

So wap(G) = C(K), where K is the character space of wap(G).

You can lift the group product from G to K (think: Arens Products!)

Then K becomes a semigroup, and the product is separately continuous
(semitopological). Write Gwap for K (and then Gwap is the largest
semitopological semigroup containing a dense homomorphic image of
G).
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Characterising preduals

Let’s specialise to the case when G = Z.

Theorem (D., Haydon, Schlumprecht, White)

Let E ⊆ `∞(Z) be a dual Banach algebra predual for `1(Z). Then there is a
semitopological semigroup K containing Z as a dense subgroup, and a
bounded projection Θ : M(K)→ `1(Z) which is an algebra homomorphism,
such that E = ⊥ kerΘ.

As Z ⊆ K densely, the restriction map C(K)→ `∞(Z) is an isomorphism
onto its range. Hence we can regard

⊥ kerΘ = {f ∈ C(K) : 〈µ, f 〉 = 0 (Θ(µ) = 0)}

as a subspace of `∞(Z).
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A few words on the proof

Theorem
Let E ⊆ `∞(Z) be a dual Banach algebra predual for `1(Z). Then there is a
semitopological semigroup K containing Z as a dense subgroup, and a
bounded projection Θ : M(K)→ `1(Z) which is an algebra homomorphism,
such that E = ⊥ kerΘ.

Given a predual E ⊆ `∞(Z), we consider the unital C∗-algebra formed
by E, which will have spectrum K.

Arens products argument gives K a semigroup structure.

By construction, E ⊆ C(K). For µ ∈ M(K) = C(K)∗, the restriction of µ
to E forms a member of E∗ = `1(Z). This gives the map
Θ : M(K)→ `1(Z).
The rest is a careful check.
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Constructing preduals

We can reverse the argument.

Theorem
Let K be a semitopological semigroup containing Z as a dense subgroup, and
suppose there is a bounded projection Θ : M(K)→ `1(Z) which is an algebra
homomorphism. Supposing that kerΘ is weak∗-closed, the space

⊥ kerΘ = {f ∈ C(K) ⊆ `∞(Z) : 〈µ, f 〉 = 0 (Θ(µ) = 0)}

is a Banach algebra predual for `1(Z).
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Constructing K

Let K = Z× Z+ ∪ {∞} where∞ is a “semigroup zero”–
x +∞ =∞+ x =∞ for any x ∈ K.
If Θ : M(K)→ `1(Z) is a projection, and an algebra homomorphism, then
once we fix a1 = Θ(δ(0,1)) ∈ `1(Z), we see that Θ is completely determined.
Indeed, then

Θ(δ(n,m)) = Θ(δ(n,0)δ(0,m)) = Θ(δ(n,0))Θ(δ(0,m)) = δnam
1 .

Also, Θ(∞) must be 0. If a1 is power bounded then Θ will be bounded.

Lemma
Supposing that

lim
n
‖an

1‖∞ = 0,

then kerΘ will be weak∗-closed, for any semitopological semigroup topology
on K.
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Constructing a topology
We construct a suitable locally compact topology on Z× Z+, and then K will
be the one-point compactification. We will now construct a topology base.

Fix J ⊆ Z an infinite set.
For γ = (γ0, γ1) ∈ Z× Z+ and n ∈ N, let Vγ,n be the collection of
points (β0, β1) such that β1 ≤ γ1, and

β0 = γ0 +

γ1−β1∑
r=1

jr,

where (jr) ⊆ J and n < |j1| < |j2| < · · · .
We get a suitable topology with these sets as a base if and only if,
whenever a, b ∈ Z+ and t ∈ Z, there is n ∈ N such that, if

a∑
r=1

jr = t +
b∑

s=1

ls

for some n < |j1| < |j2| < · · · and n < |l1| < |l2| < · · · , then t = 0 and
a = b.
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What’s the weak∗ topology

Recall that K = Z× Z+ ∪ {∞} and we have Θ : M(K)→ `1(Z).

The map Θ is determined by setting a1 = Θ(δ(0,1)) ∈ `1(Z).
The topology on K is determined by the set J ⊆ Z.

The general theory builds a predual E for `1(Z) turning `1(Z) into a dual
Banach algebra.

The resulting weak∗-topology is such that (δj)j∈J has a1 as a weak∗-limit.

So if a1 6= 0, the predual is not c0.
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An example
The condition on J is (roughly)

a∑
r=1

jr = t +
b∑

s=1

ls ⇒ ? t = 0, a = b.

The condition on a1 is

sup
n
‖an

1‖1 <∞, lim
n
‖an

1‖∞ = 0.

For example, take J = {2n} and a1 = λδ0 for some |λ| < 1.

We have analysed this example in depth– the resulting space E is
isomorphic (but not isometric) to some C(K) space. Calculating the
Szlenk index of K proves possible, and we conclude that E is isomorphic
to c0.

Of course, the dual pairing between E ∼= c0 and `1(Z) is very strange!
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Another example

Again take J = {2n}, but now set a1 =
1
2
(δ0 + δ1).

Now a little calculation shows that it is true that convolution powers of
a1 tend to 0 in the∞-norm; but of course they don’t in the 1-norm.

Some general Banach space theory (Szlenk index again!) shows that the
resulting predual E cannot be isomorphic to c0.

Now take a1 = 5−1/2(δ0 + δ1 − δ2).

Old work of Newman can be used to show that a1 is power bounded in
`1(Z), and a little Fourier analysis shows that an

1 → 0 in the∞-norm.

This leads to a predual E which is not isometric, in the sense that the
isomorphism `1(Z) ∼= E∗ is not an isometry.
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Open questions

A Banach algebra predual E of `1(Z) is associated with a compact
semigroup K– what K can occur?

What Banach spaces E can occur?

Produce “interesting” examples for other groups G (the basic theory goes
through).

For example, can we do this for F2 and get unusual
weak∗-cohomological properties for `1(F2)? E.g. make it
Connes-amenable for a new predual?
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