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Colloquium talk

So I believe this is a talk to a general audience of Mathematicians.
Some old advice for giving talks: the first 10 minutes should be
aimed at the janitor; then at undergrads; then at graduates; then
at researchers; then at specialists; and finish by talking to yourself.
The janitor won’t understand me; and I’ll try not to talk to myself.
I’m going to try just to give a survey talk about a particular area at
the interface between algebra and analysis.
Please ask questions!
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Fourier transform

Let f be a “well-behaved” function on the real line. Then the Fourier
transform of f is

f̂ (x) =

∫ ∞
−∞

f (t) e−2πixt dt .

(You have to put a 2π somewhere!)
Then we can reconstruct f from f̂ by

f (t) =

∫ ∞
−∞

f̂ (x) e2πixt dx .

A basic tool in “applied” mathematics which we teach to
undergraduates.
Appears in probability theory as the Characteristic Function.
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Fourier series

Given a periodic function f : R→ C the Fourier series of f is (f̂ (n))n∈Z
where

f̂ (n) =

∫ 1

0
f (θ)e−2πinθ dθ.

We have the well-known “reconstruction”:

f (θ) =
∞∑

n=−∞
f̂ (n)e2πinθ.

Of course, a great deal of classical analysis is concerned with the
question of in what sense does this sum actually converge?
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Convergence

f (θ) =
∞∑

n=−∞
f̂ (n)e2πinθ ??

If f is twice continuously differentiable, then the sum converges
uniformly to f (that is, limN→∞

∑N
n=−N ).

(Fejer) If f is continuous, and we take Cesaro means, then we
always get (uniform) convergence.
(Kolmogorov) There is a (Lebesgue integrable) function f such
that the sum diverges everywhere.
(Carleson) If f is continuous then the sum converges almost
everywhere.
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A more “global” perspective

Don’t want to look at single functions in isolation; but rather at spaces
of functions.
Let’s consider L2([0,1]); that is, functions f with

∫ 1
0 |f |

2 <∞.
This is a vector space.

‖f‖ =
( ∫ 1

0 |f |
2)1/2 is a norm.

So we get a metric d(f ,g) = ‖f − g‖.
With some help from Lebesgue, we get a complete space (so a
Banach space; even a Hilbert space).

(Parseval) In the Banach space L2([0,1]), we always have that

f =
∞∑

n=−∞
f̂ (n)(e2πinθ).
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Gibbs again
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Where does it all come from?

Why do we link periodic functions with the integers, using e2πi·?

Consider [0,1) with addition modulo 1.
Same as R/Z; hence why we get periodic functions.
This is the same as the “circle group” T (where we identify
t ∈ [0,1) with the point on the circle at angle 2πt).
Let’s consider continuous group homomorphisms φ : [0,1)→ T.
So φ(s + t) = φ(s)φ(t).
These must be of the form

φ(t) = e2πitn,

for some n ∈ Z.
The “Pontryagin dual” of [0,1),+ is Z.
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Abelian groups

In fact, we can always do this for a (locally compact) abelian group.
Write Ĝ for the dual of G.

The dual to Z is [0,1) ∼= T again.
In general, always true that the dual of the dual is what you started
with (biduality theory).
Any continuous homomorphism φ : R→ T is of the form
φ(t) = exp(2πitx) for some x ∈ R.
So the dual of R is R (scaled by 2π).
For any abelian group we have a Fourier transform which has all
the properties we expect:

I Plancheral– L2(Ĝ) and L2(G) are isometric.
I Algebra property: The Fourier transform converts convolution of

functions on G into pointwise multiplication of functions on Ĝ.
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I Plancheral– L2(Ĝ) and L2(G) are isometric.
I Algebra property: The Fourier transform converts convolution of

functions on G into pointwise multiplication of functions on Ĝ.
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Convolutions
Remember that the convolution of functions f ,g on R is

f ∗ g(s) =

∫ ∞
−∞

f (t)g(−t + s) dt .

Then if h = f ∗ g then ĥ = f̂ ĝ.

The integral won’t always converge.
Let’s restrict to L1(R) (f such that ‖f‖1 =

∫
|f | <∞).

Then L1(R) with convolution becomes an algebra: we even get
‖f ∗ g‖1 ≤ ‖f‖1‖g‖1.
Let A(R) = {f̂ : f ∈ L1(R)}.
Then A(R) is an algebra for the pointwise product– indeed, it’s just
L1(R) viewed in a different way.
(Riemann-Lebesgue) A(R) consists of continuous functions which
decay to 0 at∞.
But not all such functions. However, we get “enough”.
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But not all such functions. However, we get “enough”.
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General abelian groups G

To be formal, Ĝ is the collection of continuous homomorphisms
φ : G→ T (characters).

The product on Ĝ is pointwise:

(φψ) : G→ T; s 7→ φ(s)ψ(s).

Give Ĝ the topology of compact convergence.
Then Ĝ is locally compact, so has a Haar measure.

We get Fourier Transforms: for f a function on G and g a function on
Ĝ, define

F f (φ) =

∫
G

f (s)φ(s) ds, F−1g(φ) =

∫
Ĝ

g(φ)φ(s) dφ.
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The “Fourier Algebra”

For any G the Fourier transform gives an isomorphism
L1(Ĝ)→ A(G).
That is, A(G) is an algebra, under pointwise multiplication, of
functions on G.
So A(T) is the Fourier transform of `1(Z)– those periodic functions
with “absolutely convergent Fourier series”.
In general, A(G) consists of continuous functions, decaying at∞.
Unless G is finite you don’t get all such functions, but again get
“enough”.

Key idea: Eymard (1964) came up with a definition which works for
any group G, giving an algebra of functions A(G). If G is abelian, then
A(G) ∼= L1(Ĝ).
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Briefly, what is this?

Let G be abelian.
We can write any f ∈ L1(Ĝ) as the pointwise product of two L2(G)
functions, e.g.

f = |f |1/2 · f
|f |1/2 = gh.

Taking the Fourier transform gives f̂ = ĝ ∗ ĥ.
Conclude: every function in A(G) is the convolution of two L2(G)
functions (Plancheral: L2(Ĝ) = L2(G)).

Now let G be arbitrary.
This is Eymard’s definition: A(G) = {f ∗ g : f ,g ∈ L2(G)}.
Not at all clear, of course, why we get an algebra!
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We can write any f ∈ L1(Ĝ) as the pointwise product of two L2(G)
functions, e.g.

f = |f |1/2 · f
|f |1/2 = gh.

Taking the Fourier transform gives f̂ = ĝ ∗ ĥ.
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Some examples

Question:
How much of G does A(G) “remember”?

Suppose that G is finite.
A(G) consists of enough functions to separate the points of G.
As G is finite, we simply get all functions G→ C.
So A(G) ∼= A(H) if and only if G and H are the same size– no
information about the group at all.
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Need to throw in some analysis
What’s missing is that A(G) also carries a norm:

‖a‖A(G) = inf
{
‖f‖2‖g‖2 : a = f ∗ g

}
.

Then we get ‖ab‖A(G) ≤ ‖a‖A(G)‖b‖A(G).
Also A(G) is complete (a Banach algebra).

Theorem (Walter, 1972)
If A(G) and A(H) are isometrically isomorphic then G is isomorphic to
either H or the opposite to H (same group, with product reversed).

Indeed, you can actually write down what the isomorphism must
look like.
Using other ideas from modern functional analysis you can restrict
your category further and remove the “opposite” possibility.
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If time allows, some representation theory

A representation of a group is a continuous homomorphism from
G to U(n), the unitary group.
As U(1) ∼= T, the one-dimensional representations of G are just
the characters. For an abelian group can always diagonalise.
If G is infinite, then often we need to look at infinite-dimensional
representations.
This is a continuous homomorphism φ from G to U(H), the unitary
group of a Hilbert space. Continuous means

sn → s in G =⇒ φ(sn)ξ → φ(s)ξ for all ξ ∈ H.

Important example: the left-regular representation λ of G on
L2(G).

λ(s)f : t 7→ f (s−1t) (f ∈ L2(G), s, t ∈ G).
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Coefficients

Given a representation φ : G→ U(H), a coefficient of φ is a
(continuous) function on G of the form

f (s) = 〈φ(s)ξ, η〉.

Let’s consider a coefficient of the left-regular representation

〈λ(s)f ,g〉 =

∫
G

f (s−1t)g(t) dt =

∫
G

g(t)f̌ (t−1s) dt = g ∗ f̌ (s).

Here f̌ (r) = f (r−1).
(I lied before: for many groups G it’s not true that
f ∈ L2(G) =⇒ f̌ ∈ L2(G).)
So A(G) equals the collection of coefficients of λ.
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Why an algebra?

Fix a representation φ. If we take the linear span of coefficients of φ we
get a vector space of functions on G, say Aφ.
If we (pointwise) multiply a ∈ Aφ and b ∈ Aψ then

a(s)b(s) = 〈φ(s)ξ1, η1〉〈ψ(s)ξ2, η2〉 = 〈(φ(s)⊗ ψ(s))(ξ1 ⊗ ξ2), η1 ⊗ η2〉.

So multiplication corresponds to tensoring representations.

Theorem (Fell’s absorption principle)
For any φ, we have that λ⊗ φ is isomorphic to λ⊗ 1H , that is, a direct
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Finally: why no linear span?

I defined A(G) as functions of the form f ∗ g; no linear span!

This is actually true, but to prove requires a lot of modern
functional analysis.
Take the linear span of {λ(s) : s ∈ G}, which gives us an algebra
of operators on the Hilbert space L2(G).
Closing this with respect to a suitable topology gives the group
von Neumann algebra VN(G).
[Dixmier; Tomita, Takesaki] shows that A(G) can be identified with
the “predual” of VN(G) and that hence every member of A(G) is of
the simple form claimed.
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Example: compact groups
Let G be compact.

The representation theory is particularly nice.
The irreducible representations are finite-dimensional; let Ĝ be the
classes of irreducibles.
Every representation is (isomorphic to) the direct sum of
irreducibles.

In particular, λ decomposes as

λ =
⊕
φ∈Ĝ

dφφ.

Then, as a Banach space

A(G) = `1 −
⊕
φ∈Ĝ

dφ(Mdφ
, trace-norm).

But the understand A(G) as an algebra requires knowledge of how
irreducibles tensor.
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My actual research
I’m interested in “non-commutative geometry/topology”.

Idea is that “spaces” correspond to “commutative algebras” (e.g.
Gelfand theory of C∗-algebras).
So then non-commutative algebras correspond to
“non-commutative spaces”.
For abelian groups, we have Pontryagin duality.
If I look at algebras, then L1(Ĝ) = A(G).
So to study Ĝ I can study A(G) (Walter’s theorem says we loose
no information).
This still makes sense if G is not abelian.
Seek a self-dual category to generalise Pontryagin duality— Kac
algebras, recently Locally Compact Quantum Groups.
I’m (currently) interested in abstract harmonic analysis questions–
e.g. Positive Definite Functions.
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