Groups meet Analysis: the Fourier Algebra

Matthew Daws
Leeds
York, June 2013

Colloquium talk

- So I believe this is a talk to a general audience of Mathematicians.
- Some old advice for giving talks: the first 10 minutes should be aimed at the janitor; then at undergrads; then at graduates; then at researchers; then at specialists; and finish by talking to yourself.
- The janitor won't understand me; and l'll try not to talk to myself.
- I'm going to try just to give a survey talk about a particular area at the interface between algebra and analysis.
- Please ask questions!

Colloquium talk

- So I believe this is a talk to a general audience of Mathematicians.
- Some old advice for giving talks: the first 10 minutes should be aimed at the janitor; then at undergrads; then at graduates; then at researchers; then at specialists; and finish by talking to yourself.
- The janitor won't understand me; and l'll try not to talk to myself.
- I'm going to try just to give a survey talk about a particular area at the interface between algebra and analysis.
- Please ask questions!

Colloquium talk

- So I believe this is a talk to a general audience of Mathematicians.
- Some old advice for giving talks: the first 10 minutes should be aimed at the janitor; then at undergrads; then at graduates; then at researchers; then at specialists; and finish by talking to yourself.
- The janitor won't understand me; and l'll try not to talk to myself.
- I'm going to try just to give a survey talk about a particular area at the interface between algebra and analysis.
- Please ask questions!

Colloquium talk

- So I believe this is a talk to a general audience of Mathematicians.
- Some old advice for giving talks: the first 10 minutes should be aimed at the janitor; then at undergrads; then at graduates; then at researchers; then at specialists; and finish by talking to yourself.
- The janitor won't understand me; and l'll try not to talk to myself.
- I'm going to try just to give a survey talk about a particular area at the interface between algebra and analysis.
- Please ask questions!

Colloquium talk

- So I believe this is a talk to a general audience of Mathematicians.
- Some old advice for giving talks: the first 10 minutes should be aimed at the janitor; then at undergrads; then at graduates; then at researchers; then at specialists; and finish by talking to yourself.
- The janitor won't understand me; and l'll try not to talk to myself.
- I'm going to try just to give a survey talk about a particular area at the interface between algebra and analysis.
- Please ask questions!

Fourier transform

Let f be a "well-behaved" function on the real line. Then the Fourier transform of f is

$$
\hat{f}(x)=\int_{-\infty}^{\infty} f(t) e^{-2 \pi i x t} d t
$$

(You have to put a 2π somewhere!)

- A basic tool in "applied" mathematics which we teach to undergraduates.
- Appears in probability theory as the Characteristic Function.

Fourier transform

Let f be a "well-behaved" function on the real line. Then the Fourier transform of f is

$$
\hat{f}(x)=\int_{-\infty}^{\infty} f(t) e^{-2 \pi i x t} d t
$$

(You have to put a 2π somewhere!)
Then we can reconstruct f from \hat{f} by

$$
f(t)=\int_{-\infty}^{\infty} \hat{f}(x) e^{2 \pi i x t} d x
$$

- A basic tool in "applied" mathematics which we teach to undergraduates.
- Appears in probability theory as the Characteristic Function.

Fourier transform

Let f be a "well-behaved" function on the real line. Then the Fourier transform of f is

$$
\hat{f}(x)=\int_{-\infty}^{\infty} f(t) e^{-2 \pi i x t} d t
$$

(You have to put a 2π somewhere!)
Then we can reconstruct f from \hat{f} by

$$
f(t)=\int_{-\infty}^{\infty} \hat{f}(x) e^{2 \pi i x t} d x
$$

- A basic tool in "applied" mathematics which we teach to undergraduates.
- Appears in probability theory as the Characteristic Function.

Gibbs "ringing"

Gibbs "ringing"

Gibbs "ringing"

Fourier series

Given a periodic function $f: \mathbb{R} \rightarrow \mathbb{C}$ the Fourier series of f is $(\hat{f}(n))_{n \in \mathbb{Z}}$ where

$$
\hat{f}(n)=\int_{0}^{1} f(\theta) e^{-2 \pi i n \theta} d \theta
$$

We have the well-known "reconstruction":

$$
f(\theta)=\sum_{n=-\infty}^{\infty} \hat{f}(n) e^{2 \pi i n \theta}
$$

Of course, a great deal of classical analysis is concerned with the question of in what sense does this sum actually converge?

Convergence

$$
f(\theta)=\sum_{n=-\infty}^{\infty} \hat{f}(n) e^{2 \pi i n \theta} ? ?
$$

- If f is twice continuously differentiable, then the sum converges uniformly to f (that is, $\lim _{N \rightarrow \infty} \sum_{n=-N}^{N}$).
- (Fejer) If f is continuous, and we take Cesaro means, then we always get (uniform) convergence.
- (Kolmogorov) There is a (Lebesgue integrable) function f such that the sum diverges everywhere.
- (Carleson) If f is continuous then the sum converges almost everywhere.

Convergence

$$
f(\theta)=\sum_{n=-\infty}^{\infty} \hat{f}(n) e^{2 \pi i n \theta} ? ?
$$

- If f is twice continuously differentiable, then the sum converges uniformly to f (that is, $\lim _{N \rightarrow \infty} \sum_{n=-N}^{N}$).
- (Fejer) If f is continuous, and we take Cesaro means, then we always get (uniform) convergence.
- (Kolmogorov) There is a (Lebesgue integrable) function f such that the sum diverges everywhere.
- (Carleson) If f is continuous then the sum converges almost everywhere.

Convergence

$$
f(\theta)=\sum_{n=-\infty}^{\infty} \hat{f}(n) e^{2 \pi i n \theta} ? ?
$$

- If f is twice continuously differentiable, then the sum converges uniformly to f (that is, $\lim _{N \rightarrow \infty} \sum_{n=-N}^{N}$).
- (Fejer) If f is continuous, and we take Cesaro means, then we always get (uniform) convergence.
- (Kolmogorov) There is a (Lebesgue integrable) function f such that the sum diverges everywhere.
- (Carleson) If f is continuous then the sum converges almost everywhere.

Convergence

$$
f(\theta)=\sum_{n=-\infty}^{\infty} \hat{f}(n) e^{2 \pi i n \theta} ? ?
$$

- If f is twice continuously differentiable, then the sum converges uniformly to f (that is, $\lim _{N \rightarrow \infty} \sum_{n=-N}^{N}$).
- (Fejer) If f is continuous, and we take Cesaro means, then we always get (uniform) convergence.
- (Kolmogorov) There is a (Lebesgue integrable) function f such that the sum diverges everywhere.
- (Carleson) If f is continuous then the sum converges almost everywhere.

Convergence

$$
f(\theta)=\sum_{n=-\infty}^{\infty} \hat{f}(n) e^{2 \pi i n \theta} ? ?
$$

- If f is twice continuously differentiable, then the sum converges uniformly to f (that is, $\lim _{N \rightarrow \infty} \sum_{n=-N}^{N}$).
- (Fejer) If f is continuous, and we take Cesaro means, then we always get (uniform) convergence.
- (Kolmogorov) There is a (Lebesgue integrable) function f such that the sum diverges everywhere.
- (Carleson) If f is continuous then the sum converges almost everywhere.

A more "global" perspective

Don't want to look at single functions in isolation; but rather at spaces of functions.
Let's consider $L^{2}([0,1])$; that is, functions f with $\int_{0}^{1}|f|^{2}<\infty$.

- This is a vector space.
- $\|f\|=\left(\int_{0}^{1}|f|^{2}\right)^{1 / 2}$ is a norm.
- So we get a metric $d(f, g)=\| f$ - $g \|$.
- With some help from Lebesgue, we get a complete space (so a Banach space; even a Hilbert space).
(Parseval) In the Banach space $L^{2}([0,1])$, we always have that

A more "global" perspective

Don't want to look at single functions in isolation; but rather at spaces of functions.
Let's consider $L^{2}([0,1])$; that is, functions f with $\int_{0}^{1}|f|^{2}<\infty$.

- This is a vector space.
- $\|f\|=\left(\int_{0}^{1}|f|^{2}\right)^{1 / 2}$ is a norm.
- So we get a metric $d(f, g)=\|f-g\|$.
- With some help from Lebesgue, we get a complete space (so a Banach space; even a Hilbert space).
(Parseval) In the Banach space $L^{2}([0,1])$, we always have that

A more "global" perspective

Don't want to look at single functions in isolation; but rather at spaces of functions.
Let's consider $L^{2}([0,1])$; that is, functions f with $\int_{0}^{1}|f|^{2}<\infty$.

- This is a vector space.
- $\|f\|=\left(\int_{0}^{1}|f|^{2}\right)^{1 / 2}$ is a norm.
- So we get a metric $d(f, g)=\|f-g\|$.
- With some help from Lebesgue, we get a complete space (so a Banach space; even a Hilbert space).
(Parseval) In the Banach space $L^{2}([0,1])$, we always have that

A more "global" perspective

Don't want to look at single functions in isolation; but rather at spaces of functions.
Let's consider $L^{2}([0,1])$; that is, functions f with $\int_{0}^{1}|f|^{2}<\infty$.

- This is a vector space.
- $\|f\|=\left(\int_{0}^{1}|f|^{2}\right)^{1 / 2}$ is a norm.
- So we get a metric $d(f, g)=\|f-g\|$.
- With some help from Lebesgue, we get a complete space (so a Banach space; even a Hilbert space).
(Parseval) In the Banach space $L^{2}([0,1])$, we always have that

A more "global" perspective

Don't want to look at single functions in isolation; but rather at spaces of functions.
Let's consider $L^{2}([0,1])$; that is, functions f with $\int_{0}^{1}|f|^{2}<\infty$.

- This is a vector space.
- $\|f\|=\left(\int_{0}^{1}|f|^{2}\right)^{1 / 2}$ is a norm.
- So we get a metric $d(f, g)=\|f-g\|$.
- With some help from Lebesgue, we get a complete space (so a Banach space; even a Hilbert space).
(Parseval) In the Banach space $L^{2}([0,1])$, we always have that

A more "global" perspective

Don't want to look at single functions in isolation; but rather at spaces of functions.
Let's consider $L^{2}([0,1])$; that is, functions f with $\int_{0}^{1}|f|^{2}<\infty$.

- This is a vector space.
- $\|f\|=\left(\int_{0}^{1}|f|^{2}\right)^{1 / 2}$ is a norm.
- So we get a metric $d(f, g)=\|f-g\|$.
- With some help from Lebesgue, we get a complete space (so a Banach space; even a Hilbert space).
(Parseval) In the Banach space $L^{2}([0,1])$, we always have that

$$
f=\sum_{n=-\infty}^{\infty} \hat{f}(n)\left(e^{2 \pi i n \theta}\right)
$$

Gibbs again

Where does it all come from?

Why do we link periodic functions with the integers, using $e^{2 \pi i \cdot} ?$

- Consider $[0,1)$ with addition modulo 1.
- Same as \mathbb{R} / \mathbb{Z}; hence why we get periodic functions.
- This is the same as the "circle group" \mathbb{T} (where we identify $t \in[0,1)$ with the point on the circle at angle $2 \pi t$).
- Let's consider continuous group homomorphisms $\phi:[0,1) \rightarrow \mathbb{T}$. So $\phi(s+t)=\phi(s) \phi(t)$.
- These must be of the form

$$
\phi(t)=e^{2 \pi i t n},
$$

for some $n \in \mathbb{Z}$.

- The "Pontryagin dual" of $[0,1),+$ is \mathbb{Z}.

Where does it all come from?

Why do we link periodic functions with the integers, using $e^{2 \pi i \cdot}$?

- Consider $[0,1)$ with addition modulo 1.
- Same as \mathbb{R} / \mathbb{Z}; hence why we get periodic functions.
- This is the same as the "circle group" \mathbb{T} (where we identify $t \in[0,1)$ with the point on the circle at angle $2 \pi t$).
- Let's consider continuous group homomorphisms $\phi:[0,1) \rightarrow \mathbb{T}$. So $\phi(s+t)=\phi(s) \phi(t)$.
- These must be of the form
$\phi(t)=e^{2 \pi i t n}$,
for some $n \in \mathbb{Z}$.
- The "Pontryagin dual" of $[0,1),+$ is \mathbb{Z}.

Where does it all come from?

Why do we link periodic functions with the integers, using $e^{2 \pi i \cdot}$?

- Consider $[0,1)$ with addition modulo 1.
- Same as \mathbb{R} / \mathbb{Z}; hence why we get periodic functions.
- This is the same as the "circle group" \mathbb{T} (where we identify $t \in[0,1)$ with the point on the circle at angle $2 \pi t)$.
- Let's consider continuous group homomorphisms $\phi:[0,1) \rightarrow \mathbb{T}$. So $\phi(s+t)=\phi(s) \phi(t)$.
- These must be of the form
$\phi(t)=e^{2 \pi i t n}$,
for some $n \in \mathbb{Z}$.
- The "Pontryagin dual" of $[0,1),+$ is \mathbb{Z}.

Where does it all come from?

Why do we link periodic functions with the integers, using $e^{2 \pi i}$?

- Consider $[0,1)$ with addition modulo 1.
- Same as \mathbb{R} / \mathbb{Z}; hence why we get periodic functions.
- This is the same as the "circle group" \mathbb{T} (where we identify $t \in[0,1)$ with the point on the circle at angle $2 \pi t)$.
- Let's consider continuous group homomorphisms $\phi:[0,1) \rightarrow \mathbb{T}$. So $\phi(s+t)=\phi(s) \phi(t)$.
- These must be of the form
for some $n \in \mathbb{Z}$.
- The "Pontryagin dual" of $[0,1),+$ is \mathbb{Z}.

Where does it all come from?

Why do we link periodic functions with the integers, using $e^{2 \pi i}$?

- Consider $[0,1)$ with addition modulo 1.
- Same as \mathbb{R} / \mathbb{Z}; hence why we get periodic functions.
- This is the same as the "circle group" \mathbb{T} (where we identify $t \in[0,1)$ with the point on the circle at angle $2 \pi t)$.
- Let's consider continuous group homomorphisms $\phi:[0,1) \rightarrow \mathbb{T}$. So $\phi(s+t)=\phi(s) \phi(t)$.
- These must be of the form
for some $n \in \mathbb{Z}$.
- The "Pontryagin dual" of $[0,1),+$ is \mathbb{Z}.

Where does it all come from?

Why do we link periodic functions with the integers, using $e^{2 \pi i}$?

- Consider $[0,1)$ with addition modulo 1.
- Same as \mathbb{R} / \mathbb{Z}; hence why we get periodic functions.
- This is the same as the "circle group" \mathbb{T} (where we identify $t \in[0,1)$ with the point on the circle at angle $2 \pi t)$.
- Let's consider continuous group homomorphisms $\phi:[0,1) \rightarrow \mathbb{T}$. So $\phi(s+t)=\phi(s) \phi(t)$.
- These must be of the form

$$
\phi(t)=e^{2 \pi i t n},
$$

for some $n \in \mathbb{Z}$.

- The "Pontryagin dual" of $[0,1),+$ is \mathbb{Z}.

Where does it all come from?

Why do we link periodic functions with the integers, using $e^{2 \pi i}$?

- Consider $[0,1)$ with addition modulo 1.
- Same as \mathbb{R} / \mathbb{Z}; hence why we get periodic functions.
- This is the same as the "circle group" \mathbb{T} (where we identify $t \in[0,1)$ with the point on the circle at angle $2 \pi t)$.
- Let's consider continuous group homomorphisms $\phi:[0,1) \rightarrow \mathbb{T}$. So $\phi(s+t)=\phi(s) \phi(t)$.
- These must be of the form

$$
\phi(t)=e^{2 \pi i t n},
$$

for some $n \in \mathbb{Z}$.

- The "Pontryagin dual" of $[0,1),+$ is \mathbb{Z}.

Abelian groups

In fact, we can always do this for a (locally compact) abelian group. Write \hat{G} for the dual of G.

- The dual to \mathbb{Z} is $[0,1) \cong \mathbb{T}$ again.
- In general, always true that the dual of the dual is what you started with (biduality theory).
- Any continuous homomorphism $\phi: \mathbb{R} \rightarrow \mathbb{T}$ is of the form $\phi(t)=\exp (2 \pi i t x)$ for some $x \in \mathbb{R}$.
- So the dual of \mathbb{R} is \mathbb{R} (scaled by 2π).
- For any abelian group we have a Fourier transform which has all the properties we expect:
- Plancheral- $L^{2}(\hat{G})$ and $L^{2}(G)$ are isometric.
- Algebra property: The Fourier transform converts convolution of functions on G into pointwise multiplication of functions on \hat{G}.

Abelian groups

In fact, we can always do this for a (locally compact) abelian group. Write \hat{G} for the dual of G.

- The dual to \mathbb{Z} is $[0,1) \cong \mathbb{T}$ again.
- In general, always true that the dual of the dual is what you started with (biduality theory).
- Any continuous homomorphism $\phi: \mathbb{R} \rightarrow \mathbb{T}$ is of the form $\phi(t)=\exp (2 \pi i t x)$ for some $x \in \mathbb{R}$.
- So the dual of \mathbb{R} is \mathbb{R} (scaled by 2π).
- For any abelian group we have a Fourier transform which has all the properties we expect:
- Plancheral- $L^{2}(\hat{G})$ and $L^{2}(G)$ are isometric.
- Algebra property: The Fourier transform converts convolution of functions on G into pointwise multiplication of functions on \hat{G}.

Abelian groups

In fact, we can always do this for a (locally compact) abelian group. Write \hat{G} for the dual of G.

- The dual to \mathbb{Z} is $[0,1) \cong \mathbb{T}$ again.
- In general, always true that the dual of the dual is what you started with (biduality theory).
- Any continuous homomorphism $\phi: \mathbb{R} \rightarrow \mathbb{T}$ is of the form $\phi(t)=\exp (2 \pi i t x)$ for some $x \in \mathbb{R}$.
- So the dual of \mathbb{R} is \mathbb{R} (scaled by 2π).
- For any abelian group we have a Fourier transform which has all the properties we expect:
- Plancheral- $L^{2}(\hat{G})$ and $L^{2}(G)$ are isometric.
- Algebra property: The Fourier transform converts convolution of functions on G into pointwise multiplication of functions on \hat{G}.

Abelian groups

In fact, we can always do this for a (locally compact) abelian group. Write \hat{G} for the dual of G.

- The dual to \mathbb{Z} is $[0,1) \cong \mathbb{T}$ again.
- In general, always true that the dual of the dual is what you started with (biduality theory).
- Any continuous homomorphism $\phi: \mathbb{R} \rightarrow \mathbb{T}$ is of the form $\phi(t)=\exp (2 \pi i t x)$ for some $x \in \mathbb{R}$.
- So the dual of \mathbb{R} is \mathbb{R} (scaled by 2π).
- For any abelian group we have a Fourier transform which has all the properties we expect:
- Plancheral- $L^{2}(\hat{G})$ and $L^{2}(G)$ are isometric.
- Algebra property: The Fourier transform converts convolution of
functions on G into pointwise multiplication of functions on \hat{G}.

Abelian groups

In fact, we can always do this for a (locally compact) abelian group. Write \hat{G} for the dual of G.

- The dual to \mathbb{Z} is $[0,1) \cong \mathbb{T}$ again.
- In general, always true that the dual of the dual is what you started with (biduality theory).
- Any continuous homomorphism $\phi: \mathbb{R} \rightarrow \mathbb{T}$ is of the form $\phi(t)=\exp (2 \pi i t x)$ for some $x \in \mathbb{R}$.
- So the dual of \mathbb{R} is \mathbb{R} (scaled by 2π).
- For any abelian group we have a Fourier transform which has all the properties we expect:
- Plancheral- $L^{2}(\hat{G})$ and $L^{2}(G)$ are isometric.
- Algebra property: The Fourier transform converts convolution of functions on G into pointwise multiplication of functions on \hat{G}.

Abelian groups

In fact, we can always do this for a (locally compact) abelian group. Write \hat{G} for the dual of G.

- The dual to \mathbb{Z} is $[0,1) \cong \mathbb{T}$ again.
- In general, always true that the dual of the dual is what you started with (biduality theory).
- Any continuous homomorphism $\phi: \mathbb{R} \rightarrow \mathbb{T}$ is of the form $\phi(t)=\exp (2 \pi i t x)$ for some $x \in \mathbb{R}$.
- So the dual of \mathbb{R} is \mathbb{R} (scaled by 2π).
- For any abelian group we have a Fourier transform which has all the properties we expect:

Abelian groups

In fact, we can always do this for a (locally compact) abelian group. Write \hat{G} for the dual of G.

- The dual to \mathbb{Z} is $[0,1) \cong \mathbb{T}$ again.
- In general, always true that the dual of the dual is what you started with (biduality theory).
- Any continuous homomorphism $\phi: \mathbb{R} \rightarrow \mathbb{T}$ is of the form $\phi(t)=\exp (2 \pi i t x)$ for some $x \in \mathbb{R}$.
- So the dual of \mathbb{R} is \mathbb{R} (scaled by 2π).
- For any abelian group we have a Fourier transform which has all the properties we expect:
- Plancheral- $L^{2}(\hat{G})$ and $L^{2}(G)$ are isometric.

Abelian groups

In fact, we can always do this for a (locally compact) abelian group. Write \hat{G} for the dual of G.

- The dual to \mathbb{Z} is $[0,1) \cong \mathbb{T}$ again.
- In general, always true that the dual of the dual is what you started with (biduality theory).
- Any continuous homomorphism $\phi: \mathbb{R} \rightarrow \mathbb{T}$ is of the form $\phi(t)=\exp (2 \pi i t x)$ for some $x \in \mathbb{R}$.
- So the dual of \mathbb{R} is \mathbb{R} (scaled by 2π).
- For any abelian group we have a Fourier transform which has all the properties we expect:
- Plancheral- $L^{2}(\hat{G})$ and $L^{2}(G)$ are isometric.
- Algebra property: The Fourier transform converts convolution of functions on G into pointwise multiplication of functions on \hat{G}.

Convolutions

Remember that the convolution of functions f, g on \mathbb{R} is

$$
f * g(s)=\int_{-\infty}^{\infty} f(t) g(-t+s) d t .
$$

Then if $h=f * g$ then $\hat{h}=\hat{f} \hat{g}$.

- The integral won't always converge.
- Let's restrict to $L^{1}(\mathbb{R})$ (f such that $\|f\|_{1}=\int|f|<\infty$).
- Then $L^{1}(\mathbb{R})$ with convolution becomes an algebra: we even get
- Let $A(\mathbb{R})=\left\{\hat{f}: f \in L^{1}(\mathbb{R})\right\}$.
- Then $A(\mathbb{R})$ is an algebra for the pointwise product- indeed, it's just $L^{1}(\mathbb{R})$ viewed in a different way.
- (Riemann-Lebesgue) $A(\mathbb{R})$ consists of continuous functions which decay to 0 at ∞
- But not all such functions. However, we get "enough".

Convolutions

Remember that the convolution of functions f, g on \mathbb{R} is

$$
f * g(s)=\int_{-\infty}^{\infty} f(t) g(-t+s) d t .
$$

Then if $h=f * g$ then $\hat{h}=\hat{f} \hat{g}$.

- The integral won't always converge.
- Let's restrict to $L^{1}(\mathbb{R})$ (f such that $\left.\|f\|_{1}=\int|f|<\infty\right)$.
- Then $L^{1}(\mathbb{R})$ with convolution becomes an algebra: we even get
- Let $A(\mathbb{R})=\left\{\hat{f}: f \in L^{1}(\mathbb{R})\right\}$.
- Then $A(\mathbb{R})$ is an algebra for the pointwise product- indeed, it's just $L^{1}(\mathbb{R})$ viewed in a different way.
- (Riemann-Lebesgue) $A(\mathbb{R})$ consists of continuous functions which decay to 0 at ∞
- But not all such functions. However, we get "enough".

Convolutions

Remember that the convolution of functions f, g on \mathbb{R} is

$$
f * g(s)=\int_{-\infty}^{\infty} f(t) g(-t+s) d t
$$

Then if $h=f * g$ then $\hat{h}=\hat{f} \hat{g}$.

- The integral won't always converge.
- Let's restrict to $L^{1}(\mathbb{R})\left(f\right.$ such that $\left.\|f\|_{1}=\int|f|<\infty\right)$.
- Then $L^{1}(\mathbb{R})$ with convolution becomes an algebra: we even get
- Let $A(\mathbb{R})=\left\{\hat{f}: f \in L^{1}(\mathbb{R})\right\}$.
- Then $A(\mathbb{R})$ is an algebra for the pointwise product- indeed, it's just $L^{1}(\mathbb{R})$ viewed in a different way.
- (Riemann-Lebesgue) $A(\mathbb{R})$ consists of continuous functions which decay to 0 at ∞
- But not all such functions. However, we get "enough".

Convolutions

Remember that the convolution of functions f, g on \mathbb{R} is

$$
f * g(s)=\int_{-\infty}^{\infty} f(t) g(-t+s) d t
$$

Then if $h=f * g$ then $\hat{h}=\hat{f} \hat{g}$.

- The integral won't always converge.
- Let's restrict to $L^{1}(\mathbb{R})\left(f\right.$ such that $\left.\|f\|_{1}=\int|f|<\infty\right)$.
- Then $L^{1}(\mathbb{R})$ with convolution becomes an algebra: we even get $\|f * g\|_{1} \leq\|f\|_{1}\|g\|_{1}$.
- Then $A(\mathbb{R})$ is an algebra for the pointwise product- indeed, it's just $L^{1}(\mathbb{R})$ viewed in a different way.
- (Riemann-Lebesgue) $A(\mathbb{R})$ consists of continuous functions which
- But not all such functions. However, we get "enough".

Convolutions

Remember that the convolution of functions f, g on \mathbb{R} is

$$
f * g(s)=\int_{-\infty}^{\infty} f(t) g(-t+s) d t
$$

Then if $h=f * g$ then $\hat{h}=\hat{f} \hat{g}$.

- The integral won't always converge.
- Let's restrict to $L^{1}(\mathbb{R})\left(f\right.$ such that $\left.\|f\|_{1}=\int|f|<\infty\right)$.
- Then $L^{1}(\mathbb{R})$ with convolution becomes an algebra: we even get $\|f * g\|_{1} \leq\|f\|_{1}\|g\|_{1}$.
- Let $A(\mathbb{R})=\left\{\hat{f}: f \in L^{1}(\mathbb{R})\right\}$. $L^{1}(\mathbb{R})$ viewed in a different way.
- (Riemann-Lebesgue) $A(\mathbb{R})$ consists of continuous functions which
- But not all such functions. However, we get "enough".

Convolutions

Remember that the convolution of functions f, g on \mathbb{R} is

$$
f * g(s)=\int_{-\infty}^{\infty} f(t) g(-t+s) d t
$$

Then if $h=f * g$ then $\hat{h}=\hat{f} \hat{g}$.

- The integral won't always converge.
- Let's restrict to $L^{1}(\mathbb{R})$ (f such that $\left.\|f\|_{1}=\int|f|<\infty\right)$.
- Then $L^{1}(\mathbb{R})$ with convolution becomes an algebra: we even get $\|f * g\|_{1} \leq\|f\|_{1}\|g\|_{1}$.
- Let $A(\mathbb{R})=\left\{\hat{f}: f \in L^{1}(\mathbb{R})\right\}$.
- Then $A(\mathbb{R})$ is an algebra for the pointwise product- indeed, it's just $L^{1}(\mathbb{R})$ viewed in a different way.
- But not all such functions. However, we get "enough".

Convolutions

Remember that the convolution of functions f, g on \mathbb{R} is

$$
f * g(s)=\int_{-\infty}^{\infty} f(t) g(-t+s) d t
$$

Then if $h=f * g$ then $\hat{h}=\hat{f} \hat{g}$.

- The integral won't always converge.
- Let's restrict to $L^{1}(\mathbb{R})$ (f such that $\left.\|f\|_{1}=\int|f|<\infty\right)$.
- Then $L^{1}(\mathbb{R})$ with convolution becomes an algebra: we even get $\|f * g\|_{1} \leq\|f\|_{1}\|g\|_{1}$.
- Let $A(\mathbb{R})=\left\{\hat{f}: f \in L^{1}(\mathbb{R})\right\}$.
- Then $A(\mathbb{R})$ is an algebra for the pointwise product- indeed, it's just $L^{1}(\mathbb{R})$ viewed in a different way.
- (Riemann-Lebesgue) $A(\mathbb{R})$ consists of continuous functions which decay to 0 at ∞.

Convolutions

Remember that the convolution of functions f, g on \mathbb{R} is

$$
f * g(s)=\int_{-\infty}^{\infty} f(t) g(-t+s) d t
$$

Then if $h=f * g$ then $\hat{h}=\hat{f} \hat{g}$.

- The integral won't always converge.
- Let's restrict to $L^{1}(\mathbb{R})$ (f such that $\left.\|f\|_{1}=\int|f|<\infty\right)$.
- Then $L^{1}(\mathbb{R})$ with convolution becomes an algebra: we even get $\|f * g\|_{1} \leq\|f\|_{1}\|g\|_{1}$.
- Let $A(\mathbb{R})=\left\{\hat{f}: f \in L^{1}(\mathbb{R})\right\}$.
- Then $A(\mathbb{R})$ is an algebra for the pointwise product- indeed, it's just $L^{1}(\mathbb{R})$ viewed in a different way.
- (Riemann-Lebesgue) $A(\mathbb{R})$ consists of continuous functions which decay to 0 at ∞.
- But not all such functions. However, we get "enough".

General abelian groups G

To be formal, \hat{G} is the collection of continuous homomorphisms $\phi: G \rightarrow \mathbb{T}$ (characters).

- The product on \hat{G} is pointwise:

$$
(\phi \psi): G \rightarrow \mathbb{T} ; \quad s \mapsto \phi(s) \psi(s) .
$$

- Give \hat{G} the topology of compact convergence.
- Then \hat{G} is locally compact, so has a Haar measure.

We get Fourier Transforms: for f a function on G and g a function on \hat{G}, define

General abelian groups G

To be formal, \hat{G} is the collection of continuous homomorphisms $\phi: G \rightarrow \mathbb{T}$ (characters).

- The product on \hat{G} is pointwise:

$$
(\phi \psi): G \rightarrow \mathbb{T} ; \quad s \mapsto \phi(s) \psi(s) .
$$

- Give \hat{G} the topology of compact convergence.
- Then \hat{G} is locally compact, so has a Haar measure.

We get Fourier Transforms: for f a function on G and g a function on \hat{G}, define

General abelian groups G

To be formal, \hat{G} is the collection of continuous homomorphisms $\phi: G \rightarrow \mathbb{T}$ (characters).

- The product on \hat{G} is pointwise:

$$
(\phi \psi): G \rightarrow \mathbb{T} ; \quad s \mapsto \phi(s) \psi(s) .
$$

- Give \hat{G} the topology of compact convergence.
- Then \hat{G} is locally compact, so has a Haar measure.

We get Fourier Transforms: for f a function on G and g a function on \hat{G}, define

General abelian groups G

To be formal, \hat{G} is the collection of continuous homomorphisms $\phi: G \rightarrow \mathbb{T}$ (characters).

- The product on \hat{G} is pointwise:

$$
(\phi \psi): G \rightarrow \mathbb{T} ; \quad s \mapsto \phi(s) \psi(s) .
$$

- Give \hat{G} the topology of compact convergence.
- Then \hat{G} is locally compact, so has a Haar measure.

We get Fourier Transforms: for f a function on G and g a function on \hat{G}, define

General abelian groups G

To be formal, \hat{G} is the collection of continuous homomorphisms $\phi: G \rightarrow \mathbb{T}$ (characters).

- The product on \hat{G} is pointwise:

$$
(\phi \psi): G \rightarrow \mathbb{T} ; \quad s \mapsto \phi(s) \psi(s) .
$$

- Give \hat{G} the topology of compact convergence.
- Then \hat{G} is locally compact, so has a Haar measure.

We get Fourier Transforms: for f a function on G and g a function on \hat{G}, define

$$
\mathcal{F} f(\phi)=\int_{G} f(s) \overline{\phi(s)} d s, \quad \mathcal{F}^{-1} g(\phi)=\int_{\hat{G}} g(\phi) \phi(s) d \phi .
$$

The "Fourier Algebra"

- For any G the Fourier transform gives an isomorphism $L^{1}(\hat{G}) \rightarrow A(G)$.
- That is, $A(G)$ is an algebra, under pointwise multiplication, of functions on G.
- So $A(\mathbb{T})$ is the Fourier transform of $\ell^{1}(\mathbb{Z})$ - those periodic functions with "absolutely convergent Fourier series".
- In general, $A(G)$ consists of continuous functions, decaying at ∞. Unless G is finite you don't get all such functions, but again get "enough".

Key idea: Eymard (1964) came up with a definition which works for any group G, giving an algebra of functions $A(G)$. If G is abelian, then $A(G) \cong L^{1}(G)$.

The "Fourier Algebra"

- For any G the Fourier transform gives an isomorphism $L^{1}(\hat{G}) \rightarrow A(G)$.
- That is, $A(G)$ is an algebra, under pointwise multiplication, of functions on G.
- So $A(\mathbb{T})$ is the Fourier transform of $\ell^{1}(\mathbb{Z})$ - those periodic functions with "absolutely convergent Fourier series".
- In general, $A(G)$ consists of continuous functions, decaying at ∞. Unless G is finite you don't get all such functions, but again get "enough".

Key idea: Eymard (1964) came up with a definition which works for any group G, giving an algebra of functions $A(G)$. If G is abelian, then $A(G) \cong L^{1}(\hat{G})$.

The "Fourier Algebra"

- For any G the Fourier transform gives an isomorphism $L^{1}(\hat{G}) \rightarrow A(G)$.
- That is, $A(G)$ is an algebra, under pointwise multiplication, of functions on G.
- So $A(\mathbb{T})$ is the Fourier transform of $\ell^{1}(\mathbb{Z})$ - those periodic functions with "absolutely convergent Fourier series".

Key idea: Eymard (1964) came up with a definition which works for
any group G, giving an algebra of functions $A(G)$. If G is abelian, then

The "Fourier Algebra"

- For any G the Fourier transform gives an isomorphism $L^{1}(\hat{G}) \rightarrow A(G)$.
- That is, $A(G)$ is an algebra, under pointwise multiplication, of functions on G.
- So $A(\mathbb{T})$ is the Fourier transform of $\ell^{1}(\mathbb{Z})$ - those periodic functions with "absolutely convergent Fourier series".
- In general, $A(G)$ consists of continuous functions, decaying at ∞. Unless G is finite you don't get all such functions, but again get "enough".

The "Fourier Algebra"

- For any G the Fourier transform gives an isomorphism $L^{1}(\hat{G}) \rightarrow A(G)$.
- That is, $A(G)$ is an algebra, under pointwise multiplication, of functions on G.
- So $A(\mathbb{T})$ is the Fourier transform of $\ell^{1}(\mathbb{Z})$ - those periodic functions with "absolutely convergent Fourier series".
- In general, $A(G)$ consists of continuous functions, decaying at ∞. Unless G is finite you don't get all such functions, but again get "enough".
Key idea: Eymard (1964) came up with a definition which works for any group G, giving an algebra of functions $A(G)$. If G is abelian, then $A(G) \cong L^{1}(\hat{G})$.

Briefly, what is this?

Let G be abelian.

- We can write any $f \in L^{1}(\hat{G})$ as the pointwise product of two $L^{2}(G)$ functions, e.g.

$$
f=|f|^{1 / 2} \cdot \frac{f}{|f|^{1 / 2}}=g h
$$

- Taking the Fourier transform gives $\hat{f}=\hat{g} * \hat{h}$.
- Conclude: every function in $A(G)$ is the convolution of two $L^{2}(G)$ functions (Plancheral: $L^{2}(\hat{G})=L^{2}(G)$).

Now let G be arbitrary.

- This is Eymard's definition: $A(G)=\left\{f * g: f, g \in L^{2}(G)\right\}$.
- Not at all clear, of course, why we get an algebra!

Briefly, what is this?

Let G be abelian.

- We can write any $f \in L^{1}(\hat{G})$ as the pointwise product of two $L^{2}(G)$ functions, e.g.

$$
f=|f|^{1 / 2} \cdot \frac{f}{|f|^{1 / 2}}=g h .
$$

- Taking the Fourier transform gives $\hat{f}=\hat{g} * \hat{h}$.
- Conclude: every function in $A(G)$ is the convolution of two $L^{2}(G)$ functions (Plancheral: $L^{2}(\hat{G})=L^{2}(G)$).

Now let G be arbitrary.

- This is Eymard's definition: $A(G)=\left\{f * g: f, g \in L^{2}(G)\right\}$.
- Not at all clear, of course, why we get an algebra!

Briefly, what is this?

Let G be abelian.

- We can write any $f \in L^{1}(\hat{G})$ as the pointwise product of two $L^{2}(G)$ functions, e.g.

$$
f=|f|^{1 / 2} \cdot \frac{f}{|f|^{1 / 2}}=g h .
$$

- Taking the Fourier transform gives $\hat{f}=\hat{g} * \hat{h}$.
- Conclude: every function in $A(G)$ is the convolution of two $L^{2}(G)$ functions (Plancheral: $L^{2}(\hat{G})=L^{2}(G)$).

Now let G be arbitrary.

- This is Eymard's definition: $A(G)=\left\{f * g: f, g \in L^{2}(G)\right\}$.
- Not at all clear, of course, why we get an algebra!

Briefly, what is this?

Let G be abelian.

- We can write any $f \in L^{1}(\hat{G})$ as the pointwise product of two $L^{2}(G)$ functions, e.g.

$$
f=|f|^{1 / 2} \cdot \frac{f}{|f|^{1 / 2}}=g h
$$

- Taking the Fourier transform gives $\hat{f}=\hat{g} * \hat{h}$.
- Conclude: every function in $A(G)$ is the convolution of two $L^{2}(G)$ functions (Plancheral: $L^{2}(\hat{G})=L^{2}(G)$).

Now let G be arbitrary.
 - This is Eymard's definition: $A(G)=\left\{f * g: f, g \in L^{2}(G)\right\}$
 - Not at all clear, of course, why we get an algebra!

Briefly, what is this?

Let G be abelian.

- We can write any $f \in L^{1}(\hat{G})$ as the pointwise product of two $L^{2}(G)$ functions, e.g.

$$
f=|f|^{1 / 2} \cdot \frac{f}{|f|^{1 / 2}}=g h .
$$

- Taking the Fourier transform gives $\hat{f}=\hat{g} * \hat{h}$.
- Conclude: every function in $A(G)$ is the convolution of two $L^{2}(G)$ functions (Plancheral: $\left.L^{2}(\hat{G})=L^{2}(G)\right)$.
Now let G be arbitrary.
- This is Eymard's definition: $A(G)=\left\{f * g: f, g \in L^{2}(G)\right\}$.
- Not at all clear, of course, why we get an algebra!

Briefly, what is this?

Let G be abelian.

- We can write any $f \in L^{1}(\hat{G})$ as the pointwise product of two $L^{2}(G)$ functions, e.g.

$$
f=|f|^{1 / 2} \cdot \frac{f}{|f|^{1 / 2}}=g h .
$$

- Taking the Fourier transform gives $\hat{f}=\hat{g} * \hat{h}$.
- Conclude: every function in $A(G)$ is the convolution of two $L^{2}(G)$ functions (Plancheral: $\left.L^{2}(\hat{G})=L^{2}(G)\right)$.
Now let G be arbitrary.
- This is Eymard's definition: $A(G)=\left\{f * g: f, g \in L^{2}(G)\right\}$.
- Not at all clear, of course, why we get an algebra!

Briefly, what is this?

Let G be abelian.

- We can write any $f \in L^{1}(\hat{G})$ as the pointwise product of two $L^{2}(G)$ functions, e.g.

$$
f=|f|^{1 / 2} \cdot \frac{f}{|f|^{1 / 2}}=g h .
$$

- Taking the Fourier transform gives $\hat{f}=\hat{g} * \hat{h}$.
- Conclude: every function in $A(G)$ is the convolution of two $L^{2}(G)$ functions (Plancheral: $\left.L^{2}(\hat{G})=L^{2}(G)\right)$.
Now let G be arbitrary.
- This is Eymard's definition: $A(G)=\left\{f * g: f, g \in L^{2}(G)\right\}$.
- Not at all clear, of course, why we get an algebra!

Some examples

Question:

How much of G does $A(G)$ "remember"?

- Suppose that G is finite.
- $A(G)$ consists of enough functions to separate the points of G.
- As G is finite, we simply get all functions $G \rightarrow \mathbb{C}$.
- So $A(G) \cong A(H)$ if and only if G and H are the same size- no information about the group at all.

Some examples

Question:

How much of G does $A(G)$ "remember"?

- Suppose that G is finite.
- $A(G)$ consists of enough functions to separate the points of G.
- As G is finite, we simply get all functions $G \rightarrow \mathbb{C}$.
- So $A(G) \cong A(H)$ if and only if G and H are the same size- no information about the group at all.

Some examples

Question:

How much of G does $A(G)$ "remember"?

- Suppose that G is finite.
- $A(G)$ consists of enough functions to separate the points of G.
- As G is finite, we simply get all functions $G \rightarrow \mathbb{C}$.
- So $A(G) \cong A(H)$ if and only if G and H are the same size- no information about the group at all.

Some examples

Question:

How much of G does $A(G)$ "remember"?

- Suppose that G is finite.
- $A(G)$ consists of enough functions to separate the points of G.
- As G is finite, we simply get all functions $G \rightarrow \mathbb{C}$.
- So $A(G) \cong A(H)$ if and only if G and H are the same size- no information about the group at all.

Some examples

Question:

How much of G does $A(G)$ "remember"?

- Suppose that G is finite.
- $A(G)$ consists of enough functions to separate the points of G.
- As G is finite, we simply get all functions $G \rightarrow \mathbb{C}$.
- So $A(G) \cong A(H)$ if and only if G and H are the same size- no information about the group at all.

Need to throw in some analysis
What's missing is that $A(G)$ also carries a norm:

$$
\|a\|_{A(G)}=\inf \left\{\|f\|_{2}\|g\|_{2}: a=f * g\right\} .
$$

- Then we get $\|a b\|_{A(G)} \leq\|a\|_{A(G)}\|b\|_{A(G)}$.
- Also $A(G)$ is complete (a Banach algebra).

Theorem (Walter, 1972)
If $A(G)$ and $A(H)$ are isometrically isomorphic then G is isomorphic to either H or the opposite to H (same group, with product reversed).

- Indeed, you can actually write down what the isomorphism must look like.
- Using other ideas from modern functional analysis you can restrict your category further and remove the "opposite" possibility.

Need to throw in some analysis

What's missing is that $A(G)$ also carries a norm:

$$
\|a\|_{A(G)}=\inf \left\{\|f\|_{2}\|g\|_{2}: a=f * g\right\} .
$$

- Then we get $\|a b\|_{A(G)} \leq\|a\|_{A(G)}\|b\|_{A(G)}$.
- Also $A(G)$ is complete (a Banach algebra).

> Theorem (Walter, 1972)
> If $A(G)$ and $A(H)$ are isometrically isomorphic then G is isomorphic to either H or the opposite to H (same group, with product reversed).

- Indeed, you can actually write down what the isomorphism must look like.
- Using other ideas from modern functional analysis you can restrict your category further and remove the "opposite" possibility.

Need to throw in some analysis

What's missing is that $A(G)$ also carries a norm:

$$
\|a\|_{A(G)}=\inf \left\{\|f\|_{2}\|g\|_{2}: a=f * g\right\} .
$$

- Then we get $\|a b\|_{A(G)} \leq\|a\|_{A(G)}\|b\|_{A(G)}$.
- Also $A(G)$ is complete (a Banach algebra).

Theorem (Walter, 1972)
 If $A(G)$ and $A(H)$ are isometrically isomorphic then G is isomorphic to either H or the opposite to H (same group, with product reversed).

- Indeed, you can actually write down what the isomorphism must look like.
- Using other ideas from modern functional analysis you can restrict your category further and remove the "opposite" possibility.

Need to throw in some analysis

What's missing is that $A(G)$ also carries a norm:

$$
\|a\|_{A(G)}=\inf \left\{\|f\|_{2}\|g\|_{2}: a=f * g\right\}
$$

- Then we get $\|a b\|_{A(G)} \leq\|a\|_{A(G)}\|b\|_{A(G)}$.
- Also $A(G)$ is complete (a Banach algebra).

Theorem (Walter, 1972)
If $A(G)$ and $A(H)$ are isometrically isomorphic then G is isomorphic to either H or the opposite to H (same group, with product reversed).

- Indeed, you can actually write down what the isomorphism must
look like.
- Using other ideas from modern functional analysis you can restrict
your category further and remove the "opposite" possibility.

Need to throw in some analysis

What's missing is that $A(G)$ also carries a norm:

$$
\|a\|_{A(G)}=\inf \left\{\|f\|_{2}\|g\|_{2}: a=f * g\right\} .
$$

- Then we get $\|a b\|_{A(G)} \leq\|a\|_{A(G)}\|b\|_{A(G)}$.
- Also $A(G)$ is complete (a Banach algebra).

Theorem (Walter, 1972)

If $A(G)$ and $A(H)$ are isometrically isomorphic then G is isomorphic to either H or the opposite to H (same group, with product reversed).

- Indeed, you can actually write down what the isomorphism must look like.

Need to throw in some analysis

What's missing is that $A(G)$ also carries a norm:

$$
\|a\|_{A(G)}=\inf \left\{\|f\|_{2}\|g\|_{2}: a=f * g\right\} .
$$

- Then we get $\|a b\|_{A(G)} \leq\|a\|_{A(G)}\|b\|_{A(G)}$.
- Also $A(G)$ is complete (a Banach algebra).

Theorem (Walter, 1972)

If $A(G)$ and $A(H)$ are isometrically isomorphic then G is isomorphic to either H or the opposite to H (same group, with product reversed).

- Indeed, you can actually write down what the isomorphism must look like.
- Using other ideas from modern functional analysis you can restrict your category further and remove the "opposite" possibility.

If time allows, some representation theory

- A representation of a group is a continuous homomorphism from G to $U(n)$, the unitary group.
- As $U(1) \cong \mathbb{T}$, the one-dimensional representations of G are just the characters. For an abelian group can always diagonalise.
- If G is infinite, then often we need to look at infinite-dimensional representations.
- This is a continuous homomorphism ϕ from G to $U(H)$, the unitary group of a Hilbert space. Continuous means

$$
s_{n} \rightarrow s \text { in } G \Longrightarrow \phi\left(s_{n}\right) \xi \rightarrow \phi(s) \xi \text { for all } \xi \in H
$$

- Important example: the left-regular representation λ of G on $L^{2}(G)$.

$$
\lambda(s) f: t \mapsto f\left(s^{-1} t\right) \quad\left(f \in L^{2}(G), s, t \in G\right) .
$$

If time allows, some representation theory

- A representation of a group is a continuous homomorphism from G to $U(n)$, the unitary group.
- As $U(1) \cong \mathbb{T}$, the one-dimensional representations of G are just the characters. For an abelian group can always diagonalise.
- If G is infinite, then often we need to look at infinite-dimensional representations.
- This is a continuous homomorphism ϕ from G to $U(H)$, the unitary group of a Hilbert space. Continuous means

- Important example: the left-regular representation λ of G on $L^{2}(G)$.

If time allows, some representation theory

- A representation of a group is a continuous homomorphism from G to $U(n)$, the unitary group.
- As $U(1) \cong \mathbb{T}$, the one-dimensional representations of G are just the characters. For an abelian group can always diagonalise.
- If G is infinite, then often we need to look at infinite-dimensional representations.
- This is a continuous homomorphism ϕ from G to $U(H)$, the unitary group of a Hilbert space. Continuous means

- Important example: the left-regular representation λ of G on
\square

If time allows, some representation theory

- A representation of a group is a continuous homomorphism from G to $U(n)$, the unitary group.
- As $U(1) \cong \mathbb{T}$, the one-dimensional representations of G are just the characters. For an abelian group can always diagonalise.
- If G is infinite, then often we need to look at infinite-dimensional representations.
- This is a continuous homomorphism ϕ from G to $U(H)$, the unitary group of a Hilbert space. Continuous means

$$
s_{n} \rightarrow s \text { in } G \Longrightarrow \phi\left(s_{n}\right) \xi \rightarrow \phi(s) \xi \text { for all } \xi \in H
$$

- Important example: the left-regular representation λ of G on
\square

If time allows, some representation theory

- A representation of a group is a continuous homomorphism from G to $U(n)$, the unitary group.
- As $U(1) \cong \mathbb{T}$, the one-dimensional representations of G are just the characters. For an abelian group can always diagonalise.
- If G is infinite, then often we need to look at infinite-dimensional representations.
- This is a continuous homomorphism ϕ from G to $U(H)$, the unitary group of a Hilbert space. Continuous means

$$
s_{n} \rightarrow s \text { in } G \Longrightarrow \phi\left(s_{n}\right) \xi \rightarrow \phi(s) \xi \text { for all } \xi \in H .
$$

- Important example: the left-regular representation λ of G on $L^{2}(G)$.

$$
\lambda(s) f: t \mapsto f\left(s^{-1} t\right) \quad\left(f \in L^{2}(G), s, t \in G\right) .
$$

Coefficients

Given a representation $\phi: G \rightarrow U(H)$, a coefficient of ϕ is a (continuous) function on G of the form

$$
f(s)=\langle\phi(s) \xi, \eta\rangle
$$

Let's consider a coefficient of the left-regular representation

Here $\check{f}(r)=f\left(r^{-1}\right)$.
(I lied before: for many groups G it's not true that
$\left.f \in L^{2}(G) \Longrightarrow \tilde{f} \in L^{2}(G).\right)$
So $A(G)$ equals the collection of coefficients of λ.

Coefficients

Given a representation $\phi: G \rightarrow U(H)$, a coefficient of ϕ is a (continuous) function on G of the form

$$
f(s)=\langle\phi(s) \xi, \eta\rangle
$$

Let's consider a coefficient of the left-regular representation

$$
\langle\lambda(s) f, g\rangle=\int_{G} f\left(s^{-1} t\right) \overline{g(t)} d t=\int_{G} \overline{g(t) \check{f}}\left(t^{-1} s\right) d t=\bar{g} * \check{f}(s) .
$$

Here $\check{f}(r)=f\left(r^{-1}\right)$.
(I lied before: for many groups G it's not true that
$\left.f \in L^{2}(G) \Longrightarrow \tilde{f} \in L^{2}(G).\right)$
So $A(G)$ equals the collection of coefficients of λ.

Coefficients

Given a representation $\phi: G \rightarrow U(H)$, a coefficient of ϕ is a (continuous) function on G of the form

$$
f(s)=\langle\phi(s) \xi, \eta\rangle
$$

Let's consider a coefficient of the left-regular representation

$$
\langle\lambda(s) f, g\rangle=\int_{G} f\left(s^{-1} t\right) \overline{g(t)} d t=\int_{G} \overline{g(t) \check{f}}\left(t^{-1} s\right) d t=\bar{g} * \check{f}(s)
$$

Here $\check{f}(r)=f\left(r^{-1}\right)$.
(I lied before: for many groups G it's not true that $f \in L^{2}(G) \Longrightarrow \check{f} \in L^{2}(G)$.)
So $A(G)$ equals the collection of coefficients of λ.

Why an algebra?

Fix a representation ϕ. If we take the linear span of coefficients of ϕ we get a vector space of functions on G, say A_{ϕ}.
If we (pointwise) multiply $a \in A_{\phi}$ and $b \in A_{\psi}$ then
$a(s) b(s)=\left\langle\phi(s) \xi_{1}, \eta_{1}\right\rangle\left\langle\psi(s) \xi_{2}, \eta_{2}\right\rangle=\left\langle(\phi(s) \otimes \psi(s))\left(\xi_{1} \otimes \xi_{2}\right), \eta_{1} \otimes \eta_{2}\right\rangle$.
So multiplication corresponds to tensoring representations.
Theorem (Fell's absorption principle)
For any ϕ, we have that $\lambda \otimes \phi$ is isomorphic to $\lambda \otimes 1_{\mathrm{H}}$, that is, a direct sum of copies of λ.

Why an algebra?

Fix a representation ϕ. If we take the linear span of coefficients of ϕ we get a vector space of functions on G, say A_{ϕ}. If we (pointwise) multiply $a \in A_{\phi}$ and $b \in A_{\psi}$ then
$a(s) b(s)=\left\langle\phi(s) \xi_{1}, \eta_{1}\right\rangle\left\langle\psi(s) \xi_{2}, \eta_{2}\right\rangle=\left\langle(\phi(s) \otimes \psi(s))\left(\xi_{1} \otimes \xi_{2}\right), \eta_{1} \otimes \eta_{2}\right\rangle$.
So multiplication corresponds to tensoring representations.
Theorem (Fell's absorption principle)
For any ϕ, we have that $\lambda \otimes \phi$ is isomorphic to $\lambda \otimes 1 \mathrm{H}$, that is, a direct
sum of copies of λ.

Corollary
For $a \in A(G)=A_{\lambda}$ and $b \in A_{\phi}$, we have that $a b \in A_{\lambda}$. In particular,
$A(G)$ is an algebra.

Why an algebra?

Fix a representation ϕ. If we take the linear span of coefficients of ϕ we get a vector space of functions on G, say A_{ϕ}.
If we (pointwise) multiply $a \in A_{\phi}$ and $b \in A_{\psi}$ then

$$
a(s) b(s)=\left\langle\phi(s) \xi_{1}, \eta_{1}\right\rangle\left\langle\psi(s) \xi_{2}, \eta_{2}\right\rangle=\left\langle(\phi(s) \otimes \psi(s))\left(\xi_{1} \otimes \xi_{2}\right), \eta_{1} \otimes \eta_{2}\right\rangle .
$$

So multiplication corresponds to tensoring representations.
\square $A(G)$ is an algebra.

Why an algebra?

Fix a representation ϕ. If we take the linear span of coefficients of ϕ we get a vector space of functions on G, say A_{ϕ}.
If we (pointwise) multiply $a \in A_{\phi}$ and $b \in A_{\psi}$ then

$$
a(s) b(s)=\left\langle\phi(s) \xi_{1}, \eta_{1}\right\rangle\left\langle\psi(s) \xi_{2}, \eta_{2}\right\rangle=\left\langle(\phi(s) \otimes \psi(s))\left(\xi_{1} \otimes \xi_{2}\right), \eta_{1} \otimes \eta_{2}\right\rangle
$$

So multiplication corresponds to tensoring representations.
Theorem (Fell's absorption principle)
For any ϕ, we have that $\lambda \otimes \phi$ is isomorphic to $\lambda \otimes 1_{H}$, that is, a direct sum of copies of λ.

Why an algebra?

Fix a representation ϕ. If we take the linear span of coefficients of ϕ we get a vector space of functions on G, say A_{ϕ}.
If we (pointwise) multiply $a \in A_{\phi}$ and $b \in A_{\psi}$ then

$$
a(s) b(s)=\left\langle\phi(s) \xi_{1}, \eta_{1}\right\rangle\left\langle\psi(s) \xi_{2}, \eta_{2}\right\rangle=\left\langle(\phi(s) \otimes \psi(s))\left(\xi_{1} \otimes \xi_{2}\right), \eta_{1} \otimes \eta_{2}\right\rangle
$$

So multiplication corresponds to tensoring representations.
Theorem (Fell's absorption principle)
For any ϕ, we have that $\lambda \otimes \phi$ is isomorphic to $\lambda \otimes 1_{H}$, that is, a direct sum of copies of λ.

Corollary

For $a \in A(G)=A_{\lambda}$ and $b \in A_{\phi}$, we have that $a b \in A_{\lambda}$. In particular, $A(G)$ is an algebra.

Finally: why no linear span?

I defined $A(G)$ as functions of the form $f * g$; no linear span!

- This is actually true, but to prove requires a lot of modern functional analysis.
- Take the linear span of $\{\lambda(s): s \in G\}$, which gives us an algebra of operators on the Hilbert space $L^{2}(G)$.
- Closing this with respect to a suitable topology gives the group von Neumann algebra $V N(G)$.
- [Dixmier; Tomita, Takesaki] shows that $A(G)$ can be identified with the "predual" of $V N(G)$ and that hence every member of $A(G)$ is of the simple form claimed.

Finally: why no linear span?

I defined $A(G)$ as functions of the form $f * g$; no linear span!

- This is actually true, but to prove requires a lot of modern functional analysis.
- Take the linear span of $\{\lambda(s): s \in G\}$, which gives us an algebra of operators on the Hilbert space $L^{2}(G)$.
- Closing this with respect to a suitable topology gives the group von Neumann algebra VN(G).
- [Dixmier; Tomita, Takesaki] shows that $A(G)$ can be identified with the "predual" of $V N(G)$ and that hence every member of $A(G)$ is of the simple form claimed.

Finally: why no linear span?

I defined $A(G)$ as functions of the form $f * g$; no linear span!

- This is actually true, but to prove requires a lot of modern functional analysis.
- Take the linear span of $\{\lambda(s): s \in G\}$, which gives us an algebra of operators on the Hilbert space $L^{2}(G)$.
- Closing this with respect to a suitable topology gives the group von Neumann algebra VN(G).
- [Dixmier; Tomita, Takesaki] shows that $A(G)$ can be identified with the "predual" of $V N(G)$ and that hence every member of $A(G)$ is of the simple form claimed.

Finally: why no linear span?

I defined $A(G)$ as functions of the form $f * g$; no linear span!

- This is actually true, but to prove requires a lot of modern functional analysis.
- Take the linear span of $\{\lambda(s): s \in G\}$, which gives us an algebra of operators on the Hilbert space $L^{2}(G)$.
- Closing this with respect to a suitable topology gives the group von Neumann algebra VN(G).
- [Dixmier; Tomita, Takesaki] shows that $A(G)$ can be identified with the simple form claimed.

Finally: why no linear span?

I defined $A(G)$ as functions of the form $f * g$; no linear span!

- This is actually true, but to prove requires a lot of modern functional analysis.
- Take the linear span of $\{\lambda(s): s \in G\}$, which gives us an algebra of operators on the Hilbert space $L^{2}(G)$.
- Closing this with respect to a suitable topology gives the group von Neumann algebra $V N(G)$.
- [Dixmier; Tomita, Takesaki] shows that $A(G)$ can be identified with the "predual" of $V N(G)$ and that hence every member of $A(G)$ is of the simple form claimed.

Example: compact groups
 Let G be compact.

- The representation theory is particularly nice.
- The irreducible representations are finite-dimensional; let \hat{G} be the classes of irreducibles.
- Every representation is (isomorphic to) the direct sum of irreducibles.

In particular, λ decomposes as

$$
\lambda=\bigoplus_{\phi \in \hat{G}} d_{\phi} \phi
$$

Then, as a Banach space

But the understand $A(G)$ as an algebra requires knowledge of how irreducibles tensor.

Example: compact groups

Let G be compact.

- The representation theory is particularly nice.
- The irreducible representations are finite-dimensional; let G be the classes of irreducibles.
- Every representation is (is omorphic to) the direct sum of irreducibles.

In particular, λ decomposes as

$$
\lambda=\bigoplus_{\phi \in \hat{G}} d_{\phi} \phi
$$

Then, as a Banach space

But the understand $A(G)$ as an algebra requires knowledge of how irreducibles tensor.

Example: compact groups

Let G be compact.

- The representation theory is particularly nice.
- The irreducible representations are finite-dimensional; let \hat{G} be the classes of irreducibles.
- Every representation is (isomorphic to) the direct sum of irreducibles.

In particular, λ decomposes as

Then, as a Banach space

But the understand $A(G)$ as an algebra requires knowledge of how
irreducible tensor.

Example: compact groups

Let G be compact.

- The representation theory is particularly nice.
- The irreducible representations are finite-dimensional; let \hat{G} be the classes of irreducibles.
- Every representation is (isomorphic to) the direct sum of irreducibles.

In particular, λ decomposes as

Then, as a Banach space

But the understand $A(G)$ as an algebra requires knowledge of how
irreducibles tensor.

Example: compact groups

Let G be compact.

- The representation theory is particularly nice.
- The irreducible representations are finite-dimensional; let \hat{G} be the classes of irreducibles.
- Every representation is (isomorphic to) the direct sum of irreducibles.
In particular, λ decomposes as

$$
\lambda=\bigoplus_{\phi \in \hat{G}} d_{\phi} \phi
$$

Then, as a Banach space

$$
A(G)=\ell^{1}-\bigoplus_{\phi \in \hat{G}} d_{\phi}\left(\mathbb{M}_{d_{\phi}}, \text { trace-norm }\right)
$$

But the understand $A(G)$ as an algebra requires knowledge of how
irreducibles tensor.

Example: compact groups

Let G be compact.

- The representation theory is particularly nice.
- The irreducible representations are finite-dimensional; let \hat{G} be the classes of irreducibles.
- Every representation is (isomorphic to) the direct sum of irreducibles.

In particular, λ decomposes as

$$
\lambda=\bigoplus_{\phi \in \hat{G}} d_{\phi} \phi
$$

Then, as a Banach space

$$
A(G)=\ell^{1}-\bigoplus_{\phi \in \hat{G}} d_{\phi}\left(\mathbb{M}_{d_{\phi}}, \text { trace-norm }\right)
$$

But the understand $A(G)$ as an algebra requires knowledge of how

Example: compact groups

Let G be compact.

- The representation theory is particularly nice.
- The irreducible representations are finite-dimensional; let \hat{G} be the classes of irreducibles.
- Every representation is (isomorphic to) the direct sum of irreducibles.

In particular, λ decomposes as

$$
\lambda=\bigoplus_{\phi \in \hat{G}} d_{\phi} \phi
$$

Then, as a Banach space

$$
A(G)=\ell^{1}-\bigoplus_{\phi \in \hat{G}} d_{\phi}\left(\mathbb{M}_{d_{\phi}}, \text { trace-norm }\right) .
$$

But the understand $A(G)$ as an algebra requires knowledge of how irreducibles tensor.

My actual research

I'm interested in "non-commutative geometry/topology".

- Idea is that "spaces" correspond to "commutative algebras" (e.g. Gelfand theory of C*-algebras).
- So then non-commutative algebras correspond to "non-commutative spaces".
- For abelian groups, we have Pontryagin duality.
- If I look at algebras, then $L^{1}(\hat{G})=A(G)$.
- So to study \hat{G} I can study $A(G)$ (Walter's theorem says we loose no information).
- This still makes sense if G is not abelian.
- Seek a self-dual category to generalise Pontryagin duality- Kac algebras, recently Locally Compact Quantum Groups.
- I'm (currently) interested in abstract harmonic analysis questionse.g. Positive Definite Functions.

My actual research

I'm interested in "non-commutative geometry/topology".

- Idea is that "spaces" correspond to "commutative algebras" (e.g. Gelfand theory of C^{*}-algebras).
- So then non-commutative algebras correspond to
"non-commutative spaces"
- For abelian groups, we have Pontryagin duality.
- If I look at algebras, then $L^{1}(\hat{G})=A(G)$.
- So to study \mathcal{G} I can study $A(G)$ (Walter's theorem says we loose no information).
- This still makes sense if G is not abelian.
- Seek a self-dual category to generalise Pontryagin duality- Kac algebras, recently Locally Compact Quantum Groups.
- I'm (currently) interested in abstract harmonic analysis questionse.g. Positive Definite Functions.

My actual research

I'm interested in "non-commutative geometry/topology".

- Idea is that "spaces" correspond to "commutative algebras" (e.g. Gelfand theory of C^{*}-algebras).
- So then non-commutative algebras correspond to "non-commutative spaces".
- For abelian groups, we have Pontryagin duality.
- If I look at algebras, then $L^{1}(\hat{G})=A(G)$.
- So to study \hat{G} I can study $A(G)$ (Walter's theorem says we loose no information).
- This still makes sense if G is not abelian.
- Seek a self-dual category to generalise Pontryagin duality- Kac algebras, recently Locally Compact Quantum Groups.
- I'm (currently) interested in abstract harmonic analysis questionse.g. Positive Definite Functions.

My actual research

I'm interested in "non-commutative geometry/topology".

- Idea is that "spaces" correspond to "commutative algebras" (e.g. Gelfand theory of C^{*}-algebras).
- So then non-commutative algebras correspond to "non-commutative spaces".
- For abelian groups, we have Pontryagin duality.
- If I look at algebras, then $L^{1}(\hat{G})=A(G)$.
- So to study \hat{G} I can study $A(G)$ (Walter's theorem says we loose no information).
- This still makes sense if G is not abelian.
- Seek a self-dual category to generalise Pontryagin duality— Kac algebras, recently Locally Compact Quantum Groups.
- I'm (currently) interested in abstract harmonic analysis questionse.g. Positive Definite Functions.

My actual research

I'm interested in "non-commutative geometry/topology".

- Idea is that "spaces" correspond to "commutative algebras" (e.g. Gelfand theory of C^{*}-algebras).
- So then non-commutative algebras correspond to "non-commutative spaces".
- For abelian groups, we have Pontryagin duality.
- If I look at algebras, then $L^{1}(\hat{G})=A(G)$.
- So to study \mathfrak{G} I can study $A(G)$ (Walter's theorem says we loose no information).
- This still makes serse if G is not abelian.
- Seek a self-dual category to generalise Pontryagin duality— Kac algebras, recently Locally Compact Quantum Groups.
- I'm (currently) interested in abstract harmonic analysis questionse.g. Positive Definite Functions.

My actual research

I'm interested in "non-commutative geometry/topology".

- Idea is that "spaces" correspond to "commutative algebras" (e.g. Gelfand theory of C^{*}-algebras).
- So then non-commutative algebras correspond to "non-commutative spaces".
- For abelian groups, we have Pontryagin duality.
- If I look at algebras, then $L^{1}(\hat{G})=A(G)$.
- So to study \hat{G} I can study $A(G)$ (Walter's theorem says we loose no information).
- This still makes sense if G is not abelian.
- Seek a self-dual category to generalise Pontryagin duality—Kac algebras, recently Locally Compact Quantum Groups.
- I"m (currently) interested in abstract harmonic analysis questionse.g. Positive Definite Functions.

My actual research

I'm interested in "non-commutative geometry/topology".

- Idea is that "spaces" correspond to "commutative algebras" (e.g. Gelfand theory of C^{*}-algebras).
- So then non-commutative algebras correspond to "non-commutative spaces".
- For abelian groups, we have Pontryagin duality.
- If I look at algebras, then $L^{1}(\hat{G})=A(G)$.
- So to study \hat{G} I can study $A(G)$ (Walter's theorem says we loose no information).
- This still makes sense if G is not abelian.
- Seek a self-dual category to generalise Pontryagin duality— Kac algebras, recently Locally Compact Quantum Groups.
- I'm (currently) interested in abstract harmonic analysis questionse.g. Positive Definite Functions.

My actual research

I'm interested in "non-commutative geometry/topology".

- Idea is that "spaces" correspond to "commutative algebras" (e.g. Gelfand theory of C^{*}-algebras).
- So then non-commutative algebras correspond to "non-commutative spaces".
- For abelian groups, we have Pontryagin duality.
- If I look at algebras, then $L^{1}(\hat{G})=A(G)$.
- So to study \hat{G} I can study $A(G)$ (Walter's theorem says we loose no information).
- This still makes sense if G is not abelian.
- Seek a self-dual category to generalise Pontryagin duality-Kac algebras, recently Locally Compact Quantum Groups.

My actual research

I'm interested in "non-commutative geometry/topology".

- Idea is that "spaces" correspond to "commutative algebras" (e.g. Gelfand theory of C^{*}-algebras).
- So then non-commutative algebras correspond to "non-commutative spaces".
- For abelian groups, we have Pontryagin duality.
- If I look at algebras, then $L^{1}(\hat{G})=A(G)$.
- So to study \hat{G} I can study $A(G)$ (Walter's theorem says we loose no information).
- This still makes sense if G is not abelian.
- Seek a self-dual category to generalise Pontryagin duality-Kac algebras, recently Locally Compact Quantum Groups.
- I'm (currently) interested in abstract harmonic analysis questionse.g. Positive Definite Functions.

