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Abstract

In this thesis we investigate algebraic questions about the structure of B(E) and ideals

thereof, where B(E) is the Banach algebra of all operators on a Banach space E.

Chapter 1 details the necessary background material from the theories of Banach

spaces, Banach algebras and C∗-algebras. We also define the Arens products. Given

a Banach space E we have the canonical isometry κE : E → E ′′ of E into its bidual,

this map being an isomorphism only when E is reflexive. The Arens products are the

two natural ways to extend the algebra product from a Banach algebra A to its bidual A′′

making κA into a homomorphism. The topological centres of A′′ are the subsets of A′′

where the two Arens products agree “on one side”. An algebra A is Arens regular when

the Arens products agree on the whole of A′′.

In Chapter 2 we review the notion of a tensor norm, sketching a modern approach to

the classical work of Grothendieck. Tensor norms give us a way of defining an algebra

norm on the algebra of finite-rank operators, F(E), on a Banach space E. The comple-

tion of such an algebra is the algebra of α-nuclear operators, for a tensor norm α. Such

an algebra is always an ideal in B(E), but it need not be closed. We then go on to study

the Arens products and, in particular, the topological centres of the biduals of ideals of

α-nuclear operators. This generalises and extends the work of, for example, Dales, Lau

([Dales, Lau, 2004]), Ülger ([Laustsen, Loy, 2003]), Palmer ([Palmer, 1985]) and Grosser

([Grosser, 1987]). We also examine ideals of compact operators by using a factorisation

scheme which allows us to partially reduce the problem to ideals of ε-nuclear, or approx-

imable, operators.

Chapter 3 reviews the concept of an ultrapower of a Banach space, (E)U . We study

how tensor products and ultrapowers interact, and derive a new representation of B(lp)′

as a quotient of the projective tensor product (lp)U⊗̂(lq)U . We define the class of super-

reflexive Banach spaces and show that they are stable under taking ultrapowers. This

allows us to show that B(E) is Arens regular for a super-reflexive Banach space E, and
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that B(E)′′ can be identified with a subalgebra of B(F ) for some super-reflexive Banach

space F . We finish the chapter by studying some abstract questions about ultrapowers of

Banach modules, culminating in showing that every Arens regular Banach algebra arises,

in a weak∗-topology manner, as an ultrapower of the original algebra.

Chapter 4 is devoted to constructing counter-examples. We show that there exist many

examples of reflexive Banach spaces E such that B(E) is not Arens regular, improving

upon work by Young in [Young, 1976]. We then present some joint work with C. J. Read

which shows, in particular, that B(lp)′′ is a semi-simple algebra if and only if p = 2. This

builds upon the above representation of B(lp)′.

In Chapter 5 we consider the algebras B(lp), for 1 ≤ p < ∞, and B(c0). It is well-

known that the only proper, closed ideal in these algebras is the ideal of compact opera-

tors. Furthermore, this result has been generalised (see [Gohberg et al., 1967]) in the case

of B(H) for an arbitrary Hilbert space H , via the consideration of κ-compact operators,

for a cardinal κ. We extend this result to the non-separable analogies of lp and c0.
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Chapter 1

Preliminaries

1.1 Introduction

The study of Banach algebras entails combining the use of algebraic and analytical (or

topological) methods. It is common to find that, say, algebraic conditions imply topo-

logical ones, and the paradigm of trying to combining algebra and analysis underlies the

whole subject.

Banach spaces also exhibit some of this behaviour; for example, the open mapping

theorem gives topological conditions (continuity of an inverse) out of purely algebraic

hypotheses (the existence of a linear inverse). It should not surprise us that if we look

at Banach algebras which are closely related to Banach spaces (for example, the Banach

algebra of all operators on a Banach space) then we find that geometrical properties of

the Banach spaces have close links to algebraic properties of the Banach algebras. This

thesis will explore some questions in this direction.

This first chapter sketches the background material that we shall need from the the-

ory of Banach spaces and Banach algebras. Proofs and references are omitted except

for the more unusual results, or when a proof will shed light on later work. Useful

references for the material on Banach spaces are [Diestel, 1984], [Megginson, 1998],

[Guerre-Delabriére, 1992] and [Habala et al., 1996]. References for Banach algebras are

[Dales, 2000] or [Palmer, 1994].

1.2 Banach spaces

We shall denote the real numbers by R, the complex numbers by C, the integers by Z and

the natural numbers by N. For us, N = {1, 2, 3, . . .} and N0 = Z≥0 = {0, 1, 2, 3, . . .}.
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For us, a vector space V will be an additive group, together with a scalar multiplication

over the complex numbers. A basis in V is a linearly independent spanning set. We say

that V is finite-dimensional if it has a finite basis; the cardinality of this basis is well-

defined, and is denoted by dimV . All finite-dimensional vector spaces are isomorphic to

Cn for some n ∈ N. When X is a subset of V , we write linX for the linear span of X in

V .

A norm on a vector space is a map ρ : V → R such that:

1. ρ(v) ≥ 0 for each v ∈ V , and ρ(v) = 0 only if v = 0;

2. ρ(αv) = |α|ρ(v) for each α ∈ C and v ∈ V ;

3. ρ(u+ v) ≤ ρ(u) + ρ(v) for each u, v ∈ V .

We will generally write ‖v‖ = ρ(v) for a norm. Then (V, ‖·‖) is a normed space. A norm

on V induces a metric d on V by d(u, v) = ‖u− v‖. We say that (V, ‖ · ‖) is complete if

the metric space (V, d) is (Cauchy) complete. Complete normed vector spaces are called

Banach spaces. The collection of finite-dimensional normed spaces is denoted by FIN,

and we shall see below that each member of FIN is a Banach space.

For a normed space V and t ∈ R, we write

V[t] = {v ∈ V : ‖v‖ ≤ t}.

Thus V[1] is the closed unit ball of V .

The correct category of maps between Banach spaces to study is the collection of maps

which preserve both the linear structure and the topology. Such maps are bounded linear

maps, or operators.

Lemma 1.2.1. Let E and F be Banach spaces and T : E → F be a linear map. Then

the following are equivalent, and define what is means for T to be bounded.

1. T is continuous with respect to the norms on E and F ;

2. T is continuous at 0;

3. for some M ∈ R, we have ‖T (x)‖ ≤M‖x‖ for each x ∈ E.

The minimal valid value for M above is the operator norm of T , denoted by ‖T‖.

Thus

‖T‖ = sup{‖T (x)‖ : x ∈ E[1]} = sup{‖T (x)‖‖x‖−1 : x ∈ E, x 6= 0}.

1.2. Banach spaces
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We write B(E,F ) for the normed vector space of operators between E and F , with the

operator norm. Then we can verify that B(E,F ) is complete whenever F is a Banach

space andE is a normed space (in particular, whenE is a Banach space). When ‖T (x)‖ =

‖x‖ for each x ∈ E, we say that T is an isometry (noting that we do not require T to be a

surjection).

We write the composition of two linear maps T and S by T ◦ S, or just TS. For a

Banach space E, we write IdE for the identity map on E. Then, when T ∈ B(E,F ) is

such that for some S ∈ B(F,E), we have TS = IdF and ST = IdE , we say that T is an

isomorphism. This is equivalent to T being a bijection, and being bounded below; that is,

for some m ∈ R with m > 0, we have

‖T (x)‖ ≥ m‖x‖ (x ∈ E).

The open mapping theorem, to be shown later, tells us that if T is bounded and bijective,

then it is automatically bounded below.

For T ∈ B(E,F ), we write T (E) for the image of T in F ; more generally, if X ⊆ E

is a subset, then T (X) = {T (x) : x ∈ X} ⊆ F . We write kerT for the kernel of T ,

kerT = {x ∈ E : T (x) = 0}, which is a closed subspace of E.

As C is certainly a complete normed space in the norm induced by setting ‖1‖ = 1,

we see that B(E,C) is a Banach space. This is the most basic space of operators on E,

and we denote it by E ′ = B(E,C), the dual space of E. A member of E ′ is called a

functional on E (or bounded functional if necessary). For x ∈ E and µ ∈ E ′, we write

〈µ, x〉 = µ(x)

as this notation will be easier to handle later on. We adopt to the convention that the

left-hand member of 〈·, ·〉 is a member of the dual space to the space which contains the

right-hand member of 〈·, ·〉. Thus 〈µ, x〉 and not 〈x, µ〉. We write E[1] = E ′ and define

E[n+1] = (E[n])′ for n ∈ N.

For x ∈ E, we can form a functional κE(x) ∈ E ′′ by

〈κE(x), µ〉 = 〈µ, x〉 (µ ∈ E ′).

We can check that then ‖κE(x)‖ = ‖x‖ and that κE is a linear map κE : E → E ′′. Thus

κE is an isometry from E to E ′′. When κE is surjective, we say that E is reflexive. All

members of FIN are reflexive.

We now collect together some basic properties of Banach spaces and operators be-

tween them.

1.2. Banach spaces
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Theorem 1.2.2. (Open mapping theorem) Let E and F be Banach spaces, and let T ∈

B(E,F ) by a surjection. Then T is an open mapping (that is, T maps open sets to open

sets). If T is also an injection, then T is an isomorphism. �

The graph of T ∈ B(E,F ) is the subset

GT = {(x, T (x)) : x ∈ E} ⊆ E × F,

where we give E × F the product topology.

Theorem 1.2.3. (Closed graph theorem) Let E and F be Banach spaces, and T ∈

B(E,F ). Then the following are equivalent:

1. T is bounded;

2. the graph of T is closed in E × F ;

3. if (xn)∞n=1 is a sequence in E such that xn → 0 in E, and T (xn) → y in F , then

y = 0.
�

Theorem 1.2.4. (Uniform boundedness theorem) Let E and F be Banach spaces and let

(Ti)i∈I be a family in B(E,F ). Suppose that for each x ∈ E, the family (Ti(x))i∈I is

bounded in F . Then for some M ∈ R, we have ‖Ti‖ ≤M for each i ∈ I .

Let (Tn) be a sequence in B(E,F ), and suppose that limn Tn(x) = T (x) for each

x ∈ E. Then (Tn) is bounded in B(E,F ), T ∈ B(E,F ) and ‖T‖ ≤ lim infn ‖Tn‖. �

When E is a Banach space and F is a subspace of E, we can form the linear space

E/F , the quotient of E by F . We can then define

‖x+ F‖ = inf{‖x+ y‖ : y ∈ F} (x+ F ∈ E/F ).

This is a semi-norm on E/F (that is, ‖a‖ can be zero without a being zero), and when

F is a closed subspace of E, this is a norm, called the quotient norm. We say that F has

finite co-dimension in E when E/F is finite-dimensional.

Definition 1.2.5. Let E and F be Banach spaces, and let T ∈ B(E,F ). Then T is a

quotient operator if T is surjective, and for y ∈ F , we have ‖y‖ = inf{‖x‖ : x ∈

E, T (x) = y}. Thus, by the open mapping theorem, T factors to give an isometric

isomorphism T̃ : E/ ker(T ) → F .

1.2. Banach spaces
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We now define some classical examples of Banach spaces. Let (X, τ) be a locally

compact Hausdorff topological space, so that every point of X has a compact neighbour-

hood. Then let C(X) be the vector space of all continuous maps from X to C, under

pointwise operations. Let C0(X) be the subset of C(X) defined by f ∈ C0(X) if and

only if, for each ε > 0, the set {x ∈ X : |f(x)| ≥ ε} is compact in X . Then C0(X) is a

Banach space under the supremum norm

‖f‖∞ = sup{|f(x)| : x ∈ X}.

When I is a set, let dI be the discrete topology on I , and define c0(I) = C0(I, dI).

Let S be a set, let 2S be the power set of S and let Σ be a subset of 2S . Then Σ is a

σ-algebra if: (i) S ∈ Σ; (ii) if X ∈ Σ, then S \X ∈ Σ; and (iii) if (Xn) is a sequence in Σ

then
⋃

nXn ∈ Σ. The members of Σ are called measurable sets. A complex measure on

(S,Σ) is a map ν : Σ → C such that if (Xn) is a sequence of pairwise-disjoint members

of Σ, then ν (
⋃

nXn) =
∑

n ν(Xn). A measure is a map ν : Σ → [0,∞)∪{∞} such that

if (Xn) is a sequence of pairwise-disjoint members of Σ, then ν (
⋃

nXn) =
∑

n ν(Xn),

where divergence of the sum in interpreted to be ∞. A measure space is a triple (S,Σ, ν)

where Σ is a σ-algebra on S and ν is a measure. A function f : S → C is measurable if

f−1(U) ∈ Σ for each open set U ⊆ C. The set of all measurable functions on a measure

space (S,Σ, ν) forms a vector space under pointwise operations. In fact, they form a

complex lattice under pointwise suprema and infima, and the taking of real and imaginary

parts, and absolute values.

As a technical point, we note that we need a more general definition of measure space

than is often used, to allow us to make sense of certain constructions involving ultrafil-

ters. For example, see [Haydon et al., 1991, Chapter 2], which sketches measure theory

without the need for σ-finiteness.

For a measurable set X ⊆ S, let χX be the characteristic function of X , defined by

χX(x) =

1 : x ∈ X,

0 : x 6∈ X,
(x ∈ S)

so that χX is a measurable function. Then the linear span of {χX : X ∈ Σ} are the simple

functions. Given a simple function

f =
N∑

n=1

anχXn

1.2. Banach spaces
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we define the integral of f with respect to a measure ν to be∫
f dν =

∫
f(x) dν(x) =

N∑
n=1

anν(Xn).

For a general positive measurable function f : S → R, we define∫
f dν = sup

{∫
g dν : g simple, and g ≤ f

}
.

By g ≤ f , we mean that g(x) ≤ f(x) for each x ∈ S. We then define the integral of a

general measurable function by taking real and imaginary parts, and positive and negative

parts.

For 1 ≤ p < ∞ and a measure space (S,Σ, ν), we define the p-norm of a measurable

function f : S → C by

‖f‖p =

(∫
|f(x)|p dν(x)

)1/p

.

This is actually a semi-norm, so we identify equivalence classes of functions (and hence-

forth, when we talk about a function, we will generally mean the equivalence class of the

said function). Then the set of functions with finite p-norm form a Banach space, denoted

by Lp(S,Σ, ν) = Lp(S, ν) = Lp(ν). When I is a set, we define lp(I) = Lp(I,Σ, ν),

where Σ = 2I and ν is the counting measure.

For Y ∈ Σ, we say that Y is ν-locally null when ν(Y ∩X) = 0 for each X ∈ Σ with

ν(X) <∞. We define L∞(S,Σ, ν) to be the Banach space of measurable functions with

finite supremum norm, where

‖f‖∞ = inf{M ∈ R : {s ∈ S : |f(s)| > M} is ν-locally null}.

Then l∞(I) is defined similarly.

When I is a finite set, lp(I) is isometrically isomorphic to lpn, for 1 ≤ p ≤ ∞, where

n = |I|, the cardinality of I , and lpn = (Cn, ‖ · ‖p), where

‖(xi)‖p =

(
n∑

i=1

|xi|p
)1/p

((xi)
n
i=1 ∈ Cn),

with the obvious definition for p = ∞.

An inner product on a vector space H is a map [·, ·] : H ×H → C such that:

1. the map x 7→ [x, y] is a linear map for each y ∈ H;

2. for x, y ∈ H , we have [x, y] = [y, x];

3. for x ∈ H , we have [x, x] ≥ 0 and [x, x] = 0 only if x = 0.

1.2. Banach spaces
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We call such an H an inner product space. Define ‖x‖ = [x, x]1/2, so that ‖ · ‖ is a norm

on H . When (H, ‖ · ‖) is a Banach space, we say that H is a Hilbert space. Thus the

spaces l2n, l2(I) and L2(ν) are all Hilbert spaces.

Let p ∈ [1,∞]. We generalise the idea of lp spaces from taking values in the complex

numbers to taking values in Banach spaces (we can also do this for Lp spaces, but this

will not interest us). Specifically, let (En) be a sequence of Banach spaces and define, for

1 ≤ p <∞,

lp(En) =

(xn)∞n=1 : ‖(xn)‖ :=

(
∞∑

n=1

‖xn‖p

)1/p

<∞, xn ∈ En (n ∈ N)

 .

We also write lp(En) = lp
(⊕∞

n=1En

)
. The spaces l∞(En) and c0(En) have similar

definitions. Then we can check that lp(En)′ = lq(E ′
n) for p−1 + q−1 = 1, with duality

defined by

〈(µn), (xn)〉 =
∞∑

n=1

〈µn, xn〉 ((µn) ∈ lq(E ′
n), (xn) ∈ lp(En)).

We can now show that ifE ∈ FIN thenE is complete, by showing thatE is isomorphic

to the Hilbert space with dimension dimE.

Proposition 1.2.6. Let (E, ‖ · ‖) be a normed space of dimension n. Then (E, ‖ · ‖) is

isomorphic to l2n and thus is a Banach space.

Proof. Let E have a basis (x1, . . . , xn), where we may suppose that ‖xi‖ = 1 for each i.

Define T : l2n → E by

T ((ai)) =
n∑

i=1

aixi ((ai)
n
i=1 ∈ l2n),

so that T is a linear isomorphism. We shall show that T is a topological isomorphism as

well. Indeed, for (ai) ∈ l2n, we have

‖T ((ai))‖ =

∥∥∥∥∥
n∑

i=1

aixi

∥∥∥∥∥ ≤
n∑

i=1

|ai|‖xi‖ =
n∑

i=1

|ai|

≤
√
n

(
n∑

i=1

|ai|2
)1/2

=
√
n‖(ai)‖2

The non-obvious inequality here can be proved by induction, for example. Thus we see

that T is bounded.

Suppose that T is not bounded below, so that for some sequence (ak) in l2n with ‖ak‖ =

1 for each k, we have T (ak) → 0 in E. Now, the unit ball of n-dimensional Euclidean

1.2. Banach spaces
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space (that is, l2n) is compact, so by moving to a subsequence, we may suppose that ak →

a. Thus, as T is continuous, T (ak) → T (a) = 0. As (x1, . . . , xn) is a basis for E,

T (a) = 0 means that a = 0, a contradiction, as a lies in the unit sphere of l2n.

The key point of this proof is that the unit ball of l2n is compact. Indeed, the above

proof then shows that the unit ball of any finite-dimensional normed space is compact.

This is not true for any infinite-dimensional normed space.

1.3 Nets, filters and ultrafilters

We will find it useful to generalise the idea of a sequence, where we increase the cardi-

nality of the index set, and also change the ordering structure. The correct tools for this

are nets, filters and ultrafilters.

Definition 1.3.1. Let Λ be a set and ≤ be a binary relation on Λ.

1. (Λ,≤) is a partially ordered set and ≤ is a partial order when: (i) if α, β, γ ∈ Λ

with α ≤ β and β ≤ γ, then α ≤ γ; (ii) for α ∈ Λ, we have α ≤ α; and (iii) if

α, β ∈ Λ with α ≤ β and β ≤ α, then α = β.

2. A partially ordered set (Λ,≤) is a directed set if, for each α, β ∈ Λ, there exists

γ ∈ Λ with α ≤ γ and β ≤ γ.

3. A net in a set X is a family (xα)α∈Λ where the index set Λ is a directed set.

4. A partially ordered set (Λ,≤) is totally ordered and ≤ is a total order if, for each

α, β ∈ Λ, either α ≤ β or β ≤ α.

5. A subset S of a partially ordered set (Λ,≤) is a chain if (S,≤ |S) is a totally ordered

set, where ≤ |S is the restriction of the partial order ≤ to S.

A maximal element in (Λ,≤) is an element α such that, if β ∈ Λ with α ≤ β, then

α = β. A similar definition holds for a minimal element.

Theorem 1.3.2. (Zorn’s Lemma) Let (Λ,≤) be a partially ordered set so that for each

chain S in Λ, we can find an upper bound α ∈ Λ for S (that is, β ≤ α for each β ∈ S).

Then Λ contains a maximal element. �

A filter on a set S is a subset F of 2S such that: (i) ∅ 6∈ F ; (ii) if A ∈ F and B ⊆ S

with A ⊆ B, then B ∈ F ; and (iii) if A,B ∈ F , then A ∩ B ∈ F . We can partially

1.3. Nets, filters and ultrafilters
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order the collection of filters on a set by inclusion, and then a simple application of Zorn’s

Lemma shows that maximal filters exist. Such filters are called ultrafilters. If s ∈ S then

the collection

Us = {A ⊆ S : s ∈ A}

is an ultrafilter (by the next lemma). Such an ultrafilter is the principal ultrafilter at s.

Ultrafilters which are not principal are called non-principal, and will be the ones which

interest us.

Lemma 1.3.3. Let U be a filter on a set S. Then U is an ultrafilter if and only if, for each

X ⊆ S, either X ∈ U or S \X ∈ U . �

Given a directed set (Λ,≤) and α ∈ Λ, let Aα = {β ∈ Λ : α ≤ β}, and then let

F≤ = {B ⊆ Λ : ∃ α ∈ Λ, Aα ⊆ B}.

As α ∈ Aα for each α, F≤ does not contain the empty set. As Λ is directed, Aα ∩ Aβ

contains Aγ for some γ ∈ Λ. Thus F≤ is a filter, called the order filter on (Λ,≤).

Let X be a topological space, and (xα)α∈Λ be a net in X . Then we say that (xα)

converges to x, written xα → x or limα∈Λ xα = x, if, for each open neighbourhood U of

x, there exists β ∈ Λ so that if β ≤ α, then xα ∈ U . This is equivalent to asking that, for

each open neighbourhood U of x, we have {α ∈ Λ : xα ∈ U} ∈ F≤.

We use this to define the notion of a limit along a filter. Thus if F is a filter on a set

I and (xi)i∈I is a family in a topological space, we write x = limi∈F xi if, for each open

neighbourhood U of x, we have {i ∈ I : xi ∈ U} ∈ F . The use of ultrafilters can now be

stated.

Proposition 1.3.4. Let X be a compact topological space, let U be an ultrafilter on a

set I , and let (xi)i∈I be a family in X . Then there exists x ∈ X with x = limi∈U xi.

Furthermore, if X is Hausdorff, then x is unique. �

In fact, the converse to the above proposition is also true, in that if every family con-

verges along every ultrafilter, then X must be compact.

Ultrafilters also respect continuous functions. To state this fully, recall that if (Xj)j∈J

is a family of topological spaces, then the axiom of choice tells us that the set X =∏
j∈J Xj is non-empty. For each j ∈ J let πj : X → Xj be the canonical projection map.

Then the product topology onX is the weakest topology making each πj continuous. That

1.3. Nets, filters and ultrafilters
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is, open sets are arbitrary unions of sets of the form

n⋂
k=1

π−1
jk

(Uk),

where n ∈ N, (jk)
n
k=1 ⊆ J and for each k, Uk is an open subset of Xjk

.

Proposition 1.3.5. Let (Xj)j∈J be a family of topological spaces, let Y be a topological

space, let X =
∏

j∈J Xj with the product topology, and let f : X → Y be continuous.

Let I be an index set, let F be a filter on I , and for each j ∈ J , let (x
(j)
i )i∈I be a family in

Xj . Suppose that, for each j ∈ J , zj = limi∈F x
(j)
i ∈ Xj exists. Then limi∈F f((x

(j)
i )j∈J)

exists and equals f((zj)j∈J). �

Thus, for example, if (xi)i∈I and (yi)i∈I are families in a topological vector space such

that

x = lim
i∈F

xi , y = lim
i∈F

yi,

then x+ y = limi∈F(xi + yi).

Filter limits also respect other “natural structures”, for example, the order structure of

R, so that if xi ≤ yi for each i, we have limi∈F xi ≤ limi∈F yi, assuming that these limits

exist.

Another way of seeing the use of ultrafilters is to consider the following. Suppose we

have bounded sequences of reals (an) and (bn). Then the Bolzano-Weierstrass theorem

states that there are convergent subsequences of (an) and (bn). However, (an + bn) is

also a bounded sequence of reals, so some subsequence of (an + bn) also converges. We

would obviously like these subsequences to all be the same (or, rather, to be nested in

some fashion) but there is no particular reason why they should be. What an ultrafilter on

N does is to provide a consistent way of picking a subsequence so that we can then add,

multiply etc. It should come as no surprise that we thus need Zorn’s Lemma to show that

non-principal ultrafilters exist.

1.4 Dual spaces and weak topologies

We only state the definitions in a restricted case.

Definition 1.4.1. Let E be a Banach space. Then the weak-topology on E is defined by

the family of open sets

O(x, µ1, . . . , µn, ε) = {y ∈ E : |〈µi, x− y〉| < ε (1 ≤ i ≤ n)},

1.4. Dual spaces and weak topologies
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where x ∈ E, ε > 0 and (µi)
n
i=1 is a finite family in E ′.

The weak∗-topology on E ′ is defined by the family of open sets

O(µ, x1, . . . , xn, ε) = {λ ∈ E ′ : |〈µ− λ, xi〉| < ε (1 ≤ i ≤ n)},

where µ ∈ E ′, ε > 0 and (xi)
n
i=1 is a finite family in E.

Equivalently, we can state what it means for a net (and thus a filter or ultrafilter) to

converge. Thus a net (xα)α∈Λ in E converges weakly to x ∈ E if and only if

lim
α∈Λ

〈µ, xα〉 = 〈µ, x〉 (µ ∈ E ′).

A net (µα)α∈Λ converges weak∗ to µ ∈ E ′ if and only if

lim
α∈Λ

〈µα, x〉 = 〈µ, x〉 (x ∈ E).

The weak- and weak∗-topologies are only given by a norm in the finite-dimensional case.

They are sometimes given by a metric, but in general are just a topology. However,

scalar multiplication and vector space addition are clearly continuous with respect to

these topologies. In fact, these topologies are locally convex, in that each point has a

neighbourhood base consisting of convex sets.

The importance of these topologies can be summed up in a few results.

Theorem 1.4.2. (Banach-Alaoglu theorem) Let E be a Banach space. Then E ′
[1], with the

weak∗-topology, is a compact topological space. �

Theorem 1.4.3. (Mazur’s theorem) Let E be a Banach space, and let X ⊆ E be a

bounded, convex subset. Then the weak and norm closures of X coincide. �

Of course, we do not yet know that we have a rich supply of linear functionals. This is

solved by the Hahn-Banach theorem.

Theorem 1.4.4. (Hahn-Banach theorem) Let E be a complex Banach space, let F a sub-

space of E, and let µ : F → C be a bounded linear functional. Then there exists λ ∈ E ′

such that

‖λ‖ = ‖µ‖ , 〈λ, x〉 = 〈µ, x〉 (x ∈ F ).

Thus λ is an isometric extension of µ to the whole space. We can also replace complex

scalars by real scalars. �

For example, we can now show that for each x ∈ E, there exists µ ∈ E ′ with

〈µ, x〉 = ‖x‖ and ‖µ‖ = 1. There exist a whole family of Hahn-Banach theorems,

1.4. Dual spaces and weak topologies
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dealing with extensions of other type of maps (convex not linear, for example) and with

various “separation” properties. These variants are required to prove Mazur’s Theorem,

for example.

For a Banach space E, a subset X ⊆ E is weakly-compact if it is compact in E with

the weak-topology. Similarly, X is relatively weakly-compact if its closure, in the weak-

topology, is weakly-compact. We say that X is weakly sequentially compact if every

sequence in X has a sub-sequence which is convergent in the weak-topology.

Theorem 1.4.5. (Eberlein-Smulian) Let E be a Banach space, and let X be a subset of

E. Then X is weakly-compact if and only if it is weakly sequentially compact. �

Definition 1.4.6. Let E and F be Banach spaces and let T ∈ B(E,F ). We write T ∈

W(E,F ), and say that T is weakly-compact, if T maps bounded subsets ofE to relatively

weakly-compact subsets of F .

Recall that a Banach space E is reflexive if and only if κE : E → E ′′ is an isomor-

phism.

Theorem 1.4.7. Let E be a Banach space. Then the following are equivalent:

1. E is reflexive;

2. E[1] is weakly-compact;

3. E[1] is weakly sequentially compact;

4. the identity map IdE is weakly-compact;

5. whenever (xn) and (µn) are bounded sequences in E and E ′ respectively,

lim
m

lim
n
〈µn, xm〉 = lim

n
lim
m
〈µn, xm〉,

whenever these limits exist.

Proof. This is standard, apart from perhaps (5), which shall be shown in Theorem 4.1.1.

Thus we immediately see that E is reflexive if and only if E ′ is reflexive, and that if E

is isomorphic to F , then E is reflexive if and only if F is.

The next two results tell us that, from a certain perspective, a Banach space E and its

bidual E ′′ are not too different.

1.4. Dual spaces and weak topologies
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Theorem 1.4.8. (Goldstine) Let E be a Banach space, and identify E[1] with its image,

under the map κE : E → E ′′, in E ′′
[1]. Then E[1] is dense, in the weak∗-topology, in E ′′

[1].

�

Theorem 1.4.9. (Principle of local reflexivity) Let E be a Banach space, X ⊆ E ′′ be

finite-dimensional and Y ⊆ E ′ be finite-dimensional. For each ε > 0 there exists a map

T : X → E such that:

1. for Φ ∈ X , (1− ε)‖Φ‖ ≤ ‖T (Φ)‖ ≤ (1 + ε)‖Φ‖;

2. for κE(x) ∈ X ∩ κE(E), T (κE(x)) = x;

3. for Φ ∈ X and µ ∈ Y , 〈Φ, µ〉 = 〈µ, T (Φ)〉. �

We can interpret this result as saying that the finite-dimensional subspaces of E ′′ are,

with respect to duality, the same as the finite-dimensional subspaces of E. Note also that

this result trivially proves Goldstine’s theorem, if we let X be one-dimensional. We shall

see later that actually a variant of Goldstine’s theorem can be used to prove the principle

of local reflexivity.

We can use the Principle of local reflexivity (or Goldstein’s Theorem) to show that

for a Banach space E, and Φ ∈ E ′′, there is a net (xα) ⊆ E such that ‖xα‖ ≤ ‖Φ‖ for

each α, and such that κE(xα) → Φ in the weak∗-topology on E ′′. Indeed, let Λ be the

collection of finite-dimensional subspaces of E ′, partially ordered by inclusion, so that

Λ is a directed set. Then, for M ∈ Λ, let yM ∈ E be given by the Principle of local

reflexivity, with εM = (dimM)−1, so that

(1 + εM)‖Φ‖ ≤ ‖yM‖ ≤ (1 + εM)‖Φ‖ , 〈µ, yM〉 = 〈Φ, µ〉 (µ ∈M).

Then let xM = yM‖Φ‖‖yM‖−1 so that ‖xM‖ = ‖Φ‖, and as limM∈Λ εM = 0, for each

µ ∈ E ′, we have

lim
M∈Λ

〈µ, xM〉 = lim
M∈Λ

〈µ, yM〉‖yM‖−1‖‖Φ‖ = 〈Φ, µ〉 lim
M∈Λ

‖yM‖−1‖‖Φ‖ = 〈Φ, µ〉,

as required.

We can express the Hahn-Banach theorem in a more algebraic manner. For a Banach

space E, a subspace F of E and a subspace G of E ′, we define

F ◦ = {µ ∈ E ′ : 〈µ, x〉 = 0 (x ∈ F )},
◦G = {x ∈ E : 〈µ, x〉 = 0 (µ ∈ G)}.

1.4. Dual spaces and weak topologies
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Thus F ◦ is a closed subspace of E ′ and ◦G is a closed subspace of E. Furthermore, (◦G)◦

is the weak∗-closure of G in E ′, and ◦(F ◦) is the norm-closure of F in E. Thus, if G is

finite-dimensional, then (◦G)◦ = G.

Theorem 1.4.10. Let E be a Banach space, and let F be a closed subspace of E.

1. For each λ ∈ F ′ let Λ ∈ E ′ be such that ‖λ‖ = ‖Λ‖ and 〈λ, x〉 = 〈Λ, x〉 for each

x ∈ F . Then the map F ′ → E ′/F ◦, λ 7→ Λ + F ◦, is an isometric isomorphism.

2. Let π : E → E/F be the quotient map. Then π′ : (E/F )′ → F ◦ is an isometric

isomorphism.

3. We identify F ′′ with F ◦◦ which is the same as the weak∗-closure of κE(F ) in E ′′.

4. Thus also, (E/F )′′ is isometrically isomorphic to E ′′/F ◦◦. �

Finally we will consider how operators and subspaces interact with dual spaces. For

Banach spaces E and F , and T ∈ B(E,F ), define the adjoint or dual of T to be T ′ :

F ′ → E ′, where

〈T ′(µ), x〉 = 〈µ, T (x)〉 (µ ∈ F ′, x ∈ E).

We can check that then T ′ ∈ B(F ′, E ′), and that ‖T ′‖ = ‖T‖.

Theorem 1.4.11. Let E and F be Banach spaces, and T ∈ B(E,F ). Then we have:

1. kerT = ◦(T ′(F ′)) and so T is an injection if and only if T ′(F ′) is weak∗-dense in

E ′;

2. kerT ′ = T (E)◦ and so T ′ is an injection if and only if T (E) is dense in F ;

3. the following are equivalent: (i) T (E) is closed in F ; (ii) T ′(F ′) is weak∗-closed in

E’; and (iii) T ′(F ′) is closed in E ′;

4. when T is an isometry onto its range, T ′ is a quotient map F ′ → E ′, and factors to

give an isometric isomorphism F ′/T (E)◦ → E ′;

5. when T is a quotient map, T ′ : F ′ → (kerT )◦ is an isometric isomorphism. �

1.5 Algebras

An algebra is a vector space A (we only consider the case of complex scalars) together

with a multiplication, called an algebra product, A × A → A; (a, b) 7→ ab, which is

1.5. Algebras
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associative and respects the vector space operations:

(ab)c = a(bc), a(b+ c) = ab+ ac, (b+ c)a = ba+ ca (a, b, c ∈ A)

(αa)b = a(αb) = α(ab) (α ∈ C, a, b ∈ A).

We say that A is commutative if the multiplication is abelian. We say that A is unital if

there is a multiplicative identity, a unit, e = eA in A. We define the unitisation of A to be

A[ = A⊕ C with multiplication

(a, α)(b, β) = (ab+ βa+ αb, αβ) (a, b ∈ A, α, β ∈ C).

ThusA[ is a unital algebra with unit (0, 1). We defineA] to be the conditional unitisation;

that is, A] is A if A is unital, and is A[ otherwise.

An element a ∈ A in a unital algebra A is invertible if for some (necessarily unique)

element b ∈ A, we have ab = ba = eA. In this case we write b = a−1. Then InvA is the

set of invertible elements in A, which forms a group with the multiplication product.

A subalgebra of an algebra A is a linear subspace B ⊆ A such that ab ∈ B for each

a, b ∈ B. An ideal in an algebra A is a subalgebra I ⊆ A such that, if a ∈ A and b ∈ I,

then ab, ba ∈ I. Similarly we define the notion of a left-ideal and a right-ideal. An ideal

I is proper if 0 ( I ( A.

For algebras A and B, let T : A → B be a linear map. Then T is a homomorphism

if T (ab) = T (a)T (b) for each a, b ∈ A. If T is a bijection, then T is an isomorphism.

When T is injective, we can identify A with its image in B, so that A can be viewed as a

subalgebra of B. The kernel of a homomorphism is an ideal.

Let V be a vector space and L(V ) be the vector space of all linear maps from V to

V . Then L(V ) is an algebra with the composition product. Let A be an algebra, and

θ : A → L(V ) be a homomorphism. Then θ is a representation of A on V . As A is a

vector space, for a ∈ A, define Ta ∈ L(A]) by

Ta(b) = ab (b ∈ A]).

Then the map A → L(A]); a 7→ Ta is an injective homomorphism (as Ta(eA]) = a),

called the left regular representation. Thus we see that every algebra arises as a subalgebra

of L(V ) for some vector space V .

Subalgebras are thus too general an object to study, which is (roughly speaking) why

ideals are useful. Unfortunately, some algebras have a lack of “good” ideals to study,

which leads to the concept of semi-simplicity.

1.5. Algebras
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Definition 1.5.1. Let V be a vector space, let A be an algebra, and suppose we have a

bilinear map A× V → V ; (a, v) 7→ a · v, such that

(ab) · v = a · (b · v) (a, b ∈ A, v ∈ V ).

Then V is a leftA-module. Similarly we have the notion of a right-module, or a bi-module,

where we also insist that

(a · v) · b = a · (v · b) (a, b ∈ A, v ∈ V ).

Given a left A-module V , define T : A → L(V ) by

T (a)(v) = a · v (a ∈ A, v ∈ V ).

Then T is a representation of V onA. Conversely, given a representation T : A → L(V ),

we can make V into a left A-module by setting a · v = T (a)(v). Thus left-modules

and representations are the same thing, and the following definitions hence also apply to

representations.

Definition 1.5.2. Let A be an algebra and V be a left A-module. Then a submodule of V

is a subspace U of V such that a · u ∈ U for each a ∈ A and u ∈ U .

We say that V is non-trivial if {0} 6= A · V = {a · v : a ∈ A, v ∈ V }; we say that V

is simple if it is non-trivial and if {0} and V are the only submodules of V .

We can view the simple representations as being the most basic types of representation,

as there is no “redundancy”, in the sense that

linA · v = A · v = {a · v : a ∈ A} = V

for every non-zero v ∈ V , as linA · v = A · v is a submodule of V . We can now give the

definition of a useful class of ideals.

Definition 1.5.3. We say that an ideal I in an algebra A is a primitive ideal when I is the

kernel of a simple representation.

An algebra A is primitive if {0} is a primitive ideal.

The trivial representation of L(V ) on V shows that L(V ) is a primitive algebra.

Definition 1.5.4. The radical of an algebra A, denoted radA, is the intersection of the

primitive ideals of A. An algebra A is semi-simple if radA = {0} and is radical if

radA = A.

1.5. Algebras
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Thus an algebra A is semi-simple if and only if, for each non-zero a ∈ A, we can find

a simple representation T : A → L(V ) with T (a) 6= 0. Equivalently, this is the case if

and only if we can find a left A-module V and v ∈ V so that a · v 6= 0 and A · v has no

proper submodules. Thus, in some sense, we can study A by just looking at the simple

representations. We immediately see that L(V ) is semi-simple for every vector space V .

Let A be a unital algebra, and a ∈ A. Then the spectrum of a is

σA(a) = {z ∈ C : zeA − a 6∈ InvA},

and the spectral radius of a is

νA(a) = sup{|z| : z ∈ σA(a)}.

For an arbitrary algebra A and a ∈ A, we set σA(a) = σA](a). When V is a finite-

dimensional vector space, we see that the spectrum of T ∈ L(V ) is simply the set of

eigenvalues of T .

Theorem 1.5.5. Let A be an algebra. Then radA is an ideal in A, radA = radA], and

radA] = {a ∈ A : eA] − ba ∈ InvA] (b ∈ A])}

= {a ∈ A : σA(ba) = {0} or ∅ (b ∈ A])}

= {a ∈ A : eA] − ab ∈ InvA] (b ∈ A])}

= {a ∈ A : σA(ab) = {0} or ∅ (b ∈ A])}. �

Proposition 1.5.6. LetA be an algebra and I be an ideal inA. Then rad I = I ∩ radA.

�

1.6 Banach algebras

A Banach algebra is an algebra A with a norm ‖ · ‖ such that (A, ‖ · ‖) is a Banach space

and

‖ab‖ ≤ ‖a‖‖b‖ (a, b ∈ A).

The definitions of homomorphism, representation, module etc. all follow over, where

we insist on bounded maps and Banach spaces, in the appropriate places. In particular,

when A is a Banach algebra, we give A[ the norm

‖(a, α)‖ = ‖a‖+ |α| (a ∈ A, α ∈ C).

1.6. Banach algebras
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A Banach space E is a Banach left A-module if E is a left A-module, and

‖a · x‖ ≤ ‖a‖‖x‖ (a ∈ A, x ∈ E).

Similarly, we get the notion of a Banach right A-module and a Banach A-bimodule. If

the module action is not norm-decreasing, then a simple re-norming gives an equivalent

norm for which the module action is norm-decreasing.

For a Banach space E, B(E) is a Banach algebra with respect to the operator norm.

The left regular representation A → B(A]); a 7→ Ta is a norm-decreasing homomor-

phism, and so A is a left bimodule over itself. In fact, ‖Ta‖ = ‖a‖, so that every Banach

algebra can be isometrically identified with a subalgebra of B(E) for some Banach space

E.

The topological structure of a Banach algebra implies some algebraic structure.

Proposition 1.6.1. Let A be a unital Banach algebra, and suppose that a ∈ A is such

that ‖eA − a‖ < 1. Then a ∈ InvA. Consequently, InvA is an open subset of A.

Proof. As ‖eA − a‖ < 1, the sum b = eA +
∑∞

n=1(eA − a)n converges in A. Then we

have

b(eA − a) = (eA − a)b = lim
N→∞

N∑
n=1

(eA − a)n = b− eA,

so that ab = ba = eA, and hence a ∈ InvA.

Suppose that a ∈ InvA and b ∈ A with ‖b‖ < ‖a−1‖−1. Then ‖a−1b‖ ≤ ‖a−1‖‖b‖ <

1, so that eA + a−1b ∈ InvA. Thus, as a ∈ InvA, we have that a(eA + a−1b) = a+ b ∈

InvA. Hence InvA is an open subset of A.

Theorem 1.6.2. Let A be a unital Banach algebra, and let a ∈ A. Then σA(a) is a

non-empty, compact subset of C. Furthermore,

νA(a) = lim
n→∞

‖an‖1/n = inf
n∈N

‖an‖1/n. �

Theorem 1.6.3. (Spectral mapping theorem) Let A be a Banach algebra, let a ∈ A, and

let p ∈ C[X] be a polynomial. Then σA(p(a)) = {p(z) : z ∈ σA(a)}. �

Consequently, we see that

radA = {a ∈ A : lim
n
‖(ab)n‖1/n = 0 (b ∈ A)},

giving a purely topological characterisation of the radical.
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For a Banach algebra A, we can turn A′ into a Banach A-bimodule by setting

〈a · µ, b〉 = 〈µ, ba〉 = 〈µ · b, a〉 (a, b ∈ A, µ ∈ A′).

More generally, if E is a Banach left A-module, E ′ becomes a Banach right A-module

by setting

〈µ · a, x〉 = 〈µ, a · x〉 (a ∈ A, x ∈ E, µ ∈ E ′).

In a similar fashion, if E is a Banach right A-module, then E ′ becomes a Banach left

A-module. Thus we can also make A′′ into a Banach A-bimodule, and so forth.

When E and F are Banach left A-modules, and T ∈ B(E,F ), we say that T is a left

A-module homomorphism if we have

a · T (x) = T (a · x) (a ∈ A, x ∈ E).

We define rightA-module homomorphisms andA-bimodule homomorphisms in a similar

fashion. We can show that if T is a left A-module homomorphism, then T ′ : F ′ → E ′ is

a right A-module homomorphism.

While conditional unitisations are a useful tool for dealing with non-unital Banach

algebras, often we need a more nuanced approach.

Definition 1.6.4. A net (aα) is a Banach algebraA is a left approximate identity if aαa→

a in norm, for each a ∈ A. Similarly we have the notions of right approximate identity

and approximate identity. If (aα) is norm bounded, then we have a bounded (left/right)

approximate identity.

Often we can construct a bounded net (aα) such that, say, aaα → a in the weak-

topology on A, for each a ∈ A. As the weak and norm closures of a bounded convex set

coincide, a standard argument allows us to find a bounded net (bβ), formed out of convex

combinations of the aα, such that abβ → a in norm, for each a ∈ A.

Definition 1.6.5. Let A be a Banach algebra and E be a closed submodule of A′, so that

E ′ = A′′/E◦. Let Q : A′′ → A′′/E◦ = E ′ be the quotient map. When Q ◦ κA is an

isomorphism, we say that A is a dual Banach algebra (see [Runde, 2002, Section 4.4]).

Proposition 1.6.6. Let A be a Banach algebra. Then A is a dual Banach algebra if and

only if A is isomorphic, as a A-bimodule, to F ′ for some Banach A-bimodule F .

Proof. Let A be a dual Banach algebra with respect to E ⊆ A′. It is clear that κA and the

map Q in the definition are both A-bimodule homomorphisms. Thus A is isomorphic, as

a A-bimodule, to E ′.
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Conversely, let F be as in the hypothesis, and let T : A → F ′ be an A-bimodule

isomorphism. Then let S = T ′ ◦ κF : F → A′, so that S is an A-bimodule isomorphism

onto its range. Let E = S(F ), so that E is a submodule of A′, and we can treat S as an

isomorphism from F to E. For x ∈ E, let x = S(y) for some y ∈ F , so that for a ∈ A,

we have

〈Q(κA(a)), x〉 = 〈κA(a) + E◦, S(y)〉 = 〈S(y), a〉 = 〈T ′(κF (y)), a〉 = 〈T (a), y〉

= 〈T (a), S−1(x)〉 = 〈(S−1)′(T (a)), x〉.

Hence Q ◦ κA = (S−1)′ ◦ T , and is thus an isomorphism, as required.

1.7 Arens products

We have seen that the bidual E ′′ of a Banach space E is a useful object to study: it

has compact bounded subsets in a useful topology, yet has the same finite-dimensional

structure as E, for example. As a Banach algebra A is also a Banach space, we can form

A′′. However, it would obviously be natural to extend, not just the linear structure, but

also the algebraic structure to A′′. This is what the Arens products do.

We proceed with a little generality, noting that the map A × A → A; (a, b) 7→ ab is

certainly a continuous bilinear map. The norm of a bilinear map B : E × F → G is

simply

‖B‖ = sup{‖B(x, y)‖ : ‖x‖‖y‖ = 1}.

The following ideas were first studied in [Arens, 1951].

Given a bilinear mapB : E×F → G, defineC1 : G′×E → F ′ andD1 : F ′′×G′ → E ′

by

〈C1(φ, x), y〉 = 〈φ,B(x, y)〉 (x ∈ E, y ∈ F, φ ∈ G′)

〈D1(Ψ, φ), x〉 = 〈Ψ, C1(φ, x)〉 (x ∈ E, φ ∈ G′,Ψ ∈ F ′′).

Then we define B1 : E ′′ × F ′′ → G′′ by

〈B1(Φ,Ψ), φ〉 = 〈Φ, D1(Ψ, φ)〉 (Φ ∈ E ′′,Ψ ∈ F ′′, φ ∈ G′).

Similarly, we swap the roles of E and F to define C2 : G′×F → E ′ and D2 : E ′′×G′ →

F ′ by

〈C2(φ, y), x〉 = 〈φ,B(x, y)〉 (x ∈ E, y ∈ F, φ ∈ G′)

〈D2(Φ, φ), y〉 = 〈Φ, C2(φ, y)〉 (y ∈ F, φ ∈ G′,Φ ∈ E ′′).
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Then we define B2 : E ′′ × F ′′ → G′′ by

〈B2(Φ,Ψ), φ〉 = 〈Ψ, D2(Φ, φ)〉 (Φ ∈ E ′′,Ψ ∈ F ′′, φ ∈ G′).

Proposition 1.7.1. LetE,F andG be Banach spaces, letB : E×F → G be a continuous

bilinear map, and let B1, B2 : E ′′ × F ′′ → G′′ be as above. Then, for i = 1, 2, Bi is a

bilinear map, ‖Bi‖ = ‖B‖ and Bi(κE(x), κF (y)) = κG(B(x, y)) for x ∈ E and y ∈ F .

Proof. It is simple to check that, for i = 1, 2, the maps Ci, Di and Bi are bilinear. Then

we have

‖C1‖ = sup{‖C1(φ, x)‖ : ‖φ‖ = ‖x‖ = 1}

= sup{|〈C1(φ, x), y〉| : ‖φ‖ = ‖x‖ = ‖y‖ = 1}

= sup{‖B(x, y)‖ : ‖x‖ = ‖y‖ = 1} = ‖B‖.

Similarly, ‖D1‖ = ‖C1‖ and ‖B1‖ = ‖D1‖, so that ‖B1‖ = ‖B‖. Analogously, ‖C2‖ =

‖B‖, ‖D2‖ = ‖C2‖, ‖B2‖ = ‖D2‖, and so ‖B2‖ = ‖B‖.

For x ∈ E, y ∈ F and φ ∈ G′, we have

〈B1(κE(x), κF (y)), φ〉 = 〈D1(κF (y), φ), x〉 = 〈C1(φ, x), y〉 = 〈κGB(x, y), φ〉,

〈B2(κE(x), κF (y)), φ〉 = 〈D2(κE(x), φ), y〉 = 〈κE(x), C2(φ, y)〉 = 〈κGB(x, y), φ〉,

as required.

As in the remark after Theorem 1.4.9, for Φ ∈ E ′′, we can find a bounded net (xα) in

E such that κE(xα) → Φ in the weak∗-topology on E ′′. Similarly, let (yβ) be a bounded

net such that κF (yβ) → Ψ ∈ F ′′. Then we have

B1(Φ,Ψ) = lim
α

lim
β
κGB(xα, yβ) , B2(Φ,Ψ) = lim

β
lim

α
κGB(xα, yβ)

where the limits converge in the weak∗-topology on G′′ (if you are unhappy about the

existence of a limit, take the limits along ultrafilters). We now see clearly why we have

two extensions B1 and B2.

As the algebra product on a Banach algebra A is a bilinear map, we can apply this

result to find two bilinear maps fromA′′×A′′ toA′′ which extend the product. Following

the construction through, and recalling that A′ is a Banach A-bimodule, we first define

bilinear maps A′′ ×A′ → A′ and A′ ×A′′ → A′ by

〈Φ · µ, a〉 = 〈Φ, µ · a〉 , 〈µ · Φ, a〉 = 〈Φ, a · µ〉 (a ∈ A, µ ∈ A′,Φ ∈ A′′).
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Then we define bilinear maps 2,3 : A′′ ×A′′ → A′′, corresponding to B1 and B2, by

〈Φ2Ψ, µ〉 = 〈Φ,Ψ · µ〉 , 〈Φ3Ψ, µ〉 = 〈Ψ, µ · Φ〉 (µ ∈ A′,Φ,Ψ ∈ A′′).

We can check that 2 and 3 are actually algebra products (checking associativity is non-

trivial) so that

κA : A → (A′′,2) , κA : A → (A′′,3)

are isometric isomorphisms onto their ranges. TreatingA′′ as aA-bimodule in the canon-

ical way, we have

a · Φ = κA(a)2Φ = κA(a)3Φ (a ∈ A,Φ ∈ A′′),

and a similar result “on the right”. When 2 = 3, we say that A is Arens regular.

There is a standard characterisation of when B : E × F → G gives rise to B1 = B2.

Theorem 1.7.2. Let E,F and G be Banach spaces and let B : E×F → G be a bounded

bilinear map. Let Bi : E ′′ × F ′′ → G′′ be the extensions defined as above. Then the

following are equivalent:

1. B1 = B2;

2. for each φ ∈ G′, the map E → F ′;x 7→ C1(φ, x) is weakly-compact;

3. for each φ ∈ G′, the map F → E ′; y 7→ C2(φ, y) is weakly-compact;

4. for each pair of bounded sequences (xn) in E and (yn) in F , and each φ ∈ G′, we

have

lim
n

lim
m
〈φ,B(xn, ym)〉 = lim

m
lim

n
〈φ,B(xn, ym)〉,

whenever both the iterated limits exist. �

An element Ξ ∈ A′′ is a mixed identity if we have

Φ2Ξ = Ξ3Φ = Φ (Φ ∈ A′′).

Equivalently, this is if and only if

Ξ · µ = µ · Ξ = µ (µ ∈ A′), or a · Ξ = Ξ · a = κA(a) (a ∈ A).

Proposition 1.7.3. Let A be a Banach algebra. Then A′′ has a mixed identity if and only

if A has a bounded approximate identity.
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Proof. We just give a sketch. If we have a mixed identity Ξ ∈ A′′, then let (aα) be a

bounded net in A converging to Ξ in the weak∗-topology on A′′. For a ∈ A and µ ∈ A′,

we then have

〈µ, a〉 = 〈κA(a), µ〉 = 〈κA(a)3Ξ, µ〉 = 〈a · Ξ, µ〉 = lim
α
〈µ, aaα〉

and similarly, limα 〈µ, aαa〉 = 〈µ, a〉, so that (aα) is, weakly, a bounded approximate

identity. Using Mazur’s theorem, we see that a suitable convex combination of (aα) forms

a bounded approximate identity.

Conversely, let (aα) be a bounded approximate identity, and let Ξ be the (ultrafilter)

limit of (aα) in A′′. Then, for a ∈ A′′ and µ ∈ A′, we have

〈Ξ, a · µ〉 = lim
α
〈a · µ, aα〉 = lim

α
〈µ, aαa〉 = 〈µ, a〉 = lim

α
〈µ, aaα〉 = 〈Ξ, µ · a〉.

We see immediately that Ξ · a = a · Ξ = κA(a), so that Ξ is a mixed identity.

At one extreme, we have Arens regular Banach algebras; at the other, we always have

that 2 and 3 agree on κA(A), though there are examples of Banach algebras when 2 and

3 only agree here (see, for example, [Lau, Ülger, 1996, Corollary 5.5]).

Definition 1.7.4. The topological centres, Z
(1)
t (A′′) and Z

(2)
t (A′′), are defined as

Z
(1)
t (A′′) = {Φ ∈ A′′ : Φ2Ψ = Φ3Ψ (Ψ ∈ A′′)},

Z
(2)
t (A′′) = {Φ ∈ A′′ : Ψ2Φ = Ψ3Φ (Ψ ∈ A′′)}.

We have that, for i = 1, 2, κA(A) ⊆ Z
(i)
t (A′′). We can easily show that A is Arens

regular if and only if Z
(i)
t (A′′) = A′′ for one (or equivalently both) of i = 1 or i = 2.

We say that A is left strongly Arens irregular if Z
(1)
t (A′′) = A; similarly we have right

strongly Arens irregular and strongly Arens irregular. These definitions were introduced

in [Lau, Ülger, 1996], and studied in detail in [Dales, Lau, 2004], for example.

A good survey of results about the Arens products is [Duncan, Hosseiniun, 1979];

[Civin, Yood, 1961] is the first systematic study of Arens products. For example, let E be

a Banach space and let A(E) be the algebra of approximable operators (see Section 2.1).

Then A(E) is Arens regular if and only if E is reflexive (see Theorem 2.5.2 and Theo-

rem 2.7.36). Similarly, in the positive directly, every C∗-algebra (see the next section) is

Arens regular

Definition 1.7.5. Let G be a group. Form l1(G) as a Banach space, so that we can write

each x ∈ l1(G) in the form

x =
∑
g∈G

ageg
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where (ag)g∈G is an absolutely summable sequence in C. We define an algebra product

on l1(G) by convolution, that is, for x =
∑

g∈G ageg and y =
∑

g∈G bgeg, we have

x ∗ y =
∑

g,h∈G

agbhegh =
∑
g∈G

(∑
h∈G

ahbg−1h

)
eg.

Then we have

‖x ∗ y‖ =
∑
g∈G

∣∣∣∑
h∈G

ahbg−1h

∣∣∣ ≤∑
g∈G

∑
h∈G

|ah||bg−1h| =
∑
h∈G

|ah|
∑
g∈G

|bg| = ‖x‖‖y‖,

so that (l1(G), ∗) is a Banach algebra, called the group algebra of G.

For more information about group algebras, see [Dales, 2000, Section 3.3]. When G

is a locally compact group, we can form L1(G) is a similar manner to the above, using

the Haar measure. Again, see the reference for details. Then l1(G) is Arens regular if

and only if G is a finite group (the same holds for L1(G)), as first shown by Young (see

[Duncan, Hosseiniun, 1979, Section 2]). Indeed, when G is infinite, l1(G) is strongly

Arens irregular.

Conversely, consider l1(Z) as a Banach space. Then we can define a multiplication

pointwise, and this clearly gives rise to a Banach algebra. A simple argument shows that

this Banach algebra is Arens regular, whereas the convolution algebra on l1(Z) is not.

Hence the nature of the algebra product on a Banach algebra, and not just the geometry

of the underlying Banach space, is important as far as Arens regularity is concerned.

1.8 C∗-algebras

We shall briefly sketch some results about C∗-algebras, which can be thought of as special

Banach algebras. We shall not directly study C∗-algebras, but shall instead use them as

motivating examples. For more details, see, for example, [Arveson, 1976].

Definition 1.8.1. LetA be an algebra. A map ∗ : A → A, written a 7→ a∗, is an involution

when we have:

1. (αa+ b)∗ = αa∗ + b∗ for α ∈ C and a, b ∈ A;

2. (ab)∗ = b∗a∗ for a, b ∈ A;

3. (a∗)∗ = a for a ∈ A.

When A is a Banach algebra and ‖a∗a‖ = ‖a‖2 for each a ∈ A, we say that (A, ∗) is

a C∗-algebra.
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For example, let H be a Hilbert space and T ∈ B(H). Define T ∗ ∈ B(H) by

[T ∗(x), y] = [x, T (y)] (x, y ∈ H).

We can check that T 7→ T ∗ is an involution, and that ‖T ∗T‖ = ‖T‖2, so that (B(H), ∗) is

a C∗-algebra. In fact, let A be a subalgebra of B(H) such that A = A∗ := {T ∗ : T ∈ A}.

Then (A, ∗) is a C∗-algebra. We shall see that every C∗-algebra arises in this way.

Let A be a C∗-algebra with a unit eA. Then, for a ∈ A, we have (e∗Aa)
∗ = a∗eA = a∗,

so that e∗Aa = (a∗)∗ = a, and similarly ae∗A = a, so that e∗A = eA.

Theorem 1.8.2. Let A be a C∗-algebra, and a ∈ A. Then we have:

1. σA(a∗) = σA(a) := {z : z ∈ σA(a)} and νA(a∗a) = ‖a∗a‖ = ‖a‖2;

2. suppose that a∗a = aa∗, that is, a is normal. Then νA(a) = ‖a‖;

3. suppose that a∗ = a, that is, a is self-adjoint. Then σA(a) ⊆ R. �

LetA be a C∗-algebra which is not unital. Then we see that, in general, our unitisation,

A[, is not a C∗-algebra (as the norm does not satisfy the correct condition). However, for

α ∈ C and a ∈ A, we have

σA(αeA + a) = {z ∈ C : (z − α)eA − a 6∈ InvA} = {z + α : z ∈ σA(a)}.

We then simply define

‖αeA[ + a‖A[ = νA[(|α|2eA[ + αa∗ + αa+ aa∗)1/2

= sup{|z + |α|2|1/2 : z ∈ σA(αa∗ + αa+ aa∗)}.

We can check (using the spectral mapping theorem) that (A[, ‖ · ‖A[) is a C∗-algebra.

In particular, by Theorem 1.5.5, we see that every C∗-algebra is semi-simple.

Proposition 1.8.3. Let A be a C∗-algebra. Then A has a bounded approximate identity

(eα) which satisfies eα = e∗α and ‖eα‖ ≤ 1 for each α. �

Let H be a Hilbert space. A representation of a C∗-algebra A is a homomorphism

π : A → B(H) which preserves ∗. By moving to a subspace of H if necessary, we may

suppose that lin{π(a)(x) : a ∈ A, x ∈ H} is dense in H . Then it is simple to show

that when A is unital, we must have π(eA) = IdH . For the next theorem to make sense,

we need to note that every ideal in a C∗-algebra is automatically self-adjoint, so that the

quotient is a C∗-algebra in a natural way.
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Theorem 1.8.4. Let A and B be C∗-algebras and π : A → B be a ∗-homomorphism.

Then π is norm-decreasing, π(A) is a C∗-subalgebra of B, and π factors to give an

isometric ∗-isomorphism A/ kerπ → π(A). Consequently, every injective C∗-algebra

representation is an isometry. �

Let µ ∈ A′ for a unital C∗-algebra A. We say that µ is positive when 〈µ, a∗a〉 ≥ 0 for

each a ∈ A, and that µ is a state when µ is positive and 〈µ, eA〉 = 1. Indeed, when µ is

positive, we have ‖µ‖ = 〈µ, eA〉, and we can show that

|〈µ, b∗a〉|2 ≤ 〈µ, a∗a〉〈µ, b∗b〉 (a, b ∈ A),

the Cauchy-Schwarz inequality. Furthermore, for µ ∈ A′, µ is a state if and only if

‖µ‖ = 〈µ, eA〉 = 1.

Let π : A → B(H) be a representation, and let x ∈ H be such that ‖x‖ = 1. Define

µ ∈ A′ by

〈µ, a〉 = [π(a)(x), x] (a ∈ A).

Then we have 〈µ, a∗a〉 = [π(a∗a)(x), x] = [π(a)∗π(a)(x), x] = ‖π(a)(x)‖2, so that µ is

positive.

Theorem 1.8.5. (Gelfand-Naimark-Segal construction) Let µ be a positive linear func-

tional on a C∗-algebra A. Then there is a representation π : A → B(H) and x ∈ H

such that 〈µ, a〉 = [π(a)(x), x] for each a ∈ A. We may suppose that x is cyclic, that is,

lin{π(a)(x) : a ∈ A} is dense in H . �

Notice that the states in A′ form a convex set. We say that a state µ is pure when µ

is an extreme point of this convex set, that is, whenever µ = tµ1 + (1 − t)µ2 for some

t ∈ (0, 1) and states µ1 and µ2, we must have that µ1 = µ2 = µ.

Theorem 1.8.6. Let π : A → B(H) be a representation with a cyclic vector x, and let µ

be the state 〈µ, a〉 = [π(a)(x), x]. Then µ is a pure state if and only if π is simple (that is,

there are no non-trivial invariant subspaces of H for π). �

Theorem 1.8.7. Let A be a C∗-algebra and a ∈ A be self-adjoint. Then there is a pure

state µ such that |〈µ, a〉| = ‖a‖.

For each a ∈ A, there exists a simple representation π : A → B(H) and x ∈ H with

‖x‖ = 1 and ‖π(a)(x)‖ = ‖a‖. �

We can now prove the Gelfand-Naimark theorem, which states that every C∗-algebraA

is isometrically a ∗-subalgebra of B(H) for some Hilbert space H . Indeed, for each non-
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zero a ∈ A, let πa : A → B(Ha) and xa ∈ Ha be given as above, so that ‖πa(a)(xa)‖ =

‖a‖ > 0. Then define

H = l2
(⊕

a∈A

Ha

)
, π : A → H; a 7→

(
πa(a)

)
.

Thus, for y = (yb)b∈A ∈ H and a ∈ A, we have

‖π(a)(y)‖2 =
∑
b∈A

‖πb(a)(yb)‖2 ≤ ‖a‖2
∑
b∈A

‖yb‖2 = ‖a‖2‖y‖2,

so that π is norm-decreasing and is a representation. Then, treating xa as a member of

H , we have ‖π(a)(xa)‖ = ‖πa(a)(xa)‖ = ‖a‖, so that π is actually an isometry onto its

range, as required.

Notice that, in general,H will be very large. For example, starting withA = B(l2), we

do not have that H = l2, a fact certainly seen by noting that there are operators T ∈ B(l2)

which do not attain their norm, and hence that there are pure states on B(l2) which do not

have the form T 7→ [T (x), x] for some x ∈ l2.
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Chapter 2

Operator ideals and Arens products

In this chapter we introduce tensor products of Banach spaces, and the associated idea of

a tensor norm. When E and F are finite-dimensional Banach spaces, the tensor product

of E with F , E ⊗ F , can be thought of as the space of operators B(E ′, F ), which in turn

is simply a space of matrices (with respect to a choice of bases for E and F ). Then the

dual space is also a space of matrices: we shall see that the duality can be realised by the

trace functional. If we have a norm on B(E ′, F ) then we get the dual norm on B(F,E ′),

the nuclear or integral norm. Tensor norms provide a framework in which to extend these

ideas to the infinite-dimensional setting.

Tensor products reflect the local structure of Banach spaces, that is, the structure of

finite-dimensional subspaces, and have proved to be useful in the study of such structure.

However, tensor products also give rise to an interesting class of Banach algebras: es-

sentially by taking the finite-rank operators on a Banach space E and then completing

under a suitable norm (which may or may not be the operator norm). The behaviour of

the Arens products on the bidual of such algebras has been shown to be closely linked

to certain properties of the Banach space. For example, let A(E) be the approximable

operators, the closure of F(E) with respect to the operator norm. Then A(E) is Arens

regular if and only if E is reflexive.

In this chapter we shall study the topological centres of the bidual of the algebra of

nuclear operators (with respect to an arbitrary tensor norm, so making this more general

than the usual meaning of nuclear operator).

The first six sections in this chapter detail the results we shall need. We refer the

reader to [Ryan, 2002] or [Defant, Floret, 1993] for more details on the topics in these

sections. There is a short, self-contained account in [Diestel, Uhl, 1977] of many of the
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more important ideas in these initial sections. Proofs are omitted where they are standard

(and can be found in the above references). We sketch the proofs of some results which

are not standard; such results are surely known to experts in the area, but may not be

presented in a suitable form in the literature.

2.1 Tensor products and tensor norms

The tensor product of vector spaces V and U is a vector space V ⊗ U together with a

bilinear map ι : V × U → V ⊗ U ; (v, u) 7→ v ⊗ u, such that whenever W is a vector

space, and T : V ×U → W is a bilinear map, there is a unique linear map T̂ : V ⊗U → W

such that the following diagram commutes:

V × U
T

- W

V ⊗ U

ι

?

T̂

-

Of course, it can be shown that V ⊗ U always does exist, and it is easy to show that it is

unique up to isomorphism. For u ∈ V ⊗ U , we can write

u =
n∑

i=1

vi ⊗ ui,

where n ∈ N, (vi)
n
i=1 ⊆ V and (ui)

n
i=1 ⊆ U . Such a representation is not unique.

When E and F are normed vector spaces, it seems natural to put a norm on E ⊗ F .

However, there are many ways to do this, not all of them agreeing with the algebraic

structure of E⊗F . We follow an approach which can be traced back to work of Schatten,

[Schatten, 1950].

Recall that FIN is the class of finite-dimensional normed vector spaces. For a normed

vector space E, let FIN(E) be all subspaces F of E such that F ∈ FIN.

Definition 2.1.1. LetE and F be normed vectors spaces and α be a norm onE⊗F . Then

α is a reasonable crossnorm if we have:

1. α(x⊗ y) ≤ ‖x‖‖y‖ for each x ∈ E and y ∈ F ;

2. for µ ∈ E ′ and λ ∈ F ′, let µ⊗ λ be the linear functional on E ⊗ F defined by

〈µ⊗ λ, x⊗ y〉 = 〈µ, x〉〈λ, y〉 (x ∈ E, y ∈ F )

and linearity. Then we require that ‖µ⊗ λ‖α ≤ ‖µ‖‖λ‖.
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In fact, if α is a reasonable crossnorm, then α(x ⊗ y) = ‖x‖‖y‖ and ‖µ ⊗ λ‖α =

‖µ‖‖λ‖.

Definition 2.1.2. A uniform crossnorm is an assignment to each pair, (E,F ), of Banach

spaces, of a reasonable crossnorm α on E ⊗ F such that we have the following. Let

D,E, F and G be Banach spaces, and let T ∈ B(D,E), S ∈ B(G,F ). Then we form the

bilinear map

T ⊗ S : D ×G→ E ⊗ F ; (x, y) 7→ T (x)⊗ S(y) (x ∈ D, y ∈ G),

which extends toD⊗G by the tensorial property. Then we insist that ‖T⊗S‖ ≤ ‖T‖‖S‖

with respect to the norm α on D ⊗G and on E ⊗ F .

For u ∈ E⊗F , we write α(u,E⊗F ) to avoid confusion. Let D be a closed subspace

of E, let G be a closed subspace of F , and let u ∈ D ⊗ G. By considering the inclusion

maps D → E and G → F , we identify u with its image in E ⊗ F , and for a uniform

crossnorm α, we see that

α(u,E ⊗ F ) ≤ α(u,D ⊗G).

Definition 2.1.3. Let α be a uniform crossnorm. Then α is finitely generated if, for each

pair of Banach spaces E and F , and each u ∈ E ⊗ F , we have

α(u,E ⊗ F ) = inf{α(u,M ⊗N) : M ∈ FIN(E), N ∈ FIN(F ), u ∈M ⊗N}.

We call a finitely generated uniform crossnorm a tensor norm. We denote the comple-

tion of the normed space (E ⊗ F, α) by E⊗̂αF .

Definition 2.1.4. For Banach spaces E and F , and u ∈ E ⊗ F , let ut ∈ F ⊗ E be

defined by ut =
∑n

i=1 yi ⊗ xi when u =
∑n

i=1 xi ⊗ yi. We call ut the transpose of u

and often refer to the map u 7→ ut as the swap map. For a tensor norm α, define αt by

αt(u,E ⊗ F ) = α(ut, F ⊗ E), so that αt is a tensor norm.

The two most common tensor norms, the injective and projective tensor norms (defined

shortly) are symmetric, in that the swap map leaves them invariant, but this is not true for

general tensor norms.

Let E and F be Banach spaces, and consider the bilinear map E ′ × F → B(E,F )

given by

(µ, y) : x 7→ 〈µ, x〉y (x ∈ E, y ∈ F, µ ∈ E ′).
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This extends to a mapE ′⊗F → B(E,F ), whose image isF(E,F ), the set of all bounded

linear maps fromE to F whose image is finite-dimensional, the finite-rank operators. We

use this bijection to define a norm on E ′ ⊗ F ; more generally we use the map κE ⊗ IdF :

E⊗F → E ′′⊗F = F(E ′, F ) to define a norm on E⊗F . This gives the injective tensor

norm ε.

Theorem 2.1.5. Let E and F be Banach spaces, and u ∈ E ⊗ F . Let u =
∑n

i=1 xi ⊗ yi

be a representative of u. We then have

ε(u,E ⊗ F ) = sup

{∣∣∣∣∣
n∑

i=1

〈µ, xi〉〈λ, yi〉

∣∣∣∣∣ : µ ∈ E ′
[1], λ ∈ F ′

[1]

}
.

Notice that this is independent of the representative chosen for u. The injective tensor

norm is finitely generated and is a uniform crossnorm. If D is a closed subspace of E and

G a closed subspace of F , then for u ∈ D ⊗G, we have ε(u,D ⊗G) = ε(u,E ⊗ F ).

We can thus identify E ′⊗̂εF with the closure of F(E,F ) in B(E,F ), the approx-

imable operators A(E,F ). It is common to write ⊗̌ for ⊗̂ε.

Let E,F and G be Banach spaces and T : E × F → G be a bounded bilinear map.

Then there is a linear extension T̂ : E ⊗ F → G. It would be natural to give E ⊗ F a

norm so that ‖T̂‖ = ‖T‖. This leads to the projective tensor norm π (indeed, it is enough

to look at all maps T : E × F → C).

Theorem 2.1.6. Let E and F be Banach spaces and u ∈ E ⊗ F . Then we have

π(u,E ⊗ F ) = inf

{
n∑

i=1

‖xi‖‖yi‖ : u =
n∑

i=1

xi ⊗ yi

}
.

The projective tensor norm is finitely generated and is a uniform crossnorm. For each

u ∈ E⊗̂πF , and ε > 0, we can write, with convergence with respect to π,

u =
∞∑
i=1

xi ⊗ yi ,

∞∑
i=1

‖xi‖‖yi‖ < π(u,E⊗̂πF ) + ε.

Let T : E → D and S : F → G be quotient operators. Then T ⊗ S : E⊗̂πF → D⊗̂πG

is a quotient operator.

It is common to write ⊗̂ for ⊗̂π. The projective tensor norm does not respect subspaces

in the way that the injective tensor norm does. However, we have the following useful

exception.

Proposition 2.1.7. Let E and F be Banach spaces. Then the map κE ⊗ κF : E⊗̂F →

E ′′⊗̂F ′′ is an isometry, so that E⊗̂F is a subspace of E ′′⊗̂F ′′.
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Proof. This is [Ryan, 2002, Corollary 2.14].

The injective and projective tensor norms are the “extreme” reasonable crossnorms.

Proposition 2.1.8. Let E and F be Banach spaces and α be a norm on E⊗F . Then α is

a reasonable crossnorm if and only if ε(u) ≤ α(u) ≤ π(u) for each u ∈ E ⊗ F .

Proof. This is a simple calculation given the definition of a reasonable crossnorm.

2.2 Duals of tensor products and operator ideals

Let E,F ∈ FIN so that E ⊗ F is finite-dimensional, and thus all norms on E ⊗ F are

equivalent. Let µ ∈ (E ⊗ F )′ (where E ⊗ F has some tensor norm on it) so that, for

u ∈ E ⊗ F with u =
∑n

i=1 xi ⊗ yi, we have

〈µ, u〉 =
n∑

i=1

〈µ, xi ⊗ yi〉.

Define Tµ : E → F ′ by 〈Tµ(x), y〉 = 〈µ, x⊗ y〉 for x ∈ E and y ∈ F . Thus we have

〈µ, u〉 =
n∑

i=1

〈Tµ(xi), yi〉.

Hence we have (E ⊗ F )′ = B(E,F ′), as vector spaces. As F ∈ FIN, B(E,F ′) =

F(E,F ′) = E ′ ⊗ F ′, so that (E ⊗ F )′ = E ′ ⊗ F ′. Explicitly, the duality is

〈u, v〉 =
n∑

i=1

m∑
j=1

〈µi, xj〉〈λi, yj〉,

for u =
∑n

i=1 µi ⊗ λi ∈ E ′ ⊗ F ′ and v =
∑m

j=1 xj ⊗ yj ∈ E ⊗ F . As E ′ ⊗ F ′ =

F(E,F ′) and E⊗F = F(E ′, F ), let Tu ∈ F(E,F ′) and Tv ∈ F(E ′, F ) be the operators

represented by u and v, respectively. Then we have

Tu ◦ T ′v =
m∑

j=1

yj ⊗ Tu(xj) ∈ F(F ′) , 〈u, v〉 =
m∑

j=1

〈Tu(xj), yj〉 = Tr(Tu ◦ T ′v),

the trace of Tu ◦ T ′v. The duality using the trace is often referred to as trace duality. Note

that Tr(Tu ◦ T ′v) = Tr(T ′v ◦ Tu), a property which is useful in calculations.

Definition 2.2.1. Let α be a tensor norm. Then the dual tensor norm to α is α′, and is

given by setting

(E⊗̂αF )′ = E ′⊗̂α′F
′

for E,F ∈ FIN, and extending α′ to all Banach spaces by finite-generation. Define α̌ to

be the tensor norm (α′)t, called the adjoint of α.
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Of course, we can show that α′ is a tensor norm. We then have that α′′ = α, ε′ = π

and π′ = ε. So for E,F ∈ FIN, we have (E⊗̂F )′ = B(E,F ′) = E ′⊗̌F ′ and that

B(E,F )′ = (E ′⊗̌F )′ = E⊗̂F ′.

The picture is more complicated for infinite-dimensional Banach spaces, due to our in-

sisting that tensor norms are finitely generated (which is necessary to ensure that, for ex-

ample, α′′ = α). For a tensor norm α define αs by the embedding E⊗̂αsF → (E ′⊗̂αF
′)′

for any Banach spaces E and F . Thus αs = α′ on FIN, but not, in general, on infinite-

dimensional spaces, and we can check that αs need not be a tensor norm, as it need not

be finitely-generated.

Definition 2.2.2. Let α be a tensor norm such that (α′)s = α′′ = α on E ⊗ F whenever

at least one of E and F are in FIN. Then α is said to be accessible.

Suppose further that we always have (α′)s = α. Then α is totally accessible.

We can show that ε is totally accessible, that π is accessible, and that α is accessi-

ble if and only if α′ is accessible. Indeed, most common tensor norms are accessible;

certainly any defined in [Ryan, 2002] are. However, as shown in [Defant, Floret, 1993,

Section 31.6], there do exist tensor norms which are not accessible.

Proposition 2.2.3. Let E and F be Banach spaces. Then the map Γ : B(E,F ′) →

(E⊗̂F )′ given by

〈Γ(T ), x⊗ y〉 = 〈T (x), y〉 (T ∈ B(E,F ′), x ∈ E, y ∈ F )

extends by continuity and linearity to an isometric isomorphism.

Proof. For u ∈ E⊗̂F , for each ε > 0 we can write

u =
∞∑

i=n

xn ⊗ yn , π(u) ≤
∞∑

n=1

‖xn‖‖yn‖ ≤ π(u) + ε.

Thus we have

|〈Γ(T ), u〉| ≤
∞∑

n=1

|〈T (xn), yn〉| ≤ ‖T‖(π(u) + ε).

As ε > 0 was arbitrary, we see that Γ is norm-decreasing.

Conversely, for µ ∈ (E⊗̂F )′, define T : E → F ′ by 〈T (x), y〉 = 〈µ, x⊗ y〉 for

x ⊗ y ∈ E⊗̂F . Then T ∈ B(E,F ′), ‖T‖ ≤ ‖µ‖ and by linearity and continuity, we see

that µ = Γ(T ). Thus Γ is an isometric isomorphism.

As the swap map E⊗̂F → F ⊗̂E is an isometry, we can naturally identify (E⊗̂F )′

with B(F,E ′) as well as with B(E,F ′).
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When E is reflexive, we see that (E⊗̂E ′)′ = B(E), and hence that B(E) is a dual

Banach algebra (recall Definition 1.6.5).

Let α be some tensor norm. As α ≤ π for each pair of Banach spaces E and F , the

formal identity map Iα : E⊗̂F → E⊗̂αF is norm decreasing. For µ ∈ (E⊗̂αF )′, we

then have

T := I ′α(µ) ∈ (E⊗̂F )′ = B(E,F ′).

A check shows that

〈µ,
n∑

i=1

xi ⊗ yi〉 =
n∑

i=1

〈T (xi), yi〉
( n∑

i=1

xi ⊗ yi ∈ E ⊗ F
)
,

so that we can identify (E⊗̂αF )′ with a subspace of B(E,F ′), denoted by Bα′(E,F
′),

the α′-integral operators, and give it the norm ‖ · ‖α′ induced by the identification of

Bα′(E,F
′) with (E⊗̂αF )′. This notation is chosen because we have

Bα′(E,F
′) = (E⊗̂αF )′ = E ′⊗̂α′F

′ (E,F ∈ FIN).

Again, the duality can be explicitly defined by using the trace, at least when dual

spaces are being used. For let u =
∑n

i=1 µi ⊗ yi ∈ E ′⊗̂αF and T ∈ Bα′(E
′, F ′), and let

S ∈ F(E,F ) be the operator induced by u. Then we have

〈T, u〉 =
n∑

i=1

〈T (µi), yi〉 = Tr
( n∑

i=1

κF (yi)⊗ T (µi)
)

= Tr(T ◦ S ′)

=
n∑

i=1

〈T ′κF (yi), µi〉 = Tr
( n∑

i=1

T ′κF (yi)⊗ µi

)
= Tr(S ′ ◦ T ).

The ε-integral operators are just the bounded operators. We call the π-integral opera-

tors just the integral operators and denote them by I(E,F ′) = Bπ(E,F ′).

For a tensor norm α, the finite-generation property of α passes over to α-integral

operators. Suppose that E and F are Banach spaces, and that T ∈ Bα(E,F ′). For

M ∈ FIN(E) and N ∈ FIN(F ), let IM : M → E be the inclusion map and, noting that

N ′ = F ′/N◦, let QN : F ′ → N ′ by the quotient map. Then QN ◦ T ◦ IM ∈ F(M,N ′) =

M ′ ⊗N ′,

E
T

- F ′

M

IM

∪

6

QNTIM- N ′

QN

??
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Suppose that u ∈M ⊗N , and let S ∈ F(M ′, N) be the operator induced by u. Then we

have

〈QNTIM , u〉 = Tr(QNTIMS
′) = Tr(TIMS

′QN) = 〈T, (IMS ′QN)′〉

= 〈T,Q′
NSI

′
M〉 = 〈T, (IM ⊗Q′

N)(u)〉,

so that

|〈QNTIM , u〉| ≤ ‖T‖αα
′((IM ⊗Q′

N)(u), E ⊗ F ′′) ≤ ‖T‖αα
′(u,M ⊗N),

as ‖IM‖ = ‖QN‖ = 1. Thus QNTIM ∈M ′⊗̂αN
′ with α(QNTIM) ≤ ‖T‖α.

Proposition 2.2.4. Let E and F be Banach spaces, let α be a tensor norm, and let T ∈

B(E,F ′). Then the following are equivalent:

1. T ∈ Bα(E,F ′);

2. For some C > 0, for M ∈ FIN(E) and N ∈ FIN(F ), we have

‖QNTIM‖α = α(QNTIM ,M
′ ⊗N ′) ≤ C.

Furthermore, the minimal value for C is ‖T‖α. �

We make the definition that T ∈ B(E,F ) is α-integral if and only if κF ◦T ∈ B(E,F ′′)

is α-integral. Then an argument using the principle of local reflexivity, and noting that

N ∈ FIN(F ) if and only if N◦ has finite co-dimension in N ′, leads us to the following.

Write COFIN(F ) for the collection of closed subspaces of F with finite co-dimension.

Proposition 2.2.5. Let E and F be Banach spaces, let α be a tensor norm, and let T ∈

B(E,F ). Then T ∈ Bα(E,F ) if and only if, for some C > 0, we have the following. For

each M ∈ FIN(E) and N ∈ COFIN(F ), letting IM be as before, and QN : F → F/N

be the quotient map, we have ‖QNTIM‖α ≤ C. As before, QNTIM ∈ F(M,F/N) =

M ⊗ F/N , and the minimal value for C is ‖T‖α. �

Proposition 2.2.6. Let E and F be Banach spaces, let T ∈ B(E,F ), and let α be a

tensor norm. The following are equivalent:

1. T is an α-integral operator;

2. κFT : E → F ′′ is an α-integral operator;

3. T ′′ : E ′′ → F ′′ is an α-integral operator;
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4. T ′ : F ′ → E ′ is an αt-integral operator.

Furthermore ‖T‖α = ‖κFT‖α = ‖T ′′‖α = ‖T ′‖αt .

Let D and G be Banach spaces, let S ∈ B(D,E) and R ∈ B(F,G). Then RTS ∈

Bα(D,G) and ‖RTS‖α ≤ ‖R‖‖T‖α‖S‖. �

Hence we have the following isometric inclusions

Bα(E,F ) ⊆ (E⊗̂α′F
′)′ = Bα(E,F ′′) ⊆ Bα(E ′′, F ′′),

noting that T ′′κE = κFT for any T ∈ B(E,F ). The final part of the above proposition

shows that the α-integral operators are an operator ideal in the sense of Pietsch (see

[Pietsch, 1980]). In particular, Bα(E) is, algebraically, an ideal in B(E).

Definition 2.2.7. An operator ideal U is an assignment, to each pair of Banach spaces E

and F , a subspace U(E,F ) ⊆ B(E,F ) such that:

1. there is a norm u on U(E,F ) such that (U(E,F ), u) is a Banach space;

2. F(E,F ) ⊆ U(E,F ), and for µ ∈ E ′ and x ∈ F , for the one-dimensional operator

µ⊗ x ∈ F(E,F ), we have u(µ⊗ x) = ‖µ‖‖x‖;

3. for Banach spaces D and G, T ∈ U(E,F ), S ∈ B(D,E) and R ∈ B(F,G), RTS ∈

U(D,G), and u(RTS) ≤ ‖R‖u(T )‖S‖.

If U(E,F ) is always a closed subspace of B(E,F ), then we say that U is a closed operator

ideal.

Note that some sources give a more general definition for the term “operator ideal”.

For each tensor norm α, we see that Bα is an operator ideal for the norm ‖ · ‖α; it is

rarely closed. The assignment A(E,F ) is a closed operator ideal, and by condition (2)

we see that it is the smallest closed operator ideal. We say that an operator T : E → F is

compact if T (E[1]) is a relatively norm-compact subset of F , denoted by T ∈ K(E,F ).

Then K is a closed operator ideal, the compact operators. Similarly, the collection of

weakly-compact operators, W(E,F ), is also a closed operator ideal.

Theorem 2.2.8. Let E and F be Banach spaces, and T ∈ B(E,F ). Then T ∈ K(E,F )

if and only if T ′ ∈ K(F ′, E ′). Moreover, the following are equivalent: (1) T ∈ W(E,F );

(2) T ′ ∈ W(F ′, E ′); and (3) T ′′(E ′′) ⊆ κF (F ).

Proof. The statement about compact operators is Schauder’s Theorem, [Megginson, 1998,

Theorem 3.4.15]. The statement about weakly-compact operators is Gantmacher’s Theo-

rem, [Megginson, 1998, Theorem 3.5.8, Theorem 3.5.13].
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Theorem 2.2.9. Let E and F be Banach spaces, and T ∈ B(E,F ). Then T ∈ W(E,F )

if and only if there exists a reflexive Banach space G, R ∈ B(E,G) and S ∈ B(G,F )

with T = S ◦R. Furthermore, we can choose G,S and R so that R has dense range and

the same norm and kernel as T , and so that S is norm-decreasing and injective.

Proof. This is [Davis et al., 1974]. We will give a brief sketch of the construction, fol-

lowing the presentation given in [Palmer, 1994, Section 1.7.8]. For n ∈ N, define a new

norm on F by

‖y‖n = inf{2−n/2‖T‖‖x‖+ ‖y − T (x)‖ : x ∈ E} (y ∈ F ).

Setting x = 0 gives ‖y‖n ≤ ‖y‖ for each y ∈ F . Similarly, as ‖y‖ ≤ ‖y − T (x)‖ +

‖T (x)‖ ≤ 2n/2‖y − T (x)‖ + ‖T‖‖x‖, we have ‖y‖ ≤ 2n/2‖y‖n for each y ∈ F . Thus,

for each n ∈ N, ‖ · ‖n and ‖ · ‖ are equivalent norms on F . We also have, for x ∈ E,

‖T (x)‖n ≤ 2−n/2‖T‖‖x‖. Let

G =
{
y ∈ F :

∞∑
n=1

‖y‖2
n <∞

}
,

with the norm ‖y‖G = (
∑∞

n=1 ‖y‖2
n)

1/2. Then ‖T (x)‖G ≤ ‖T‖‖x‖, so that T (E) ⊆ G.

We can thus define R and S by R(x) = T (x), for x ∈ E, and S(y) = y, for y ∈ G. The

remaining claims follow by calculation (we can ensure that R has dense range by simply

replacing G with the image of R).

Corollary 2.2.10. Let E and F be Banach spaces and T ∈ K(E,F ). Then there exists a

reflexive Banach space G, R ∈ B(E,G) and S ∈ K(G,F ) with T = S ◦R.

Proof. We follow the (sketch) proof above, and claim that the map S constructed in actu-

ally compact. This will follow if we can show that S(G[1]) is contained in the closure of

T (E[‖T‖−1]), which is a compact subset of F , as T is a compact operator.

Let y ∈ G be such that ‖y‖G < 1, so that y ∈ F and
∑∞

n=1 ‖y‖2
n < 1. Hence we can

find a sequence (xn) in E with

∞∑
n=1

(
2−n/2‖T‖‖xn‖+ ‖y − T (xn)‖

)2

< 1.

We have ‖y − T (xn)‖ ≥ ‖y‖ − ‖T (xn)‖ ≥ ‖y‖ − ‖T‖‖xn‖, so that

1 >
∞∑

n=1

(
‖y‖+ (2−n/2 − 1)‖T‖‖xn‖

)2

.
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In particular, ‖y‖ = limn ‖T‖‖xn‖. As limn ‖y − T (xn)‖ = 0, it is clear that y is in the

closure of T (E[‖y‖‖T‖−1]). As ‖y‖ ≤ 2n/2‖y‖n for each n ∈ N, we have

‖y‖2
G =

∞∑
n=1

‖y‖2
n ≥

∞∑
n=1

2−n‖y‖2 = ‖y‖2,

so that ‖y‖ ≤ ‖y‖G < 1, and thus T (E[‖y‖‖T‖−1]) ⊆ T (E[‖T‖−1]). As y was arbitrary, we

are done.

2.3 Nuclear and integral operators; the approximation property

Definition 2.3.1. Let E and F be Banach spaces, and let α be a tensor norm. Then there

is a natural, norm-decreasing map Jα : E ′⊗̂αF → B(E,F ) given by

Jα(µ⊗ y)(x) = 〈µ, x〉y (x ∈ E, y ∈ F, µ ∈ E ′),

and linearity and continuity. The image of Jα, equipped with the quotient norm, is the set

of α-nuclear operators, denoted Nα(E,F ), with norm ‖ · ‖Nα . The nuclear operators,

N (E,F ), are the π-nuclear operators.

We can check that the α-nuclear operators form an operator ideal. In particular, for

y ∈ F and µ ∈ E ′, suppose that u ∈ E ′⊗̂αF is such that Jα(u) = µ⊗ y. Then

‖µ‖‖y‖ = ‖Jα(u)‖ ≤ α(u,E ′⊗̂αF ),

so we see that ‖µ ⊗ y‖Nα = ‖µ‖‖y‖. Furthermore, for E,F ∈ FIN, we have E ′⊗̂αF =

(E⊗̂α′F
′)′ = Bα(E,F ), so that the α-integral and α-nuclear operators coincide for finite-

dimensional spaces.

Proposition 2.3.2. Let E and F be Banach spaces. Then the map Jα : E ′⊗̂αF →

B(E,F ) maps into Bα(E,F ), and the arising inclusion Nα(E,F ) → Bα(E,F ) is norm-

decreasing; that is, ‖T‖Nα ≥ ‖T‖α for each T ∈ Nα(E,F ).

Proof. It suffices to show that ‖Jα(u)‖α ≤ α(u) for each u ∈ E ′ ⊗ F , the general result

following by continuity. Fix u ∈ E ′ ⊗ F . We have ‖Jα(u)‖α = ‖κFJα(u)‖α, where

‖κFJα(u)‖α = sup{|〈κFJα(u), v〉| : v ∈ E ⊗ F ′, α′(v) ≤ 1}.

Fix v ∈ E ⊗ F ′ with α′(v) ≤ 1 and let v =
∑n

i=1 xi ⊗ µi.

For ε > 0, we can find M ∈ FIN(E ′) and N ∈ FIN(F ) with u ∈ M ⊗ N and

α(u,E ′ ⊗ F ) ≤ α(u,M ⊗N) ≤ α(u,E ′ ⊗ F ) + ε. Let QM : E → E/◦M = M ′ be the
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quotient map, andQN : F ′ → F ′/N◦ = N ′ be the quotient map. Let u =
∑m

j=1 λj⊗yj ∈

M ⊗N , so that

〈κFJα(u), v〉 =
n∑

i=1

m∑
j=1

〈λj, xi〉〈µi, yj〉

=
n∑

i=1

m∑
j=1

〈λj, xi + ◦M〉〈µi +N◦, yj〉

=
n∑

i=1

m∑
j=1

〈λj, QM(xi)〉〈QN(µi), yj〉 = 〈(QM ⊗QN)(v), u〉,

where (QM ⊗QN)(v) ∈M ′ ⊗N ′. We conclude that

|〈κFJα(u), v〉| ≤ α(u,M ⊗N)α′((QM ⊗QN)(v),M ′ ⊗N ′)

≤
(
α(u,E ′ ⊗ F ) + ε

)
‖QM‖‖QN‖α′(v, E ⊗ F ′) ≤ α(u,E ′ ⊗ F ) + ε.

As v and ε > 0 were arbitrary, we must have ‖κFJα(u)‖α ≤ α(u), as required.

To say more on the relationship between Nα and Bα we need to study ideas which go

back to Grothendieck, [Grothendieck, 1953].

Definition 2.3.3. Let E be a Banach space and α be a tensor norm. Then E has the

approximation property if the map Jπ : E ′⊗̂E → N (E) is injective.

There is a related, but more complicated, notion for a general tensor norm α (see

[Defant, Floret, 1993, Section 21.7]). We shall not have cause to consider this though

(and, in the above reference, it is shown that the case where α = π is the important one).

Proposition 2.3.4. Let E be a Banach space. Then the following are equivalent:

1. E has the approximation property;

2. for each Banach space F , the map Jπ ◦ (κE ⊗ IdF ) : E⊗̂F → E ′′⊗̂F → B(E ′, F )

is injective;

3. for each Banach space F , the map Jπ ◦ (κF ⊗ IdE) : F ⊗̂E → F ′′⊗̂E → B(F ′, E)

is injective;

4. for each Banach space F , we have K(F,E) = A(F,E);

5. for each compact set K ⊆ E and each ε > 0, there is T ∈ F(E) with ‖T (x)−x‖ <

ε for each x ∈ K.

Furthermore, if E = D′ for some Banach space D, then the following are equivalent:
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1. E has the approximation property;

2. for each Banach space F , the map Jπ : E⊗̂F = D′⊗̂F → B(D,F ) is injective;

3. for each Banach space F , the map Jπ : F ′⊗̂E → B(F,E) is injective.

If E ′ has the approximation property, then so does E.

Proof. See, for example, [Ryan, 2002, Proposition 4.6].

Using condition (5), it is reasonably simple to show that, for 1 ≤ p ≤ ∞ and any

measure µ, Lp(µ) and Lp(µ)′ have the approximation property (indeed, they have the

metric approximation property – see Definition 2.3.13). Furthermore, C(X) and C(X)′

have the (metric) approximation property for each compact X . There are spaces without

the approximation property (the first was constructed in [Enflo, 1973]). In fact, for p 6= 2,

lp contains subspaces without the approximation property (see [Szankowski, 1978]), and

B(l2) does not have the approximation property (see [Szankowski, 1981]).

Proposition 2.3.5. Let E and F be Banach spaces, and let T ∈ B(E,F ). Suppose that

E ′ has the approximation property and T ′ ∈ N (F ′, E ′). Then T ∈ N (E,F ).

Proof. We adapt [Ryan, 2002, Proposition 4.10]. As E ′ has the approximation property,

by Proposition 2.3.4(3) (and a short calculation) we have N (F ′, E ′) = F ′′⊗̂E ′. Thus

T ′ =
∑∞

n=1 Φn ⊗ µn ∈ F ′′⊗̂E ′. Let K : E ′⊗̂F → F ′′⊗̂E ′ be the map

E ′⊗̂F
S

- F ⊗̂E ′ κF ⊗ IdE′- F ′′⊗̂E ′,

where S is the swap map. We wish to show that T ′ lies in the image of K. By the Hahn-

Banach theorem, it suffices to show that each S ∈ (K(E ′⊗̂F ))◦ ⊆ B(F ′′, E ′′) satisfies

〈S, T ′〉 = 0.

Now, for S ∈ B(F ′′, E ′′) and u = µ⊗ x ∈ E ′⊗̂F , we have

〈S,K(u)〉 = 〈S(κF (x)), µ〉,

so we see that S ∈ (K(E ′⊗̂F ))◦ if and only if S ◦ κF = 0. Then, for S ∈ (K(E ′⊗̂F ))◦,

we have

〈S, T ′〉 =
∞∑

n=1

〈S(Φn), µn〉 =
∞∑

n=1

〈S ′′(κF ′′(Φn)), κE′(µn)〉

= Tr
(
κE′ ◦ κ′E ◦

( ∞∑
n=1

κF ′′(Φn)⊗ κE′(µn)
)
◦ S ′

)
= Tr(κE′ ◦ κ′E ◦ T ′′′ ◦ S ′) = Tr(κE′ ◦ (S ◦ T ′′ ◦ κE)′)

= Tr(κE′ ◦ (S ◦ κF ◦ T )′) = 0,
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as required. Note that, if we expand out the adjoints in the above calculation, then we are

always dealing with T ′ or one of its higher adjoints, all of which we know to be nuclear.

Consequently, the trace is well-defined at all points.

Using [Figiel, Johnson, 1973] and Proposition 2.3.18 below, we see that there is a

Banach space E, which has the approximation property, and such that there exists T ∈

B(E) \ N (E) with T ′ ∈ N (E ′).

We wish to give a more concrete description of I(E,F ).

Theorem 2.3.6. LetE and F be Banach spaces, and let T ∈ B(E,F ). Then the following

are equivalent:

1. T ∈ I(E,F );

2. T ′ ∈ I(F ′, E ′);

3. there exists a finite measure space (Ω,Σ, ν) and operators S : E → L∞(ν) and

R : L1(ν) → F ′′ such that if I : L∞(ν) → L1(ν) is the formal identity map, then

RIS = κFT .

E
T

- F
κF - F ′′

L∞(ν)

S

? I
- L1(ν)

R

6

Furthermore, ‖T‖π = ‖T ′‖π = inf ν(Ω)‖S‖‖R‖ where the infimum is taken over

all factorisations as above.

Proof. See [Ryan, 2002, Theorem 3.10].

Corollary 2.3.7. Let E be a Banach space, and let T ∈ I(E). Then T is weakly-

compact and completely continuous (that is, T takes weakly-convergent sequences to

norm-convergent sequences). Thus the composition of two integral operators is compact,

and so I(E) 6= B(E) when E is infinite-dimensional.

Proof. This follows directly from the factorisation given in the above theorem. For further

details, see [Ryan, 2002, Proposition 3.20].

Note that for an infinite-dimensional Banach space, we have

(E ′⊗̂E)′ = B(E ′) , (E ′⊗̌E)′ = I(E ′),
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so we immediately see that π and ε are not equivalent norms on E ′ ⊗ E. A construction

by Pisier, [Pisier, 1983], gives a separable Banach space P such that P ⊗̌P = P ⊗̂P . The

space P does not have the approximation property, but it does satisfy N (P ) = A(P ). In

particular, the integral norm on I(P ′) is equivalent to the operator norm, as N (P )′ is iso-

metrically a subspace of B(E ′), namely (ker Jπ)◦ = {T ∈ B(E ′) : 〈T, u〉 = 0 (Jπ(u) =

0)}.

We briefly mention the Pietsch integral operators, PI(E,F ), which are defined by

using the same factorisation as for the integral operators (that is, property (3) above) but

with F ′′ replaced by F . See, for example, [Ryan, 2002, Section 3.5]. We can see that

N (E,F ) ⊆ PI(E,F ) ⊆ I(E,F ),

where each inclusion is norm decreasing.

Lemma 2.3.8. Let E and F be Banach spaces. Then I(F,E ′) = PI(F,E ′), with the

same norm.

Proof. Just note that κ′E : E ′′′ → E ′ is a projection, given that we identify E ′ with its

image in E ′′′ under the map κE′ . The result now follows by considering factorisations.

Following the theme of factorising maps, we have the following.

Definition 2.3.9. Let E be a Banach space such that for each T ∈ B(L1([0, 1]), E), there

exists S ∈ B(L1([0, 1]), l1) and R ∈ B(l1, E) with R ◦ S = T . Then E has the Radon-

Nikodým property.

There are many equivalent formulations of the Radon-Nikodým property, see, for ex-

ample, [Diestel, Uhl, 1977, Chapter VII, Section 6]. In particular, we have the following.

Recall that a Banach space F is separable if F contains a dense, countable subset.

Theorem 2.3.10. Let E be a Banach space. Then the following are equivalent.

1. E ′ has the Radon-Nikodým property;

2. every separable subspace of E has a separable dual.

In particular, l∞(I) does not have the Radon-Nikodým property for any infinite set I .

However, all separable dual spaces do have the Radon-Nikodým property.

Let E be a reflexive Banach space. Then E has the Radon-Nikodým property.
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Proof. See [Diestel, Uhl, 1977, Chapter VII, Section 6].

To us, the Radon-Nikodým property is important because of the following.

Theorem 2.3.11. Let E be a Banach space with the Radon-Nikodým property. Then, for

each Banach space F , N (F,E) = PI(F,E) with the same norm.

Proof. See [Ryan, 2002, Section 5.3].

Corollary 2.3.12. Let E and F be Banach spaces, with E ′ or F ′ having the Radon-

Nikodým property. Then (F ⊗̌E)′ = I(F,E ′) = N (F,E ′). If E ′ or F ′ have the approxi-

mation property, then (F ⊗̌E)′ = F ′⊗̂E ′.

In particular, if E is a Banach space with E ′ or E ′′ having the Radon-Nikodým prop-

erty, then A(E)′ = (E ′⊗̌E)′ = N (E ′).

Proof. For all Banach spaces E and F , we have (F ⊗̌E)′ = I(F,E ′). By Lemma 2.3.8,

I(F,E ′) = PI(F,E ′), so if E ′ has the Radon-Nikodým property, we are done by the

above theorem. As F ⊗̌E and E⊗̌F are isometrically isomorphic, we also have the result

when F ′ has the Radon-Nikodým property, so that I(F,E ′) = N (F,E ′). The comments

about the approximation property follow from Proposition 2.3.4.

We hence see that, ifE ′ has the Radon-Nikodým property and the approximation prop-

erty, then A(E)′ = E ′′⊗̂E ′. Thus A(E)′′ = (E ′′⊗̂E ′)′ = B(E ′′). If T ∈ A(E), and

Φ⊗ µ ∈ E ′′⊗̂E ′, we have

〈Φ⊗ µ, T 〉 = 〈Φ, T ′(µ)〉 = 〈T ′′(Φ), µ〉 = 〈κA(E)(T ),Φ⊗ µ〉.

We hence see that κA(E)(T ) = T ′′ for each T ∈ A(E). In particular, if E is reflexive

and has the approximation property (so that E ′ has the Radon-Nikodým property and

the approximation property) then A(E)′′ = B(E) and κA(E) is just the inclusion map

A(E) → B(E). We shall shortly study these ideas in far greater detail.

Definition 2.3.13. Let E be a Banach space. Then E has the bounded approximation

property if, for some M > 0, for each compact set K ⊆ E and each ε > 0, there is

T ∈ F(E) with ‖T‖ ≤ M and ‖T (x)− x‖ < ε for each x ∈ K. If we can take M = 1,

then E has the metric approximation property.

There are Banach spaces with the approximation property, but without the bounded

approximation property (see [Figiel, Johnson, 1973]).

Theorem 2.3.14. Let E be a Banach space. Then the following are equivalent:
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1. E has the bounded approximation property with bound M ;

2. for each Banach space F , the map

E⊗̂F
κE ⊗ κF- E ′′⊗̂F ′′ Jπ-- N (E ′, F ′′) ⊂- I(E ′, F ′′) = (E ′⊗̌F ′)′ = A(E,F ′)′

is bounded below by M−1;

3. the map

E⊗̂E ′ κE ⊗ IdE′- E ′′⊗̂E ′ Jπ-- N (E ′) ⊂ - I(E ′) = (E ′⊗̌E)′ = A(E)′

is bounded below by M−1.

Proof. This follows from the proof of [Ryan, 2002, Theorem 4.14].

Corollary 2.3.15. Let E be a Banach space such that E ′ has the bounded approximation

property. Then E has the bounded approximation property with a smaller (or equal)

bound.

Proof. By (3) above, it is enough to show that the map

K1 : E⊗̂E ′ κE ⊗ IdE′- E ′′⊗̂E ′ Jπ-- N (E ′) ⊂ - I(E ′)

is bounded below by M−1. Using (2) above, with F = E, we know that the map

K2 : E ′⊗̂E
κE′ ⊗ κE- E ′′′⊗̂E ′′ Jπ-- N (E ′′) ⊂ - I(E ′′)

is bounded below by M−1. For µ⊗ x ∈ E ′⊗̂E, we have that

K2(µ⊗ x)(Φ) = 〈Φ, µ〉κE(x) (Φ ∈ E ′′).

Let S : E ′⊗̂E → E⊗̂E ′ be the swap map, S(µ⊗x) = x⊗µ. Then S is an isometry, and

we have

K1S(µ⊗ x)(λ) = 〈λ, x〉µ (λ ∈ E ′).

Thus let K3 : I(E ′) → I(E ′′);T 7→ T ′, so that K3K1S = K2. By Theorem 2.3.6, K3 is

an isometry, so that K1 must be bounded below by M−1 as required.

Proposition 2.3.16. Let E be a Banach space such that E ′ has the bounded approxima-

tion property with bound M . Then, for every Banach space F , the map

E ′⊗̂F
IdE′ ⊗ κF- E ′⊗̂F ′′ Jπ-- N (E,F ′′) ⊂- I(E,F ′′) = (E⊗̌F ′)′

is bounded below by M−1.
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Proof. As above, but with fewer details, letK1 : E ′⊗̂F → I(E ′′, F ′′) be the map in Theo-

rem 2.3.14(2), so thatK1 is bounded below byM−1. We wish to show thatK2 : E ′⊗̂F →

I(E,F ′′) is bounded below by M−1. Define K3 : I(E,F ′′) → I(E ′′, F ′′);T 7→

κ′E′ ◦ T ′′ = (T ′ ◦ κE′)
′, so that K3 is an isometry. We can verify that K1 = K3K2,

so that we are done.

Corollary 2.3.17. Let E and F be Banach spaces such that at least one of E ′ or F has

the bounded approximation property. Then N (E,F ) = E ′⊗̂F is a closed subspace of

I(E,F ).

Proof. If E ′ has the bounded approximation property, then E ′⊗̂F = N (E,F ), and, by

the above proposition, the map E ′⊗̂F → I(E ′, F ′′) is bounded below. We can then show

that this map takes values in I(E ′, F ) and that I(E ′, F ) is a closed subspace of I(E ′, F ′′).

The argument in the case when F has the bounded approximation property is similar.

Proposition 2.3.18. Let E be a Banach space which has the approximation property,

does not have the bounded approximation property, and be such that E ′ is separable.

Then there exists T ∈ B(E) \ N (E) with T ′ ∈ N (E ′).

Proof. This is [Figiel, Johnson, 1973, Proposition 3], though we can give a simple proof

using the ideas we have developed. As E ′ is separable, it has the Radon-Nikodým prop-

erty, and so N (E ′) = I(E ′) with the same norm. Using a now familiar argument, as E

does not have the bounded approximation property, but does have the approximation prop-

erty, the map N (E) = E ′⊗̂E → N (E ′) = I(E ′);T 7→ T ′ is not bounded below, that is,

does not have a closed image. However, the map I(E) → I(E ′) = N (E ′);T 7→ T ′ is an

isometry, so the set

{T ′ : T ∈ I(E)} \ {T ′ : T ∈ N (E)} = {T ′ : T ∈ I(E) \ N (E)} ⊆ N (E ′)

is non-empty. This completes the proof.

The metric approximation property also allows us to “assume finite-dimensionality”

when dealing with tensor norms.

Proposition 2.3.19. Let α be a tensor norm. Then α is accessible if and only if (α′)s = α

on E ⊗ F whenever at least one of E and F has the metric approximation property.

If E or F has only the bounded approximation property, then (α′)s and α are merely

equivalent on E ⊗ F for an accessible tensor norm α.
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Proof. See [Ryan, 2002, Section 7.1]. The statement about the bounded approximation

property is an obvious generalisation.

This allows us to extend Corollary 2.3.17. First note that this corollary actually states

that the π-nuclear operators form a closed subspace of the π-integral operators, at least

under some conditions. The property of π which allows this is the fact that π is accessible.

Proposition 2.3.20. Let α be an accessible tensor norm. Then Nα(E,F ) is a subspace

of Bα(E,F ) whenever E ′ or F has the metric approximation property.

Proof. As α is accessible, (α′)s = α on E ′ ⊗ F whenever E ′ or F has the metric ap-

proximation property. The proof is complete if we show that for T ∈ F(E,F ) we have

α(T,E ′⊗F ) = ‖T‖α. We have ‖T‖α = ‖T ′′‖α, where T ′′ ∈ Bα(E ′′, F ′′) = (E ′′⊗̂α′F
′)′.

Thus the embedding E ′ ⊗ F = F(E,F ) → Bα(E,F ) induces the same norm on E ′ ⊗ F

as does the embedding E ′ ⊗ F → (E ′′⊗̂α′F
′)′. This, however, is precisely the definition

of the norm (α′)s. We are hence done, as we know that (α′)s = α.

Proposition 2.3.21. Let α be a totally accessible tensor norm. Then Nα(E,F ) is a sub-

space of Bα(E,F ) for any Banach spaces E and F .

Proof. This is exactly the same as the above proof.

Proposition 2.3.22. Let α be an accessible tensor norm. Then Nα(E,F ) is a closed

(but not necessarily isometric) subspace of Bα(E,F ) whenever E ′ or F has the bounded

approximation property.

Proof. This is the obvious generalisation of Proposition 2.3.20 given Proposition 2.3.19.

Finally we give another application of these sorts of argument.

Theorem 2.3.23. Let E be a reflexive Banach space, or let E = F ′ for some Banach

space F such that F ′ is separable. If E has the approximation property, then E has the

metric approximation property.

Proof. By Theorem 2.3.10, E ′ has the Radon-Nikodým property, so by Corollary 2.3.12,

we have A(E)′ = I(E ′) = N (E ′). By Theorem 2.3.14(3), it is enough to show that the

map E⊗̂E ′ → I(E ′) is an isometry onto its range. As E has the approximation property,

and I(E ′) = N (E ′), we need to show that the map N (E) = E⊗̂E ′ → N (E ′);T 7→ T ′

is an isometry onto its range. Suppose that we have a norm one projection P : E ′′ → E
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(by projection, we mean that P ◦ κE = IdE). Then, for T ∈ N (E), we have T ∈ I(E),

and ‖T‖N (E) ≥ ‖T‖π. Then P ◦ T ′′ ◦ κE = P ◦ κE ◦ T = T , so that

‖T‖π ≤ ‖T‖N (E) ≤ ‖P‖‖κE‖‖T ′′‖N (E′′) = ‖T ′′‖N (E′′) ≤ ‖T ′‖N (E′) = ‖T ′‖π = ‖T‖π.

We thus have ‖T‖N (E) = ‖T ′‖N (E′), and so we are done.

Finally, we note that if E is reflexive or a dual space, then E is one-complemented in

E ′′, in the latter case by the map κ′F where E = F ′.

Finally, we collect some miscellaneous results.

Theorem 2.3.24. Let E,F and G be Banach spaces. Then we have:

1. if T ∈ I(E,F ) and S ∈ W(F,G), then ST ∈ N (E,G);

2. if S ∈ W(E,F ) and T ∈ I(F,G), then κGTS ∈ N (E,G′′). Furthermore, if E ′

has the approximation property, then TS ∈ N (E,G).

Proof. For (1), from Theorem 2.2.9, we see that as S is weakly-compact, we can find a

reflexive Banach space D and S1 ∈ B(F,D), S2 ∈ B(D,G) so that S = S2S1. Then

S1T ∈ I(E,D), and as D is reflexive, I(E,D) = N (E,D). Thus S1T is nuclear, so

S2S1T = ST is also nuclear.

For (2), again factor S through a reflexive space D as S = S2S1. Then S ′2T
′ ∈

I(G′, D′) = N (G′, D′), as D′ is reflexive, so that S ′T ′ ∈ N (G′, E ′). Then κGTS =

T ′′S ′′κG is also nuclear. When E ′ has the approximation property, by Proposition 2.3.5,

we see that as S ′T ′ is nuclear, so is TS.

Theorem 2.3.25. (Grothendieck Composition Theorem) Let α be a tensor norm, E,F

and G be Banach spaces, T ∈ Bα′(E,F ) and S ∈ Bαt(F,G). If α is accessible or F

has the metric approximation property, then ST ∈ I(E,G) = Bπ(E,G) with ‖ST‖π ≤

‖S‖αt‖T‖α′ . If F has the bounded approximation property with bound M , then ST ∈

I(E,G) = Bπ(E,G) with ‖ST‖π ≤M‖S‖αt‖T‖α′ .

Proof. See [Ryan, 2002, Theorem 8.5] while considering Proposition 2.3.19. The com-

ment about the bounded approximation property is again an obvious generalisation.

2.4 Integral operators on C(X) spaces

We shall now quickly sketch some results about integral operators on C(X) spaces, as

these will be useful examples later on.
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Following [Diestel, Uhl, 1977] and [Ryan, 2002, Chapter 5], letX be a compact Haus-

dorff topological space and Σ be the collection of Borel subsets ofX; that is, the σ-algebra

generated by open sets in X . Let E be a Banach space. Then a map µ : Σ → E is a vec-

tor measure when µ is countably additive. By the Orlicz-Pettis Theorem ([Ryan, 2002,

Proposition 3.12]) we can show that µ is a vector measure if and only if λ ◦ µ : Σ → C is

a complex Borel measure for each λ ∈ E ′.

For a complex Borel measure ν : Σ → C, we define the variation of ν to be

|ν|(A) = sup
{ n∑

i=1

|ν(Ai)| : (Ai)
n
i=1 is a partition of A

}
(A ∈ Σ).

Similarly, for a vector measure µ : Σ → E, we define the variation by

|µ|1(A) = sup
{ n∑

i=1

‖µ(Ai)‖ : (Ai)
n
i=1 is a partition of A

}
(A ∈ Σ).

A vector measure has finite variation if |µ|1(X) < ∞; the set of vector measures with

finite variation forms a Banach space with the variation norm | · |1.

A complex Borel measure ν : Σ → C is regular if, for each A ⊆ Σ and ε > 0, we

can find an open set U ⊇ A and a compact (equals closed in our case) set C ⊆ A with

|ν|1(U \ C) < ε. We then define (see [Ryan, 2002, Lemma 5.24]) a vector measure µ to

be regular if λ ◦ µ is regular for each λ ∈ E ′.

Given a regular vector measure µ : Σ → E we can define a map Tµ : C(X) → E by

Tµ(f) =

∫
K

f dµ (f ∈ C(X)).

To make sense of this, we first define 〈λ, Tµ(f)〉 =
∫

K
f d(λ ◦ µ) where λ ◦ µ : Σ →

C is a regular Borel measure, and thus lies in the dual space of C(X) by the Riesz-

Representation Theorem, so that the integral has a natural meaning. We have thus defined

Tµ(f) ∈ E ′′. However, we can show that actually Tµ(f) ∈ E for each f ∈ C(X), and

thus that Tµ is a weakly-compact operator (and that every weakly-compact operator from

C(X) to E arises in this way: see [Ryan, 2002, Theorem 5.25]).

Theorem 2.4.1. Let T : C(X) → E be an operator induced by a regular vector measure

µ. Then T is an integral operator if and only if µ has finite variation. Furthermore, in

this case, we have ‖T‖π = |µ|1.

Proof. See [Ryan, 2002, Proposition 5.28].

A function g : X → E is simple if

g =
n∑

k=1

xkχAk
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for some (xk)
n
k=1 ⊆ E and (Ak)

n
k=1 ⊆ Σ, where χA is the indicator function of A ∈ Σ.

Given a positive Borel measure ν : Σ → R, we say that a function g : X → E is Bochner

integrable if we can find a sequence a simple functions (gn) so that limn→∞ ‖g(t) −

gn(t)‖ = 0 for ν-almost every t ∈ K and, furthermore, we have
∫

K
‖g‖ dν <∞.

Given a Bochner-integrable function g : X → E and a positive Borel measure ν, we

can define a vector measure G by

G(A) =

∫
A

g(t) dν(t) (A ∈ Σ).

This integral is defined in the obvious way by taking a simple function approximation to

g. We say that G has derivative g with respect to ν.

Theorem 2.4.2. Let T : C(X) → E be an operator induced by a regular vector measure

µ. Then T is a nuclear operator if and only if µ has finite variation and there exists a

Bochner-integrable function g so that g is the derivative of µ with respect to |µ|1.

Proof. See [Diestel, Uhl, 1977, Chapter VI, Theorem 4].

We say that a vector measure µ is compact if the set {µ(A) : A ∈ Σ} is relatively

compact in E. When E = C(X) we have a simple description of relatively compact

subsets of E.

Theorem 2.4.3. Let K be a subset of C(X) for a compact Hausdorff space X . The K is

relatively compact if and only if K is bounded and, for each t ∈ X and ε > 0, we can

find an open set U ⊆ X with t ∈ U and such that |f(t) − f(s)| < ε for each s ∈ U and

f ∈ K.

Proof. This is the Arzelá-Ascoli Theorem, [Megginson, 1998, Theorem 3.4.14], for ex-

ample.

Example 2.4.4. We shall now construct a compact, integral operator on C([0, 1]) which

is not nuclear. Let m be the usual Lebesgue measure on [0, 1], restricted to the Borel

σ-algebra Σ. Then define µ : Σ → C([0, 1]) by

µ(A)(t) =

∫ t

0

χA(s) ds = m([0, t] ∩ A) (A ∈ Σ).

Then, for each A ∈ Σ, µ(A) is a continuous, increasing function on [0, 1] with µ(A)(0) =

0, µ(A)(1) = m(A), and hence ‖µ(A)‖ = m(A). In particular, we see that

|µ|1(A) = m(A) (A ∈ Σ),
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so that µ has bounded variation. Let T ∈ B(C([0, 1])) be the operator induced by µ, so

that T is integral.

For ε > 0 and t ∈ [0, 1], suppose that s ∈ [0, 1] with |s− t| < ε, and A ∈ Σ. Then we

have, for t < s,

|µ(A)(t)− µ(A)(s)| = |m([0, t] ∩ A)−m([0, s] ∩ A)| = |m((t, s] ∩ A)| ≤ |t− s| < ε,

and the same result when s < t. Thus we see that {µ(A) : A ∈ Σ} is a relatively compact

subset of C([0, 1]), and so T is a compact operator.

Finally, suppose that, for a Bochner-integrable function g : [0, 1] → C([0, 1]), we have

µ(A) =

∫
A

g(t) dm(t) (A ⊆ Σ).

For each s ∈ [0, 1], let gs(t) = g(t)(s), so that gs : [0, 1] → C. For r ∈ (0, 1] we then

have

µ([0, r])(s) =

(∫ r

0

g(t) dm(t)

)
(s) =

∫ r

0

gs(t) dm(t),

which follows as g is the limit of simple functions. Thus we have

∫ r

0

gs(t) dm(t) = µ([0, r])(s) =

s : s ≤ r,

r : s ≥ r,

so that we must have

g(t)(s) = gs(t) =

1 : t ≤ s,

0 : t > s
(s, t ∈ [0, 1]).

In particular, for a fixed t ∈ [0, 1], the function g(t) is not continuous, a contradiction, as

g maps into C([0, 1]). Hence T is not nuclear. �

Example 2.4.5. We shall now show thatN (l∞) 6= I(l∞). Notice that l∞ is a commutative

C∗-algebra with the product defined pointwise, written x · y for x, y ∈ l∞. Then (l∞)′

becomes a Banach l∞-bimodule, so that

〈µ · f, g〉 = 〈µ, f · g〉 (f, g ∈ l∞, µ ∈ (l∞)′).

Let A0
0 = N. Then, for n ≥ 1, inductively define An

2m and An
2m+1 to be infinite disjoint

subsets of N such that An
2m ∪ An

2m+1 = An−1
m , for 0 ≤ m < 2n−1. For A ⊆ N, let χA be

the indicator function of A, so that χA ∈ l∞. By the Hahn-Banach theorem, we can find

µ ∈ (l∞)′ with ‖µ‖ = 1 and

〈µ, χAn
m
〉 = 2−n (n ∈ N0, 0 ≤ m < 2n).
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For n ≥ 0, let

fn =
2n−1∑
m=0

(−1)mχAn
m
,

so that fn ∈ l∞ and ‖fn‖ = 1 for each n.

Then define T ∈ B(l∞) by

T (f) =
(
〈µ, fn−1 · f〉

)∞
n=1

(f ∈ l∞).

Thus we have ‖T (f)‖ = supn |〈µ, fn−1 · f〉| ≤ supn ‖fn−1‖‖f‖ = ‖f‖, so that T is

bounded. Then note that fn · fn = χN for each n ≥ 0, and that for 0 ≤ n < m, we have

χAn
k
·χAm

j
6= 0 only if j ∈ {2m−nk, . . . , 2m−n(k+1)−1}. Thus we have, for 0 ≤ n < m,

〈µ, fn · fm〉 =
2n−1∑
k=0

2m−1∑
j=1

(−1)k+j〈µ, χAn
k
· χAm

j
〉 =

2n−1∑
k=0

2m−n(k+1)−1∑
j=2m−nk

(−1)k+j〈µ, χAm
j
〉

=
2n−1∑
k=0

2m−n(k+1)−1∑
j=2m−nk

(−1)k+j2−m = 0.

Thus T (fn) = en+1 where en+1 is the usual unit vector in c0 ⊂ l∞. In particular, we see

that T is not compact, and so T is not nuclear.

We claim that T is integral, however. For S ∈ F(l1) define fS : N → l1 by

fS(n) = S(en). Then, for x =
∑∞

n=1 xnen ∈ l1, we have ‖S(x)‖ ≤
∑∞

n=1 |xn|‖S(en)‖ ≤

‖x‖ supn ‖fS(n)‖. Thus we see that ‖S‖ = supn ‖fS(n)‖. Now let S = f ⊗x ∈ l∞⊗ l1,

so that fS(m) = x〈f, em〉. Note that then

(〈en, fS(m)〉)∞m=1 = (〈en, x〉〈f, em〉)∞m=1 = 〈en, x〉f ∈ l∞,

and so we have

Tr(TS ′) = 〈T (f), x〉 =
∣∣∣ ∞∑

n=1

〈en, x〉〈µ, fn−1 · f〉
∣∣∣

=
∣∣∣ ∞∑

n=1

〈µ, fn−1 · (〈en, fS(m)〉)∞m=1〉
∣∣∣.

By linearity, this holds for all S ∈ F(l1), so that

|Tr(TS ′)| ≤ ‖µ‖
∥∥∥ ∞∑

n=1

fn−1 · (〈en, fS(m)〉)∞m=1

∥∥∥
= sup

m∈N

∣∣∣ ∞∑
n=1

〈fn−1, em〉〈en, fS(m)〉
∣∣∣ ≤ sup

m∈N

∞∑
n=1

|〈en, fS(m)〉|

= sup
m∈N

‖fS(m)‖ = ‖S‖.

Thus we have that T is integral, and ‖T‖π ≤ 1. �
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2.5 Arens products on operator ideals

We will study some questions related to Arens products on operators ideals.

The following is essentially laid out in [Pietsch, 1980, Section 6], and the conclusions

match those in [Dales, 2000, Section 2.5], although our definitions are slightly different.

Proposition 2.5.1. Let U be an operator ideal and E be a Banach space.

1. U(E) is an ideal in B(E), and (U(E), u) is a Banach algebra;

2. The inclusion map (U(E), u) → B(E) is continuous;

3. The bilinear map E ′ × E → (U(E), u); (µ, x) 7→ µ ⊗ x ∈ F(E) ⊆ U(E) is

continuous.

Proof. We prove (1) and (2) together. From the definition, it is immediate that U(E) is an

algebraic ideal in B(E). For x ∈ E, µ ∈ E ′ and T ∈ U(E), we have

u(T )‖µ⊗ x‖ ≥ u(T ◦ (µ⊗ x)) = u(µ⊗ T (x)) = ‖µ‖‖T (x)‖,

so that u(T ) ≥ ‖T (x)‖‖x‖−1. Thus, as x was arbitrary, we see that u(T ) ≥ ‖T‖ for

T ∈ U(E), and thus we have (2). Furthermore, for T, S ∈ U(E), we have u(TS) ≤

‖T‖u(S) ≤ u(T )u(S), which completes the proof of (1).

For (3), we simply have u(µ⊗ x) = ‖µ‖‖x‖, so this is immediate.

Note that (3) allows us to define a norm-decreasing map E ′⊗̂E → U.

The Arens regularity of U(E) is closely related to the topology of E, a fact first shown

(in less generality) in [Young, 1976, Theorem 3]. See also [Dales, 2000, Section 2.6].

Theorem 2.5.2. Let U be an operator ideal, and let E be a Banach space such that U(E)

is Arens regular. Then E is reflexive.

Proof. If E is not reflexive, then, by Theorem 1.4.7, we can find bounded sequences (xn)

in E and (µn) in E ′ such that the following iterated limits exist, but such that

lim
m

lim
n
〈µn, xm〉 6= lim

n
lim
m
〈µn, xm〉.

Pick y ∈ E and λ ∈ E ′ with 〈λ, y〉 = 1, and let Tn = µn ⊗ y ∈ F(E) ⊆ U(E)

and Sm = λ ⊗ xm ∈ F(E) ⊆ U(E). Then, by (3) above, (Tn) and (Sm) are bounded

sequences in U.

Define Λ ∈ U(E)′ by 〈Λ, T 〉 = 〈λ, T (y)〉 for T ∈ U(E). Then

|〈Λ, T 〉| ≤ ‖λ‖‖y‖‖T‖ ≤ ‖λ‖‖y‖u(T ), (T ∈ U(E))
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by (2) above, so that Λ is a bounded linear functional on U(E). We then have

〈Λ, TnSm〉 = 〈λ, TnSm(y)〉 = 〈λ, Tn(xm)〉〈λ, y〉 = 〈λ, y〉〈µn, xm〉 = 〈µn, xm〉,

so that by Theorem 1.7.2, U(E) cannot be Arens regular.

The converse is not true in full generality, for there exist reflexive Banach spaces E

such that B(E) is not Arens regular (see [Young, 1976, Corollary 1] or Proposition 4.1.2).

However, for A(E) and K(), we do have a converse, again first shown in [Young, 1976].

This will be proved below, in Theorem 2.7.36.

2.6 Arens products on ideals of approximable operators

The ideals of compact and approximable operators are reasonably accessible objects to

study, and a fair amount is know about the Arens products on their biduals. We first start

by studying the so called Arens representations as detailed in, for example, [Palmer, 1994,

Section 1.4]. We use the language of modules, but the results (once translated) are the

same.

LetA be a Banach algebra, and let F be a Banach leftA-module. Then F ′ is a Banach

right A-module, and F ′′ is a Banach left A-module. Thus F ′⊗̂F and F ′′⊗̂F ′ become

Banach A-bimodules for the module actions

(µ⊗ x) · a = µ · a⊗ x , a · (µ⊗ x) = µ⊗ a · x ,

(Λ⊗ µ) · a = Λ⊗ µ · a , a · (Λ⊗ µ) = a · Λ⊗ µ ,

for a ∈ A, µ⊗ x ∈ F ′⊗̂F and Λ⊗ µ ∈ F ′′⊗̂F ′.

Define a bilinear map φ1 : F ′′ × F ′ → A′ by

〈φ1(Λ, µ), a〉 = 〈a · Λ, µ〉 (Λ ∈ F ′′, µ ∈ F ′, a ∈ A).

Then φ1 extends to a norm-decreasing map F ′′⊗̂F ′ → A′. Similarly define φ2 : F ′⊗̂F →

A′ by

〈φ2(µ⊗ x), a〉 = 〈µ, a · x〉 (µ⊗ x ∈ F ′⊗̂F, a ∈ A).

Lemma 2.6.1. The maps φ1 and φ2 are A-bimodule homomorphisms.

Proof. For a, b ∈ A and µ⊗ x ∈ F ′⊗̂F , we have

〈a · φ2(µ⊗ x), b〉 = 〈φ2(µ⊗ x), ba〉 = 〈µ, ba · x〉

= 〈φ2(µ⊗ a · x), b〉 = 〈φ2(a · (µ⊗ x)), b〉.
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The other cases follow in a similar manner.

Then φ′1 : A′′ → B(F ′′), with the action given by

〈φ′1(Φ)(Λ), µ〉 = 〈Φ, φ1(Λ⊗ µ)〉 (Φ ∈ A′′,Λ ∈ F ′′, µ ∈ F ′).

Similarly, φ′2 : A′′ → B(F ′). We can also verify the following identities:

Φ · φ1(Λ⊗ µ) = φ1(φ
′
1(Φ)(Λ)⊗ µ) (Φ ∈ A′′,Λ⊗ µ ∈ F ′′⊗̂F ′),

φ2(µ⊗ x) · Φ = φ2(φ
′
2(Φ)(µ)⊗ x) (Φ ∈ A′′, µ⊗ x ∈ F ′⊗̂F ).

Definition 2.6.2. For a Banach spaceE, we have the isometric mapB(E) → B(E ′); T 7→

T ′. For a subset X ⊆ B(E) write

Xa = {T ′ : T ∈ X} ⊆ B(E ′),

so that, in particular, B(E)a is a subalgebra of B(E ′). We can show that B(E)a = B(E ′)

if and only if E is reflexive. For a Banach algebra A and ψ ∈ B(A,B(E)), we define

ψa ∈ B(A,B(E ′)) by ψa(b) = ψ(b)′ for b ∈ A.

Let θ1 = φ′1 and θ2 = (φ′2)
a.

Proposition 2.6.3. The maps θ1 : (A′′,2) → B(F ′′) and θ2 : (A′′,3) → B(F ′′) are

norm-decreasing homomorphisms. Thus θ1 and θ2 induce a module structure on F ′′ so

that we can, respectively, view F ′′ as a Banach left (A′′,2)-module or a Banach left

(A′′,3)-module.

Proof. Let Φ,Ψ ∈ A′′ and Λ⊗ µ ∈ F ′′⊗̂F ′. Then we have

〈θ1(Φ2Ψ)(Λ), µ〉 = 〈Φ,Ψ · φ1(λ⊗ µ)〉 = 〈Φ, φ1(φ
′
1(Ψ)(Λ)⊗ µ)〉

= 〈φ′1(Φ)(φ′1(Ψ)(Λ)), µ〉 = 〈
(
θ1(Φ) ◦ θ2(Ψ)

)
(Λ), µ〉.

We will show that φ′2 is an anti-homomorphism, so that θ2 is a homomorphism. For

Φ,Ψ ∈ A′′ and µ⊗ x ∈ F ′⊗̂F , we have

〈φ′2(Φ3Ψ)(µ), x〉 = 〈Ψ, φ2(µ⊗ x) · Φ〉 = 〈Ψ, φ2(φ
′
2(Φ)(µ)⊗ x)〉

= 〈φ′2(Ψ)(φ′2(Φ)(µ)), x〉.

An alternative way to look at these maps is through the use of nets (or ultrafilters and

ultraproducts, see Section 3.1). For Φ,Ψ ∈ A′′, suppose that

Φ = lim
α
aα , Ψ = lim

β
bβ,
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where these are limits along nets, with convergence in the weak∗-topology on A′′. We

then have that

θ1(Φ2Ψ)(Λ) = lim
α

lim
β
aαbβ · Λ (Λ ∈ F ′′),

where the limit is in the weak∗-topology on F ′′. Similarly, we have

φ′2(Φ3Ψ)(µ) = lim
β

lim
α
µ · (aαbβ) (µ ∈ F ′),

where the limit is in the weak∗-topology on F ′.

Note that the following diagram is commutative:

F ′⊗̂F - F ⊗̂F ′ κF ⊗ IdF ′- F ′′⊗̂F ′

A′ �

φ 1
φ
2

-

We can then easily check that, for Φ ∈ A′′, we have θ1(Φ) ◦ κF = θ2(Φ) ◦ κF .

For a general Banach algebraA and module F , the behaviour of θ1 applied to 3 (or θ2

applied to 2) has no simple description. However, in a large number of cases, we can say

something.

Definition 2.6.4. For a ∈ A, define Ta ∈ B(F ) by Ta(x) = a · x for x ∈ F . We say that

the action of A on F is weakly-compact if Ta ∈ W(F ) for every a ∈ A.

The following definitions appear in [Dales, Lau, 2004], but we give a more general

treatment here; the use of these ideas appears to be “folklore” in that they are certainly

known, but there is no definitive source for them (see, for example, [Grosser, 1987],

[Grosser, 1984] or [Palmer, 1985], all of which deal with ideals of approximable op-

erators). Let F be a Banach space, and for T ∈ B(F ′′), define η(T ) ∈ B(F ′) and

Q(T ) ∈ B(F ′′) by

η(T ) = κ′F ◦ T ′ ◦ κF ′ , Q(T ) = η(T )′ = κ′F ′ ◦ T ′′ ◦ κ′′F = κ′F ′ ◦ (T ◦ κF )′′.

Then note that η(T ′) = T for T ∈ B(F ′), so that B(F ′)a is a one-complemented subspace

of B(F ′′). Define a bilinear operation ? on B(F ′′) by T ?S = Q(T )◦S for T, S ∈ B(F ′′).

Proposition 2.6.5. The operation ? is a Banach algebra product on B(F ′′). When the

action of A on F is weakly-compact, the map θ1 : (A′′,3) → (B(F ′′), ?) is a homomor-

phism.
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Proof. We see immediately that ? satisfies ‖T ? S‖ ≤ ‖T‖‖S‖, and that if suffices to

show that (T ? S) ? R = T ? (S ? R) for each R,S, T ∈ B(F ′′). We have

η(S) ◦ η(T ) = κ′F ◦ S ′ ◦ κF ′ ◦ η(T ) = κ′F ◦ S ′ ◦ η(T )′′ ◦ κF ′ = η(Q(T ) ◦ S),

and thus

(T ? S) ? R = Q(T ? S) ◦R = Q(Q(T ) ◦ S) ◦R = η(Q(T ) ◦ S)′ ◦R

= η(T )′ ◦ η(S)′ ◦R = Q(T ) ◦ Q(S) ◦R = T ? (S ? R).

For a ∈ A and Λ ∈ F ′′, we can verify that a · Λ = T ′′a (Λ). As Ta ∈ W(F ), by

Theorem 2.2.8, we have T ′′a (Λ) ∈ κF (F ). Thus let κF (y) = a ·Λ, so that for Φ ∈ A′′ and

Λ⊗ µ ∈ F ′′⊗̂F ′, we have

〈φ1(Λ⊗ µ) · Φ, a〉 = 〈Φ, φ1(a · Λ⊗ µ)〉 = 〈θ1(Φ)(a · Λ), µ〉 = 〈θ1(Φ)′κF ′(µ), a · Λ〉

= 〈θ1(Φ)′κF ′(µ), κF (y)〉 = 〈η(θ1(Φ))(µ), y〉 = 〈κF (y), η(θ1(Φ))(µ)〉

= 〈a · Λ, η(θ1(Φ))(µ)〉 = 〈φ1

(
Λ⊗ η(θ1(Φ))(µ)

)
, a〉.

Thus for Φ,Ψ ∈ A′′ and Λ⊗ µ ∈ F ′′⊗̂F ′, we have

〈θ1(Φ3Ψ)(Λ), µ〉 = 〈Ψ, φ1(Λ⊗ µ) · Φ〉 = 〈Ψ, φ1

(
Λ⊗ η(θ1(Φ))(µ)

)
〉

= 〈θ1(Ψ)(Λ), η(θ1(Φ))(µ)〉 = 〈Q(θ1(Φ))θ1(Ψ)(Λ), µ〉,

so that θ1(Φ3Ψ) = θ1(Φ) ? θ1(Ψ).

Suppose that F is reflexive, so that the action of A on F is certainly weakly-compact.

Then ? = ◦ on B(F ), so that θ1 is a homomorphismA′′ → B(F ) for either Arens product.

In particular, if θ1 is injective, then A must be Arens regular. We shall use this idea later

to show that B(E) is Arens regular for certain Banach spaces E. In fact, for any Arens

regular Banach algebra, we can find a Banach left A-module F which is reflexive and for

which θ1 is injective: see Theorem 3.3.13.

We can actually define φ1 in a slightly more subtle manner. By linearity (or the ten-

sorial property) φ1 is a map F ′′ ⊗ F ′ → A′. We can use this to define a semi-norm on

F ′′ ⊗ F ′ by

‖u‖0 = ‖φ1(u)‖ = sup{|〈φ1(u), a〉| : a ∈ A[1]}. (u ∈ F ′′ ⊗ F ′).

Definition 2.6.6. Let A be a Banach algebra and F be a Banach left A-module. Suppose

that, for each u =
∑n

i=1 Λi ⊗ µi ∈ F ′′ ⊗ F ′, we have

sup
{∣∣∣ n∑

i=1

〈a · Λi, µi〉
∣∣∣ : a ∈ A[1]

}
≥ sup

{∥∥∥ n∑
i=1

〈Λi, λ〉µi

∥∥∥ : λ ∈ F ′
[1]

}
= ε(u, F ′′⊗F ′).
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Then we say that (A, F ) is tensorial.

The reason we make this definition is the following. Let (A, F ) be tensorial. Then

‖ · ‖0 is a norm on F ′′ ⊗ F ′, and clearly ε(u, F ′′ ⊗ F ′) ≤ ‖u‖0 ≤ π(u, F ′′ ⊗ F ′) for each

u ∈ F ′′ ⊗ F ′. Thus ‖ · ‖0 is a reasonable crossnorm on F ′′ ⊗ F ′.

Now, we might wonder if ‖ · ‖0 is a tensor norm. Of course, we have not defined ‖ · ‖0

on all spaces; this is a minor issue, as there are ways to extend to all pairs of Banach

spaces. For example, for a pair of Banach spaces D and E, we can set

‖u‖0 = sup{‖(T ⊗ S)(u)‖0 : T ∈ B(D,F ′′)[1], S ∈ B(E,F ′)[1]} (u ∈ D ⊗ E).

Then, for Banach spaces D1 and E1, u ∈ D1 ⊗ E1, A ∈ B(D1, D) and B ∈ B(E1, E),

we have

‖(A⊗B)(u)‖0 = sup{‖(T ⊗ S)(A⊗B)(u)‖0 : T ∈ B(D,F ′′)[1], S ∈ B(E,F ′)[1]}

= sup{‖(TA⊗ SB)(u)‖0 : T ∈ B(D,F ′′)[1], S ∈ B(E,F ′)[1]}

≤ sup{‖(T ⊗ S)(u)‖0 : T ∈ B(D1, F
′′)[‖A‖], S ∈ B(E1, F

′)[‖B‖]}

= ‖A‖‖B‖‖u‖0.

Thus we have made ‖ · ‖0 into a uniform crossnorm. It is not, however, finitely generated,

at least in general.

Proposition 2.6.7. Let E be a Banach space, α be a tensor norm, andA = Nα(E). Then

(A, E) is tensorial. When α′ is totally accessible, or α is accessible and E ′ has the metric

approximation property, ‖ · ‖0 is actually the nuclear norm ‖ · ‖Nα′
. When α is accessible

and E ′ has the bounded approximation property, ‖ · ‖0 is equivalent to ‖ · ‖Nα′
.

Proof. As A = Nα(E) is a quotient of E ′⊗̂αE, we see that A′ is, isometrically, a sub-

space of Bα′(E
′), namely

A′ = (ker Jα)◦ = {T ∈ Bα′(E
′) : 〈T, v〉 = 0 (v ∈ E ′⊗̂αE, Jα(v) = 0)},

by Theorem 1.4.11. By Proposition 2.3.2, for u ∈ E ′′ ⊗ E ′, we have

‖u‖0 = ‖u‖α′ ≤ ‖u‖Nα′
≤ α′(u,E ′′ ⊗ E ′),

where we identify u with the operator in F(E ′) it induces. Let u =
∑n

i=1 Λi⊗ µi, and let

x ∈ E and µ ∈ E ′. Then we have∣∣∣ n∑
i=1

〈Λi, µ〉〈µi, x〉
∣∣∣ = |〈u, µ⊗ x〉| ≤ ‖u‖0‖µ⊗ x‖Nα = ‖u‖0‖µ‖‖x‖,
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so that ‖u‖0 ≥ ε(u,E ′ ⊗ E), and thus that (A, E) is tensorial.

When α′ is totally accessible or α is accessible and E ′ has the metric approximation

property, by Propositions 2.3.20 and 2.3.21, we immediately have

‖u‖0 = ‖u‖α′ = ‖u‖Nα′
(u ∈ E ′′ ⊗ E ′),

so that ‖ · ‖0 = ‖ · ‖Nα′
. Similarly, Proposition 2.3.22 completes the proof.

Let α be a tensor norm and E be a Banach such that α′ is totally accessible, or E ′ has

the metric approximation property (we can generalise this to the bounded approximation

property in a simple way). Then ‖ · ‖0 = ‖ · ‖Nα′
, so that, by continuity, φ1 extends to

a map E ′′⊗̂α′E
′ → Nα(E)′, and we see that φ1 agrees with the map Jα′ , so that φ1 is a

quotient operator. Thus, in particular, θ1 : Nα(E)′′ → Nα′(E
′)′ = (ker Jα′)

◦ ⊆ Bα(E ′′)

is an isometry.

When α is a general tensor norm and E is a general Banach space, we only have that

‖ · ‖0 ≤ ‖ · ‖Nα′
. However, we can still extend φ1 by continuity to a map φ1 : E ′′⊗̂α′E

′ →

Nα(E)′, but now φ1 is only norm-decreasing. We can check that φ1 still agrees with the

map Jα′; that is, for u ∈ E ′′⊗̂α′E
′, we have that φ1(u) and Jα′(u) are the same operator in

Bα′(E
′), but the natural norms associated with these operators are different. Thus we also

still have θ1 : Nα(E)′′ → (ker Jα′)
◦ ⊆ Bα(E ′′), but again, θ1 is no longer an isometry,

merely norm-decreasing.

Example 2.6.8. Let E be a Banach space such that E ′ has the bounded approximation

property. Then φ1 : E ′′⊗̂E ′ → A(E)′ is an isomorphism onto its range (if E ′ has

the metric approximation property, then φ1 is even an isometry). Thus θ1 : A(E)′′ →

(ker Jπ)◦ = {0}◦ = B(E ′′) is surjective. As A(E) clearly has weakly-compact action

on E, we see that θ1 : (A(E)′′,2) → B(E ′′) and θ1 : (A(E)′′,3) → (B(E ′′),Q) are

homomorphisms. In particular, let Ξ ∈ A(E)′′ be such that θ1(Ξ) = IdE′′ . Then we have

θ1(Φ2Ξ) = θ1(Φ) , θ1(Ξ3Φ) = Q(IdE′′) ◦ θ1(Φ) = θ1(Φ) (Φ ∈ A(E)′′).

In fact, using Proposition 2.7.3, we can show that Ξ is a mixed identity (see Section 1.7)

for A(E)′′. �

2.7 Topological centres of biduals of operator ideals

We will continue the study of topological centres of biduals of operators ideals which,

in the case of the approximable operators, was started in [Dales, Lau, 2004]. This work
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will also allow us to say when some operator ideals are Arens regular. We note that

some of the following work is similar to work done in [Grosser, 1987], where Grosser

studies multipliers of algebras of approximable operators. As Grosser points out in this

paper, many of these ideas and results have entered folklore (for example, the maps η and

Q). Grosser does not study topological centres, but presumably he could have drawn the

conclusions that are found in [Dales, Lau, 2004], for example. We will instead develop

the theory for general tensor norms, and study more general Banach spaces than those

studied in [Grosser, 1987] or [Dales, Lau, 2004].

Let E be a reflexive Banach space with the metric approximation property (this is

not much of a restriction, by Theorem 2.3.23). We shall see later, for example in Corol-

lary 2.7.25, thatA(E)′′ = B(E) both as a Banach space and algebraically, so thatA(E) is

Arens regular, and A(E)′′ has a mixed identity, so that A(E) has a bounded approximate

identity (see Section 1.7). Actually, we can take a more direct (and less circular) route. In

[Grønbæk, Willis, 1993], the question of whenA(E) has a bounded approximate identity

is investigated. It is worth noting that a lot of parallel development has occurred in this

area; [Grønbæk, Willis, 1993] is the best summary of available results, but many results

were first proved elsewhere.

Theorem 2.7.1. Let E be a Banach space. Then the following are equivalent:

1. E ′ has the bounded approximation property;

2. A(E) has a bounded approximate identity;

3. A(E ′) has a bounded left approximate identity;

4. A(E)′′ has a mixed identity.

Proof. The first three equivalences follow from [Grønbæk, Willis, 1993, Theorem 3.3].

The equivalence of (4) and (2) follow by standard results (see Proposition 1.7.3). Alter-

natively, these results follow from Example 2.6.8 and standard properties of nuclear and

integral operators.

We will now turn our attention to ideals of α-nuclear operators for tensor norms α.

Eventually we will come a full circle and use the above theorem. Our basic tool will be

the Grothendieck Composition theorem, which will allow us, under many circumstances,

to study integral operators (which are the dual of approximable operators, which hints as

to why the above theorem will become useful).
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Definition 2.7.2. Let E be a Banach space and α be a tensor norm. We say that (E,α) is

a Grothendieck pair if α is accessible or E has the bounded approximation property. In

this case,K(E,α) is the constant arising from the Grothendieck Composition theorem, so

that K(E,α) = 1 when α is accessible, and otherwise E has the bounded approximation

property with bounded K(E,α).

Let E be a Banach space and α be a tensor norm. As in Proposition 2.6.7, Nα(E)′ is

a subspace of Bα′(E
′), and we can view φ1 : E ′′⊗̂α′E

′ → Nα(E)′ as a norm-decreasing

map, which agrees, algebraically, with Jα′ .

Proposition 2.7.3. Let E be a Banach space and α be a tensor norm. Let A = Nα(E),

the α-nuclear operators on E, so that A′ is a subspace of Bα′(E
′). Then we have

S ·R = R′ ◦ S , R · S = S ◦R′ (R ∈ A, S ∈ A′),

Φ · S = η(θ1(Φ) ◦ S ′) , S · Φ = η(θ1(Φ)) ◦ S (S ∈ A′,Φ ∈ A′′).

Furthermore, we have that θ1 : A′′ → Bα(E ′′) is a norm-decreasing map.

When (E ′, α) is a Grothendieck pair, we also have

Φ · S ∈ I(E ′), ‖Φ · S‖π ≤ K(E ′, α)‖S‖‖Φ‖.

Similarly, when (E ′′, α) is a Grothendieck pair, we have

S · Φ ∈ I(E ′), ‖S · Φ‖π ≤ K(E ′′, α)‖S‖‖Φ‖.

Proof. The first part is a simple calculation. For Φ ∈ A′′, S ∈ A′ and R = µ ⊗ x ∈ A,

we have

〈Φ · S,R〉 = 〈Φ, φ1(R
′ ◦ S)〉 = 〈Φ, φ1(S

′(κE(x))⊗ µ)〉

= 〈θ1(Φ)(S ′(κE(x))), µ〉 = 〈η(θ1(Φ) ◦ S ′), R〉,

〈S · Φ, R〉 = 〈Φ, φ1(S ◦R′)〉 = 〈Φ, φ1(κE(x)⊗ S(µ)〉

= 〈θ1(Φ)(κE(x)), S(µ)〉 = 〈η(θ1(Φ)) ◦ S,R〉.

Thus we get the second part by linearity and continuity. That θ1 : A′′ → Bα(E ′′) is norm

decreasing follows by the discussion after Proposition 2.6.7.

For Φ ∈ A′′, we have that θ1(Φ)′ ∈ Bαt(E ′′′) and so η(θ1(Φ)) = κ′E ◦ θ1(Φ)′ ◦ κE′ ∈

Bαt(E ′) with ‖η(θ1(Φ))‖αt ≤ ‖θ1(Φ)‖α. Then the Grothendieck Composition theorem

says that, when (E ′, α) is a Grothendieck pair, for S ∈ A′ and Φ ∈ A′′, we have S · Φ =

η(θ1(Φ)) ◦ S ∈ I(E ′), and

‖S · Φ‖π ≤ K(E ′, α)‖S‖α′‖η(θ1(Φ))‖αt ≤ K(E ′, α)‖S‖α′‖Φ‖.
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Similarly, when (E ′′, α) is a Grothendieck pair, θ1(Φ) ∈ Bα(E ′′) and S ′ ∈ Bα̌(E ′′), so

that θ1(Φ) ◦ S ′ ∈ I(E ′′) and ‖θ1(Φ) ◦ S ′‖π ≤ K(E ′′, α)‖Φ‖‖S‖α′ . Hence

Φ · S = κ′E ◦ S ′′ ◦ θ1(Φ)′ ◦ κE′ ∈ I(E ′),

and ‖Φ.S‖π ≤ K(E ′′, α)‖S‖α′‖Φ‖.

For a tensor norm α, we turn E ′′′⊗̂αE
′′ into a Banach algebra in the obvious way, by

extending the multiplication on F(E ′′). Thus, for u, v ∈ E ′′′⊗̂αE
′′, we have

u ◦ v = (IdE′′′ ⊗ Jα(u))(v).

In particular, Jα : E ′′′⊗̂E ′′ → Nα(E ′′) becomes a homomorphism. We can also define ?

as a Banach algebra multiplication on E ′′′⊗̂αE
′′ by setting

u ? v = (IdE′′′ ⊗Q(Jα(u)))(v) (u, v ∈ E ′′′⊗̂αE
′′).

Theorem 2.7.4. Let E be a Banach space, α be a tensor norm and A = Nα(E). There

exist norm-decreasing homomorphisms

ψ1 : (E ′′′⊗̂αE
′′, ◦) → (A′′,2) , ψ2 : (E ′′′⊗̂αE

′′, ?) → (A′′,3),

such that θ1 ◦ ψ1 = Jα and θ1 ◦ ψ2 = Q ◦ Jα. For i = 1, 2 and T ∈ A, if u ∈ E ′⊗̂αE is

such that T = Jα(u), then we have ψi(u
′′) = ψi((κE′ ⊗ κE)(u)) = κA(T ).

Proof. For T ∈ F(E ′′) and S ∈ A′ ⊆ Bα′(E
′), we have that η(T ◦S ′), η(S ′◦T ) ∈ F(E ′).

Thus we can define

〈ψ1(T ), S〉 = Tr(η(T ◦S ′)) , 〈ψ2(T ), S〉 = Tr(η(S ′◦T )) (T ∈ F(E ′′), S ∈ A′).

We then have, recalling that F(E ′′) = E ′′′ ⊗ E ′′, and that η(S ′ ◦ T ) = η(T ) ◦ S,

|〈ψ1(T ), S〉| = |Tr(κ′E ◦ S ′′ ◦ T ′ ◦ κE′)| = |Tr(κE′ ◦ κ′E ◦ S ′′ ◦ T ′)|

= |〈κE′ ◦ κ′E ◦ S ′′, T 〉| ≤ α(T,E ′′′ ⊗ E ′′)‖κE′ ◦ κ′E ◦ S ′′‖α′

≤ α(T,E ′′′ ⊗ E ′′)‖S ′′‖α′ = α(T,E ′′′ ⊗ E ′′)‖S‖α′ ,

|〈ψ2(T ), S〉| = |Tr(η(T ) ◦ S)| = |Tr(κ′E ◦ T ′ ◦ κE′ ◦ S)|

= |Tr(κE′ ◦ S ◦ κ′E ◦ T ′)| ≤ α(T,E ′′′ ⊗ E ′′)‖κE′ ◦ S ◦ κ′E‖α′

≤ α(T,E ′′′ ⊗ E ′′)‖S‖α′ .

Consequently, for i = 1, 2, ‖ψi(T )‖ ≤ α(T ), so that ψi extends by continuity to a norm-

decreasing map E ′′′⊗̂αE
′′ → A′′.
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For Λ ∈ E ′′, µ ∈ E ′ and T ∈ Nα(E ′′), we have

〈θ1(ψ1(T ))(Λ), µ〉 = 〈ψ1(T ), φ1(Λ⊗ µ)〉 = Tr(η(T ◦ (κE′(µ)⊗ Λ))) = 〈T (Λ), µ〉,

〈θ1(ψ2(T ))(Λ), µ〉 = 〈ψ2(T ), φ1(Λ⊗ µ)〉 = Tr(η(T ) ◦ φ1(Λ⊗ µ)) = 〈Λ, η(T )(µ)〉.

Thus we see that θ1 ◦ ψ1 = Jα and θ1 ◦ ψ2 = Q ◦ Jα.

For T = µ⊗ x ∈ A and S ∈ A′, we have

〈ψ1(T
′′), S〉 = Tr(η(T ′′ ◦ S ′)) = Tr(S ◦ T ′) = 〈S, T 〉 = 〈κA(T ), S〉,

〈ψ2(T
′′), S〉 = Tr(η(T ′′) ◦ S) = Tr(T ′ ◦ S) = Tr(S ◦ T ′) = 〈κA(T ), S〉.

By linearity, for i = 1, 2, we have ψi(T
′′) = κA(T ) for T ∈ E ′ ⊗ E. Thus, for T =

Jα(u) ∈ Nα(E), suppose that (un) is a sequence in E ′ ⊗ E with α(un − u) → 0. For

i = 1, 2, we have

ψi(u
′′) = lim

n→∞
ψi(u

′′
n) = lim

n→∞
κA(un) = κA(T ),

as required.

We defer a calculation to Lemma 2.7.6 to follow. We claim that, for T1, T2 ∈ B(E ′′)

and S ∈ B(E ′), we have η(T1 ◦ T2 ◦ S ′) = η(T1 ◦Q(T2 ◦ S ′)). Then, for T1, T2 ∈ F(E ′′)

and S ∈ A′, we have

〈ψ1(T1)2ψ1(T2), S〉 = 〈ψ1(T1), η(θ1(ψ1(T2)) ◦ S ′)〉 = 〈ψ1(T1), η(T2 ◦ S ′)〉

= Tr(η(T1 ◦ Q(T2 ◦ S ′)) = Tr(η(T1 ◦ T2 ◦ S ′)) = 〈ψ1(T1 ◦ T2), S〉.

We see that ψ1 : (E ′′′⊗̂αE
′′, ◦) → (A′′,2) is a homomorphism.

Similarly, for T1, T2 ∈ F(E ′′) and S ∈ A′, we have η(Q(T1) ◦T2) = η(η(T1)
′ ◦T2) =

η(T2) ◦ η(T1), so that

〈ψ2(T1)3ψ2(T2), S〉 = 〈ψ2(T2), η(θ1(ψ2(T1))) ◦ S〉 = 〈ψ2(T2), η(T1) ◦ S〉

= Tr(η(T2) ◦ η(T1) ◦ S) = Tr(η(Q(T1) ◦ T2) ◦ S)

= Tr(η(T1 ? T2) ◦ S) = 〈ψ2(T1 ? T2), S〉.

We see that ψ2 : (E ′′′⊗̂E ′′, ?) → (A′′,3) is a homomorphism.

It would have been more natural to define the above maps from Nα(E ′′). However, in

general we cannot do this, as the next example shows.

Example 2.7.5. Let E be a Banach space with the approximation property such that E ′

does not have the approximation property. For example, let E = l2⊗̂l2, so that E ′ =
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B(l2) does not have the approximation property by [Szankowski, 1981], but E does by

[Ryan, 2002, Section 4.3]. Then let A = N (E) = E ′⊗̂E, so that A′ = B(E ′). Thus, if

we had defined ψ1 : N (E ′′) → B(E ′)′, then we would have defined a trace on N (E ′), by

Tr(T ) = Tr(η(T ′)) = 〈ψ1(T
′), IdE′〉 (T ∈ N (E ′)).

This is impossible, asN (E ′) 6= E ′′⊗̂E ′, so thatN (E ′)′ ( B(E ′′) and thus Id′E′ = IdE′′ 6∈

N (E ′)′. �

Lemma 2.7.6. Let E be a Banach space. For T1, T2 ∈ B(E ′′) and S ∈ B(E ′), we have

η(T1 ◦ T2 ◦ S ′) = η(T1 ◦ Q(T2 ◦ S ′)).

Proof. For T1, T2 ∈ B(E ′′), S ∈ B(E ′), x ∈ E and µ ∈ E ′, we have

〈(T2 ◦ S ′ ◦ κE)(x), µ〉 = 〈κE′(µ), (T2 ◦ S ′ ◦ κE)(x)〉 = 〈(κ′E ◦ S ′′ ◦ T ′2 ◦ κE′)(µ), x〉

= 〈κE(x), η(T2 ◦ S ′)(µ)〉 = 〈(Q(T2 ◦ S ′) ◦ κE)(x), µ〉.

We hence see that T2 ◦ S ′ ◦ κE = Q(T2 ◦ S ′) ◦ κE . Thus we have

η(T1 ◦ Q(T2 ◦ S ′)) = κ′E ◦ Q(T2 ◦ S ′)′ ◦ T ′1 ◦ κE′ = (T2 ◦ S ′ ◦ κE)′ ◦ T ′1 ◦ κE′

= κ′E ◦ S ′′ ◦ T ′2 ◦ T ′1 ◦ κE′ = η(T1 ◦ T2 ◦ S ′),

as required.

The maps ψ1 and ψ2 allow us to study the topological centres of Nα(E)′′. Recall that

the topological centres of A′′, for a Banach algebra A, are defined to be

Z
(1)
t (A′′) = {Φ ∈ A′′ : Φ2Ψ = Φ3Ψ (Ψ ∈ A′′)},

Z
(2)
t (A′′) = {Φ ∈ A′′ : Ψ2Φ = Ψ3Φ (Ψ ∈ A′′)}.

Lemma 2.7.7. Let E be a Banach space and T ∈ B(E ′′). Then the following are equiv-

alent:

1. Q(T ) = T ;

2. T ∈ B(E ′)a;

3. Q(T ) ◦R = T ◦R for each R ∈ F(E ′)a.

The following are also equivalent:

1. T (E ′′) ⊆ κE(E);

2. Q(R) ◦ T = R ◦ T for each R ∈ B(E ′′);
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3. Q(R) ◦ T = R ◦ T for each R ∈ F(E ′′).

Proof. For the first equivalence, (1)⇔(2) is clear. Then, setting R = κE′(µ) ⊗ Λ ∈

F(E ′)a, we have Q(T ) ◦ R = κE′(µ) ⊗ Q(T )(Λ) and T ◦ R = κE′(µ) ⊗ T (Λ), so that

we clearly have (1)⇔(3).

For the second equivalence, we clearly have (2)⇒(3). If (1) holds, then we can find

T0 ∈ B(E ′′, E) with κE ◦ T0 = T . For M ∈ E ′′′ and Λ ∈ E ′′, we have

〈κ′′E(T (Λ)),M〉 = 〈κE(T0(Λ)), κ′E(M)〉 = 〈κ′E(M), T0(Λ)〉 = 〈M,κE(T0(Λ))〉

= 〈M,T (Λ)〉 = 〈κE′′(T (Λ)),M〉,

so that κ′′E ◦ T = κE′′ ◦ T . Thus, for R ∈ B(E ′′), we have

Q(R) ◦ T = κ′E′ ◦R′′ ◦ κ′′E ◦ T = κ′E′ ◦R′′ ◦ κE′′ ◦ T = κ′E′ ◦ κE′′ ◦R ◦ T = R ◦ T.

Hence (1)⇒(2). Finally, if (3) holds but (1) does not, then for some Λ ∈ E ′′, we have

T (Λ) 6∈ κE(E). Thus we can find M ∈ κE(E)◦ ⊆ E ′′′ with, say, 〈M,T (Λ)〉 = 1.

Let R = M ⊗ Λ ∈ F(E ′′), so that η(R) = Λ ⊗ κ′E(M) = 0, as M ∈ κE(E)◦. Thus

Q(R) ◦ T = 0, but R(T (Λ)) = Λ〈M,T (Λ)〉 = Λ 6= 0. This contradiction shows that

(3)⇒(1).

For a Banach space E and a tensor norm α, define the following subsets of Bα(E ′′):

Z0
1(E,α) = {T ′ : T ∈ Bαt(E ′), T ◦ κ′E ◦ S ′′ = κ′E ◦ T ′′ ◦ S ′′ (S ∈ Nα(E)′)},

Z0
2(E,α) = {T ∈ Bα(E ′′) : T (E ′′) ⊆ κE(E), T ◦ S ′ ∈ W(E)aa (S ∈ Nα(E)′)}.

Proposition 2.7.8. Let E be a Banach space, let α be a tensor norm, and letA = Nα(E).

Then

θ1(Z
(1)
t (A′′)) ⊆ Z0

1(E,α) , θ1(Z
(2)
t (A′′)) ⊆ Z0

2(E,α).

Furthermore,

ψ2(T ) ∈ Z
(1)
t (A′′) (T ∈ F(E ′′) ∩ Z0

1(E,α)),

ψ1(T ) ∈ Z
(2)
t (A′′) (T ∈ F(E ′′) ∩ Z0

2(E,α)).

Proof. By the homomorphism properties of θ1, we see that

θ1(Φ) ◦ θ1(Ψ) = Q(θ1(Φ)) ◦ θ1(Ψ) (Φ ∈ Z
(1)
t (A′′),Ψ ∈ A′′),

θ1(Ψ) ◦ θ1(Φ) = Q(θ1(Ψ)) ◦ θ1(Φ) (Φ ∈ Z
(2)
t (A′′),Ψ ∈ A′′).
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Then, as θ1 ◦ ψ1 is the identity on F(E ′′), setting Ψ = ψ1(R) for R ∈ F(E ′′), we have

θ1(Φ) ◦R = Q(θ1(Φ)) ◦R (Φ ∈ Z
(1)
t (A′′), R ∈ F(E ′′)),

R ◦ θ1(Φ) = Q(R) ◦ θ1(Φ) (Φ ∈ Z
(2)
t (A′′), R ∈ F(E ′′)).

So Lemma 2.7.7 immediately gives us

θ1(Z
(1)
t (A′′)) ⊆ B(E ′)a , θ1(Z

(2)
t (A′′)) ⊆ {T ∈ B(E ′′) : T (E ′′) ⊆ κE(E)}.

Recall that θ1(A′′) ⊆ Bα(E ′′), so that, for example, θ1(Z
(1)
t (A′′)) ⊆ Bαt(E ′)a.

Furthermore, forR = M⊗Λ ∈ E ′′′⊗E ′′, S ∈ A′ and Φ ∈ Z
(1)
t (A′′), let T = η(θ1(Φ))

so that θ1(Φ) = T ′, so that

〈Φ2ψ1(R), S〉 = 〈Φ, η(R ◦ S ′)〉 = 〈Φ,Λ⊗ κ′E(S ′′(M))〉 = 〈θ1(Φ)(Λ), κ′E(S ′′(M))〉

= 〈(T ′′ ◦ κE′ ◦ κ′E ◦ S ′′)(M),Λ〉 = 〈(κE′ ◦ T ◦ κ′E ◦ S ′′)(M),Λ〉

= 〈Λ, (T ◦ κ′E ◦ S ′′)(M)〉

〈Φ3ψ1(R), S〉 = 〈ψ1(R), η(θ1(Φ)) ◦ S〉 = 〈ψ1(R), T ◦ S〉 = Tr(η(R ◦ S ′ ◦ T ′))

= Tr
(
η
(
T ′′(S ′′(M))⊗ Λ

))
= 〈Λ, (κ′E ◦ T ′′ ◦ S ′′)(M)〉.

Thus we have T ◦ κ′E ◦ S ′′ = κ′E ◦ T ′′ ◦ S ′′, so that θ1(Z
(1)
t (A′′)) ⊆ Z0

1(E,α).

For S ∈ A′ and Φ ∈ Z
(2)
t (A′′), letting T ∈ B(E ′′, E) be such that κE ◦ T = θ1(Φ), we

have

η(θ1(Φ) ◦ S ′) = κ′E ◦ S ′′ ◦ (κE ◦ T )′ ◦ κE′ = κ′E ◦ S ′′ ◦ T ′.

For R = Λ⊗ µ ∈ E ′′ ⊗ E ′, we hence have

〈ψ1(R
′)2Φ, S〉 = 〈ψ1(R

′), η(θ1(Φ) ◦ S ′)〉 = 〈ψ1(R
′), κ′E ◦ S ′′ ◦ T ′〉

= Tr(κ′E ◦ S ′′ ◦ T ′ ◦R) = 〈Λ, (κ′E ◦ S ′′ ◦ T ′)(µ)〉

〈ψ1(R
′)3Φ, S〉 = 〈Φ, R ◦ S〉 = 〈Φ, S ′(Λ)⊗ µ〉 = 〈(κE ◦ T ◦ S ′)(Λ), µ〉

= 〈µ, (T ◦ S ′)(Λ)〉 = 〈(S ′′ ◦ T ′)(µ),Λ〉.

Thus we have κE′ ◦ κ′E ◦ S ′′ ◦ T ′ = S ′′ ◦ T ′. By Lemma 2.7.9 below, this is if and only if

κE ◦ T ◦ S ′ ∈ B(E ′)a. By Lemma 2.7.10 below, we have

B(E ′)a ∩ {T ∈ B(E ′′) : T (E ′′) ⊆ κE(E)} = W(E)aa,

which implies that θ1(Z
(2)
t (A′′)) ⊆ Z0

2(E,α).

Suppose that R = Λ⊗ µ ∈ F(E ′) is such that R′ ∈ Z0
1(E,α), so that for S ∈ A′, we

have R ◦ κ′E ◦ S ′′ = κ′E ◦R′′ ◦ S ′′; that is

(S ′′′ ◦ κ′′E)(Λ)⊗ µ = (S ′′′ ◦ κE′′)(Λ)⊗ µ.

2.7. Topological centres of biduals of operator ideals



Chapter 2. Operator ideals and Arens products 66

Thus, for Φ ∈ A′′, we have

〈ψ2(R
′)2Φ, S〉 = 〈ψ2(R

′), η(θ1(Φ) ◦ S ′)〉 = Tr(R ◦ η(θ1(Φ) ◦ S ′))

= 〈Λ, η(θ1(Φ) ◦ S ′)(µ)〉 = 〈Λ, (κ′E ◦ S ′′ ◦ θ1(Φ)′ ◦ κE′)(µ)〉

= 〈(S ′′′ ◦ κ′′E)(Λ), (θ1(Φ)′ ◦ κE′)(µ)〉

= 〈(S ′′′ ◦ κE′′)(Λ), (θ1(Φ)′ ◦ κE′)(µ)〉

= 〈(S ′′ ◦ θ1(Φ)′ ◦ κE′)(µ),Λ〉 = 〈(θ1(Φ) ◦ S ′)(Λ), µ〉

= 〈Φ, S ′(Λ)⊗ µ〉 = 〈Φ, R ◦ S〉 = 〈ψ2(R
′)3Φ, S〉.

Thus ψ2(Z
0
1(E,α) ∩ F(E ′′)) ⊆ Z

(1)
t (A′′).

Similarly, for R = M ⊗ κE(x) ∈ F(E ′′) ∩ Z0
2(E,α) and S ∈ A′, we have R ◦ S ′ ∈

W(E)aa, which is if and only if S ′′(M) ⊗ κE(x) ∈ W(E)aa. This is if and only if

S ′′(M) = κE′(µ) for some µ ∈ E ′. Then, for Φ ∈ A′′, we have

〈Φ3ψ1(R), S〉 = 〈ψ1(R), η(θ1(Φ)) ◦ S〉 = Tr
(
η
(
R ◦ S ′ ◦ Q(θ1(Φ))

))
= Tr

(
κ′E ◦ η(θ1(Φ))′′ ◦ (κE′(µ)⊗ κE(x))′ ◦ κE′

)
= Tr

(
κ′E ◦ η(θ1(Φ))′′ ◦ (κE(x)⊗ κE′(µ))

)
= 〈κE(x), (κ′E ◦ η(θ1(Φ))′′ ◦ κE′)(µ)〉

= 〈η(θ1(Φ))(µ), x〉 = 〈(κ′E ◦ θ1(Φ)′ ◦ κE′)(µ), x〉

= 〈θ1(Φ)(κE(x)), µ〉 = 〈Φ, κE(x)⊗ µ〉 = 〈Φ, η(S ′′(M)⊗ κE(x))〉

= 〈Φ, η(R ◦ S ′)〉 = 〈Φ2ψ1(R), S〉.

Thus ψ1(F(E ′′) ∩ Z0
2(E,α)) ⊆ Z

(2)
t (A′′).

Lemma 2.7.9. Let S ∈ B(E ′) and T ∈ B(E ′′, E). Then κE′ ◦ κ′E ◦ S ′′ ◦ T ′ = S ′′ ◦ T ′ if

and only if κE ◦ T ◦ S ′ ∈ B(E ′)a.

Proof. We have that κE ◦ T ◦ S ′ ∈ B(E ′)a if and only if Q(κE ◦ T ◦ S ′) = κE ◦ T ◦ S ′.

Now, for Λ ∈ E ′′ and µ ∈ E ′, we have

〈Q(κE ◦ T ◦ S ′)(Λ), µ〉 = 〈Λ, η(κE ◦ T ◦ S ′)(µ)〉 = 〈Λ, (κ′E ◦ S ′′ ◦ T ′ ◦ κ′E ◦ κE′)(µ)〉

= 〈Λ, (κ′E ◦ S ′′ ◦ T ′)(µ)〉 = 〈(κE′ ◦ κ′E ◦ S ′′ ◦ T ′)(µ),Λ〉,

and also

〈(κE ◦ T ◦ S ′)(Λ), µ〉 = 〈µ, (T ◦ S ′)(Λ)〉 = 〈(S ′′ ◦ T ′)(µ),Λ〉.

Thus κE ◦ T ◦ S ′ ∈ B(E ′)a if and only if S ′′ ◦ T ′ = κE′ ◦ κ′E ◦ S ′′ ◦ T ′, as required.
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Note that the above proof (and the lemma below) shows that

Z0
2(E,α) = {T ∈ Bα(E ′′) : T (E ′′) ⊆ κE(E), T ◦ S ′ ∈ B(E ′)a (S ∈ Nα(E)′)}.

Lemma 2.7.10. For a Banach space E and a tensor norm α, we have

Z0
1(E,α) ∩ Z0

2(E,α) = (W (E) ∩ Bα(E))aa,

B(E ′)a ∩ {T ∈ B(E ′′) : T (E ′′) ⊆ κE(E)} = W(E)aa.

Proof. Firstly, for T ∈ B(E ′), suppose that T ′(E ′′) ⊆ κE(E). Then we can find T0 ∈

B(E ′′, E) with κE ◦ T0 = T ′. Then, for x ∈ E and µ ∈ E ′, we have

〈µ, T0(κE(x))〉 = 〈T ′(κE(x)), µ〉 = 〈T (µ), x〉,

so that (T0 ◦ κE)′ = T . Furthermore, (T0 ◦ κE)′′(E ′′) = T ′(E ′′) ⊆ κE(E), so that by

Theorem 2.2.8, (T0 ◦ κE) ∈ W(E). Thus we have the second equality.

Now suppose that T ′ ∈ Z0
1(E,α) ∩ Z0

2(E,α), so that we immediately have T = R′

for some R ∈ W(E). Then R′′ ∈ Bα(E ′′), so that R ∈ Bα(E), by Proposition 2.2.6.

Conversely, let R ∈ W(E) ∩ Bα(E). Then, for S ∈ B(E ′), we have

R′ ◦ κ′E ◦ S ′′ = (κE ◦R)′ ◦ S ′′ = (R′′ ◦ κE)′ ◦ S ′′ = κ′E ◦R′′′ ◦ S ′′,

so that R′ ∈ Z0
1(E,α). We clearly have that R′′ ∈ Z0

2(E,α), completing the proof.

In some special cases, we can say more than the above proposition.

Theorem 2.7.11. LetE be a Banach space, α be a tensor norm andA = Nα(E). Suppose

that A′ ⊆ W(E ′). Then

Z0
1(E,α) = Bαt(E ′)a , Z0

2(E,α) = κE ◦ Bα(E ′′, E),

where κE ◦ B(E ′′, E) = {T ∈ B(E ′′) : T (E ′′) ⊆ κE(E)}.

Consequently, we have

ψ2(T
′) ∈ Z

(1)
t (A′′) (T ∈ F(E ′)),

ψ1(κE ◦ T ) ∈ Z
(2)
t (A′′) (T ∈ F(E ′′, E)).

When E is not reflexive, the two topological centres of A′′ are distinct, neither contains

the other, and both strictly contain κA(A).

Proof. For S ∈ A′, as S ∈ W(E ′), S ′′(E ′′′) ⊆ κE′(E
′). Hence we have κE′ ◦ κ′E ◦ S ′′ =

S ′′, as κ′E is a projection of E ′′′ onto E ′. We immediately have Z0
1(E,α) = Bαt(E ′)a.
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Similarly, for S ∈ A′ and T ∈ κE ◦ B(E ′′, E), we have that T = κE ◦ T0 for some

T0 ∈ B(E ′′, E). As κE′ ◦ κ′E ◦ S ′′ = S ′′, for µ ∈ E ′ and Λ ∈ E ′′, we have

〈(T0 ◦ S ′ ◦ κE)′′(Λ), µ〉 = 〈Λ, (κ′E ◦ S ′′ ◦ T ′0)(µ)〉 = 〈(S ′′ ◦ T ′0)(µ),Λ〉

= 〈µ, (T0 ◦ S ′)(Λ)〉 = 〈(κE ◦ T0 ◦ S ′)(Λ), µ〉.

Thus κE ◦ T0 ◦ S ′ = (T0 ◦ S ′ ◦ κE)′′ ∈ W(E)aa, so that T ∈ Z0
2(E,α). We conclude that

Z0
2(E,α) = κE ◦ Bα(E ′′, E).

Suppose that E is not reflexive, so that A is not Arens regular. Let Λ ∈ E ′′ and

µ ∈ E ′ be non-zero, and let T1 = Λ ⊗ µ ∈ F(E ′), so that ψ2(T
′
1) ∈ Z

(1)
t (A′′). Suppose

that ψ2(T
′
1) = κA(T ) for some T ∈ A, so that T ′1 = θ1(ψ2(T

′
1)) = T ′′, which is a

contradiction. Also, θ1(ψ2(T
′
1)) = T ′1 6∈ Z0

2(E,α), so that ψ2(T
′
1) 6∈ Z

(2)
t (A′′). Thus

the first topological centre strictly contains κA(A) and is not contained in the second

topological centre.

Similarly, let M ∈ κE(E)◦ ⊆ E ′′′ and x ∈ E be non-zero, and let T2 = M ⊗ x ∈

F(E ′′, E), so that ψ1(κE ◦ T2) ∈ Z
(2)
t (A′′). Again, we see that ψ1(κE ◦ T2) 6∈ κA(A),

and that ψ1(κE ◦ T2) 6∈ Z
(1)
t (A′′), so that the second topological centre strictly contains

κA(A) and is not contained in the first topological centre.

The above certainly applies when α = ε, as then A′ = A(E)′ = I(E ′) ⊆ W(E ′) (by

Corollary 2.3.7). However, it does not apply when α = π in the interesting case of when

E is not reflexive, for when E has the approximation property, A = N (E) = E ′⊗̂E, and

soA′ = B(E ′) 6= W(E ′). We shall see later (Corollary 2.7.25) that this is a real problem,

and not just an artifact of the method of proof.

The key to extending the above theorem is to look at the map θ1.

Proposition 2.7.12. Let E be a Banach space, α be a tensor norm and A = Nα(E). Let

I1 = ker θ1 ⊆ A′′ , I2 = ker(Q ◦ θ1) ⊆ A′′.

Then I1 is a closed ideal for either Arens product, and I2 is a closed ideal in (A′′,3).

Furthermore, we have

A′′2I1 = I13A′′ = I23A′′ = {0}.

In particular, I12I1 = I13I1 = I23I2 = {0}. For i = 1, 2, we have

I12ψi(E
′′′⊗̂αE

′′) = ψi(E
′′′⊗̂αE

′′)3I1 = I22ψi(κE′(E
′)⊗̂ακE(E)) = {0}.

2.7. Topological centres of biduals of operator ideals



Chapter 2. Operator ideals and Arens products 69

Proof. By the homomorphism properties of θ1, we see that I1 is a closed ideal inA′′, with

respect to either Arens product. By (the proof of) Proposition 2.6.5, for T, S ∈ B(E ′′),

we have Q(T ) ◦ Q(S) = Q(Q(T ) ◦ S), and so, for Φ ∈ I2 and Ψ ∈ A′′, we have

Q(θ1(Φ3Ψ)) = Q(Q(θ1(Φ)) ◦ θ1(Ψ)) = 0,

Q(θ1(Ψ3Φ)) = Q(Q(θ1(Ψ)) ◦ θ1(Φ)) = Q(θ1(Ψ)) ◦ Q(θ1(Φ)) = 0,

so that I2 is a closed ideal in (A′′,3).

For S ∈ A′, Ψ ∈ A′′ and Φ ∈ I1, we have

〈Ψ2Φ, S〉 = 〈Ψ, η(θ1(Φ) ◦ S ′)〉 = 0 , 〈Φ3Ψ, S〉 = 〈Ψ, η(θ1(Φ)) ◦ S〉 = 0.

Thus we see that Ψ2Φ = Φ3Ψ = 0. Similarly, for Φ ∈ I2 and Ψ ∈ A′′, we have

〈Φ3Ψ, S〉 = 〈Ψ, η(θ1(Φ)) ◦ S〉 = 0 (S ∈ A′),

so that Φ3Ψ = 0 for each Ψ ∈ A′′.

For u ∈ E ′′′⊗E ′′ and S ∈ A′, we have that ψi(u) ·S and S ·ψi(u) are in E ′′⊗E ′, for

i = 1, 2. Thus, for Φ ∈ I1 and i = 1, 2, we have

〈Φ2ψi(u), S〉 = 〈Φ, ψi(u) · S〉 = 0 = 〈Φ, S · ψi(u)〉 = 〈ψi(u)3Φ, S〉.

Similarly, for u = κE′(µ)⊗ κE(x) ∈ E ′′′ ⊗ E ′′, S ∈ A′, Φ ∈ I2 and i = 1, 2, we have

〈Φ2ψi(u), S〉 = 〈Φ, S ◦ (κE(x)⊗ µ)〉 = 〈(θ1(Φ)′ ◦ κE′ ◦ S)(µ), κE(x)〉

= 〈(η(θ1(Φ)) ◦ S)(µ), x〉 = 0.

Theorem 2.7.13. LetE be a Banach space, α be a tensor norm andA = Nα(E). Suppose

that (E ′, α) and (E ′′, α) are both a Grothendieck pair (in particular, this holds if α is

accessible). Then the two topological centres of A′′ strictly contain κA(A). Suppose that

the two sets

lin{S · Φ : S ∈ A′,Φ ∈ A′′} , lin{Φ · S : S ∈ A′,Φ ∈ A′′}

are distinct, and neither contains the other. Then the topological centres are distinct and

neither contains the other.

Proof. By the Theorem 2.7.11, we may suppose that A′ 6⊆ W(E ′). Furthermore, by

continuity, we may suppose that W(E ′)∩A′ is not dense in A′. By Proposition 2.7.3, we

have

{S · Φ : S ∈ A′,Φ ∈ A′′}+ {Φ · S : S ∈ A′,Φ ∈ A′′} ⊆ I(E ′) ⊆ W(E ′).
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Note also that φ1(E
′′ ⊗ E ′) = F(E ′) ⊆ W(E ′). Consequently, by the Hahn-Banach

theorem, we can find a non-zero Φ ∈ A′′ so that

〈Φ, φ1(u)〉 = 0 (u ∈ E ′′ ⊗ E ′),

〈Φ, S ·Ψ〉 = 〈Φ,Ψ · S〉 = 0 (Ψ ∈ A′′, S ∈ A′).

Then θ1(Φ) = 0 so that Φ ∈ I1 (and hence Φ 6∈ κA(A)), and thus, for Ψ ∈ A′′ and

S ∈ A′, we have

〈Φ2Ψ, S〉 = 〈Φ,Ψ · S〉 = 0 = 〈Φ3Ψ, S〉,

as Φ3A′′ = {0}. Hence Φ ∈ Z
(1)
t (A′′). Similarly, we have

〈Ψ3Φ, S〉 = 〈Φ, S ·Ψ〉 = 0 = 〈Ψ2Φ, S〉,

as A′′2Φ = {0}, so that Φ ∈ Z
(2)
t (A′′).

Define

X1 = lin{S · Φ : S ∈ A′,Φ ∈ A′′} , X2 = lin{Φ · S : S ∈ A′,Φ ∈ A′′}.

When X1 6⊆ X2, we can find a non-zero Φ ∈ A′′ with θ1(Φ) = 0, 〈Φ, λ〉 = 0 for each

λ ∈ X2, and 〈Φ, S0 · Φ0〉 6= 0 for some S0 ∈ A′ and Φ0 ∈ A′′. As above, we see that

Φ ∈ Z
(2)
t (A′′), but we have 〈Φ03Φ, S0〉 = 〈Φ, S0 · Φ0〉 6= 0, while 〈Φ02Φ, S0〉 = 0 as

A′′2Φ = {0}. Thus Φ 6∈ Z
(1)
t (A′′). Similarly, when X2 6⊆ X1, we have Z

(1)
t (A′′) 6⊆

Z
(2)
t (A′′).

We will show later, in Corollary 2.7.25, that we cannot hope to completely remove the

second condition in the above theorem.

To conclude, in slightly less than full generality, we have the following.

Theorem 2.7.14. Let E be a Banach space which is not reflexive, let α be an accessible

tensor norm and let A = Nα(E). The topological centres of A′′ both strictly contain

κA(A), and are both strictly contained inA′′. WhenA′ ⊆ W(E ′), the topological centres

are distinct and neither contains the other. �

2.7.1 When the dual space has the bounded approximation property

To say more about the topological centres ofNα(E)′′, we need to impose some conditions

on the Banach space E. Following Grosser, we shall now study the case where E ′ has the

bounded approximation property. It turns out that this is an important special case which

makes up, in some sense, for the fact that E is not assumed to be reflexive. For example,

in [Grosser, 1987], the concept of Arens semi-regularity is studied.
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Definition 2.7.15. LetA be a Banach algebra. A multiplier onA is a pair (L,R) of maps

in B(A) such that

L(ab) = L(a)b , R(ab) = aR(b) , aL(b) = R(a)b (a, b ∈ A).

The collection of multipliers on A is denoted by M(A).

Definition 2.7.16. Let A be a Banach algebra with a bounded approximate identity, let

Ξ ∈ A′′ be a mixed identity and let

D(Ξ) = {L′′(Ξ) : (L,R) ∈M(A)}.

Then A is Arens semi-regular if and only if the Arens products coincide on D(Ξ), for

each mixed identity Ξ (see [Grosser, 1984]).

In [Grosser, 1987], Grosser shows that A(E) (when E ′ has the bounded approxima-

tion property) is Arens semi-regular when I(E ′) = N (E ′). He also demonstrates (see

[Grosser, 1987, Section 4]) that when E ′ has the bounded approximation property, we

have A(E)′′ = B(E ′′)⊕ ker θ1.

This last property can be generalised to the α-nuclear case, and we shall see that, when

E ′ has the bounded approximation property, we can completely identify the topological

centres of Nα(E)′′, at least when α is accessible.

Throughout this section, E will be a Banach space such that E ′ has the bounded ap-

proximation property. For a tensor norm α, as E has the bounded approximation property

as well, A = Nα(E) = E ′⊗̂αE and so A′ = Bα′(E
′). Suppose that α is accessible

(so that α′ is also accessible). As in Proposition 2.6.7, we see that φ1 : Nα′(E
′) =

E ′′⊗̂α′E
′ → A′ is an isomorphism onto its range, and so θ1 : A′′ → Bα(E ′′) is surjective.

When E ′ has the metric approximation property, or α′ is totally accessible, φ1 is actually

an isometry onto its range, and so θ1 is a quotient operator.

Theorem 2.7.17. Let E be a Banach space such that E ′ has the bounded approximation

property. Let α be an accessible tensor norm, and A = Nα(E). There exists a homomor-

phism, which is also an isomorphism onto its range, ψ1 : (Bα(E ′′), ◦) → (A′′,2) such

that θ1 ◦ ψ1 = IdBα(E′′). There also exists a bounded homomorphism ψ2 : (Bα(E ′′), ?) →

(A′′,3) such that θ1 ◦ψ2 = Q. For i = 1, 2 and T ∈ A, we have ψi(T
′′) = κA(T ). When

E ′ has the metric approximation property, ψ1 can be chosen to be an isometry and ψ2 can

be chosen to be norm-decreasing. Furthermore, these maps extend the maps defined in

Theorem 2.7.4, when they are restricted to F(E ′′).
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Proof. As in Example 2.6.8, as E ′ has the bounded approximation property, we can find

Ξ ∈ I(E ′)′ = A(E)′′ so that θ1(Ξ) = IdE′′ . As α is accessible, by the Grothendieck

Composition theorem, for T ∈ Bα(E ′′) and S ∈ Bα′(E
′) = A′, we have that S ′ ∈

Bα̌(E ′′), so that T ◦S ′ ∈ I(E ′′), and hence η(T ◦S ′) ∈ I(E ′). Similarly, η(T ) ∈ Bα(E ′),

and so η(T ) ◦ S = η(S ′ ◦ T ) ∈ I(E ′). Define, for i = 1, 2, ψi : Bα(E ′′) → A′′ by

〈ψ1(T ), S〉 = 〈Ξ, η(T ◦ S ′)〉 , 〈ψ2(T ), S〉 = 〈Ξ, η(T ) ◦ S〉

for T ∈ Bα(E ′′) and S ∈ Bα′(E
′). Then we have

|〈ψ1(T ), S〉| ≤ ‖Ξ‖‖η(T ◦ S ′)‖π ≤ ‖Ξ‖‖T ◦ S ′‖π ≤ ‖Ξ‖‖T‖α‖S‖α′ ,

so that ‖ψ1‖ ≤ ‖Ξ‖. Similarly, ‖ψ2‖ ≤ ‖Ξ‖. As we form Ξ from a bounded approximate

identity for A(E), by results in [Grønbæk, Willis, 1993], we see that the smallest we

can make ‖Ξ‖ is the bound for which E ′ has the bounded approximation property. In

particular, if E ′ has the metric approximation property, then ψ1 and ψ2 can be constructed

to be norm-decreasing.

For T ∈ F(E ′′) and S ∈ A′, we have

〈ψ1(T ), S〉 = 〈Ξ, η(T ◦ S ′)〉 = Tr(η(T ◦ S ′)),

〈ψ2(T ), S〉 = 〈Ξ, η(T ) ◦ S〉 = Tr(η(T ) ◦ S),

so that the maps ψi extend those defined in Theorem 2.7.4.

For Λ ∈ E ′′, µ ∈ E ′ and T ∈ Bα(E ′′), we have η(T ◦φ1(Λ⊗µ)′) = η(κE′(µ)◦T (Λ)) =

φ1(T (Λ)⊗ µ). Thus we have

〈θ1(ψ1(T ))(Λ), µ〉 = 〈Ξ, η(T ◦ φ1(Λ⊗ µ)′)〉 = 〈Ξ, φ1(T (Λ)⊗ µ)〉 = 〈T (Λ), µ〉,

as θ1(Ξ) = IdE′′ . Thus θ1 ◦ ψ1 = IdBα(E′′). As θ1 is norm-decreasing, we see that ψ1 is

an isomorphism onto its range, and an isometry when E ′ has the metric approximation

property (for a suitably chosen Ξ). Similarly, we have

〈θ1(ψ2(T ))(Λ), µ〉 = 〈Ξ, η(T ) ◦ φ1(Λ⊗ µ)〉 = 〈Λ, η(T )(µ)〉,

so that θ1 ◦ ψ2 = Q.

For T ∈ A = E ′⊗̂αE, we have T ∈ Bα(E), so that T ′′ ∈ Bα(E ′′). Suppose that

2.7. Topological centres of biduals of operator ideals



Chapter 2. Operator ideals and Arens products 73

T = µ⊗ x. Then, for S ∈ Bα′(E
′), we have

〈ψ1(T
′′), S〉 = 〈Ξ, η(T ′′ ◦ S ′)〉 = 〈Ξ, S ◦ T ′〉 = 〈Ξ, κE(x)⊗ S(µ)〉

= 〈κE(x), S(µ)〉 = 〈S, T 〉 = 〈κA(T ), S〉,

〈ψ2(T
′′), S〉 = 〈Ξ, T ′ ◦ S〉 = 〈Ξ, S ′(κE(x))⊗ µ〉

= 〈S ′(κE(x)), µ〉 = 〈S(µ), x〉 = 〈S, T 〉 = 〈κA(T ), S〉.

By linearity and continuity, we see that ψi(T
′′) = κA(T ) for T ∈ A and i = 1, 2.

By Lemma 2.7.6, for T1, T2 ∈ B(E ′′) and S ∈ B(E ′), we have η(T1 ◦ T2 ◦ S ′) =

η(T1 ◦ Q(T2 ◦ S ′)). Then, for T1, T2 ∈ Bα(E ′′) and S ∈ A′, we have

〈ψ1(T1)2ψ1(T2), S〉 = 〈ψ1(T1), η(θ1(ψ1(T2)) ◦ S ′)〉 = 〈ψ1(T1), η(T2 ◦ S ′)〉

= 〈Ξ, η(T1 ◦ Q(T2 ◦ S ′))〉 = 〈Ξ, η(T1 ◦ T2 ◦ S ′)〉

= 〈ψ1(T1 ◦ T2), S〉.

We see that ψ1 : (Bα(E ′′), ◦) → (A′′,2) is a homomorphism. Similarly, we have

〈ψ2(T1 ? T2), S〉 = 〈ψ2(Q(T1) ◦ T2), S〉 = 〈Ξ, η(Q(T1) ◦ T2) ◦ S〉

= 〈Ξ, η(S ′ ◦ Q(T1) ◦ T2)〉 = 〈Ξ, κ′E ◦ T ′2 ◦ η(T1)
′′ ◦ S ′′ ◦ κE′〉

= 〈Ξ, κ′E ◦ T ′2 ◦ κE′ ◦ η(T1) ◦ S〉 = 〈Ξ, η(T2) ◦ η(T1) ◦ S〉

= 〈Ξ, η(T2) ◦ η(S ′ ◦ T1)〉 = 〈ψ2(T2), η(S
′ ◦ T1)〉

= 〈ψ2(T2), η(T1) ◦ S〉 = 〈ψ2(T1)3ψ2(T2), S〉.

We see that ψ2 : (Bα(E ′′), ?) → (A′′,3) is a homomorphism.

For T ∈ Bαt(E ′), θ1(ψ2(T
′)) = Q(T ′) = T ′, so that ψ2 restricted to Bα(E ′′)∩B(E ′)a

is an isomorphism onto its range (and an isometry when E ′ has the metric approximation

property).

There is evidently some choice in the construction of ψ1 and ψ2, as we are free to

choose a mixed identity Ξ ∈ A(E)′′. However, below we shall see that this is unimportant

as far as the study of topological centres go.

As θ1 ◦ ψ1 = IdBα(E′′), we have that ψ1 ◦ θ1 is a projection of A′′ onto ψ1(Bα(E ′′)).

Thus we can write

A′′ = Bα(E ′′)⊕ ker θ1 = Bα(E ′′)⊕ I1,

with reference to Proposition 2.7.12.
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For a Banach space E (such that E ′ has the bounded approximation property) and an

accessible tensor norm α, define

Z1(E,α) = {T ′ : T ∈ Bαt(E ′), T ◦ S ∈ Nα′(E
′),

κE′ ◦ T ◦ κ′E ◦ S ′′ = T ′′ ◦ S ′′ (S ∈ Bα′(E
′))},

Z2(E,α) = {T ∈ Bα(E ′′) : T (E ′′) ⊆ κE(E), T ◦ S ′ ∈ Nα′(E
′)a (S ∈ Bα′(E

′))},

X1(E,α) = lin{η(T ◦ S ′) : S ∈ Bα′(E
′), T ∈ Bα(E ′′)} ⊆ Bα′(E

′),

X2(E,α) = lin{T ◦ S : S ∈ Bα′(E
′), T ∈ Bαt(E ′)} ⊆ Bα′(E

′).

By the Grothendieck Composition theorem, we see that X1 and X2 are subsets of I(E ′),

where the closure is taken with respect to Bα′(E
′).

Theorem 2.7.18. Let E be a Banach space such that E ′ has the bounded approximation

property, let α be an accessible tensor norm, and let A = Nα(E). Then

Z
(1)
t (A′′) = {ψ2(T ) + Φ : T ∈ Z1(E,α),Φ ∈ X1(E,α)◦}.

Proof. Let Φ ∈ Z
(1)
t (A′′), so that we can write Φ = Φ0 + ψ1(T

′) for some Φ0 ∈ I1 and

T ∈ Z0
1(E,α), by Proposition 2.7.8, and the discussion above. Similarly, for Ψ ∈ A′′, let

Ψ = Ψ0 + ψ1(R), for some Ψ0 ∈ I1 and R ∈ Bα(E ′′). Then we have, with reference to

Proposition 2.7.12,

Φ2Ψ = Φ2ψ1(R) = Φ02ψ1(R) + ψ1(T
′ ◦R),

Φ3Ψ = ψ1(T
′)3Ψ = ψ1(T

′)3Ψ0 + ψ1(T
′)3ψ1(R).

Setting Ψ0 = 0, we have

Φ02ψ1(R) + ψ1(T
′ ◦R) = ψ1(T

′)3ψ1(R) (R ∈ Bα(E ′′)), (2.1)

and so we also have

ψ1(T
′)3Ψ0 = 0 (Ψ0 ∈ I1).

For S ∈ Bα′(E
′) = A′, we thus have 〈Ψ0, S · ψ1(T

′)〉 = 〈Ψ0, T ◦ S〉 = 0 for each

Ψ0 ∈ I1. By the Hahn-Banach theorem, this holds if and only if

T ◦ S ∈ φ1(E
′′⊗̂α′E

′) = Nα′(E
′) (S ∈ Bα′(E

′)),

as φ1(E
′′⊗̂α′E

′) = Nα′(E
′) is a closed subspace of A′, by Proposition 2.3.22, given that

E ′ has the bounded approximation property. As Nα′(E
′) ⊆ W(E ′), we thus have that

κE′ ◦ κ′E ◦ T ′′ ◦ S ′′ = T ′′ ◦ S ′′, and so we see that

Z0
1(E,α) ∩ {T ′ : T ∈ Bαt(E ′), T ◦ S ∈ Nα′(E

′) (S ∈ Bα′(E
′)} = Z1(E,α).
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Then, for S ∈ Bα′(E
′) = A′ and R ∈ Bα(E ′′), we have

〈Φ02ψ1(R) + ψ1(T
′ ◦R), S〉 = 〈Φ0, η(R ◦ S ′)〉+ 〈Ξ, η(T ′ ◦R ◦ S ′)〉

= 〈Φ0, η(R ◦ S ′)〉+ 〈ψ1(T
′), η(R ◦ S ′)〉,

as η(T ′ ◦ R ◦ S ′) = η(R ◦ S ′) ◦ T = η(η(R ◦ S ′)′) ◦ T = η(T ′ ◦ η(R ◦ S ′)′). We also

know that T ◦ κ′E ◦ S ′′ = κ′E ◦ T ′′ ◦ S ′′, so that

〈ψ1(T
′)3ψ1(R), S〉 = 〈ψ1(R), T ◦ S〉 = 〈Ξ, η(R ◦ S ′ ◦ T ′)〉

= 〈Ξ, κ′E ◦ T ′′ ◦ S ′′ ◦R′ ◦ κE′〉 = 〈Ξ, T ◦ κ′E ◦ S ′′ ◦R′ ◦ κE′〉

= 〈Ξ, T ◦ η(R ◦ S ′)〉 = 〈ψ2(T
′), η(R ◦ S ′)〉.

By equation 2.1, we see that

〈Φ0, η(R ◦ S ′)〉 = 〈ψ2(T
′)− ψ1(T

′), η(R ◦ S ′)〉 (R ∈ Bα(E ′′), S ∈ Bα′(E
′)).

Thus, for S ∈ X1(E,α), we have

〈Φ, S〉 = 〈ψ1(T
′) + Φ0, S〉 = 〈ψ2(T

′), S〉,

and so Φ− ψ2(T
′) ∈ X(E,α)◦. Hence Z

(1)
t (A′′) ⊆ ψ2(Z1(E,α)) +X1(E,α)◦.

Conversely, for T ′ ∈ Z1(E,α) and Φ ∈ X1(E,α)◦, for Ψ0 ∈ I1, R ∈ Bα(E ′′) and

S ∈ A′, we have

〈(Φ + ψ2(T
′))2(Ψ0 + ψ1(R)), S〉 = 〈(Φ + ψ2(T

′))2ψ1(R), S〉

= 〈Φ + ψ2(T
′), ψ1(R).S〉 = 〈Φ + ψ2(T

′), η(R ◦ S ′)〉

= 〈ψ2(T
′), η(R ◦ S ′)〉 = 〈Ξ, T ◦ η(R ◦ S ′)〉.

As Nα′(E
′) ⊆ X1(E,α), we have that Φ ∈ I1, and as T ′ ∈ Z1(E,α), we have T ◦ S ∈

Nα′(E
′), so that

〈(Φ + ψ2(T
′))3(Ψ0 + ψ1(R)), S〉 = 〈ψ2(T

′)3(Ψ0 + ψ1(R)), S〉

= 〈Ψ0 + ψ1(R), T ◦ S〉 = 〈ψ1(R), T ◦ S〉

= 〈Ξ, η(R ◦ S ′ ◦ T ′)〉 = 〈Ξ, T ◦ η(R ◦ S ′)〉,

again using the fact that T ∈ Z1(E,α). Hence Φ + ψ2(T
′) ∈ Z

(1)
t (A′′), and we have

Z
(1)
t (A′′) = ψ2(Z1(E,α)) +X(E,α)◦,

as required.
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Theorem 2.7.19. Let E be a Banach space such that E ′ has the bounded approximation

property, let α be an accessible tensor norm, and let A = Nα(E). Then

Z
(2)
t (A′′) = {ψ1(T ) + Φ : T ∈ Z2(E,α),Φ ∈ X2(E,α)◦}.

Proof. Let Φ ∈ Z
(2)
t (A′′). With reference to Proposition 2.7.8, we can write Φ = Φ0 +

ψ1(T ) for some Φ0 ∈ I1 and T ∈ Z0
2(E,α). Similarly, for Ψ ∈ A′′, let Ψ = Ψ0 + ψ1(R),

for some Ψ0 ∈ I1 and R ∈ Bα(E ′′). Then we have, with reference to Proposition 2.7.12,

Ψ2Φ = (Ψ0 + ψ1(R))2ψ1(T ) = Ψ02ψ1(T ) + ψ1(R ◦ T ),

Ψ3Φ = ψ1(R)3(Φ0 + ψ1(T )) = ψ1(R)3Φ0 + ψ1(R)3ψ1(T ).

Setting Ψ0 = 0 gives us

ψ1(R ◦ T ) = ψ1(R)3Φ0 + ψ1(R)3ψ1(T ) (R ∈ Bα(E ′′)), (2.2)

and thus also that Ψ02ψ1(T ) = 0 for each Ψ0 ∈ I1. Again, this holds if and only if, for

each S ∈ Bα′(E
′), we have ψ1(T ) · S = η(T ◦ S ′) ∈ Nα′(E

′).

As T ∈ Z0
2(E,α), for S ∈ Bα′(E

′), we have T ◦ S ′ ∈ B(E ′)a, so that

〈ψ1(R)3ψ1(T ), S〉 = 〈Ξ, η(T ◦ S ′ ◦ Q(R))〉 = 〈Ξ, η(R) ◦ η(T ◦ S ′)〉.

Then, as T = κE ◦ T0 for some T0 ∈ B(E ′′, E), we have

η(R ◦ T ◦ S ′) = κ′E ◦ S ′′ ◦ T ′ ◦R′ ◦ κE′ = κ′E ◦ S ′′ ◦ T ′0 ◦ κ′E ◦R′ ◦ κE′

= κ′E ◦ S ′′ ◦ T ′0 ◦ κ′E ◦ κE′ ◦ η(R) = η(T ◦ S ′) ◦ η(R).

Thus we get

〈ψ1(R ◦ T ), S〉 = 〈Ξ, η(R ◦ T ◦ S ′)〉 = 〈Ξ, η(T ◦ S ′) ◦ η(R)〉.

Now, for S ∈ Bα′(E
′), we have η(T ◦ S ′) = φ1(u) for some u ∈ E ′′⊗̂α′E

′. By equa-

tion 2.2, we have

〈ψ1(R)3Φ0, S〉 = 〈Φ0, η(R) ◦ S〉 = 〈ψ1(R ◦ T )− ψ1(R)3ψ1(T ), S〉

= 〈Ξ, η(T ◦ S ′) ◦ η(R)− η(R) ◦ η(T ◦ S ′)〉

= 〈Ξ, φ1(u) ◦ η(R)− η(R) ◦ φ1(u)〉 = 0.

Thus Φ0 ∈ X2(E,α)◦, and we see that Z
(2)
t (A′′) ⊆ ψ1(Z2(E,α)) +X2(E,α)◦.

Conversely, for T ∈ Z2(E,α) and S ∈ Bα′(E
′), we have η(T ◦ S ′) = φ1(u) for some

u ∈ E ′′⊗̂α′E
′, and that T ◦ S ′ = η(T ◦ S ′)′. Thus, for Φ0 ∈ X2(E,α)◦, Ψ0 ∈ I1 and
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R ∈ Bα(E ′′), we have

〈(Ψ0 + ψ1(R))2(Φ0 + ψ1(T )), S〉 = 〈Ψ02ψ1(T ), S〉+ 〈ψ1(R ◦ T ), S〉

= 〈Ψ0, η(T ◦ S ′)〉+ 〈Ξ, η(R ◦ T ◦ S ′)〉

= 〈Ψ0, φ1(u)〉+ 〈Ξ, η(T ◦ S ′) ◦ η(R)〉

= 〈Ξ, φ1(u) ◦ η(R)〉 = Tr(φ1(u) ◦ η(R)),

by using the same calculation as above, given that T (E ′′) ⊆ κE(E). Similarly, as Φ0 ∈

X2(E,α)◦, we have

〈(Ψ0 + ψ1(R))3(Φ0 + ψ1(T )), S〉 = 〈ψ1(R)3Φ0, S〉+ 〈ψ1(R)3ψ1(T ), S〉

= 〈Φ0, η(R) ◦ S〉+ 〈ψ1(T ), η(R) ◦ S〉

= 〈Ξ, η(T ◦ S ′ ◦ Q(R))〉 = 〈Ξ, η(φ1(u)
′ ◦ Q(R))〉

= 〈Ξ, η(R) ◦ φ1(u)〉 = Tr(φ1(u) ◦ η(R)).

Consequently, Φ0 + ψ1(T ) ∈ Z
(2)
t (A′′), and so we conclude that

Z
(2)
t (A′′) = ψ1(Z2(E,α)) +X2(E,α)◦,

as required.

These results (that is, the definitions of Zi(E,α) and Xi(E,α), for i = 1, 2) might

seem overly complicated. However, the next couple of corollaries will show that, in the

general case, we cannot remove any of the conditions.

Corollary 2.7.20. Let E be a Banach space such that E ′ has the bounded approximation

property, and let A = A(E). Then we have

Z
(1)
t (A′′) = {ψ2(T

′) : T ∈ B(E ′), T ◦ S ∈ N (E ′) (S ∈ I(E ′))},

Z
(2)
t (A′′) = {ψ1(T ) : T ∈ B(E ′′), T (E ′′) ⊆ κE(E), T ◦ S ′ ∈ N (E ′′) (S ∈ I(E ′))},

Z
(1)
t (A′′) ∩ Z

(2)
t (A′′) = ψ1(W(E)aa) = ψ2(W(E)aa).

Proof. We apply the above theorems with α = ε. In particular, A′′ = B(E ′′) ⊕ I1, A′ =

Bπ(E ′) = I(E ′), and Bα(E ′′) = B(E ′′). It is then clear that X1(E, ε) = X2(E, ε) =

I(E ′), and so X1(E, ε)
◦ = X2(E, ε)

◦ = {0}.

Then, for S ∈ I(E ′), as I(E ′) ⊆ W(E ′), we have that κE′ ◦ κ′E ◦ S ′′ = S ′′, and so,

for T ∈ B(E ′′), we have κE′ ◦ T ◦ κ′E ◦ S ′′ = T ′′ ◦ κE′ ◦ κ′E ◦ S ′′ = T ′′ ◦ S ′′. Thus

Z1(E, ε) = {T ′ : T ∈ B(E ′), T ◦ S ∈ N (E ′) (S ∈ I(E ′))},
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which gives the result for Z
(1)
t (A′′).

Similarly, for T ∈ B(E ′′) with T = κE ◦ T0 for some T0 ∈ B(E ′′, E), and S ∈ I(E ′),

µ ∈ E ′ and Λ ∈ E ′′, we have

〈Λ, (κ′E ◦ S ′′ ◦ T ′ ◦ κE′)(µ)〉 = 〈(κE′ ◦ κ′E ◦ S ′′ ◦ T ′0 ◦ κ′E ◦ κE′)(µ),Λ〉

= 〈(S ′′ ◦ T ′0)(µ),Λ〉 = 〈µ, (T0 ◦ S ′)(Λ)〉 = 〈(T ◦ S ′)(Λ), µ〉.

Thus η(T ◦ S ′)′ = T ◦ S ′, and so we have

Z2(E, ε) = {T ∈ B(E ′′) : T (E ′′) ⊆ κE(E), T ◦ S ′ ∈ N (E ′′) (S ∈ I(E ′))},

as required.

We apply Lemma 2.7.10 and Theorem 2.3.24 to see that

{T ′ : T ∈ B(E ′), T ′(E ′′) ⊆ κE(E), T ◦ S, S ◦ T ∈ N (E ′) (S ∈ I(E ′))} = W(E)aa.

To complete the proof, we need to show that ψ1(T
′′) = ψ2(T

′′) for T ∈ W(E). For

T ∈ W(E) and S ∈ I(E ′), we have

〈ψ1(T
′′)− ψ2(T

′′), S〉 = 〈Ξ, S ◦ T ′ − T ′ ◦ S〉 = 〈IdE′′ , S ◦ T ′ − T ′ ◦ S〉,

as Theorem 2.3.24 tells us that S ◦ T ′ and T ′ ◦ S are nuclear. The proof is complete with

an application of the next lemma.

The following was known to Grosser (see [Grosser, 1989]) although he seems to have

been unaware of Theorem 2.2.9, and so does not use the following simple factorisation

argument.

Lemma 2.7.21. Let E be Banach space so that E ′ has the approximation property. Let

T ∈ W(E ′) and S ∈ I(E ′). Then T ◦ S, S ◦ T ∈ N (E ′) = E ′′⊗̂E ′ and 〈IdE′′ , T ◦ S〉 =

〈IdE′′ , S ◦ T 〉.

Proof. We follow the proof of Theorem 2.3.24, and again use Theorem 2.2.9. As T is

weakly-compact, we can find a reflexive Banach space F , T1 ∈ B(E ′, F ) and T2 ∈

B(F,E ′) so that T = T2 ◦ T1. Then, as F is reflexive, N (E ′, F ) = I(E ′, F ), so that

T1 ◦ S ∈ N (E ′, F ). Similarly, T ′2 ◦ S ′ ∈ N (E ′′, F ′), so that S ′′ ◦ T ′′2 ∈ N (F ′′, E ′′′).

As F is reflexive, we identify F ′′ with F , and we have that T ′′2 = κE′ ◦ T2. Thus S ′′ ◦

T ′′2 = S ′′ ◦ κE′ ◦ T2 = κE′ ◦ S ◦ T2 ∈ N (F,E ′′′). As S ∈ W(E ′), we have that

S ◦ T2 = κ′E ◦ κE′ ◦ S ◦ T2 ∈ N (F,E ′).
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Immediately, we have T ◦S = T2 ◦T1 ◦S ∈ N (E ′) and S ◦T = S ◦T2 ◦T1 ∈ N (E ′).

We also have, as S ◦ T2 ∈ E ′′⊗̂E ′ and T1 ◦ S ∈ E ′′⊗̂E ′,

〈IdE′′ , S ◦ T 〉 = Tr(S ◦ T2 ◦ T1) = Tr(T1 ◦ S ◦ T2) = Tr(T2 ◦ T1 ◦ S) = 〈IdE′′ , T ◦ S〉,

as required.

Note that whenN (E ′) 6= I(E ′), we have Z1(E, ε) 6= B(E ′)a. WhenE = F ′ for some

Banach space F , we have that κE ◦ κ′F ∈ Z2(E, ε) if and only if κE ◦ κ′F ◦ S ′ ∈ N (E ′′)

for each S ∈ I(E ′). This is if and only if

η(κE ◦ κ′F ◦ S ′) = κ′E ◦ S ′′ ◦ κ′′F ◦ κ′E ◦ κE′ = κ′F ′ ◦ S ′′ ◦ κ′′F ∈ N (E ′)

for each S ∈ I(E ′). In particular,

κ′F ′ ◦ S ′′′ ◦ κ′′F = (S ′′ ◦ κF ′)
′ ◦ κ′′F = (κF ′ ◦ S)′ ◦ κ′′F = S ′ ∈ N (F ′′) (S ∈ I(F ′)).

Thus we have that κE ◦ κ′F ∈ Z2(E, ε) implies that S = η(S ′) ∈ N (F ′) for each S ∈

I(F ′), that is, I(F ′) = N (F ′). We see that we cannot, in general, remove any of the

conditions which define Z1(E, ε) and Z2(E, ε).

Example 2.7.22. The above considerations all apply to l1 whose dual, l∞, has the metric

approximation property, but not the Radon-Nikodým property. By Example 2.4.5 we

have that N (l∞) 6= I(l∞), and so Z1(l
1, ε) and Z2(l

1, ε) are non-trivial, in the sense just

described. However, as we shall show in Theorem 5.1.8, A(l1) is the unique, closed,

two-sided ideal in B(l1), so that A(l1) = W(l1), and hence A = A(l1) satisfies

Z
(1)
t (A′′) ∩ Z

(2)
t (A′′) = κA(A).

This is an example of a Banach space not dealt with in [Dales, Lau, 2004]. �

Corollary 2.7.23. Let E be a Banach space such that E ′ has the bounded approximation

property, and let A = N (E) = E ′⊗̂E. Then we have

Z
(1)
t (A′′) = {ψ2(T

′′) + Φ : T ∈ I(E) ∩ A(E),Φ ∈ I(E ′)◦},

Z
(2)
t (A′′) = {ψ1(T

′′) + Φ : T ∈ I(E) ∩ A(E),Φ ∈ I(E ′)◦}.

Proof. We have α = π so thatA′′ = Bπ(E ′′)⊕I1 = I(E ′′)⊕I1. We also haveA′ = B(E ′)
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and Nα′(E
′) = Nε(E

′) = A(E ′). Thus we have

X1(E, π) = lin{η(T ◦ S ′) : S ∈ B(E ′), T ∈ I(E ′′)} = I(E ′),

X2(E, π) = lin{T ◦ S : S ∈ B(E ′), T ∈ I(E ′)} = I(E ′),

Z1(E, π) = {T ′ : T ∈ I(E ′), T ◦ S ∈ A(E ′),

κE′ ◦ T ◦ κ′E ◦ S ′′ = T ′′ ◦ S ′′ (S ∈ B(E ′))},

Z2(E, π) = {T ∈ I(E ′′) : T (E ′′) ⊆ κE(E), T ◦ S ′ ∈ A(E ′)a (S ∈ B(E ′))}.

Note that I(E ′) is closure with respect to the topology on B(E ′).

Letting S = IdE′ in the expression for Z1(E, π) above yields Z1(E, π) ⊆ I(E ′) ∩

A(E ′) and that T ∈ Z1(E, π) implies that κE′ ◦T ◦κ′E = T ′′. For M ∈ κE(E)◦, we have

κ′E(M) = 0, so that T ′′(M) = 0. Thus a Hahn-Banach argument tells us that T ′(E ′′) ⊆

κE(E). As in the proof of Lemma 2.7.10, we have B(E ′)a ∩ (κE ◦ B(E ′′, E)) = B(E)aa,

so that T ∈ I(E)a. Thus we have Z1(E, π) = {T ′′ : T ∈ I(E), T ′ ∈ A(E ′)}, noting that

for T ∈ I(E), we have κE′ ◦T ′ ◦κE′ = T ′′′. Now, by [Ryan, 2002, Proposition 5.55], we

know that T ′ ∈ A(E ′) if and only if T ∈ A(E). Thus

Z1(E, π) = {T ′′ : T ∈ I(E) ∩ A(E)},

as required.

For T ∈ Z2(E, π), we similarly see that T ∈ A(E ′)a and that T ∈ W(E)aa, as before.

Thus we can again conclude that

Z2(E, π) = {T ′′ : T ∈ I(E) ∩ A(E)},

as required.

The space I(E)∩A(E) is easily seen to a closed subspace of I(E); indeed, let (Tn) be

a sequence in I(E)∩A(E) with ‖Tn−T‖π → 0 for some T ∈ I(E). Then ‖Tn−T‖ ≤

‖Tn − T‖π → 0, so that T ∈ A(E).

Example 2.7.24. As in Section 2.4, set E = C([0, 1]), so that we can find T ∈ I(E) ∩

A(E) with T 6∈ N (E), and so that E ′ has the bounded approximation property. Hence

the conditions in the above theorem are not vacuous, as we do not have N (E) = I(E) ∩

A(E). �

Note that, when E is not reflexive, I(E ′) ⊆ W(E ′) ( B(E ′), so that X1(E, π) =

X2(E, π) is a non-trivial subspace of N (E)′.
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Corollary 2.7.25. Let E be a Banach space such that E ′ has the bounded approximation

property and N (E ′) = I(E ′). Then we can identify A(E)′′ with B(E ′′), and we have

Z
(1)
t (A(E)′′) = B(E ′)a , Z

(2)
t (A(E)′′) = κE ◦ B(E ′′, E).

Furthermore, we have N (E)′′ = B(E ′)′ and

Z
(1)
t (N (E)′′) = Z

(2)
t (N (E)′′) = κN (E)(N (E)) + ker θ1.

Proof. For A(E)′′, the result was first shown in [Dales, Lau, 2004], and follows immedi-

ately from Corollary 2.7.20, given that N (E ′) = I(E ′) = E ′′⊗̂E ′.

For N (E)′′, we have that N (E) = E ′⊗̂E and N (E)′ = B(E ′). Then I(E ′) =

N (E ′) = A(E ′) = E ′′⊗̂εE
′ in B(E ′). These agree with the image of φ1, so that

I(E ′)
◦

= ker θ1 = A(E ′)◦. For T ∈ I(E) ∩ A(E), we have T ′ ∈ N (E ′), so that

by Proposition 2.3.5, T ∈ N (E) ⊆ A(E). Hence I(E) ∩ A(E) = N (E). Clearly ψ1

and ψ2 agree on N (E), so we are done.

Example 2.7.26. Following [Dales, Lau, 2004], consider c0, so that c′0 = l1, as a separable

dual space, has the Radon-Nikodým property, and thus we have I(l1) = N (l1) = l∞⊗̂l1,

as l∞ has the metric approximation property. Thus the above corollary holds, and we

have A(c0)
′′ = B(l∞). By Corollary 2.7.20, we have that Z

(1)
t (A(c0)

′′) ∩ Z
(2)
t (A(c0)

′′) =

W(c0)
aa. We shall see later in Theorem 5.1.8 that B(c0) contains only one proper, closed

two-sided ideal, namely A(c0). In particular, A(c0) = W(c0), so (as in the l1 case) we

again have, for A = A(c0), that Z
(1)
t (A′′) ∩ Z

(2)
t (A′′) = κA(A).

We can also apply the above corollary to N (c0) = l1⊗̂c0 to see that Z
(1)
t (N (c0)

′′) =

Z
(2)
t (N (c0)

′′). We have that φ1 : E ′′⊗̌E ′ → B(l1) = N (c0)
′ is an isometry onto its range,

which is A(l1), so that

ker θ1 = {Φ ∈ N (c0)
′′ : 〈Φ, S〉 = 0 (S ∈ A(E ′))}. �

Example 2.7.27. Let P be Pisier’s space, as constructed in [Pisier, 1983], so that A(P ) =

N (P ). Applying Theorem 2.7.14, we see that the topological centres of A(P )′′ are dis-

tinct and neither contains the other. Hence this also holds for N (P )′′, and we conclude

that, in general, we cannot say that the topological centres of the bidual of the nuclear

operators are equal. �

Example 2.7.28. Again, following [Dales, Lau, 2004], consider J , the James space, which

was defined in [James, 1951]. Let c00 be the vector space of sequences of complex num-
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bers which are eventually zero, and for x = (xn) ∈ c00, let

‖x‖J = sup

{( n∑
i=1

|xri
− xri+1

|2 + |xrn+1 − xr1|2
)1/2

}
,

where the supremum is taken over all integers n and increasing sequences of integers

(ri)
n+1
i=1 . We can show that ‖ · ‖J is a norm; let J be the completion of (c00, ‖ · ‖J). We can

show that J is {x ∈ c0 : ‖x‖J < ∞}. Then, as shown in [James, 1951], J is isometric

with J ′′, but J ′′/κJ(J) is isomorphic to C. The standard unit vector basis (en) is a basis

for J .

So, for some Λ0 ∈ J ′′, the map J⊕C → J ′′; (x, α) 7→ κJ(x)+αΛ0 is an isomorphism.

Let M0 ∈ J ′′′ be such that M0 ∈ κJ(J)◦ and 〈Λ0,M0〉 = 1. Then we have

P (Λ) := Λ− 〈M0,Λ〉Λ0 ∈ κJ(J) (Λ ∈ J ′′),

and P ◦ κJ = κJ . We can verify that

M − 〈M,Λ0〉M0 = κJ ′(κ
′
J(M)) (M ∈ J ′′′).

In particular, κ′′J(Λ0) = 0. Let P1 = κ−1
J ◦P : J ′′ → J , so that P ′

1 : J ′ → J ′′′, and we can

verify that

P ′
1 = κJ ′ − Λ0 ⊗M0.

For S ∈ B(J ′), let T = P1 ◦S ′ ◦κJ ∈ B(J) and µ = κ′J(S ′′(M0)) ∈ J ′. Then we have

T ′ + Λ0 ⊗ µ = κ′J ◦
(
S ′′ ◦ P ′

1 + Λ0 ⊗ S ′′(M0)
)

= κ′J ◦
(
S ′′ ◦ κJ ′ − Λ0 ⊗ S ′′(M0) + Λ0 ⊗ S ′′(M0)

)
= κ′J ◦ S ′′ ◦ κJ ′ = S.

We can consequently see that the map

B(J)⊕ J ′ → B(J ′); (T, µ) 7→ T ′ + Λ0 ⊗ µ

is an isomorphism.

Similarly, for S ∈ B(J ′′) such that S(J ′′) ⊆ κJ(J), let T = P1 ◦ S ◦ κJ ∈ B(J), let

x = (P1 ◦ S)(Λ0) and let Ŝ = P ◦ T ′′ +M0 ⊗ κJ(x). Then we have

T ′ = κ′J ◦ S ′ ◦ P ′
1 = η(S)− Λ0 ⊗ κ′J(S ′(M0)) = η(S),

as S ′(M0) = 0. As κ′′J(Λ0) = 0, we have T ′′(Λ0) = Q(S)(Λ0) = 0, so that Ŝ(Λ0) =

κJ(x) = S(Λ0). For y ∈ J , we have

Ŝ(κJ(y)) = κJ(T (y))− 〈M0, κJ(T (y))〉Λ0 + 〈M0, κJ(y))〉κJ(x)

= κJ(T (y)) = S(κJ(y)),
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so that S = Ŝ. Thus we can see that the map

B(J)⊕ J → κJ ◦ B(J ′′, J); (T, x) 7→ P ◦ T ′′ +M0 ⊗ κJ(x)

is an isomorphism.

By [Diestel, Uhl, 1977, Chapter VII], J ′ has the Radon-Nikodým property, so that

N (J ′) = I(J ′). As J has a basis, it has the bounded approximation property (and thus

J ′′ has the bounded approximation property, so that J ′ also does). We can thus again

apply the above corollaries, and so we have A(J)′′ = B(J ′′). Thus we have, given the

above,

Z
(1)
t (A(J)′′) = B(J ′)a = B(J)⊕ J ′,

Z
(2)
t (A(J)′′) = κJ ◦ B(J ′′, J) = B(J)⊕ J,

Z
(1)
t (A(J)′′) ∩ Z

(2)
t (A(J)′′) = W(J)aa.

It is reasonably simple to show that W(J) is a maximal closed ideal in B(J) (in fact, it

is the unique maximal closed ideal in B(J), as shown by Laustsen in [Laustsen, 2002])

and that W(J) has co-dimension one in B(J). As summarised in [Laustsen, Loy, 2003,

Section 3], A(J) = K(J) is not equal to W(J), so that

Z
(1)
t (A(J)′′) ∩ Z

(2)
t (A(J)′′) 6= κA(J)(A(J)).

We can apply the above to study N (J ′) = J ′′⊗̂J ′. We have N (J ′)′ = B(J ′′) and so

ker θ1 = A(J ′′)◦, and

Z
(1)
t (N (J ′)′′) = Z

(2)
t (N (J ′)′′) = κN (J ′)(N (J ′)) +A(J ′′)◦.

Now, we have A(J)′ = N (J ′) and A(J)′′ = B(J ′′), so that κ′A(J) : N (J ′)′′ → N (J ′) is

an projection. Hence we can write

N (J ′)′′ = B(J ′′)′ = κN (J ′)(N (J ′))⊕ kerκ′A(J) = κN (J ′)(N (J ′))⊕ κA(J)(A(J))◦

= κN (J ′)(N (J ′))⊕ (A(J)aa)◦.

Notice that as κA(J)(A(J)) = A(J)aa ⊆ A(J ′′), we have A(J ′′)◦ ⊆ (A(J)aa)◦, and so

we have

N (J ′)′′/Z
(1)
t (N (J ′)′′) = (A(J)aa)◦/A(J ′′)◦. �

2.7.2 When the integral and nuclear operators coincide

We now drop the requirement that E ′ have the bounded approximation property. Moti-

vated by the fact that, for many Banach spaces E, we have A(E)′ = I(E ′) = N (E ′),
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we might consider studying the case when Nα(E)′ = Nα′(E
′). However, this seems

too strong a condition (for example, it seems unlikely that it is ever true for α = π).

This said, we can again use the Grothendieck Composition theorem to show that, when

A = Nα(E) for an accessible α, we haveA′′ ·A′ +A′ ·A′′ ⊆ I(E ′). Thus the case when

N (E ′) = I(E ′) should be interesting to study, and it is certainly not a vacuous condition

to impose upon E, by the following lemma.

For a Banach space E, recall that E[n] is the nth iterated dual of E, so that E[1] = E ′

etc.

Lemma 2.7.29. LetE be a Banach space such that E[n] has the Radon-Nikodým property

for some n ∈ N. Then I(E[m]) = N (E[m]) for each 1 ≤ m ≤ n.

Proof. By Theorem 2.3.11, if E ′ has the Radon-Nikodým property, thenN (E ′) = I(E ′).

Suppose that F is a Banach space such that N (F ′′) = I(F ′′). For T ∈ I(F ′), we

have T ′ ∈ I(F ′′) = N (F ′′), and so T = η(T ′) = κ′F ◦ T ′ ◦ κF ′ ∈ N (F ′). Thus, by

induction, if N (E[n+1]) = I(E[n+1]) for some n ∈ N, then N (E[m]) = I(E[m]) for each

1 ≤ m ≤ n+ 1. We are thus done by another application of Theorem 2.3.11.

Example 2.7.30. Let JT be the James Tree Space (defined in [James, 1974]), so that

each even dual of JT has the Radon-Nikodým property, but each odd dual does not (see

[Diestel, Uhl, 1977, Chapter VII, Section 5]). Thus, by the above lemma, I(JT ′) =

N (JT ′) while JT ′ does not have the Radon-Nikodým property. �

Let E be a Banach space and α be a tensor norm. With reference to Proposition 2.6.7,

we treat φ1 as a map E ′′⊗̂α′E
′ → Nα′(E

′) ⊆ Nα(E)′ ⊆ Bα′(E
′). Then θ1 : Nα(E)′′ →

Bα(E ′′) actually maps into

Nα′(E
′)′ = (ker Jα′)

◦ = {T ∈ Bα(E ′′) : 〈T, u〉 = 0 (u ∈ E ′′⊗̂α′E
′, Jα′(u) = 0)}.

The following lemma tells us that, in this case, (ker Jα′)
◦ is a right ideal in (Bα(E ′′), ◦)

and a left ideal in (Bα(E ′′), ?).

Lemma 2.7.31. Let E be a Banach space and α be a tensor norm. Then (ker Jα′)
◦ is a

right ideal in (Bα(E ′′), ◦). Furthermore, for T ∈ (ker Jα′)
◦ and S ∈ Bαt(E ′)a, we have

S ◦ T ∈ (ker Jα′)
◦.

Proof. Let T ∈ (ker Jα′)
◦ and u ∈ ker Jα′ . Let (un) be a sequence in F(E ′) such that∑∞

n=1 un = u in E ′′⊗̂α′E
′. Let S ∈ Bα(E ′′), and let v = (S⊗ IdE′)(u). Then, for µ ∈ E ′
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and Λ ∈ E ′′, we have

〈Λ, Jα′(v)(µ)〉 =
∞∑

n=1

〈Λ, Jα′((S ⊗ IdE′)(un))(µ)〉 =
∞∑

n=1

〈Jα′((S ⊗ IdE′)(un))′(Λ), µ〉

=
∞∑

n=1

〈S ′(κE′(µ)), Jα′(un)′(Λ)〉 = 〈S ′(κE′(µ)), Jα′(u)
′(Λ)〉 = 0,

as Jα′(u) = 0. Thus v ∈ ker Jα′ . We then have

〈T ◦ S, u〉 =
∞∑

n=1

〈T ◦ S, un〉 =
∞∑

n=1

Tr(T ◦ S ◦ u′n) =
∞∑

n=1

Tr
(
T ◦ ((S ⊗ IdE′)(un))′

)
=

∞∑
n=1

〈T, (S ⊗ IdE′)(un)〉 = 〈T, v〉 = 0,

as T ∈ (ker Jα′)
◦. Thus T ◦ S ∈ (ker Jα′)

◦.

Similarly, for T ∈ (ker Jα′)
◦, S ∈ Bαt(E ′) and u ∈ ker Jα′ , let v = (IdE′′ ⊗ S)(u).

We can show that v ∈ ker Jα′ , and similarly that

〈S ′ ◦ T , u〉 = 〈T, (IdE′′ ⊗ S)(u)〉 = 〈T, v〉 = 0,

so that S ′ ◦ T ∈ (ker Jα′)
◦.

For a Banach space E and a tensor norm α, recall the following definitions:

Z0
1(E,α) = {T ′ : T ∈ Bαt(E ′), T ◦ κ′E ◦ S ′′ = κ′E ◦ T ′′ ◦ S ′′ (S ∈ Nα(E)′)},

Z0
2(E,α) = {T ∈ Bα(E ′′) : T (E ′′) ⊆ κE(E), T ◦ S ′ ∈ W(E)aa (S ∈ Nα(E)′)}.

Theorem 2.7.32. Let E be a Banach space such that N (E ′) = I(E ′), let α be an acces-

sible tensor norm, and let A = Nα(E). Then, for i = 1, 2, we have

Z
(i)
t (A′′) = θ−1

1 (Z0
i (E,α)).

Proof. For Φ ∈ A′′ and S ∈ A′ ⊆ Bα′(E
′), by Proposition 2.7.3, we have

Φ · S = η(φ1(Φ) ◦ S ′) ∈ N (E ′) , S · Φ = η(φ1(Φ)) ◦ S ∈ N (E ′),

as N (E ′) = I(E ′). Then, as α′ ≤ π on E ′′ ⊗E ′, we clearly have that Φ · S and S ·Φ are

in Nα′(E
′) ⊆ A′.

Then, for Φ,Ψ ∈ A′′ and S ∈ A′, we have

〈Φ2Ψ, S〉 = 〈Φ, η(θ1(Ψ) ◦ S ′)〉 = Tr
(
θ1(Φ) ◦ Q(θ1(Ψ) ◦ S ′)

)
,

〈Φ3Ψ, S〉 = 〈Ψ, η(θ1(Φ)) ◦ S〉 = Tr
(
θ1(Ψ) ◦ S ′ ◦ Q(θ1(Φ))

)
,
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as, for example, η(θ1(Ψ) ◦ S ∈ Nα′(E
′) = φ1(E

′′⊗̂α′E
′). We thus see that Φ ∈ Z

(1)
t (A′′)

if and only if

Tr
(
θ1(Φ) ◦ Q(θ1(Ψ) ◦ S ′)

)
= Tr

(
θ1(Ψ) ◦ S ′ ◦ Q(θ1(Φ))

)
(S ∈ A′,Ψ ∈ A′′),

and that Φ ∈ Z
(2)
t (A′′) if and only if

Tr
(
θ1(Ψ) ◦ Q(θ1(Φ) ◦ S ′)

)
= Tr

(
θ1(Φ) ◦ S ′ ◦ Q(θ1(Ψ))

)
(S ∈ A′,Ψ ∈ A′′).

Suppose that θ1(Φ) ∈ Z0
1(E,α), so that θ1(Φ) = Q(θ1(Φ)). Taking adjoints, we also

have

S ′′′ ◦ κ′′E ◦ θ1(Φ) = S ′′′ ◦ θ1(Φ)′′ ◦ κ′′E (S ∈ A′).

Thus, for S ∈ A′ and Ψ ∈ A′′, we have

Tr
(
θ1(Φ) ◦ Q(θ1(Ψ) ◦ S ′)

)
= Tr

(
κ′E′ ◦ θ1(Ψ)′′ ◦ S ′′′ ◦ κ′′E ◦ θ1(Φ)

)
= Tr

(
κ′E′ ◦ θ1(Ψ)′′ ◦ S ′′′ ◦ θ1(Φ)′′ ◦ κ′′E

)
,

noting that η(θ1(Ψ) ◦ S ′) ∈ Nα′(E
′), a fact which allows us to alter the order of maps

inside the trace. As η(θ1(Φ)) ◦ S ∈ Nα′(E
′) ⊆ K(E ′) ⊆ W(E ′), we have κE′ ◦ κ′E ◦

η(θ1(Φ))′′ = η(θ1(Φ))′′. Thus we have

Tr
(
κ′E′ ◦ θ1(Ψ)′′◦S ′′′ ◦ θ1(Φ)′′ ◦ κ′′E

)
= Tr

(
θ1(Ψ)′′ ◦ S ′′′ ◦ η(θ1(Φ))′′′ ◦ κ′′E ◦ κ′E′

)
= Tr

(
θ1(Ψ)′′ ◦ S ′′′ ◦ η(θ1(Φ))′′′

)
= Tr

(
θ1(Ψ) ◦ S ′ ◦ Q(θ1(Φ))

)
.

Hence Φ ∈ Z
(1)
t (A′′). Applying Proposition 2.7.8 allows us to conclude that

Z
(1)
t (A′′) = θ−1

1 (Z0
1(E,α)).

Similarly, suppose that θ1(Φ) ∈ Z0
2(E,α). Then θ1(Φ)(E ′′) ⊆ κE(E) and

θ1(Φ) ◦ S ′ ∈ B(E ′)a (S ∈ A′).

Let T ∈ B(E ′′, E) be such that κE ◦T = θ1(Φ). Then, for S ∈ A′, we have κE ◦T ◦S ′ =

R′
S for some RS ∈ B(E ′). As R′

S(E ′′) ⊆ κE(E), by the argument used in Lemma 2.7.10,

RS = R′ whereR = T ◦S ′◦κE ∈ W(E). ThenRS = η(R′
S) = η(θ1(Φ)◦S ′) ∈ Nα′(E

′).

In particular, RS ∈ W(E ′) and so κE′ ◦ κ′E ◦R′′
S = R′′

S , and so, for Ψ ∈ A′′, we have

Tr
(
θ1(Ψ) ◦ Q(θ1(Φ) ◦ S ′)

)
= Tr

(
θ1(Ψ) ◦ θ1(Φ) ◦ S ′

)
= Tr

(
θ1(Ψ) ◦R′

S

)
= Tr

(
R′′

S ◦ θ1(Ψ)′
)

= Tr
(
κE′ ◦ κ′E ◦R′′

S ◦ θ1(Ψ)′
)

= Tr
(
κ′E ◦R′′

S ◦ θ1(Ψ)′ ◦ κE′
)

= Tr
(
κ′E ◦ S ′′ ◦ T ′ ◦ κ′E ◦ θ1(Ψ)′ ◦ κE′

)
= Tr

(
R′ ◦ η(θ1(Ψ))

)
= Tr

(
RS ◦ η(θ1(Ψ))

)
= Tr

(
η(θ1(Ψ)) ◦RS

)
= Tr

(
θ1(Φ) ◦ S ′ ◦ Q(θ1(Ψ))

)
.
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Hence Φ ∈ Z
(2)
t (A′′), and another application of Proposition 2.7.8 allows us to conclude

that

Z
(2)
t (A′′) = θ−1

1 (Z0
2(E,α)).

Theorem 2.7.33. Let E be a Banach space such that N (E ′) = I(E ′), let α be a tensor

norm, and let A = Nα(E). Suppose that E ′′ has the bounded approximation property.

Then, for i = 1, 2, we have

Z
(i)
t (A′′) = θ−1

1 (Z0
i (E,α)).

Proof. As E ′′ has the bounded approximation property, so does E ′. Thus, in the language

of Proposition 2.7.3, (E ′, α) and (E ′′, α) are Grothendieck pairs. The rest of the proof

runs exactly as above.

We can then apply the same sort of arguments used in, for example, Theorem 2.7.11,

to state some corollaries. Rather than do this, we state the most interesting case.

Corollary 2.7.34. Let E be a Banach space such that N (E ′) = I(E ′). Let A = A(E),

and let

X = (ker Jπ)◦ = {T ∈ B(E ′′) : 〈T, u〉 = 0 (u ∈ E ′′⊗̂E ′, Jπ(u) = 0)}.

Then θ1 : A′′ → X is an isometry, and, when we identify A′′ with X , we have

Z
(1)
t (A′′) = X ∩ B(E ′)a , Z

(2)
t (A′′) = X ∩ (κE ◦ B(E ′′, E)).

Proof. We have A′ = I(E ′) = N (E ′) so that φ1 : E ′′⊗̂E ′ → A′ is a quotient map, and

thus θ1 is an isometry. The results now follow from the calculations done in the proof of

Theorem 2.7.11, and the results of the above theorem.

In the case of the nuclear operators, we cannot say much more than the above theo-

rem gives, as, in general, we have no good description of N (E)′ (see Example 2.7.27).

However, the next example shows that in special cases we can say more than we could

before.

Example 2.7.35. By [Figiel, Johnson, 1973] and Proposition 2.3.18, we can find a Banach

space E0 with the approximation property, such thatN (E ′
0) = I(E ′

0), and such that there

exists T0 ∈ I(E0) \ N (E0) with T ′0 ∈ N (E ′
0). Then let A = N (E0) = E ′

0⊗̂E0, so that

A′ = B(E ′
0), and we have

Z0
1(E0, π) = {T ′ : T ∈ I(E ′

0), T ◦ κ′E0
= κ′E0

◦ T ′′},

Z0
2(E0, π) = {T ∈ I(E ′′

0 ) : T (E ′′
0 ) ⊆ κE0(E0), T ∈ W(E0)

aa} = I(E0)
aa.
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As argued before, for T ′ ∈ Z0
1(E0, π), we have T ′′(M) = 0 for each M ∈ κE0(E0)

◦, so

that T ′(E ′′
0 ) ⊆ κE0(E0), and thus T ′ ∈ W(E0)

aa. Thus we conclude

Z0
1(E0, π) = I(E0)

aa = Z0
2(E0, π) , Z

(1)
t (N (E0)

′′) = Z
(1)
t (N (E0)

′′) = θ−1
1 (I(E)aa).

Examining the proof of Proposition 2.3.18, we see that N (E0) 6= I(E0), so that we

directly verify that A is not strongly Arens irregular. Of course, this fact also follows

from Theorem 2.7.14. Finally, we note that φ1 : E ′′
0 ⊗̂εE

′
0 = A(E ′

0) → B(E ′
0) = A′

certainly does not have dense range, so that θ1 is not injective (thereby giving yet another

way to show that A is not strongly Arens irregular). �

2.7.3 Arens regularity of ideals of nuclear operators

We have so far not discussed when Nα(E) is Arens regular. This is because we needed

the above work to build up the necessary machinery.

Theorem 2.7.36. Let E be a reflexive Banach space, let α be a tensor norm, and let A =

Nα(E). Suppose that either α is accessible, or that E has the approximation property.

Then A is Arens regular.

Proof. The case when α = ε is well known: see, for example, [Young, 1976, Theorem 3].

The case when α = π is [Dales, 2000, Theorem 2.6.23], where the result is attributed to

A. Ülger.

Suppose α is accessible. Then we simply apply Theorem 2.7.32. As E is reflexive, E ′

has the Radon-Nikodým property, and so N (E ′) = I(E ′). Then, identifying E with E ′′,

we have W(E) = B(E), and so

Z0
1(E,α) = Bα(E) = Z0

2(E,α).

As the image of θ1 is contained in Bα(E), we immediately see that

Z
(1)
t (A′′) = θ−1(Bα(E)) = A′′,

so that A is Arens regular.

When E has the approximation property, E and E ′ have the metric approximation

property by Theorem 2.3.23. We then simply apply Theorem 2.7.33.

2.8 Radicals of biduals of operator ideals

We now study the radical of Nα(E)′′ for either Arens product. This is quite simple,

essentially because of Proposition 2.7.12. Recall the definition of the radical of a Banach
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algebra A,

radA = {a ∈ A : eA] − ba ∈ InvA] (b ∈ A])}.

Lemma 2.8.1. LetA be a non-unital Banach algebra. Then the following are equivalent:

1. a ∈ radA;

2. for each b ∈ A and β ∈ C, we have c− bac− βac = c− cba− βca = ba+ βa for

some c ∈ A;

3. for each b ∈ A and β ∈ C, we have c− abc− βac = c− cab− βca = ab+ βa for

some c ∈ A.

Proof. An arbitrary element b0 ∈ A] can be uniquely written as b0 = b + βeA] for some

b ∈ A and β ∈ C. Similarly, let c0 = c+ γeA] ∈ A], so that

(eA] − b0a)c0 = c+ γeA] − bac− γba− βac− βγa,

c0(eA] − b0a) = c+ γeA] − cba− γba− βca− βγa.

Thus eA] − b0a ∈ InvA] if and only if, for some c ∈ A,

c− bac− ba− βac− βa = 0 = c− cba− ba− βca− βa.

The equivalence of (1) and (3) follows in an entirely analogous manner.

Recall the maps ψ1 and ψ2 defined in Theorem 2.7.4, and the sets I1 and I2 defined in

Proposition 2.7.12.

Theorem 2.8.2. Let E be a Banach space, α be a tensor norm and A = Nα(E). Then

rad(A′′,2) = I1 , rad(A′′,3) = I2.

In particular, when E is not reflexive, rad(A′′,2) ( rad(A′′,3).

Proof. Suppose that Φ 6∈ I1, so that θ1(Φ) 6= 0. Then, for some Λ ∈ E ′′ and M ∈ E ′′′, we

have 〈M, θ1(Φ)(Λ)〉 = 1. Let R = M ⊗ Λ ∈ F(E ′′), and suppose that Φ ∈ rad(A′′,2).

Then, for some Ψ ∈ A′′, we have

ψ1(R)2Φ = Ψ−Ψ2ψ1(R)2Φ.

Applying θ1, we have

R(θ1(Φ)(Λ)) = θ1(Ψ)(Λ)− (θ1(Ψ) ◦R ◦ θ1(Φ))(Λ),
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which is Λ = θ1(Ψ)(Λ)− θ1(Ψ)(Λ), a contradiction, as Λ 6= 0.

Conversely, suppose that Φ ∈ I1. Fix β ∈ C, and let Υ = βΦ. By Proposition 2.7.12,

we have A′′2Φ = 0, so for Ψ ∈ A′′, we have

Υ−Ψ2Φ2Υ− βΦ2Υ = βΦ− β2Φ2Φ = βΦ,

Υ−Υ2Ψ2Φ− βΥ2Φ = βΦ,

Ψ2Φ + βΦ = βΦ,

which verifies condition (2) in the above lemma. Thus Φ ∈ rad(A′′,2).

Similarly, suppose that, for Φ ∈ A′′, we have Q(θ1(Φ)) 6= 0. Then, for some Λ ∈ E ′′,

we have Λ0 := Q(θ1(Φ))(Λ) 6= 0. Let µ ∈ E ′ be such that 〈Λ0, µ〉 = 1, and set

R = Λ⊗ µ ∈ F(E ′). Suppose that Φ ∈ rad(A′′,3), so that for some Ψ ∈ A′′, we have

Φ3ψ2(R
′) = Ψ− Φ3ψ2(R

′)3Ψ.

Applying θ1, we have

Q(θ1(Φ)) ◦R′ = θ1(Ψ)−Q(θ1(Φ)) ◦R′ ◦ θ1(Ψ),

where Q(θ1(Φ)) ◦R′ = κE′(µ)⊗ Λ0, so that applying the above to Λ0, we get

〈Λ0, µ〉Λ0 = θ1(Ψ)(Λ0)− 〈θ1(Ψ)(Λ0), µ〉Λ0.

Applying µ to this gives us, as 〈Λ0, µ〉 = 1,

1 = 〈θ1(Ψ)(Λ0), µ〉 − 〈θ1(Ψ)(Λ0), µ〉 = 0,

a contradiction.

Conversely, suppose that Φ ∈ I2, so that Q(θ1(Φ)) = 0, and Φ3A′′ = {0}. Then, for

Ψ ∈ A′′ and β ∈ C, let Υ = βΦ, so that we have

Υ− Φ3Ψ3Υ− βΦ3Υ = Υ = βΦ,

Υ−Υ3Φ3Ψ− βΥ3Φ = Υ− β2Φ3Φ = βΦ,

Φ3Ψ + βΦ = βΦ,

which verifies condition (3) in the above lemma. Thus Φ ∈ rad(A′′,3).

Corollary 2.8.3. Let E be an infinite-dimensional Banach space with the approximation

property. Then N (E)′′, with either Arens product, is not semi-simple.
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Proof. We need to show that I1 is not zero, as I2 contains I1. That is, we wish to show that

θ1 : N (E)′′ → I(E ′′) is not injective; that is, φ1 : A(E ′) → N (E)′ does not have dense

range, which in this case is equivalent to N (E)′ = A(E ′). As E has the approximation

property, N (E)′ = (E ′⊗̂E)′ = B(E ′), so we are done.

Corollary 2.8.4. Let E be a Banach space with N (E ′) = I(E ′). Then (A(E)′′,2) is

semi-simple while (A(E)′′,3) is not semi-simple. �

2.9 Ideals of compact operators

We have not dealt yet with K(E), except when E has the approximation property, in

which case K(E) = A(E). In particular, we shall now generalise Theorem 2.7.14 and

Theorem 2.7.36.

We need a description of K(E)′ for which we use an idea from [Feder, Saphar, 1975].

Let E be a Banach space and let I ⊆ E ′
[1] be a norming subset, that is

‖x‖ = sup{|〈µ, x〉| : µ ∈ I} (x ∈ E).

For example, when E is separable, we can take I to be countable. Then let ι : E → l∞(I)

be the map

ι(x) =
(
〈µ, x〉

)
µ∈I

∈ l∞(I),

so that ι is an isometry. Let J : K(E) → K(E, l∞(I)) be given by J(T ) = ι ◦ T for

T ∈ K(E), so that J is an isometry. As l∞(I)′ has the metric approximation property, we

have

K(E, l∞(I)) = A(E, l∞(I)) = E ′⊗̌l∞(I),

so that K(E, l∞(I))′ = I(E ′, l∞(I)′). Thus J ′ : I(E ′, l∞(I)′) → K(E)′ is a quotient

operator, and J ′′ : K(E)′′ → I(E ′, l∞(I)′)′ is an isometry onto its range.

We now collect together some properties of these maps.

Lemma 2.9.1. Let E be a Banach space, and I , ι and J be as above. Then we have:

1. ι′′ : E ′′ → l∞(I)′′ is an isometry onto ι(E)◦◦;

2. for each λ ∈ K(E)′, there exists S ∈ I(E ′, l∞(I)′) with ‖S‖π = ‖λ‖ and J ′(S) =

λ;

3. for S ∈ I(E ′, l∞(I)′), we have that J ′(S) = 0 implies that S(E ′) ⊆ ι(E)◦;
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4. for S ∈ I(E ′, l∞(I)′) and R ∈ K(E), let S1, S2 ∈ I(E ′, l∞(I)′) be such that

J ′(S) · R = J ′(S1) and R · J ′(S) = J ′(S2). Then ι′ ◦ S1 = R′ ◦ ι′ ◦ S and

ι′ ◦ S2 = ι′ ◦ S ◦R′;

5. for S ∈ I(E ′, l∞(I)′), we have κE′ ◦ κ′E ◦ ι′′′ ◦ S ′′ = ι′′′ ◦ S ′′.

Proof. For (1), by Theorem 1.4.11(4), we see that ι′ : l∞(I)′/ι(E)◦ → E ′ is an isometry.

Then, by Theorem 1.4.11(5), we have that ι′′ : E ′′ → (ker ι′)◦ = ι(E)◦◦ is an isometry,

as required.

For (2), as J isometrically identifies K(E) with a subspace of A(E, l∞(I)), for λ ∈

K(E)′, we can extend λ to a member ofA(E, l∞(I))′ by the Hahn-Banach theorem. This

gives us the required S ∈ I(E ′, l∞(I)′).

For (3), let S ∈ I(E ′, l∞(I)′) be such that J ′(S) = 0. In particular, for T = µ ⊗ x ∈

K(E), we have 0 = 〈J ′(S), T 〉 = 〈S, µ⊗ ι(x)〉 = 〈S(µ), ι(x)〉. We hence see that

S(E ′) ⊆ ι(E)◦.

For (4), suppose we have R,S, S1 and S2 as stated. Then, for T = µ ⊗ x ∈ A(E) ⊆

K(E), we have

〈S1(µ), ι(x)〉 = 〈J ′(S1), T 〉 = 〈J ′(S) ·R, T 〉 = 〈J ′(S), µ⊗R(x)〉 = 〈S(µ), ι(R(x))〉,

〈S2(µ), ι(x)〉 = 〈J ′(S2), T 〉 = 〈R · J ′(S), T 〉 = 〈J ′(S), R′(µ)⊗ x〉 = 〈S(R′(µ)), ι(x)〉.

Thus we have ι′ ◦ S1 = R′ ◦ ι′ ◦ S and ι′ ◦ S2 = ι′ ◦ S ◦R′.

For (5), for M ∈ E ′′′, as S is weakly-compact, we have that S ′′(M) = κl∞(I)′(λ) for

some λ ∈ l∞(I)′. Then, for x ∈ E, we have

〈(κ′E ◦ ι′′′ ◦ S ′′)(M), x〉 = 〈ι′′(κE(x)), λ〉 = 〈ι′(λ), x〉,

so that for Λ ∈ E ′′, we have

〈Λ, (κ′E ◦ ι′′′ ◦ S ′′)(M)〉 = 〈ι′′(Λ), λ〉 = 〈S ′′(M), ι′′(Λ)〉 = 〈(ι′′′ ◦ S ′′)(M),Λ〉,

so we see that κE′ ◦ κ′E ◦ ι′′′ ◦ S ′′ = ι′′′ ◦ S ′′, as required.

Proposition 2.9.2. Let E be a Banach space. Then there is an isometry ψ1 : A(E ′′) →

K(E)′′ and a norm-decreasing map ψ2 : A(E ′′) → K(E)′′ such that θ1 ◦ ψ1 = IdA(E′′)

and θ1 ◦ ψ2 = Q. Furthermore, ψ1 : A(E ′′) → (K(E)′′,2) and ψ2 : (A(E ′′), ?) →

(K(E)′′,3) are homomorphisms.
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Proof. For S ∈ I(E ′, l∞(I)′), we have that S ′′ ∈ I(E ′′′, l∞(I)′′′) = A(E ′′, l∞(I)′′)′, so

that we may define

〈ψ1(T ), J ′(S)〉 = 〈S ′′, ι′′ ◦ T 〉 = Tr(S ′ ◦ ι′′ ◦ T ) (T ∈ F(E ′′)),

〈ψ2(T ), J ′(S)〉 = 〈S ′′, ι′′ ◦ Q(T )〉 = Tr(η(T ) ◦ ι′ ◦ S) (T ∈ F(E ′′)).

This is well-defined, for if J ′(S) = 0 then S(E ′) ⊆ ι(E)◦ so that {0} = S ′(ι(E)◦◦) =

S ′(ι′′(E ′′)). Thus S ′ ◦ ι′′ = 0 and hence 〈ψ1(T ), J ′(S)〉 = 0 = 〈ψ2(T ), J ′(S)〉.

Then, for λ ∈ K(E)′, let S ∈ I(E ′, l∞(I)′) be such that J ′(S) = λ and ‖S‖π = ‖λ‖.

For T ∈ F(E ′′), we thus have

|〈ψ1(T ), λ〉| = |〈S ′′, ι′′ ◦ T 〉| ≤ ‖S ′′‖π‖ι′′ ◦ T‖ = ‖S‖π‖T‖ = ‖λ‖‖T‖,

so we see that ψ1 is norm-decreasing, and hence that ψ1 extends by continuity to A(E ′′).

Similarly ψ2 is norm-decreasing and extends to A(E ′′).

For Λ ∈ E ′′ and µ ∈ E ′, let µ0 ∈ l∞(I)′ be such that ι′(µ0) = µ and ‖µ‖ = ‖µ0‖.

Then, for R ∈ K(E), we have

〈J ′(Λ⊗ µ0), R〉 = 〈Λ⊗ µ0, ι ◦R〉 = 〈Λ, R′(ι′(µ0))〉 = 〈Λ, R′(µ)〉 = 〈φ1(Λ⊗ µ), R〉,

so that J(Λ⊗ µ0) = φ1(Λ⊗ µ). Then, for T ∈ A(E ′′), we have

〈θ1(ψ1(T ))(Λ), µ〉 = 〈ψ1(T ), φ1(Λ⊗ µ)〉 = 〈ψ1(T ), J ′(Λ⊗ µ0)〉 = 〈(Λ⊗ µ0)
′′, ι′′ ◦ T 〉

= 〈ι′′(T (Λ)), µ0〉 = 〈T (Λ), ι′(µ0)〉 = 〈T (Λ), µ〉.

Thus we have θ1 ◦ ψ1 = IdA(E′′), and as θ1 is norm-decreasing, we have that ψ1 is an

isometry onto its range. Similarly, we have

〈θ1(ψ2(T ))(Λ), µ〉 = 〈ψ2(T ), φ1(Λ⊗ µ)〉 = 〈ψ2(T ), J ′(Λ⊗ µ0)〉

= 〈(Λ⊗ µ0)
′′, ι′′ ◦ Q(T )〉 = 〈Q(T )(Λ), ι′(µ0)〉 = 〈Q(T )(Λ), µ〉,

so that θ1 ◦ ψ2 = Q on A(E ′′).

For R ∈ K(E) and S ∈ I(E ′, l∞(I)′), let S1 ∈ I(E ′, l∞(I)′) be such that J ′(S1) =

J ′(S) · R ∈ K(E)′. Let T = M ⊗ Λ ∈ F(E ′′), so that as R ∈ W(E), R′′(Λ) ∈ κE(E).

Then, by the above lemma, we have

〈ψ1(T ) · J ′(S), R〉 = 〈ψ1(T ), J ′(S1)〉 = 〈M,S ′1(ι
′′(Λ))〉 = 〈M, (S ′ ◦ ι′′ ◦R′′)(Λ)〉

= 〈R′′(Λ), (κ′E ◦ ι′′′ ◦ S ′′)(M)〉 = 〈Λ⊗ (κ′E ◦ ι′′′ ◦ S ′′)(M), R〉.

Thus we have

ψ1(M ⊗ Λ) · J ′(S) = φ1

(
Λ⊗ (κ′E ◦ ι′′′ ◦ S ′′)(M)

)
(M ⊗ Λ ∈ F(E ′′)).
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Let Ti = Mi ⊗ Λi for i = 1, 2, so that by (5) in the above lemma, we have

〈ψ1(T1)2ψ1(T2), J
′(S)〉 = 〈(θ1 ◦ ψ1)(T1),Λ2 ⊗ (κ′E ◦ ι′′′ ◦ S ′′)(M2)〉

= 〈T1(Λ2), (κ
′
E ◦ ι′′′ ◦ S ′′)(M2)〉 = 〈M1,Λ2〉〈Λ1, (κ

′
E ◦ ι′′′ ◦ S ′′)(M2)〉

= 〈M1,Λ2〉〈(ι′′′ ◦ S ′′)(M2),Λ1〉 = 〈M1,Λ2〉〈M2, S
′(ι′′(Λ1))〉

= 〈M1,Λ2〉〈ψ1(M2 ⊗ Λ1), J
′(S)〉 = 〈ψ1(T1 ◦ T2), J

′(S)〉.

By linearity and continuity, we see that ψ1 : A(E ′′) → (K(E)′′,2) is a homomorphism.

Similarly, let R ∈ K(E) and S, S2 ∈ I(E ′, l∞(I)′) be such that J ′(S2) = R · J ′(S).

Let T = M ⊗ Λ, so that with reference to the above lemma, we have

〈J ′(S) · ψ2(T ), R〉 = 〈ψ2(T ), J ′(S2)〉 = Tr(η(T ) ◦ ι′ ◦ S2) = 〈Λ, (ι′ ◦ S2 ◦ κ′E)(M)〉

= 〈Λ, (ι′ ◦ S ◦R′ ◦ κ′E)(M)〉 = 〈(S ′ ◦ ι′′)(Λ)⊗ κ′E(M), R〉.

Let Ti = Mi ⊗ Λi for i = 1, 2, so that we have

〈ψ2(T1)3ψ2(T2), J
′(S)〉 = 〈(θ1 ◦ ψ2)(T2), (S

′ ◦ ι′′)(Λ1)⊗ κ′E(M1)〉

= 〈(S ′ ◦ ι′′)(Λ1), (η(T2) ◦ κ′E)(M1)〉 = 〈Λ2, κ
′
E(M1)〉〈(S ′ ◦ ι′′)(Λ1), κ

′
E(M2)〉

= 〈Λ2, κ
′
E(M1)〉Tr((Λ1 ⊗ κ′E(M2)) ◦ ι′ ◦ S)

= 〈Λ2, κ
′
E(M1)〉〈ψ2(M2 ⊗ Λ1), J

′(S)〉 = 〈ψ2(T1 ? T2), J
′(S)〉.

By linearity and continuity, we see that ψ2 : (A(E ′′), ?) → (K(E)′′,3) is a homomor-

phism.

Lemma 2.9.3. Let E be a Banach space and I, ι, J be as above. For λ ∈ K(E)′, let

S ∈ I(E ′, l∞(I)′) be such that J ′(S) = λ. For Φ ∈ K(E)′′, let Φ · λ = J ′(S1) and

λ · Φ = J ′(S2) for some S1, S2 ∈ I(E ′, l∞(I)′). Then we have

ι′ ◦ S1 = ι′ ◦ κ′l∞(I) ◦ S ′′ ◦ θ1(Φ)′ ◦ κE′ , ι′ ◦ S2 = η(θ1(Φ)) ◦ ι′ ◦ S.

Proof. Let R = µ⊗ x ∈ K(E) so that, for T ∈ K(E), we have

〈λ ·R, T 〉 = 〈J ′(S), R ◦ T 〉 = 〈S, T ′(µ)⊗ ι(x)〉 = 〈(κl∞(I) ◦ ι)(x), (S ◦ T ′)(µ)〉

= 〈φ1

(
(S ′ ◦ κl∞(I) ◦ ι)(x)⊗ µ

)
, T 〉,

〈R · λ, T 〉 = 〈J ′(S), T ◦R〉 = 〈S, µ⊗ ι(T (x))〉 = 〈S(µ), ι(T (x))〉

= 〈φ1

(
κE(x)⊗ (ι′ ◦ S)(µ)

)
, T 〉.
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Thus we have

〈S1(µ), ι(x)〉 = 〈S1, J(µ⊗ x)〉 = 〈J ′(S1), R〉 = 〈Φ · λ,R〉 = 〈Φ, λ ·R〉

= 〈Φ, φ1((S
′ ◦ κl∞(I) ◦ ι)(x)⊗ µ)〉 = 〈(θ1(Φ) ◦ S ′ ◦ κl∞(I) ◦ ι)(x), µ〉

= 〈(κ′l∞(I) ◦ S ′′ ◦ θ1(Φ)′ ◦ κE′)(µ), ι(x)〉,

〈S2(µ), ι(x)〉 = 〈λ · Φ, R〉 = 〈Φ, R · λ〉 = 〈(θ1(Φ) ◦ κE)(x), (ι′ ◦ S)(µ)〉

= 〈(κ′E ◦ θ1(Φ)′ ◦ κE′ ◦ ι′ ◦ S)(µ), x〉,

as required.

Proposition 2.9.4. Let E be a Banach space. Then we have

θ1(Z
(1)
t (K(E)′′)) ⊆ B(E ′)a , θ1(Z

(2)
t (K(E)′′)) ⊆ κE ◦ B(E ′′, E).

Furthermore, we have

ψ2(T ) ∈ Z
(1)
t (K(E)′′) (T ∈ A(E ′)a),

ψ1(T ) ∈ Z
(2)
t (K(E)′′) (T ∈ κE ◦ A(E ′′, E)).

As such, when E is not reflexive, the topological centres of K(E)′′ are distinct, neither

contains the other, and both lie strictly between κK(E)(K(E)) and K(E)′′.

Proof. The calculations for θ1(Z
(i)
t (K(E)′′), for i = 1, 2, follow exactly as for A(E), as

in Proposition 2.7.8.

Let T = Λ ⊗ µ ∈ F(E ′), λ ∈ K(E)′ and Φ ∈ K(E)′′. Let S, S1 ∈ I(E ′, l∞(I)′)

be such that J ′(S) = λ and J ′(S1) = Φ · λ. As S is weakly-compact, we have that

κl∞(I)′ ◦ κ′l∞(I) ◦ S ′′ = S ′′. Then we have, by the preceding lemma,

〈ψ2(T
′)2Φ, λ〉 = 〈ψ2(T

′),Φ · λ〉 = Tr(T ◦ ι′ ◦ S1)

= Tr(T ◦ ι′ ◦ κ′l∞(I) ◦ S ′′ ◦ θ1(Φ)′ ◦ κE′)

= 〈Λ, (ι′ ◦ κ′l∞(I) ◦ S ′′ ◦ θ1(Φ)′ ◦ κE′)(µ)〉

= 〈(S ′′ ◦ θ1(Φ)′ ◦ κE′)(µ), ι′′(Λ)〉 = 〈(θ1(Φ) ◦ S ′ ◦ ι′′)(Λ), µ〉

= 〈Φ, φ1((S
′ ◦ ι′′)(Λ)⊗ µ)〉 = 〈Φ, λ · ψ2(T

′)〉 = 〈ψ2(T
′)3Φ, λ〉.

Thus ψ2(T
′) ∈ Z

(1)
t (K(E)′′).

Similarly, for T = M ⊗ κE(x) ∈ F(E ′′), let Φ, λ and S be as above. Then let

S2 ∈ I(E ′, l∞(I)′) be such that J ′(S2) = λ·Φ. As before, we have that κ′′E◦κE = κE′′◦κE

and S ′′(M) = κl∞(I)′(ν) for some ν ∈ l∞(I)′, so that ι′′′(S ′′(M)) = κl∞(I)′(ι
′(ν)). Then
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we have

〈Φ3ψ1(T ), λ〉 = 〈ψ1(T ), λ · Φ〉 = Tr(S ′2 ◦ ι′′ ◦ T ) = Tr(S ′ ◦ ι′′ ◦ Q(θ1(Φ)) ◦ T )

= 〈M, (S ′ ◦ ι′′ ◦ Q(θ1(Φ)) ◦ κE)(x)〉

= 〈(ι′′′ ◦ S ′′)(M), (κ′E′ ◦ θ1(Φ)′′ ◦ κ′′E ◦ κE)(x)〉

= 〈(κ′E′ ◦ θ1(Φ)′′ ◦ κE′′ ◦ κE)(x), ι′(ν)〉 = 〈(θ1(Φ) ◦ κE)(x), ι′(ν)〉

= 〈(θ1(Φ) ◦ κE)(x), (κ′E ◦ ι′′′ ◦ S ′′)(M)〉 = 〈Φ, φ1(κE(x)⊗ (κ′E ◦ ι′′′ ◦ S ′′)(M))〉

= 〈Φ, ψ1(T ) · J ′(S)〉 = 〈Φ2ψ1(T ), λ〉,

so that ψ1(T ) ∈ Z
(2)
t (K(E)′′).

Proposition 2.9.5. Let E be a Banach space and θ1 : K(E)′′ → B(E ′′) be as before. Let

I1 = ker θ1 ⊆ K(E)′′ , I2 = ker(Q ◦ θ1) ⊆ K(E)′′.

Then I1 is a closed ideal for either Arens product, and I2 is a closed ideal in (K(E)′′,3).

Furthermore, we have

K(E)′′2I1 = I13K(E)′′ = I23K(E)′′ = {0}.

Proof. The first part follows exactly as in Proposition 2.7.12. Fix λ ∈ K(E)′ and let

S ∈ I(E ′, l∞(I)′) be such that J ′(S) = λ. For Φ ∈ I1, let S1 ∈ I(E ′, l∞(I)′) be such

that J ′(S1) = Φ · λ, so that

ι′ ◦ S1 = ι′ ◦ κ′l∞(I) ◦ S ′′ ◦ θ1(Φ)′ ◦ κE′ = 0.

Hence we have, for T ∈ K(E),

〈Φ · λ, T 〉 = 〈J ′(S1), T 〉 = 〈S1, ι ◦ T 〉 = Tr(S1 ◦ T ′ ◦ ι′) = Tr(ι′ ◦ S1 ◦ T ′) = 0,

so that Φ · λ = 0, and hence

〈Ψ2Φ, λ〉 = 〈Ψ,Φ · λ〉 = 0 (Ψ ∈ K(E)′′).

As λ was arbitrary, we have K(E)′′2I1 = {0}. Similarly, let S2 ∈ I(E ′, l∞(I)′) be such

that J ′(S2) = λ · Φ, so that

ι′ ◦ S2 = η(θ1(Φ)) ◦ ι′ ◦ S = 0.

Hence we have

〈λ · Φ, T 〉 = 〈J ′(S2), T 〉 = 〈S2, J(T )〉 = Tr(T ′ ◦ ι′ ◦ S2) = 0 (T ∈ K(E)),
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so that λ · Φ = 0. Thus I13K(E)′′ = {0}.

Similarly, let Φ ∈ I2, so that η(θ1(Φ)) = 0, and hence ι′ ◦S2 = 0 when J ′(S2) = λ ·Φ.

Following the previous paragraph, we see that I23K(E)′′ = {0}.

As before, we now turn our attention to when we can use nuclear and not integral

operators. This takes us to a result shown in [Feder, Saphar, 1975].

Theorem 2.9.6. Let E and F be Banach spaces such that E ′′ or F ′ has the Radon-

Nikodým property. Define V : E ′′⊗̂F ′ → K(E,F )′ by

〈V (Φ⊗ µ), T 〉 = 〈Φ, T ′(µ)〉 (Φ⊗ µ ∈ E ′′⊗̂F ′, T ∈ K(E,F )).

Then V is a quotient operator, and furthermore, for λ ∈ K(E,F )′, there exists u ∈

E ′′⊗̂F ′ with V (u) = λ and ‖u‖ = ‖λ‖. Also, given Jπ : E ′′⊗̂F ′ → N (E ′, F ′) ⊆

I(E ′, F ′), we have kerV ⊆ ker Jπ.

Proof. This is [Feder, Saphar, 1975, Theorem 1]. We will sketch the easier case, which is

when E ′′ has the Radon-Nikodým property. Form I and ι : F → l∞(I) in a similar way

to above, and define J : K(E,F ) → A(E, l∞(I) by J(T ) = ι ◦ T for T ∈ K(E,F ).

Then

(l∞(I)⊗̌E ′)′ = I(l∞(I), E ′′) = N (l∞(I), E ′′) = l∞(I)′⊗̂E ′′,

as E ′′ has the Radon-Nikodým property and l∞(I) is a dual space with the approximation

property. By applying the swap map to both sides, we see that

K(E, l∞(I))′ = (E ′⊗̌l∞(I))′ = E ′′⊗̂l∞(I)′.

Thus J ′ : E ′′⊗̂l∞(I)′ → K(E,F )′. Hence we have the following diagram.

E ′′⊗̂l∞(I)′
J ′
- K(E,F )′

E ′′⊗̂F ′

IdE′′ ⊗ ι′

?

V

-

We can verify that this diagram commutes, so as J is an isometry, J ′ is a quotient operator.

As IdE′′ ⊗ ι′ is norm-decreasing, V must also be a quotient operator. We can then easily

verify the other claims, and the case when F ′ has the Radon-Nikodým property follows

in a similar manner.

In particular, when E ′ or E ′′ has the Radon-Nikodým property, we have a quotient

operator V : E ′′⊗̂E ′ → K(E)′, and this respects the usual identification of A(E)′ =

2.9. Ideals of compact operators



Chapter 2. Operator ideals and Arens products 98

I(E ′) = N (E ′). It is clear that V agrees with the map φ1, and so θ1 : K(E)′′ → B(E ′′) is

an isometry onto its range which contains A(E ′′) by Proposition 2.9.2. Indeed, we have

θ1(K(E)′′) = (kerφ1)
◦ = {T ∈ B(E ′′) : 〈T, τ〉 = 0 (τ ∈ E ′′⊗̂E ′, φ1(τ) = 0)}.

Theorem 2.9.7. Let E be a Banach space such that E ′ or E ′′ has the Radon-Nikodým

property. Then K(E)′′ is identified isometrically with X = θ1(K(E)′′) ⊆ B(E ′′) and we

have

Z
(1)
t (K(E)′′) = X ∩ B(E ′)a , Z

(2)
t (K(E)′′) = X ∩ (κE ◦ B(E ′′, E))

Z
(1)
t (K(E)′′) ∩ Z

(2)
t (K(E)′′) = X ∩W(E)aa.

Proof. This follows exactly as in the A(E) case, Corollary 2.7.34.

Notice that we cannot easily generalise Lemma 2.7.31 as we have no simple descrip-

tion of kerφ1. Indeed, it is hard to say whether kerφ1 is trivial or not.

Definition 2.9.8. Let E be a Banach space such that for each compact subset K ⊆ E

and each ε > 0, there exists T ∈ K(E) with ‖T (x) − x‖ < ε for each x ∈ K. Then E

has the compact approximation property. When we can control the norm of T , E has the

bounded compact approximation property or the metric compact approximation property.

We might be tempted to suppose that φ1 is injective when E ′ has the compact approx-

imation property. This does not seem to be true in general, unlike the A(E) case.

The paper [Grønbæk, Willis, 1993] is a good source of information on the compact

approximation property, when applied to algebraic questions about K(E). We will come

back to this, but for now, we need a definition from [Grønbæk, Willis, 1993].

Definition 2.9.9. Let E be a Banach space. Then E ′ has the K(E)a-approximation prop-

erty if, for each compact subset K ⊆ E ′ and each ε > 0, there exists T ∈ K(E) such

that ‖T ′(µ) − µ‖ ≤ ε for each µ ∈ K. Similarly, we have the idea of the bounded

K(E)a-approximation property.

Thus the K(E)a-approximation property is stronger than E ′ having the compact ap-

proximation property, and [Grønbæk, Willis, 1993, Example 4.3] shows that, in general,

these properties do not coincide. In [Grønbæk, Willis, 1993, Section 3], a sufficient con-

dition on E is given for these properties to be the same, but given the lack of examples

of Banach spaces without the (compact) approximation property, it is left open if this

condition on E is common or not.
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Then [Grønbæk, Willis, 1993, Corollaries 2.6, 2.7] states that E ′ has the bounded

K(E)a-approximation property if and only if K(E) has a bounded right approximate

identity, or equivalently, a bounded approximate identity.

Proposition 2.9.10. Let E be a Banach space such that E ′ or E ′′ has the Radon-Nikodým

property, so that K(E)′′ is identified with a subalgebra of B(E ′′). Then φ1 is injective

implies that E ′ has the metric K(E)a-approximation property. Conversely, when E ′ has

theK(E)a-approximation property, we have B(E)aa ⊆ K(E)′′ and that E ′ has the metric

K(E)a-approximation property.

Proof. Given the above, we see that E ′ has the bounded K(E)a-approximation property

if and only if K(E)′′ has a mixed identity. As K(E)′ = φ1(E
′′⊗̂E ′), we see that φ1

is injective if and only if φ1 is an isometry E ′′⊗̂E ′ → K(E)′, which is if and only if

θ1 : K(E)′′ → B(E ′′) is surjective. We can easily see that Ξ ∈ K(E)′′ is a mixed identity

if and only if θ1(Ξ) = IdE′′ , in which case, as θ1 is an isometry, we have that E ′ has the

metric K(E)a-approximation property. We see immediately that when φ1 is injective, E ′

has the metric K(E)a-approximation property.

Conversely, suppose that τ ∈ E ′′⊗̂E ′ is such that φ1(τ) = 0. We can find a representa-

tive τ =
∑∞

n=1 Λn⊗µn with
∑∞

n=1 ‖Λn‖ <∞ and ‖µn‖ → 0 as n→∞. Let S ∈ B(E).

Then (S ′(µn))∞n=1 is a compact subset of E ′, so as E ′ has theK(E)a-approximation prop-

erty, for each ε > 0, there exists R ∈ K(E) with ‖S ′(µn)− R′(S ′(µn))‖ < ε for each n.

As S ◦R ∈ K(E), we hence have

|〈S ′′, τ〉| = |〈S ′′, τ〉− 〈φ1(τ), S ◦R〉| =
∣∣∣ ∞∑

n=1

〈Λn, S
′(µn)−R′(S ′(µn))〉

∣∣∣ ≤ ε

∞∑
n=1

‖Λn‖.

As ε > 0 was arbitrary, we see that 〈S ′′, τ〉 = 0, and as τ ∈ kerφ1 was arbitrary, we see

that S ′′ ∈ θ1(K(E)′′), as required. Then IdE′′ = Id′′E ∈ θ1(K(E)′′), so again, E ′ has the

metric K(E)a-approximation property.

The reason this is weaker than the corresponding result for A(E) is that we can easily

show that A(E ′′) ⊆ A(E)′′, but we do not know that K(E ′′) ⊆ K(E)′′. Of course, when

E is reflexive, this is not a problem.

Theorem 2.9.11. Let E be a reflexive Banach space. Then K(E) is Arens regular, and

K(E)′′ is identified, by θ1, with an ideal in B(E). Furthermore, K(E)′′ = B(E) if and

only if E has the compact approximation property.
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Proof. As E is reflexive, E ′ has the Radon-Nikodým property, and so φ1 : E⊗̂E ′ →

K(E)′ is a quotient operator, and θ1 : K(E)′′ → B(E) is an isometry onto its range. We

immediately see that K(E) is Arens regular (this is also shown in [Dales, 2000, Theo-

rem 2.6.23], and, in a more limited case, in [Palmer, 1985, Theorem 3]). The proof is

complete by applying the above proposition.

Corollary 2.9.12. Let E be a reflexive Banach space with the compact approximation

property. Then E has the metric compact approximation property. �

Example 2.9.13. In [Willis, 1992], Willis constructs a reflexive Banach space W which

has the metric compact approximation property, but which does not have the approxima-

tion property. Thus we see thatK(W )′′ = B(W ), whileA(W )′′ is, isometrically, a proper

ideal in B(W ). This example answers, in the affirmative, the question asked before The-

orem 3 in [Palmer, 1985]. �

There do exist Banach spaces without the compact approximation property, for ex-

ample, those constructed in [Szankowski, 1978]. In general, however, we do not have a

good supply of Banach spaces without the compact approximation property, a fact which

explains the slightly hesitant approach taken in this section.

2.9.1 Radicals of biduals of ideals of compact operators

Studying the radicals of K(E)′′ is simple, given the work we have already done.

Theorem 2.9.14. Let E be a Banach space. Then we have

rad(K(E)′′,2) = I1 = ker θ1 , rad(K(E)′′,3) = I2 = ker(Q ◦ θ1).

Proof. Examining the proof of Theorem 2.8.2, we see that we only use properties of

I1, I2, ψ1 and ψ2 which have been established for K(E)′′ in Proposition 2.9.5 and Propo-

sition 2.9.2. Thus we simply use the same argument.

2.9. Ideals of compact operators
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Chapter 3

Ultraproducts and Arens regularity

In this chapter we shall lay out the theory of ultraproducts of Banach spaces, and then

extend some known results to dealing with modules. This will involve studying and ex-

tending the Principle of Local Reflexivity. We will then derive a representation of the

dual of B(E) as a quotient of the projective tensor product of two ultrapowers, at least

when E = lp for 1 < p < ∞ and some related examples. In an alternative direction, we

shall also give a representation of the dual of B(E) which is more complicated to analyse

in detail, but which will allow us to show that B(E) is Arens regular for a wide class of

Banach spaces.

3.1 Ultraproducts of Banach spaces

The idea of ultraproduct constructions is fundamental to model theory, and was applied to

analysis by A. Robinson in his work on non-standard analysis, [Robinson, 1966]. How-

ever, ultraproducts of Banach spaces are different to non-standard analysis, and are ac-

cessible from a purely functional analysis viewpoint; the study of non-standard hulls of

Banach spaces is related, but takes an approach closer to model theory. We will follow

the survey article [Heinrich, 1980], and also the book [Haydon et al., 1991]. The key idea

of ultraproducts is that they allow us to move from the local to the global.

Recall the notions of filter and ultrafilter from Section 1.3. Let U be a non-principal

ultrafilter on a set I , and let E be a Banach space. We form the Banach space

l∞(E, I) =
{

(xi)i∈I ⊆ E : ‖(xi)‖ := sup
i∈I

‖xi‖ <∞
}
.

For (xi) ∈ l∞(E, I), the family (‖xi‖) is a bounded subset of the reals (and so lies in a
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compact topological space), so that we can take its limit along U . Thus define

NU =
{

(xi)i∈I ∈ l∞(E, I) : lim
i∈U

‖xi‖ = 0
}
.

We can show that NU is a closed subspace of l∞(E, I). Thus we can form the quotient

space, called the ultrapower of E with respect to U ,

(E)U := l∞(E, I)/NU .

In general, this space will depend on U , though most properties of (E)U turn out to be

independent of U , as long as U is sufficiently “large” in some sense.

If we have a family of Banach spaces (Ei)i∈I , then we can form l∞((Ei), I) and NU

in an analogous manner, leading to (Ei)U , the ultraproduct of (Ei) with respect to U . We

will not in general consider ultraproducts, but it should be clear that in many cases the

results will carry over from ultrapowers to the more general case.

We can verify that, if (xi)i∈I represents an equivalence class in (E)U , then

‖(xi)i∈I +NU‖ = lim
i∈I

‖xi‖.

We will abuse notation and write (xi) for the equivalence class it represents. Of course,

whenever we define maps or operations on ultraproducts, these maps or operations will

be well-defined, in the sense that they will not depend on the choice of representative.

Lemma 3.1.1. Let E be a Banach space, U an ultrafilter on a set I , and x ∈ (E)U . Then

we can find a representative (xi) ∈ l∞(E, I) of x such that ‖xi‖ = ‖x‖ for each i ∈ I .

Proof. If x = 0, then we are done. Suppose otherwise, and pick a representative x = (yi).

Then pick z ∈ E with z 6= 0, and let

xi =

yi‖x‖‖yi‖−1 : yi 6= 0,

z‖x‖‖z‖−1 : yi = 0.

Then (xi) ∈ (E)U and ‖xi‖ = ‖x‖ for each i ∈ I . For each ε > 0 with ε < ‖x‖, we

have, by the definition of the norm on (E)U , that Uε = {i ∈ I : |‖yi‖ − ‖x‖| < ε} ∈ U .

For each i ∈ I , either yi = 0, and so ‖xi − yi‖ = ‖xi‖ = ‖x‖ > ε, or otherwise

‖xi − yi‖ = ‖yi‖x‖‖yi‖−1 − yi‖ = ‖yi‖|‖x‖‖yi‖−1 − 1| = |‖x‖ − ‖yi‖|. Thus

{i ∈ I : ‖xi − yi‖ < ε} = {i ∈ I : |‖x‖ − ‖yi‖| < ε} = Uε ∈ U ,

so that limi∈U ‖xi − yi‖ ≤ ε. As ε > 0 was arbitrary, we have x = (yi) = (xi), as

required.

3.1. Ultraproducts of Banach spaces
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We can check that the natural mapE → (E)U , given by mapping x ∈ E to the constant

family (x), is an isometry onto its range. We can check that it is a surjection if and only

if E is finite-dimensional (in fact, (E)U is either finite-dimensional or non-separable).

Definition 3.1.2. An ultrafilter U is countably incomplete when there exists a sequence

(Un)∞n=1 in U such that U1 ⊇ U2 ⊇ U3 · · · and such that
⋂

n Un = ∅.

This is a technical condition which we need to impose on ultrafilters. In fact, all the ul-

trafilters which we shall use will be countably incomplete by the way they are constructed.

Notice that every non-principal ultrafilter on a countable set is countably incomplete. We

often need to restrict to countably incomplete ultrafilters because of the following lemma,

whose application allows us to “embed” the notion of convergence along a sequence into

an ultrapower.

Lemma 3.1.3. Let U be a countably incomplete ultrafilter on a set I . Then we can find a

family of strictly positive reals (εi)i∈I such that limi∈I εi = 0.

Proof. Pick a nested sequence (Un) in U with
⋂

n Un = ∅. Then, for example, define (εi)

by

εi =

n
−1 : i ∈ Un \ Un+1,

1 : otherwise.

For each δ > 0, pick nδ ∈ N with nδ > δ−1. Then we have

{i ∈ I : |εi| < δ} ⊇ {i ∈ I : |εi| < n−1
δ }

= {i ∈ I : i ∈ Un \ Un+1 (n > nδ)} = Unδ+1 ∈ U ,

where the last equality is because
⋂

n Un = ∅. Thus {i ∈ I : |εi| < δ} ∈ U , so by

definition, limi∈U εi = 0.

Let (Ti)i∈I be a bounded family of operators in B(E,F ), for Banach spaces E and F .

Then we can define a map, denoted by (Ti), (E)U → (F )U by

(Ti) : (xi) 7→ (Ti(xi)).

This is well-defined, and we claim that ‖(Ti)‖ = limi∈U ‖Ti‖. This follows, as for arbi-

trary (xi), we have

‖(Ti(xi))‖ = lim
i∈U

‖Ti(xi)‖ ≤ lim
i∈U

‖Ti‖‖xi‖ =

(
lim
i∈U

‖Ti‖
)(

lim
i∈U

‖xi‖
)
.

3.1. Ultraproducts of Banach spaces
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Conversely, for ε > 0, for each i ∈ I , pick xi ∈ E with ‖xi‖ = 1 and ‖Ti(xi)‖ > ‖Ti‖−ε.

Then

‖(Ti(xi))‖ ≥ lim
i∈U

‖Ti‖ − ε,

so we are done as ε > 0 was arbitrary. Using an argument similar to the above lemma, we

can show that the norm is actually attained if U is countably incomplete. We have shown

that the natural map

(B(E,F ))U → B((E)U , (F )U)

is an isometry. It is not, in general, surjective; for example, see before Proposition 3.1.12.

We thus have a canonical map

B(E,F ) → (B(E,F ))U → B((E)U , (F )U),

which is an isometry. In general, we simply write T for the image of T ∈ B(E,F ) in

B((E)U , (F )U), instead of the more correct (T ).

Throughout the rest of this section, unless otherwise stated, U will be an ultrafilter on

an index set I .

Proposition 3.1.4. The classes of Banach algebras and C∗-algebras are stable under

ultraproduct constructions.

Proof. We sketch what is [Heinrich, 1980, Proposition 3.1], in the case of ultrapowers.

Let A be a Banach algebra, and define multiplication on (A)U by

(ai).(bi) = (aibi) ((ai), (bi) ∈ (A)U).

This is well-defined, and turns (A)U into a Banach algebra. The natural map A → (A)U

is a homomorphism.

If A is also a C∗-algebra, then we define an involution on (A)U by simply setting

(ai)
∗ = (a∗i ). Then (A)U becomes a C∗-algebra.

As the classes of C(K) spaces and unital, commutative C∗-algebras form the same

class, we see that C(K) spaces are stable under taking ultraproducts.

Theorem 3.1.5. Let 1 ≤ p < ∞ and let (Si,Σi, νi) be a family of measure spaces. For

an ultrafilter U , (Lp(νi))U is (order) isometric to Lp(S,Σ, ν) for some measure space

(S,Σ, ν).

Proof. This is [Heinrich, 1980, Theorem 3.3]. The proof uses the structure theory for

abstract Lp spaces.

3.1. Ultraproducts of Banach spaces
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Definition 3.1.6. Let E and F be Banach spaces, and ε > 0. Then T ∈ B(E,F ) is a

(1 + ε)-isomorphism if T is surjective, and we have (1− ε)‖x‖ ≤ ‖T (x)‖ ≤ (1 + ε)‖x‖

for each x ∈ E. If such a T exists, we say that E is (1 + ε)-isomorphic to F .

Similarly, we have the notion of a (1 + ε)-isomorphism onto its range.

For Banach spaces E and F , E is finitely representable in F if, for each M ∈ FIN(E)

and each ε > 0, M is (1 + ε)-isomorphic to a subspace of F .

Proposition 3.1.7. Let (Ei)i∈I be a family of Banach spaces, letM be a finite-dimensional

subspace of (Ei)U and let ε > 0. Then there exists I0 ∈ U such that, for each i ∈ I0, there

exists a subspace Mi ⊆ Ei which is (1 + ε)-isomorphic to M .

Proof. This is [Heinrich, 1980, Proposition 6.1]. Let M have a basis {x(1), . . . , x(n)} and,

for 1 ≤ k ≤ n, let x(k) = (x
(k)
i ) ∈ (Ei)U . For each i, let Mi = lin{x(k)

i : 1 ≤ k ≤ n} ∈

FIN(E), and define Ti : M → Mi by Ti(x
(k)) = x

(k)
i . Then we can show that, for some

I0 ∈ U and each i ∈ I0, we have that Ti is the required (1 + ε)-isomorphism.

Proposition 3.1.8. Let F be a Banach space and C be a family of Banach spaces. Suppose

that for each ε > 0 and each M ∈ FIN(F ), for some E ∈ C, M is (1 + ε)-isomorphic to

a subspace of E. Then, for some ultrafilter U on I , there is a family (Ei)i∈I in C such that

F is isometric to a subspace of (Ei)U .

Proof. This is [Heinrich, 1980, Proposition 6.2].

Theorem 3.1.9. Let E and F be Banach spaces. Then F is finitely representable in E if

and only if F is isometrically isomorphic to a subspace of (E)U for some U .

Furthermore, if F is separable, then U can be any countably incomplete ultrafilter.

Proof. The first part is immediate. For the second, we use an argument similar to the

above lemma, where we use the countable incompleteness to allow us to work with se-

quences, which is enough, as F is separable. See [Heinrich, 1980, Theorem 6.3] for more

details.

The following comes from [James, 1972].

Definition 3.1.10. Let E be a Banach space such that when F is finitely-representable in

E, F is reflexive. Then E is super-reflexive.

We immediately see that E is super-reflexive if and only if every closed subspace of

(E)U is reflexive, which holds if and only if (E)U is reflexive for each U . In fact, we can

3.1. Ultraproducts of Banach spaces
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restrict to just one countably incomplete U , by the fact that a Banach space is reflexive if

and only if each separable subspace is reflexive (a fact which follows from the Eberlein-

Smulian Theorem).

Proposition 3.1.11. Let E ∈ FIN and U be an ultrafilter. Then the canonical map E →

(E)U is an isometric isomorphism.

Proof. As bounded subsets of E are relatively compact, for (xi) ∈ (E)U , we know that

(xi) converges along the ultrafilter, so we can define

σ : (E)U → E; (xi) 7→ lim
i∈U

xi.

For (xi) ∈ (E)U , let x = σ((xi)) ∈ E, so that, by definition, we have limi∈U ‖x−xi‖ = 0,

so that (xi) and x define the same equivalence class in (E)U .

We might hope that the dual of (E)U is (E ′)U , but this is not in general true. We can

of course define a map

(E ′)U → (E)′U , 〈(µi), (xi)〉 = lim
i∈U

〈µi, xi〉 ((xi) ∈ (E)U , (µi) ∈ (E)U).

This map is well-defined, and we can check that it is an isometry. As E ′ = B(E,C) and

(C)U = C by the preceding proposition, we have actually used the map (B(E,F ))U →

B((E)U , (F )U) from above, with F = C.

Proposition 3.1.12. If (E)U is reflexive, then (E)′U = (E ′)U . Furthermore, if U is count-

ably incomplete, then (E)′U = (E ′)U implies that (E)U is reflexive.

Proof. Suppose that (E)U is reflexive. Assume that (E ′)U forms a proper closed subspace

of (E)′U , so that we can find a non-zero Φ ∈ (E)′′U with 〈Φ, (µi)〉 = 0 for each (µi) ∈

(E ′)U . As Φ = κ(E)U (x) for some x = (xi) ∈ (E)U , we have limi∈U 〈µi, xi〉 = 0 for each

(µi) ∈ (E ′)U , which implies that x = 0, a contradiction.

Conversely, if (E)′U = (E ′)U and U is countably incomplete, then we shall show that

each member of (E)′U attains its norm on (E)U , which means that (E)U is reflexive, by

James’s Theorem (see [James(2), 1972], or [Megginson, 1998, Theorem 1.13.11]). Pick

(µi)i∈I ∈ (E ′)U = (E)′U and pick (εi) with limi∈U εi = 0. For each i ∈ I , choose xi ∈ E

with ‖xi‖ = 1 and |〈µi, xi〉| > ‖µi‖ − εi. Then x = (xi)i∈I ∈ (E)U , ‖x‖ = 1 and

|〈(µi), x〉| = limi∈U |〈µi, xi〉| = ‖(µi)‖.

We can now show the power of ultrapower techniques. The following results are com-

plicated to prove directly from the definitions (see [James, 1972] and [Enflo et al.,1975]

for example).

3.1. Ultraproducts of Banach spaces
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Theorem 3.1.13. Let E be a Banach space. Then E is super-reflexive if and only if E ′ is

super-reflexive. Let F be a closed subspace of E. Then if two of the three spaces E, F

and E/F are super-reflexive, they all are (the “three-space” problem).

Proof. Let U be a countably incomplete ultrafilter. Then the following are equivalent: (1)

E is super-reflexive; (2) (E)U is reflexive; (3) (E)′U = (E ′)U . These together imply that

(E ′)U is reflexive, which implies that E ′ is super-reflexive. If E ′ is super-reflexive then

E ′ is reflexive, so that by the above, E = E ′′ is super-reflexive.

The three space problem is (easily seen to be) true for reflexive spaces. So if we can

show that (E/F )U is naturally isomorphic to (E)U/(F )U , we are done. However, this is

trivial, for map (xi + F ) ∈ (E/F )U to (xi) + (F )U in (E)U/(F )U . This is well-defined,

as if (xi + F ) = (yi + F ) in (E/F )U , we have

0 = lim
i∈U

‖xi − yi + F‖ = lim
i∈U

inf{‖xi − yi + zi‖ : zi ∈ F}

= inf

{
lim
i∈U

‖xi − yi + zi‖ : (zi) ∈ (F )U

}
= inf{‖(xi)− (yi) + (zi)‖ : (zi) ∈ (F )U} = ‖(xi)− (yi) + (F )U‖.

The equality between lines one and two is trivial, if not obvious. This also shows that our

map is an isometry, so we are done.

From the Principle of Local Reflexivity, Theorem 1.4.9, E ′′ is finitely-representable in

E, for each Banach space E, so that E ′′ is isometric to a subspace of (E)U , for some U .

Actually, Theorem 1.4.9 gives a lot more than this, and we can correspondingly strengthen

the ultrapower result. As bounded subsets of E ′′ are compact in the weak∗-topology, we

can define a map σ : (E)U → E ′′ by

σ((xi)) = weak*-lim
i∈U

xi.

Thus, for µ ∈ E ′, we have

〈σ((xi)), µ〉 = lim
i∈U

〈µ, xi〉.

Theorem 3.1.14. Let E be a Banach space. Then for some U , there is an isometry K :

E ′′ → (E)U such that σ ◦ K = IdE′′ and K restricted to κE(E) is just the canonical

embedding of E into (E)U .

Proof. See [Heinrich, 1980, Proposition 6.7]. Also compare with Theorem 3.5.5.

Similar ideas hold for duals of ultrapowers.
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Theorem 3.1.15. Let E be a Banach space, let M ∈ FIN((E)′U), let N ∈ FIN((E)U)

and let ε > 0. Then there exists T : M → (E ′)U which is a (1 + ε)-isomorphism onto its

range, such that T (µ) = µ for µ ∈ M ∩ (E ′)U , and 〈T (µ), x〉 = 〈µ, x〉 for µ ∈ M and

x ∈ N .

Proof. This is [Heinrich, 1980, Theorem 7.3].

Corollary 3.1.16. Let E be a Banach space, and let U be countably incomplete. Then

the conclusions of Theorem 3.1.15 hold when M and N are merely separable closed

subspaces. Indeed, we may also set ε = 0.

Proof. This is [Heinrich, 1980, Corollary 7.5].

We can then apply these results to prove an analogy to Theorem 3.1.14. For a Banach

space E and ultrafilters U and V , define a map J : ((E ′)U)V → (E)′U by

〈J((µj)), (xi)〉 = lim
j∈V

〈(µ(j)
i ), (xi)〉 = lim

j∈V
lim
i∈U

〈µ(j)
i , xi〉 ((xi) ∈ (E)U),

where (µj) ∈ ((E ′)U)V , and for each j ∈ J , µj = (µ
(j)
i ) ∈ (E ′)U .

Corollary 3.1.17. Let E be a Banach space and U be an ultrafilter. Then there exists an

ultrafilter V and an isometry K : (E)′U → ((E ′)U)V so that the restriction of K to (E ′)U

is the canonical map (E ′)U → ((E ′)U)V , and J ◦K is the identity on (E)′U . �

For ultrafilters U and V on index sets I and J respectively, and a Banach space E, then

we can form the iterated ultrapower ((E)U)V . Define U ×V to be the collection of subsets

K ⊆ I × J such that

{j ∈ J : {i ∈ I : (i, j) ∈ K} ∈ U} ∈ V .

Then we can show that U × V is an ultrafilter on I × J .

Lemma 3.1.18. Let I, J,U ,V and E be as above. Let (xij)i∈I,j∈J be a family in a Haus-

dorff topological space X . Then

lim
j∈V

(
lim
i∈U

xij

)
= lim

(i,j)∈U×V
xij,

where one limit exists if and only if the other one does. Consequently, ((E)U)V is canoni-

cally isometrically isomorphic to (E)U×V .

Proof. Suppose the left-hand limit exists and equals x ∈ X . LetO be an open neighbour-

hood of x, and let J0 ∈ V be the set of j ∈ J such that yj = limi∈U xij exists. Then we

have

J1 = {j ∈ J0 : yj ∈ O} ∈ V .

3.1. Ultraproducts of Banach spaces
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For j ∈ J1, yj ∈ O, so we have

Uj = {i ∈ I : xij ∈ O} ∈ U .

Let K = {(i, j) ∈ I × J : j ∈ J1, i ∈ Uj}. Then

{j ∈ J : {i ∈ I : (i, j) ∈ K} ∈ U} = {j ∈ J : {i ∈ I : j ∈ J1, i ∈ Uj} ∈ U}

= {j ∈ J : j ∈ J1, Uj ∈ U} = J1 ∈ V ,

so that K ∈ U ×V . As (i, j) ∈ K if and only if yj ∈ O and xij ∈ O, andO was arbitrary,

we see that

x = lim
(i,j)∈U×V

xij.

The converse is similar.

For x = (xj) ∈ ((E)U)V , for each j let xj = (xij) ∈ (E)U , and let T (x) = (xij) ∈

(E)U×V . Then

‖T (x)‖ = lim
(i,j)∈U×V

‖xij‖ = lim
j∈V

lim
i∈U

‖xij‖ = lim
j∈V

‖xj‖ = ‖x‖,

so that T : ((E)U)V → (E)U×V is well-defined, and an isometry. We can similarly check

that T is a surjection.

We see immediately that E is super-reflexive if and only if each ultrapower of E is

super-reflexive.

3.2 Ultrapowers and tensor products

We will see later that it would be nice to have a relationship between (E⊗̂F )U and

(E)U⊗̂(F )U . For M ∈ FIN, by Proposition 3.1.11, we have (M)U = M . From

[Heinrich, 1980, Lemma 7.4], we have

(M⊗̌E)U = M⊗̌(E)U , (M⊗̂E)U = M⊗̂(E)U

for every Banach space E and M ∈ FIN, with equality of norms. Note that we can re-

write these equalities in terms of spaces of operators as (A(M ′, E))U = A(M ′, (E)U)

and (N (M ′, E))U = N (M ′, (E)U).

For infinite-dimensional Banach spaces, these equalities are no longer necessarily true.

However, we can make some useful statements, and also explain why we shall have to

work harder to prove related results in later sections.
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Define a map ψ0 : (E)U⊗̂(F )U → (E⊗̂F )U . We do this by using the tensorial property

of ⊗̂. Firstly we define ψ0 : (E)U × (F )U → (E⊗̂F )U by

ψ0(x, y) = (xi ⊗ yi) (x = (xi) ∈ (E)U , y = (yi) ∈ (F )U).

Then we have

‖(xi ⊗ yi)‖ = lim
i∈U

‖xi ⊗ yi‖ = lim
i∈U

‖xi‖‖yi‖ =
(

lim
i∈U

‖xi‖
)(

lim
i∈U

‖yi‖
)

= ‖x‖‖y‖,

so that ψ0 is well-defined, and is a norm-decreasing bilinear map. Thus ψ0 extends to a

norm-decreasing map ψ0 : (E)U⊗̂(F )U → (E⊗̂F )U . For u ∈ (E)U ⊗ (F )U , choose a

representative u =
∑n

k=1 xk ⊗ yk. Let, for each k, xk = (x
(k)
i ) ∈ (E)U and yk = (y

(k)
i ) ∈

(E)U . Then we see that

ψ0(u) =

(
n∑

k=1

x
(k)
i ⊗ y

(k)
i

)
i∈I

∈ (E⊗̂F )U .

The following idea is based upon a private communication to the author by C.J. Read

(in particular, Example 3.2.3 below). For Banach spaces E and F , let

Λn =

{
n∑

i=1

ei ⊗ fi ∈ E⊗̂F

}
(n ∈ N).

Then lin{Λn : n ∈ N} = ∪∞n=1Λn = E ⊗ F . Then define

dn(τ) = inf{π(τ − σ,E⊗̂F ) : σ ∈ Λn} (τ ∈ E⊗̂F ).

Proposition 3.2.1. Let E and F be Banach spaces, and let τ = (τi) ∈ (E⊗̂F )U be in the

image of ψ0. Then

lim
n→∞

lim
i∈U

dn(τi) = 0.

Proof. Let τ = ψ0(σ) for some σ ∈ (E)U⊗̂(F )U , where we have

σ =
∞∑

k=1

(x
(k)
i )⊗ (y

(k)
i ),

with ‖x(k)
i ‖ = ‖y(k)

i ‖ = αk for each k ∈ N and i ∈ I , and such that
∑∞

k=1 α
2
k <∞. Thus

we have

τi =
∞∑

k=1

x
(k)
i ⊗ y

(k)
i (i ∈ I).

In particular, for each i ∈ I , we have

dn(τi) ≤ π
(
τi −

n∑
k=1

x
(k)
i ⊗ y

(k)
i , E⊗̂F

)
≤

∞∑
k=n+1

‖x(k)
i ‖‖y(k)

i ‖ =
∞∑

k=n+1

α2
k.
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Hence we have

lim
n→∞

lim
i∈U

dn(τi) ≤ lim
n→∞

∞∑
k=n+1

α2
k = 0,

as required.

Corollary 3.2.2. Let E and F be Banach spaces and U be a countably incomplete ul-

trafilter on an index set I . Suppose that ψ0 : (E)U⊗̂(F )U → (E⊗̂F )U has dense range.

Then we have

lim
n→∞

sup
{
dn(τ) : τ ∈ E⊗̂F, π(τ) ≤ 1

}
= 0.

Proof. Define

δn = sup
{
dn(τ) : τ ∈ E⊗̂F, π(τ) ≤ 1

}
(n ∈ N).

Then (δn) is a decreasing sequence of positive reals. Suppose towards a contradiction that

(δn) does not tend to zero. Then we can find δ > 0 such that for each n ∈ N, we can find

τn ∈ E⊗̂F with π(τn) ≤ 1 and dn(τn) ≥ δ. Let U be a non-principal ultrafilter on N and

let τ = (τn) ∈ (E⊗̂F )U . Let σ ∈ (E)U⊗̂(F )U , and let ψ0(σ) = (σi) ∈ (E⊗̂F )U . For

n ∈ N, notice that

dn(τi) ≤ π(τi − σi) + dn(σi) (i ∈ N).

By the above proposition, we hence have

lim
n→∞

lim
i∈U

dn(τi) ≤ lim
n→∞

lim
i∈U

(
π(τi − σi) + dn(σi)

)
= ‖τ − ψ0(σ)‖+ lim

n→∞
lim
i∈U

dn(σi) = ‖τ − ψ0(σ)‖.

Now, for i ≥ n, we have dn(τi) ≥ di(τi) ≥ δ. Thus we have

‖τ − ψ0(σ)‖ ≥ lim
n→∞

lim
i∈U

dn(τi) ≥ lim
n→∞

δ = δ > 0.

Hence ψ0 does not have dense range, giving us the required contradiction.

We can easily adapt the above argument to allow U to be an arbitrary countably in-

complete ultrafilter.

Example 3.2.3. We consider l2. Let (en)∞n=1 be the standard orthonormal basis for l2.

Define

τn = n−1

n∑
i=1

ei ⊗ ei ∈ l2⊗̂l2 (n ∈ N),

so that, by [Ryan, 2002, Example 2.10], π(τn, l
2⊗̂l2) = 1.

Suppose that σ =
∑N

j=1 xj ⊗ yj ∈ l2 ⊗ l2. As A(l2)′ = N (l2) = l2⊗̂l2, we have

π(σ − τn, l
2⊗̂l2) = sup{|〈σ − τn, T 〉| : T ∈ F(l2), ‖T‖ ≤ 1} (n ∈ N).
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Suppose that n ≥ N , and define Pn ∈ F(l2) by Pn(ej) = ej for j ≤ n, and Pn(ej) = 0

for j > n. Then ‖Pn‖ = 1, and consequently we have

π(σ − τn, l
2⊗̂l2) ≥ sup{|〈σ − τn, PnTPn〉| : T ∈ F(l2), ‖T‖ = 1}.

We can verify that 〈τn, PnTPn〉 = 〈τn, T 〉 and 〈σ, PnTPn〉 = 〈Pn · σ · Pn, T 〉 where

Pn · σ · Pn =
N∑

j=1

Pn(xj)⊗ Pn(yj).

Hence, if we are trying to make π(σ − τn, l
2⊗̂l2) small, we may assume that σ =

Pn · σ · Pn. That is, we may assume xj and yj are in En = lin{ei : 1 ≤ i ≤ n} for

each j. By taking linear combinations and decreasing N if necessary, we can suppose

that (xj)
N
j=1 is an orthonormal set in En. Then choose (xj)

n
j=N+1 such that (xj)

n
j=1 is an

orthonormal basis for En. Thus we can write τn = n−1
∑n

j=1 xj ⊗ xj , so that

τn − σ =
N∑

j=1

xj ⊗ (n−1xj − yj) + n−1

n∑
j=N+1

xj ⊗ xj. (3.1)

Finally, define Q ∈ F(En) by Q(xj) = xj for j > N , and Q(xj) = 0 for j ≤ N .

Isometrically extend Q to l2, so that ‖Q‖ = 1, and by equation 3.1, we have

π(τn − σ, l2⊗̂l2) ≥ |〈τn − σ,Q〉| =

∣∣∣∣∣
N∑

j=1

〈Q(xj), n
−1xj − yj〉+ n−1

n∑
j=N+1

〈Q(xj), xj〉

∣∣∣∣∣
=
n−N

n
.

We conclude that dN(τn) ≥ n−1(n − N) for n ≥ N , and so δN = 1 for each N ∈ N.

Thus ψ0 : (l2)U⊗̂(l2)U → (l2⊗̂l2)U does not have dense range. �

We note that the above example relies rather heavily on the fact that any M ∈ FIN(l2)

admits a projection P : E → M with ‖P‖ = 1. Thus perhaps there is some hope of ψ0

being surjective for Banach spaces which admit far fewer operators than l2.

For the following, we refer the reader to [Heinrich, 1980, Section 9], where Heinrich

gives a description of when (E)U has the approximation property. In particular, (E)U has

the approximation property for some non-principal U if and only if (E)V has the approxi-

mation property for all V . Notice that, by Theorem 3.1.5, (LP (ν))U has the approximation

property for any measure ν and 1 ≤ p ≤ ∞.

Proposition 3.2.4. LetE and F be Banach spaces such that F is super-reflexive. Let U be

an ultrafilter such that (F )U has the approximation property. Then ψ0 : (E)U⊗̂(F )U →

(E⊗̂F )U is an isometry onto its range.
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Proof. As (F )U is reflexive and (F )U has the approximation property, we have

A((E)U , (F
′)U)′ = ((E)′U⊗̌(F ′)U)′ = I((E)′U , (F )U) = (E)′′U⊗̂(F )U .

As the map κ(E)U ⊗ Id : (E)U⊗̂(F )U → (E)′′U⊗̂(F )U is an isometry onto its range by

Proposition 2.1.7, we see that

π(σ) = sup{|〈σ, S〉| : S ∈ F((E)U , (F
′)U)[1]} (σ ∈ (E)U⊗̂(F )U).

Fix σ ∈ (E)U ⊗ (F )U . Let σ =
∑n

k=1 y
(k) ⊗ z(k) and let N = lin{y(k) : 1 ≤ k ≤

n} ∈ FIN((F )U). For each k, let y(k) = (y
(k)
i ) and z(k) = (z

(k)
i ) where ‖y(k)‖ = ‖y(k)

i ‖

and ‖z(k)‖ = ‖z(k)
i ‖ for each i. Thus

ψ0(σ) = (σi) =
( n∑

k=1

y
(k)
i ⊗ z

(k)
i

)
i∈I
.

Choose ε > 0 and let S ∈ F((E)U , (F
′)U) be such that ‖S‖ ≤ 1 and |〈σ, S〉| >

π(σ) − ε. Let M = S((E)U) ∈ FIN((F ′)U) have a basis {x(1), . . . , x(m)} where x(k) =

(x
(k)
i ) ∈ (E ′)U for each k. As in the proof of Proposition 3.1.7, let Mi = lin{x(k)

i : 1 ≤

k ≤ m} ∈ FIN(F ′) and Ti : M → Mi be defined by Ti(x
(k)) = x

(k)
i . Then, for some

I0 ∈ U , Ti is a (1 + ε)-isomorphism for each i ∈ I0.

We can write S =
∑m

k=1 µ
(k) ⊗ x(k) for some (µ(k))m

k=1 ⊆ (E)′U . Let P = lin{µ(k) :

1 ≤ k ≤ m}. By Theorem 3.1.15, let T : P → (E ′)U be such that ‖T‖ ≤ 1 + ε and

〈T (µ(k)), z〉 = 〈µ(k), z〉 (1 ≤ k ≤ m, z ∈ N).

For each k, let T (µ(k)) = (µ
(k)
i ) ∈ (E ′)U . Then let Q = T (P ), let Qi = lin{µ(k)

i : 1 ≤

k ≤ m} ∈ FIN(E ′) and let Ri : Q→ Qi be given by Ri(T (µ(k))) = µ
(k)
i . Let I1 ∈ U be

such that Ri is a (1 + ε)-isomorphism for each i ∈ I1.

For each i ∈ I0 ∩ I1, let

Si =
m∑

k=1

RiT (µ(k))⊗ Ti(x
(k)) = (RiT ⊗ Ti)S ∈ F ′ ⊗ E ′ = F(F,E ′),

so that ‖Si‖ ≤ ‖Ri‖‖T‖‖Ti‖‖S‖ ≤ (1 + ε)3. Then we have

〈σ, S〉 =
n∑

j=1

〈S(y(j)), z(j)〉 =
n∑

j=1

m∑
k=1

〈µ(k), y(j)〉〈x(k), z(j)〉

=
n∑

j=1

m∑
k=1

〈T (µ(k)), y(j)〉〈x(k), z(j)〉 =
n∑

j=1

m∑
k=1

lim
i∈U

〈µ(k)
i , y

(j)
i 〉〈x(k)

i , z
(j)
i 〉

= lim
i∈U

n∑
j=1

m∑
k=1

〈RiT (µ(k)), y
(j)
i 〉〈Ti(x

(k)), z
(j)
i 〉 = lim

i∈U
〈Si, σi〉.
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As ψ0 is norm-decreasing, we conclude that

π(σ)− ε < lim
i∈U

|〈Si, σi〉| ≤ lim
i∈U

‖Si‖π(σi) ≤ (1 + ε)3‖ψ0(σ)‖ ≤ (1 + ε)3π(σ).

As ε > 0 was arbitrary, we see that π(σ) = ‖ψ0(σ)‖, and so by continuity, we see that ψ0

is an isometry onto its range.

If we examine the above proof, then we could weaken the conditions on F to be that

(F )′′U has the approximation property and the Radon-Nikodým property (and then use

Theorem 3.1.15 again to move form (F )′′U to (F )U ).

It seems that ψ0 is rarely, if ever, surjective. For a Banach spaceE, by Theorem 3.1.14,

we see that B(E ′)′ is a one-complemented subspace of (E ′⊗̂E)U for some U . We can thus

form the chain of maps

(E ′)U⊗̂(E)U
ψ0- (E ′⊗̂E)U -- B(E ′)′,

and can ask the question of whether the composition map is surjective, or has dense range.

We will see later that for E = lp for 1 < p < ∞ (and some other similar cases), this is

indeed true (see Theorem 3.4.18). In the other direction, we have the following. We

identify K(E) with the subspace K(E)a ⊆ B(E ′) so that K(E)′ is a quotient of B(E ′)′.

Proposition 3.2.5. Let E be a Banach space and U be an ultrafilter such that the map

ψ : (E ′)U⊗̂(E)U → (E ′⊗̂E)U → B(E ′)′ → K(E)′

has dense range. Then the map V : E ′′⊗̂E ′ → K(E)′ has dense range (compare to

Theorem 2.9.6).

Proof. Let T ∈ K(E), and let u =
∑∞

n=1(µ
(n)
i )⊗ (x

(n)
i ) ∈ (E ′)U⊗̂(E)U , where we have

‖x(n)
i ‖ = ‖xn‖ and ‖µ(n)

i ‖ = ‖µn‖ for each i ∈ I and n ∈ N. As T (E[1]) is a relatively

compact subset of E, we see that the limits

yn = lim
i∈U

T (x
(n)
i ) ∈ E (n ∈ N)

exist. Similarly, as E ′
[1] and E ′′

[1] are weak∗-compact, we can let λn = weak*-limi∈U µ
(n)
i ,

and Φn = weak*-limi∈U κE(x
(n)
i ) ∈ E ′′. Then we have

〈ψ(u), T 〉 =
∞∑

n=1

lim
i∈U

〈µ(n)
i , T (x

(n)
i )〉 =

∞∑
n=1

lim
i∈U

〈µ(n)
i , yn〉 =

∞∑
n=1

〈λn, yn〉

=
∞∑

n=1

lim
i∈U

〈λn, T (x
(n)
i )〉 =

∞∑
n=1

lim
i∈U

〈T ′(λn), x
(n)
i 〉 =

∞∑
n=1

〈Φn, T
′(λn)〉

= 〈V
( ∞∑

n=1

Φn ⊗ λn

)
, T 〉.

3.2. Ultrapowers and tensor products



Chapter 3. Ultraproducts and Arens regularity 115

Thus we are done.

The key point in this proof is that the limit yn = limi∈U T (x
(n)
i ) is in norm, and not

in a weak topology. Suppose that E has the approximation property, so that A(E) =

K(E), and suppose that ψ has dense range. Then A(E)′ = I(E ′), so we conclude that

V (E ′′⊗̂E ′) = N (E ′) is dense in I(E ′). Consequently, there is a wide class of Banach

spaces (for example, those such that E ′ has the bounded approximation property and

I(E ′) 6= N (E ′)) for which ψ (and so certainly also ψ0) has no hope of having dense

range.

We have a way of getting around this problem, which is to replace the Banach space

E by one which encodes some of the “summation” structure which we lose when moving

from (E ′⊗̂E)U to (E ′)U⊗̂(E)U .

3.3 Arens regularity of B(E)

It has been brought to my attention, by Volker Runde, that some of the following argument

is essentially the same as that used in [Cowling, Fendler, 1984]. I was unaware of this

paper at the time of writing the article [Daws, 2004], but wish to state that, in particular,

the construction used in Theorem 3.3.1 below is not new. Indeed, one could use the

main result from [Cowling, Fendler, 1984] in place of Theorem 3.3.1, if one wished. The

application to Arens products remains new, however.

Let E be a Banach space. We cannot ensure that the map (E ′)U⊗̂(E)U → B(E)′ is

surjective. However, fix p ∈ (1,∞) and turn lp(E) into a Banach left B(E)-module by

defining the module action co-ordinate wise. That is,

T · (xn) = (T (xn)) ((xn) ∈ lp(E), T ∈ B(E)).

Then, for each ultrafilter U , (lp(E))U becomes a Banach left B(E)-module in a similar

way, by the canonical map B(lp(E)) → B((lp(E))U). Thus we can form the map

φ1 : (lp(E))′′U⊗̂(lp(E))′U → B(E)′,

and thus get the first Arens representation, θ1 : B(E)′′ → B((lp(E))′′U).

Theorem 3.3.1. Let E be a Banach space, and let p ∈ (1,∞). For some ultrafilter U , the

map φ1, as defined above, is a quotient operator.

Proof. The map B(E) → B(E)aa ⊆ B(E ′′) is an isometry, so we can view B(E)′ as a

quotient of B(E ′′)′. As (E ′′⊗̂E ′)′ = B(E ′′), for some ultrafilter U , by Theorem 3.1.14,
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we can find an isometry K : B(E ′′)′ → (E ′′⊗̂E ′)U such that σ ◦ K = IdB(E′′)′ , where

σ : (E ′′⊗̂E ′)U → B(E ′′)′ is the usual map.

Pick λ ∈ B(E)′ with λ 6= 0. Then there exists Λ ∈ B(E ′′)′ with ‖Λ‖ = ‖λ‖ and

such that 〈Λ, T ′′〉 = 〈λ, T 〉 for each T ∈ B(E). Let (ui) = K(Λ), where we may

suppose that π(ui, E
′′⊗̂E ′) = ‖Λ‖ for each i. As we may suppose that U is countably

incomplete, pick (εi) in R>0 so that limi∈U εi = 0. Then we can find representatives

ui =
∑∞

n=1 Φi
n ⊗ µi

n ∈ E ′′⊗̂E ′ so that, for each i,

π(ui) ≤
∞∑

n=1

‖Φi
n‖‖µi

n‖ ≤ π(ui) + εi.

Let q be the conjugate index to p, so that q−1 = 1− p−1. For each i and n, let

Ψi
n = ‖Φi

n‖−1+1/p‖µi
n‖1/pΦi

n , λi
n = ‖Φi

n‖1/q‖µi
n‖−1+1/qµi

n.

Then we have, for each i,(
∞∑

n=1

‖Ψi
n‖p

)1/p

=

(
∞∑

n=1

‖Φi
n‖‖µi

n‖

)1/p

≤ (‖Λ‖+ εi)
1/p,

and similarly (
∞∑

n=1

‖λi
n‖q

)1/q

≤ (‖Λ‖+ εi)
1/q.

Thus, for each i, let Ψi = (Ψi
n) ∈ lp(E ′′) and λi = (λi

n) ∈ lq(E ′). Then let λ =

(λi) ∈ (lq(E ′))U ⊆ (lp(E))′U , and let Ψ = (Ψi) ∈ (lp(E ′′))U . As (lq(E ′))U is a closed

subspace of (lp(E))′U , and (lp(E ′′))U is a closed subspace of (lq(E ′))′U , we can let Ψ0 be

a Hahn-Banach extension of Ψ, so that Ψ0 ∈ (lp(E))′′U .

Now let u = Ψ0 ⊗ λ, so that

‖u‖ = ‖Ψ0‖‖λ‖ = ‖Ψ‖‖λ‖ =
(

lim
i∈U

‖Ψi‖
)(

lim
i∈U

‖λi

)
= ‖Λ‖1/p‖Λ‖1/q = ‖λ‖ = ‖Λ‖.

For T ∈ B(E) and x = (xi) = (xi
n) ∈ (lp(E))U , we have

〈λ · T , x〉 = 〈λ, T · x〉 = 〈(λi
n), (T (xi

n))〉 = lim
i∈U

∞∑
n=1

〈λi
n, T (xi

n)〉 = lim
i∈U

∞∑
n=1

〈T ′(λi
n), xi

n〉,

so that λ · T ∈ (lq(E ′))U . Thus we have

〈φ1(u), T 〉 = 〈Ψ0, λ · T 〉 = 〈Ψ, λ · T 〉 = lim
i∈U

∞∑
n=1

〈Ψi
n, T

′(λi
n)〉

= lim
i∈U

∞∑
n=1

〈Φi
n, T

′(µi
n)〉 = lim

i∈U
〈ui, T 〉 = 〈σ(ui), T 〉 = 〈λ, T 〉.

This completes the proof.
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We can show similarly that φ2 : (lp(E))′U⊗̂(lp(E))U → B(E)′ is a quotient operator.

By Theorem 3.1.14, (lp(E))′′U is a complemented subspace of (lp(E))U×V for some ultra-

filter V . That is, we can find an isometry K : (lp(E))′′U → (lp(E))U×V such that σ ◦ K

is the identity on (lp(E))′′U , where σ : (lp(E))U×V → (lp(E))′′ is the usual map taking

the limit in the weak∗-topology. We can show that σ is always a B(E)-module homomor-

phism, and we shall show in Proposition 3.5.6 that K can be chosen to be a B(E)-module

homomorphism. Assuming this, we can define

θ0 : B(E)′′ → B((lp(E))U×V); θ0(Φ) = K ◦ θ1(Φ) ◦ σ (Φ ∈ B(E)′′).

Then, for Φ,Ψ ∈ B(E)′′, we have

θ0(Φ2Ψ) = K ◦ θ1(Φ) ◦ θ1(Ψ) ◦ σ = K ◦ θ1(Φ) ◦ σ ◦K ◦ θ1(Ψ) ◦ σ = θ0(Φ) ◦ θ0(Ψ).

However, for T ∈ B(E) and x ∈ (lp(E))U×V , we have

θ0(κB(E)(T ))(x) = K ◦ T ′′ ◦ σ(x) = K
(
T · σ(x)

)
= T ·K(σ(x)).

This is not, in general, equal to T · x = T (x), where we allow T to act on (lp(E))U×V

in the canonical way. The problem here is that (lp(E))U×V does not carry a weak∗-like

topology, unlike (lp(E))′′U .

When lp(E) is super-reflexive, (lp(E))U is also super-reflexive, and so θ1 : B(E)′′ →

B((lp(E))U) is an isometry onto its range, and a homomorphism for either Arens product.

In particular, B(E) is Arens regular, and B(E)′′ can be identified with a subalgebra of

B(F ) for some super-reflexive Banach space F .

Indeed, it turns out that lp(E) is super-reflexive if and only if E is super-reflexive.

However, we need to take a slightly convoluted path to this result.

Definition 3.3.2. Let E be a Banach space. The modulus of convexity, δE(ε), for 0 < ε ≤

2, is defined as

δE(ε) = inf{1− ‖x+ y‖/2 : x, y ∈ E, ‖x‖ = ‖y‖ = 1, ‖x− y‖ = ε}.

Then E is uniformly convex if δE(ε) > 0 for each ε ∈ (0, 2].

We can easily show (see [Lindenstrauss, Tzafriri, 1979, Section 1.e]) that

δE(ε) = inf{1− ‖x+ y‖/2 : x, y ∈ E[1], ‖x− y‖ ≥ ε}.

For example, one can show that lp is uniformly convex for 1 < p < ∞. Notice that

uniform convexity is only an isometric invariant, not an isomorphic invariant.

3.3. Arens regularity of B(E)



Chapter 3. Ultraproducts and Arens regularity 118

Theorem 3.3.3. Let (E, ‖ · ‖) be a Banach space. Then the following are equivalent:

1. there exists a norm ‖ · ‖0, equivalent to ‖ · ‖, so that (E, ‖ · ‖0) is uniformly convex;

2. (E, ‖ · ‖) is super-reflexive.

Proof. This is detailed in [Habala et al., 1996, Chapter 11]. In particular, this result is

[Habala et al., 1996, Theorem 345] and is due to James and Enflo. We can use some

ultrapower results to show that (1)⇒(2), but the reverse implication is harder.

Lemma 3.3.4. Let E be a Banach space with modulus of convexity δE . Then, for each

ultrafilter U , we have δ(E)U = δE .

Proof. Let U be an ultrafilter on an index set I , let ε ∈ (0, 2], and let x, y ∈ (E)U be

such that ‖x‖ ≤ 1, ‖y‖ ≤ 1 and ‖x − y‖ > ε. Then, using a similar argument to that in

Lemma 3.1.1, we may suppose that x = (xi) and y = (yi) with ‖xi‖ ≤ 1, ‖yi‖ ≤ 1 and

‖xi − yi‖ > ε for each i ∈ I . For each i, we thus have 1− ‖xi − yi‖/2 ≥ δE(ε), and so,

taking limits, we have 1− ‖x− y‖/2 ≥ δE(ε). Thus we have δ(E)U (ε) ≥ δE(ε). As E is

isometrically a subspace of (E)U , we must have equality, as required.

Proposition 3.3.5. Let E be a uniformly convex Banach space. Then E is reflexive.

Proof. Assume towards a contradiction that E is not reflexive. We shall see later, in

Theorem 4.1.1, that for θ ∈ (0, 1) we can find sequences of unit vectors (xn) and (µn) in

E and E ′, respectively, such that

〈µm, xn〉 =

θ : m ≤ n,

0 : m > n.

Then let x = x1 and y = x2, so that ‖x‖ = ‖y‖ = 1. Then 〈µ2, x− y〉 = −θ so that

‖x − y‖ ≥ θ; similarly, 〈µ1, x+ y〉 = 2θ so that ‖x + y‖ ≥ 2θ. Thus, by choosing

θ arbitrarily close to 1, we see that, for example, δE(1/2) = 0, and thus that E is not

uniformly convex, giving the required contradiction.

Corollary 3.3.6. Let E be a Banach space which admits an equivalent, uniformly convex

norm. Then E is super-reflexive.

Proof. Let U be an ultrafilter, so that we are required to prove that (E)U is reflexive.

We may suppose, by re-norming, that E is uniformly convex, so that (E)U is uniformly

convex, by the above lemma. Thus we are done by the above proposition.
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Proposition 3.3.7. Let E be a Banach space and p ∈ (1,∞). Then E is super-reflexive if

and only if lp(E) is super-reflexive.

Proof. By the previous theorem, it is enough to show that when E is uniformly convex,

so is lp(E). However, this is precisely the result in [Day, 1941].

When, for example, E = lp, we have that lp(E) = lp(lp) is isometrically isomorphic

to lp. However, we need to be careful, as for this to be useful in the above work, we need

that lp(lp) and lp are isomorphic as left B(lp)-modules, which is not true.

Theorem 3.3.8. Let E be a super-reflexive Banach space. Then B(E) is Arens regular.

Furthermore, B(E)′′ can be identified with a subalgebra of B(F ) for a super-reflexive

Banach space F . Consequently, every even dual of B(E) is also Arens regular.

Proof. This is shown, using much the same method, by the author in [Daws, 2004]. As

E is super-reflexive, l2(E) is super-reflexive, and so l2(E)′ = l2(E ′). By Theorem 3.3.1,

there exists an ultrafilter U such that

φ1 : (l2(E))U⊗̂(l2(E ′))U → B(E)′

is a quotient operator. Thus θ1 : B(E)′′ → B((l2(E))U) is an isometry onto its range.

As (l2(E))U is reflexive, θ1 is a homomorphism for either Arens product, so that B(E) is

Arens regular.

Repeating the argument, we see that B((l2(E))U) is also Arens regular, as (l2(E))U

is actually super-reflexive. Thus B(E)′′, as a subalgebra of B((l2(E))U), is also Arens

regular, and B(E)[4] is a subalgebra of B(F ) for some super-reflexive Banach space F .

By induction, we see that every even dual space of B(E) is Arens regular.

This answers in the affirmative the conjecture made in [Young, 1976] (once we realise

that super-reflexive spaces, and not uniformly convex spaces, is the correct category to

study).

The above construction compares with the C∗-algebra case. LetA be a C∗-algebra and

π : A → B(H) be a representation on a Hilbert space H such that, for each state µ ∈ A′,

we have

〈µ, a〉 = [π(a)(x), x] (a ∈ A),

for some x ∈ H . We can certainly find such a representation by Theorem 1.8.5.

Now define φ1 : H⊗̂H ′ → A′ as before, so that

〈φ1(x⊗ µ), a〉 = 〈µ, π(a)(x)〉 (x⊗ µ ∈ H⊗̂H ′, a ∈ A),
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where we have used π to turn H into a Banach left A-module. Notice that as (H⊗̂H ′)′ =

B(H), we actually have φ1 = π′ ◦ κH b⊗H′ . Then, as H is reflexive, θ1 : A′′ → B(H) is a

homomorphism for either Arens product, θ1 ◦ κA = π, and A is Arens regular if φ1 has

dense range.

For µ ∈ H ′, recall that the Riesz Representation theorem says that we can find y ∈ H

so that 〈µ, x〉 = [x, y] for each x ∈ H . Thus we see that φ1(H⊗̂H ′) certainly contains the

linear span of the states. By the next proposition, φ1 is thus a surjection, and we are done.

Proposition 3.3.9. Let A be a unital C∗-algebra and µ ∈ A′. Then µ is a linear combi-

nation of at most four states.

Proof. See [Dales, 2000, Corollary 3.2.17], for example.

We hence see that our above construction for a super-reflexive Banach spaceE mirrors

the C∗-algebra case by constructing a super-reflexive Banach space F and a representation

π : B(E) → B(F ) such that φ1 = π′ ◦ κF b⊗F ′ is a surjection.

Definition 3.3.10. Let E be a reflexive Banach space, so that (E⊗̂E ′)′ = B(E). The

weak operator topology is the weak∗-topology on B(E) induced by this duality. This is

easily seen to be the topology induced by saying that the net (Tα) converges to T if and

only if

〈µ, T (x)〉 = lim
α
〈µ, Tα(x)〉 (x ∈ E, µ ∈ E ′).

Let A ⊆ B(E) be a subalgebra. The weak operator closure of A is the closure of A in

B(E) with respect to this topology.

Let E be a Banach space, and let A ⊆ B(E). Define the commutant of A to be

Ac = {T ∈ B(E) : T ◦ S = S ◦ T (S ∈ A)}.

Proposition 3.3.11. Let A be a C∗-algebra, and let π : A → B(H) be an injective

representation, so that π is automatically an isometry. For φ1 and θ1 defined as above,

θ1(A′′) is equal to the weak operator closure of π(A) in B(H).

Furthermore, suppose that for each x ∈ H , there exists a ∈ A with π(a)(x) 6= 0. Then

θ1(A′′) = π(A)cc, the double-commutant of π(A).

Proof. For Φ ∈ A′′, let Φ = weak*-limi∈U ai for some bounded family (ai)i∈I ⊆ A and

some ultrafilter U . For µ ∈ H ′ and x ∈ H , we have

〈µ, θ1(Φ)(x)〉 = 〈Φ, φ1(x⊗ µ)〉 = lim
i∈U

〈φ1(x⊗ µ), ai〉 = lim
i∈U

〈µ, π(ai)(x)〉.
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Consequently, we see that θ1(A′′) is contained in the weak operator closure of π(A).

Conversely, let (Ti)i∈I be a bounded family in π(A) and T ∈ B(H) be such that

〈µ, T (x)〉 = limi∈U 〈µ, Ti(x)〉 for each µ ∈ H ′ and x ∈ H . As π is an isometry, we can let

Ti = π(ai) for each i, for some bounded family (ai)i∈I ⊆ A. Let Φ = weak*-limi∈U ai ∈

A′′. Then we have

〈µ, T (x)〉 = lim
i∈U

〈µ, Ti(x)〉 = lim
i∈U

〈µ, π(ai)(x)〉 = lim
i∈U

〈φ1(µ⊗ x), ai〉

= 〈Φ, φ1(µ⊗ x)〉 = 〈µ, θ1(Φ)(x)〉,

so that T = θ1(Φ), as required.

The remark about the double-commutant is a standard result about self-adjoint subal-

gebras of B(H). For example, see [Arveson, 1976, Theorem 1.2.1].

Notice that the trivial representation π : B(H) → B(H), for some Hilbert space H ,

shows that we can have π injective but θ1 not injective.

Example 3.3.12. Let H be a Hilbert space and consider the C∗-algebra A = K(H) =

A(H). As is by now standard, we have A′ = H⊗̂H ′ and A′′ = B(H). As the trivial

representation π : A → B(H) is injective, we see that the this specific calculation agrees

with the above proposition. We also clearly haveA(H)c = CIdH so thatA(H)cc = B(H)

as required.

Note that this also holds for a reflexive Banach space E with the approximation prop-

erty. However, when E is a reflexive Banach space without the approximation property,

then we still have A(E)c = CIdE , so that A(E)cc = B(E), but now A(E)′′ is a proper

ideal in B(E). �

Notice that we could have shown the C∗-algebra case by proving the result for B(H)

and then applying the Gelfand-Naimark theorem. A natural question to now raise is

if every Arens regular Banach algebra arises as a subalgebra of B(E) for some super-

reflexive Banach space E. As shown in [Kaijser, 1981], this is true if we allow just reflex-

ive Banach spaces E. Indeed, more than this is true.

Theorem 3.3.13. Let A be an Arens regular Banach algebra. There exists a reflexive

Banach space E and a homomorphism π : A → B(E) such that π is an isomorphism

onto its range and, when φ1 and θ1 are defined using π, we have that θ1 : A′′ → B(E) is

also an isometry onto its range.

Proof. This is [Kaijser, 1981, Theorem 4.10], which we shall now sketch. We may sup-

pose that A is unital, for if not, use A] which must also be Arens regular. For µ ∈ A′,
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we know that the map a 7→ a · µ,A → A′ is weakly compact, as A is Arens regular.

By Theorem 2.2.9, we can factor this map through a reflexive Banach space Eµ. In fact,

this Banach space is naturally a Banach left A-module and the maps in the factorisa-

tion are left A-module homomorphisms (this follows by an examination of the proof of

Theorem 2.2.9). Hence we find a Banach left A-module Eµ and left A-module homo-

morphisms Rµ : A → Eµ and Sµ : Eµ → A′ such that a ·µ = Sµ(Rµ(a)) for each a ∈ A,

and ‖Sµ‖ ≤ 1 and ‖Rµ‖ ≤ ‖µ‖.

Let p ∈ (1,∞) and let E = lp(
⊕

µ∈A′
[1]
Eµ), so that E is a reflexive Banach space.

Define π : A → B(E) by π(a)(x) = (a · xµ) for x = (xµ) ∈ E, so that π is norm-

decreasing. For a ∈ A, let µ ∈ A′
[1] be such that 〈µ, a〉 = ‖a‖. Then we have

‖π(a)‖ ≥ ‖π(a)(Rµ(eA))‖ = ‖a ·Rµ(eA)‖ ≥ ‖Sµ(a ·Rµ(eA))‖

≥ ‖Sµ(Rµ(a))‖ = ‖a · µ‖ ≥ |〈a · µ, eA〉| = |〈µ, a〉| = ‖a‖.

Thus π is an isometry. For λ ∈ A′
[1], let x(λ) be the family in E defined by x(λ) = (x

(λ)
µ ),

where

x(λ)
µ =

Rλ(eA) : λ = µ,

0 : otherwise.
(µ ∈ A′

[1])

Similarly define ψ(λ) ∈ E ′ by ψ(λ)
λ = S ′λ(κA(eA)) and ψ(λ)

µ = 0 for µ 6= λ. For a ∈ A,

we hence have

〈ψ(λ), π(a)(x(λ))〉 = 〈S ′λ(κA(eA)), a ·Rλ(eA)〉 = 〈Sλ(Rλ(a)), eA〉

= 〈a · λ, eA〉 = 〈λ, a〉.

We hence see that φ1 is a quotient operator, as ‖ψ(λ)‖ ≤ 1 and ‖x(λ)‖ ≤ ‖Rλ‖ ≤ ‖λ‖.

Similarly, θ1 is an isometry onto its range.

Young also proves some similar results in [Young, 1976]. For example, [Young, 1976,

Theorem 1] shows that a Banach algebra A arises isometrically as a subalgebra of B(E)

for some reflexive Banach space E if and only if the set

WAP (A) := {µ ∈ A′
[1] : (a 7→ a · µ) ∈ W(A,A′)}

is norming for A.

There exist reflexive, but not super-reflexive, Banach spaces E0 for which B(E0) is not

Arens regular (see [Young, 1976, Corollary 1] and also Proposition 4.1.2). In particular,

A(E0) is Arens regular, and the following shows that A(E0) cannot be a subalgebra of

B(E) for any super-reflexive Banach space E.
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The following appears to be a new result, although it does seem too simple to have

been unknown until now.

Proposition 3.3.14. Let E and F be Banach spaces, and let π : A(E) → B(F ) be an

injective, continuous homomorphism. Then E is isomorphic to a subspace of F .

Proof. Let x0 ∈ E and µ0 ∈ E ′ be such that 〈µ0, x0〉 = 1. Let P0 = π(µ0 ⊗ x0) so that

P 2
0 = π((µ0 ⊗ x0)

2) = P0, and, as π is injective, P0 6= 0. Let y ∈ F and λ ∈ F ′ be such

that 〈λ, P0(y)〉 = 1. Then define T : E → F and S : E ′ → F ′ by

T (x) = π(µ0 ⊗ x)(y) , S(µ) = π(µ⊗ x0)
′(λ) (x ∈ E, µ ∈ E ′).

As π is bounded, T and S are bounded, and are clearly linear. Then, for x ∈ E and

µ ∈ E ′, we have

〈(S ′ ◦ κF ◦ T )(x), µ〉 = 〈S(µ), T (x)〉 = 〈λ, π(µ⊗ x0)π(µ0 ⊗ x)(y)〉

= 〈µ, x〉〈λ, π(µ0 ⊗ x0)(y)〉 = 〈µ, x〉〈λ, P0(y)〉 = 〈µ, x〉.

Thus we have S ′ ◦ κF ◦ T = κE , so that T is an isomorphism onto its range.

3.4 The dual of B(lp)

In this section, we shall show, for p ∈ (1,∞) and a suitable ultrafilter U , that the map

(E ′)U⊗̂(E)U
ψ0- (E ′⊗̂E)U -- B(E)′

is surjective (actually, is a quotient map) for E = lp (and some related Banach spaces).

This is an extension of work first shown by the author in [Daws, Read, 2004].

By Proposition 3.2.5, it is reasonable to insist that E be reflexive (so that A(E)′ =

I(E ′) = N (E ′)) and that E has the approximation property (implies metric approxima-

tion property for reflexive spaces) so that K(E) = A(E). Actually, we shall insist on

E having a far stronger structure than this. If one were to examine the following results

closely, then the early ones could be formulated, and proved, in an analogous way for

spaces just with the metric approximation property. However, the later results seem to

require that a far stronger condition be imposed upon E.

3.4.1 Schauder bases

We shall study spaces E which have some notion of a co-ordinate system. The follow-

ing section sketches the theory of Schauder bases in Banach spaces. For proofs, see

[Megginson, 1998] or [Lindenstrauss, Tzafriri, 1977], for example.
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Definition 3.4.1. A sequence (en) in a Banach space E is a Schauder basis (or, from now

on, simply a basis) when, for each x ∈ E, there is a unique sequence of scalars (an) such

that x =
∑∞

n=1 anen, with convergence in norm.

A sequence (xn) which is a basis for its closed linear span is called a basic sequence.

The order of summation is important here. Notice that the proof of Proposition 1.2.6

shows that every (algebraic) basis of a finite-dimensional Banach space is a Schauder

basis. A Schauder basis can be thought of as a way of giving an infinite-dimensional

Banach space a co-ordinate system. We can clearly suppose that ‖en‖ = 1 for each n (so

that (en) is a normalised basis). Henceforth, all our bases will be normalised.

Theorem 3.4.2. Let E be a Banach space and (en) be a sequence in E. Then (en) is a

basis for E if and only if:

1. each en is non-zero;

2. the linear span of (en) is dense in E; and

3. for some constant K > 0, for each sequence of scalars (an) and each n,m ∈ N, we

have ∥∥∥ n∑
i=1

aiei

∥∥∥ ≤ K
∥∥∥ n+m∑

i=1

aiei

∥∥∥.
Proof. We shall sketch this (which is, for example, [Lindenstrauss, Tzafriri, 1977, Propo-

sition 1.a.3]). Suppose that (en) is a basis for E. For x ∈ E, define

‖x‖0 = sup
n∈N

∥∥∥ n∑
i=1

aiei

∥∥∥ (
x =

∞∑
i=1

aiei

)
.

Note that this is well-defined, for, by definition, we have x = limn→∞
∑n

i=1 aiei, so that

the sequence (
∑n

i=1 aiei)
∞
n=1 is bounded. Furthermore, we also see that ‖x‖0 ≥ ‖x‖ for

each x ∈ E. We can check that ‖·‖0 is norm, and claim (without proof here) that (E, ‖·‖0)

is a Banach space. Thus we can let ι : (E, ‖ · ‖0) → (E, ‖ · ‖) be the formal identity, and

have that ι is a bounded linear map. It is clearly a bijection, so that by the open mapping

theorem, ι is bounded below, that is, for some K > 0 we have ‖x‖0 ≤ K‖x‖ for each

x ∈ E. Then we have condition (3), as letting x =
∑n+m

i=1 aiei, we have∥∥∥ n∑
i=1

aiei

∥∥∥ ≤ ‖x‖0 ≤ K‖x‖,

as required. Conditions (1) and (2) are clear.
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Conversely, let F be the linear span of (en), and define ‖ · ‖0 on F , as above. By

condition (3), we have that ‖x‖0 ≤ K‖x‖ for each x ∈ F , so that ‖ · ‖0 and ‖ · ‖ are

equivalent norms on F . We can then extend ‖ · ‖0 to the completion of F , which by (2) is

hence isomorphic to E. For n ∈ N, define Pn : F → F by

Pn

( m∑
i=1

aiei

)
=

n∑
i=1

aiei

(
m ≥ n,

m∑
i=1

aiei ∈ F
)
,

so that Pn is norm-decreasing, with respect to ‖ · ‖0. Thus Pn extends to a bounded linear

map on E, with ‖Pn‖ ≤ K. Then, for n ∈ N, define e∗n ∈ E ′ by setting, for x ∈ E,

〈e∗n, x〉en = Pn(x) − Pn−1(x), so that ‖e∗n‖ ≤ 2K. For x ∈ E, let (xn) be a sequence in

F which tends to x, so that, for each m ∈ N, we have∥∥∥ n∑
i=1

〈e∗n, x〉en − x
∥∥∥

0
= ‖Pn(x)− x‖0

≤ ‖Pn(x)− Pn(xm)‖0 + ‖Pn(xm)− xm‖0 + ‖xm − x‖0

≤ 2‖x− xm‖0 + ‖Pn(xm)− xm‖0.

Clearly, as xm ∈ lin(ek), we have that Pn(xm) = xm for sufficiently large n, so we see

that

x =
∞∑
i=1

〈e∗i , x〉ei,

with convergence with respect to ‖ · ‖0, or equivalently ‖ · ‖. This shows that each x ∈ E

has a, necessarily unique by condition (1), expansion of the form x =
∑∞

n=1 anen, as

required.

We call the bounded family (Pn) the natural projections associated with the basis

(en), and (e∗n) the co-ordinate functionals. The above proof shows that we can re-norm a

Banach space with a basis (en) to be monotone, that is, so that ‖Pn‖ = 1 for each n.

Suppose that E has a basis (en). Then, for x ∈ E, we define the support of x, with

respect to (en), to be

supp(x) = {n ∈ N : 〈e∗n, x〉 6= 0}.

Proposition 3.4.3. Let E be a Banach space with a monotone basis (en). Then E has the

metric approximation property.

Proof. We simply note that, for x ∈ E, x = limn→∞ Pn(x), where ‖Pn‖ = 1 for each

n.

In particular, there are certainly (separable) Banach spaces without a basis.
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We thus see that the spaces lp(N), for 1 ≤ p <∞, each have a natural monotone basis

formed by letting en be the sequence which is 0 apart from a 1 in the nth co-ordinate.

That is, en = (δnm)∞m=1, where δnm is the Kronecker delta. The same also holds for c0.

Definition 3.4.4. Let E be a Banach space with a basis (en). Suppose that for each

x =
∑∞

n=1 anen ∈ E, the sum
∑∞

n=1 anen converges unconditionally (that is, the order of

summation is not important). Then we say that (en) is an unconditional basis.

Theorem 3.4.5. Let E be a Banach space with a basis (en). Then the following are

equivalent:

1. (en) is an unconditional basis;

2. for each x =
∑∞

n=1 anen ∈ E, and each ε > 0, there exists a finite set A ⊆ N so

that, if B ⊆ N is finite and A ⊆ B, then ‖x−
∑

n∈B anen‖ < ε;

3. there exists K > 0 so that, for each A ⊆ N, we can define PA : E → E by

PA

( ∞∑
n=1

anen

)
=
∑
n∈A

anen,

and have ‖PA‖ ≤ K;

4. for x =
∑∞

n=1 anen, we can define

‖x‖m = sup
{∥∥∥ ∞∑

n=1

bnanen

∥∥∥ : |bn| ≤ 1 (n ∈ N)
}
,

and ‖ · ‖m is equivalent to ‖ · ‖ on E;

Proof. These follow from either standard results about unconditional summation, or from

arguments similar to that used above. See, for example, [Megginson, 1998, Section 4.2]

for further details.

The infimum of possible values for K arising in (3) is called the unconditional ba-

sis constant of (en). By using (4) above, we can re-norm a Banach space E with an

unconditional basis (en) so that∥∥∥ ∞∑
n=1

bnanen

∥∥∥ ≤ ‖(bn)‖∞
∥∥∥ ∞∑

n=1

anen

∥∥∥ ( ∞∑
n=1

anen ∈ E
)
,

for any bounded sequence (bn) ∈ l∞. In particular, we can then take K = 1 in condition

(3), that is, we may suppose that (en) is 1-unconditional. Notice that the standard unit

vector bases of lp, for 1 ≤ p <∞, and c0 already satisfy this condition.

3.4. The dual of B(lp)



Chapter 3. Ultraproducts and Arens regularity 127

When E has a basis (en), it is easy to show that (e∗n) is a basic sequence in E ′, as the

natural projections (P̂n) associated with (e∗n) are simply the (restrictions of the) adjoints

of Pn, that is, for each n, P̂n is P ′
n restricted to the closed linear span of (e∗n).

Definition 3.4.6. Let E be a Banach space with a basis (en) such that (e∗n) forms a basis

for E ′. Then (en) is a shrinking basis.

Suppose that, whenever a sequence of scalars (an) satisfies supn ‖
∑n

i=1 aiei‖ < ∞,

we have that
∑∞

n=1 anen converges. Then the basis (en) is boundedly complete.

Theorem 3.4.7. Let E be a Banach space with a basis (en). Then (en) is shrinking if and

only if the basic sequence (e∗n) is boundedly complete. Also, (en) is boundedly complete

if and only if the basic sequence (e∗n) is shrinking. Furthermore, E is reflexive if and only

if (en) is both boundedly complete and shrinking.

Proof. See, for example, [Megginson, 1998, Theorem 4.4.11, Theorem 4.4.14, Theo-

rem 4.4.15].

For example, we see that the standard unit vector basis of c0 is not boundedly complete,

and that the standard unit vector basis of l1 is not shrinking (in this latter case, (e∗i ) spans

κc0(c0) ⊆ l∞).

3.4.2 Dual of B(E)

For the moment, we shall work with Banach spaces E which are reflexive and which have

a monotone basis (en). Then K(E) = A(E) and A(E)′ = I(E ′) = N (E ′) = E ′′⊗̂E ′ =

E⊗̂E ′. Thus, as before, A(E)′′ = B(E), and the map κA(E) is just the inclusion map

A(E) → B(E). Then κ′A(E) : B(E)′ → E⊗̂E ′ is a projection, in that κ′A(E) ◦ κEb⊗E′ is

the identity. We can form the quotient space B(E)/A(E), which has the quotient norm

‖T +A(E)‖ = inf{‖T + S‖ : S ∈ A(E)} (T ∈ B(E)).

By Theorem 1.4.10, (B(E)/A(E))′ = A(E)◦ ⊆ B(E)′. We thus have A(E)◦ = kerκ′,

so that

B(E)′ = A(E)′ ⊕ kerκ′ = E⊗̂E ′ ⊕A(E)◦.

We know all about E⊗̂E ′, so the interesting space to study is kerκ′ = A(E)◦.

To avoid repetition, we will assume unless otherwise stated that E is a reflexive Ba-

nach space with a normalised, 1-unconditional basis (en), and that (Pn) are the natural

projections associated with (en).
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Lemma 3.4.8. Let E be as above, and let T ∈ A(E). Then TPn → T and PnT → T as

n→∞, in the operator norm.

Proof. Let ε > 0 and let S ∈ F(E) be such that ‖T − S‖ < ε. Let S =
∑N

i=1 µi ⊗ xi ∈

E ′ ⊗E. For each i, we have that limn→∞ P ′
n(µi) = µi, as (en) is a shrinking basis. Thus,

for n sufficiently large, we have ‖µi − P ′
n(µi)‖ < ε‖xi‖−1 for each i. Then we have

‖TPn − T‖ ≤ ‖TPn − SPn‖+ ‖SPn − S‖+ ‖S − T‖ < ε‖Pn‖+ ‖SPn − S‖+ ε

≤ 2ε+
N∑

i=1

‖P ′
n(µi)− µi‖‖xi‖ < (N + 2)ε.

As ε > 0 was arbitrary, we are done. The claim that PnT → T follows similarly (and

does not require that the basis be shrinking).

Proposition 3.4.9. Let E be as above, and let Qn = IdE − Pn. For T ∈ B(E), we have

‖T +A(E)‖ = lim
n→∞

‖TQn‖ = lim
n→∞

‖QnTQn‖.

We may also replace limn→∞ by infn.

Proof. Notice that Qn = P{m∈N:m>n}, so that, as (en) is a 1-unconditional basis, ‖Qn‖ =

1. For n ∈ N, we have that Qn+1Qn = Qn+1 = QnQn+1, so that

‖TQn+1‖ = ‖TQnQn+1‖ ≤ ‖TQn‖‖Qn+1‖ = ‖TQn‖.

Thus (‖TQn‖)∞n=1 is a decreasing sequence, and so we can interchange taking limits and

taking infima. We can show the same for (‖QnTQn‖)∞n=1.

For n ∈ N, as TQn = T − TPn and TPn ∈ A(E), we have ‖T +A(E)‖ ≤ ‖TQn‖.

Assume that we have S ∈ A(E) with ‖T + S‖ < infn ‖TQn‖, so that as S = limn SPn,

we have limn ‖SQn‖ = 0, and so limn ‖TQn‖ = limn ‖(T + S)Qn‖ ≤ ‖T + S‖ <

limn ‖TQn‖. This contradiction shows that

‖T +A(E)‖ = lim
n
‖TQn‖.

For n ∈ N, we have QnTQn = T − TPn − PnT + PnTPn, and so ‖T + A(lp)‖ ≤

‖QnTQn‖. Hence

‖T +A(E)‖ ≤ lim
n
‖QnTQn‖ ≤ lim

n
‖TQn‖ = ‖T +A(E)‖

so we must have equality throughout, completing the proof.

The following is a variant of Helley’s Lemma (see Theorem 3.5.2).
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Proposition 3.4.10. Let F be a Banach space, Φ ∈ F ′′ and M ∈ FIN(F ′). Then for

ε > 0 we can find x ∈ F so that 〈µ, x〉 = 〈Φ, µ〉 for each µ ∈M , and

‖x‖ ≤ ε+ max{|〈Φ, µ〉| : µ ∈M[1]}.

Proof. This follows easily from [Guerre-Delabriére, 1992, Lemma I.6.2]. Alternatively,

we can use the Hahn-Banach Theorem to find Ψ ∈ F ′′ with 〈Ψ, µ〉 = 〈Φ, µ〉 for each

µ ∈M , and

‖Ψ‖ = max{|〈Φ, µ〉| : µ ∈M[1]}.

The result then follows from Theorem 3.5.2.

For x ∈ E, notice that we have Pn(x) = x if and only if supp(x) ⊆ {1, . . . , n}, and

that Qn(x) = x if and only if supp(x) ⊆ {n+ 1, n+ 2, . . .}.

Lemma 3.4.11. Let E be as before. Let M ⊂ B(E) be a finite-dimensional subspace,

and let ε > 0. Then we have:

1. for each x ∈ E, there exists N0 ∈ N such that ‖QnT (x)‖ < ε‖T‖ for each T ∈ M

and n ≥ N0;

2. for each m ∈ N, there exists N1 ∈ N such that ‖PmTQn‖ < ε‖T‖ for each T ∈ M

and n ≥ N1;

3. there existsN2 ∈ N such that ‖TQn‖ < ε‖T‖ for each T ∈M ∩A(E) and n ≥ N2.

Proof. Firstly, assume towards a contradiction that we can find n(1) < n(2) < · · · such

that for each k ∈ N, there exists Tk ∈ M with ‖Tk‖ = 1 and ‖Qn(k)(Tk(x))‖ ≥ ε‖Tk‖ =

ε. Then, as M has compact unit ball, we can find T ∈ M and a sequence k(1) < k(2) <

· · · such that Tk(j) → T as j →∞. Then we have, with reference to Lemma 3.4.8,

0 = lim
j
‖Qn(k(j))(T (x))‖ = lim

j
‖Qn(k(j))(Tk(j)(x))‖ ≥ ε,

which is the required contradiction.

For the second part, by the compactness of the unit ball of M , let (Ti)
N
i=1 ⊆M be such

that ‖Ti‖ = 1 for each i, and such that

min
1≤i≤N

‖T − Ti‖ ≤ ε/2 (T ∈M[1]).

Fix m ∈ N. Then we claim that we can find N1 ∈ N such that ‖PmTiQn‖ < δ‖Ti‖ for

n ≥ N1 and 1 ≤ i ≤ N .
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It is enough to show this for each separate i, as we have only finitely many to consider.

It is enough to show that limn ‖PmTiQn‖ = 0, so assume towards a contradiction that, for

some θ > 0, there is an increasing sequence (nk)
∞
k=1 such that ‖PmTiQnk

‖ ≥ 2θ for each

k. Then we can find (xj)
∞
j=1 with ‖xj‖ = 1 and Qnj

(xj) = xj , so that ‖PmTi(xj)‖ ≥ θ

for each j. However, we then have

lim
j→∞

‖PmTi(xj)‖ = lim
j→∞

∥∥∥ m∑
k=1

〈e∗k, Ti(xj)〉ek

∥∥∥ ≤ lim
j→∞

m∑
k=1

|〈T ′i (e∗k), xj〉|

=
m∑

k=1

lim
j→∞

|〈T ′i (e∗k), Qnj
(xj)〉| ≤

m∑
k=1

lim
j→∞

‖Q′
nj
T ′i (e

∗
k)‖ = 0,

as (en) is a shrinking basis, giving the required contradiction.

Then, for n ≥ N1 and T ∈M with ‖T‖ = 1, for some i we have ‖T −Ti‖ ≤ ε/2, and

so

‖PmTQn‖ ≤ ‖PmTiQn‖+ ε/2 < ε‖Ti‖/2 + ε/2 = ε,

as required.

Finally, for (3), suppose towards a contradiction that we can find n(1) < n(2) < · · ·

such that, for each k, we can find Tk ∈ M ∩ A(E) with ‖Tk‖ = 1 and ‖TkQn(k)‖ ≥ ε.

Again, we can find T ∈ M ∩ A(E) and k(1) < k(2) < · · · such that Tk(j) → T as

j →∞. Then we have

0 = lim
j→∞

‖TQn(k(j))‖ = lim
j→∞

‖Tk(j)Qn(k(j))‖ ≥ ε,

which is our required contradiction.

Definition 3.4.12. A block-basis in E, with respect to a basis (en) of E, is a sequence

of norm-one vectors (xn)∞n=1 in E such that supp(xn) is finite for each n, and such that

max supp(xn) < min supp(xn+1) for each n.

Some definitions of a block-basic do not require that ‖xn‖ = 1 for each n. We can

show that when (xn) is a block-basis, it is a basic sequence with basis constant no greater

than that of the original basis (en), so that, in our case, every block-basis is a monotone

basic sequence (see [Megginson, 1998, Proposition 4.3.16]).

Definition 3.4.13. Let (An) and (Bn) be sequences of subsets of N, such that, for each

n ∈ N, we have maxAn < minAn+1 and maxBn < minBn+1. We say that (An) is

union subordinate to (Bn) if, for each n ∈ N, Bn intersects at most one of the (Am).

Proposition 3.4.14. Let λ ∈ A(E)◦ with ‖λ‖ = 1, and let M ⊂ B(E) be a finite-

dimensional subspace with M ∩ A(E) = {0}. Let (εn) be a sequence of positive reals,
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let (sn) be an increasing sequence of natural numbers, and let n1 ∈ N. Then we can find

a block-basis (xn) in E, and (An)∞n=1 a sequence of pairwise-disjoint subsets of N, such

that:

1. |〈λ, T 〉| ≤ (1 + ε1) supn ‖T (xn)‖ for each T ∈M ;

2. ‖PN\An(T (xn))‖ < εn‖T‖ and ‖PAn(T (xm))‖ < εm‖T‖ for each n,m ∈ N with

n 6= m, and each T ∈M ;

3. supp(xn) ⊆ {n1 + 1, n1 + 2, . . .} for each n ∈ N;

4. setting Bm = {i ∈ N : sm ≤ i < sm+1}, we have that (supp(xn)) is union

subordinate to (Bm), and that (An) is union subordinate to (Bm).

Proof. As M has a compact unit ball, let (Tn)∞n=1 be a dense sequence in M[1]. For T1,

we can find x1 in E with finite support contained in {n1 + 1, n2 + 1, . . .}, ‖x1‖ = 1, and

(1 + ε1)‖T1(x1)‖ > |〈λ, T1〉|. We can do this because, using the fact that λ ∈ A(E)◦,

we have |〈λ, T1〉| = |〈λ, T1Qn1〉| ≤ ‖T1Qn1‖. Then, by Lemma 3.4.11(1), we can find

r1 ∈ N so that ‖Qr1T (x1)‖ < 1
2
ε1‖T‖ for each T ∈M . Let A1 = {1, 2, . . . , r1}.

Assume inductively that we have found (xi)
k
i=1 ⊆ E of norm one and with finite

support, and with max supp(xi) < min supp(xi+1) for each 1 ≤ i < k, and that we have

pairwise-disjoint, finite subsets of N, (Ai)
k
i=1, such that:

1. for 1 ≤ i ≤ k, |〈λ, Ti〉| ≤ (1 + ε1)‖Ti(xi)‖;

2. for 1 ≤ i ≤ k and T ∈M , setting ri = maxAi, we have ‖Qri
T (xi)‖ < 1

2
εi‖T‖;

3. for 1 ≤ i ≤ k and T ∈M , ‖P(min Ai)−1T (xi)‖ < 1
2
εi‖T‖;

4. we have that (supp(xi))
k
i=1 and (Ai)

k
i=1 are each union subordinate to (Bi)

∞
i=1.

We shall show how to choose xk+1 and Ak+1. Choose r ∈ N such that r > max(Aj) for

1 ≤ j ≤ k, and with

r > max{si+1 : Bi ∩ Aj 6= ∅ for some 1 ≤ j ≤ k}.

By Lemma 3.4.11(2) we can find m ∈ N such that ‖PrTQm‖ < 1
2
εk+1‖T‖ for each

T ∈M . We may suppose that m > max supp(xk) and that

m > max{si+1 : Bi ∩ supp(xj) 6= ∅ for some 1 ≤ j ≤ k}.

Then we have

|〈λ, Tk+1〉| = |〈λ, Tk+1Qm〉| ≤ ‖Tk+1Qm‖,
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so that we can find a unit vector xk+1 ∈ E with finite support such that min supp(xk+1) >

m and |〈λ, Tk+1〉| ≤ (1 + ε1)‖Tk+1(xk+1)‖. By Lemma 3.4.11(1), we can find rk+1 ∈ N

such that

‖Qrk+1
T (xk+1)‖ < 1

2
εk+1‖T‖ (T ∈M).

Let Ak+1 = {r+1, r+2, . . . , rk+1} so that (Aj)
k+1
j=1 is a family of pairwise-disjoint, finite

subsets of N, which is union subordinate to (Bi). As min supp(xk+1) > m, by the choice

ofm, we see that (supp(xi))
k+1
i=1 is union subordinate to (Bi). We thus have conditions (1),

(2) and (4). For (3), we have ‖P(min Ak+1)−1T (xk+1)‖ = ‖PrTQm(xk+1)‖ ≤ ‖PrTQm‖ <
1
2
εk+1‖T‖, as required, for T ∈M .

So by induction we can find (xn) and (An) with the above properties. We certainly

have conditions (3) and (4) from the statement of the proposition. We now verify (2). For

n ∈ N, we have

‖PN\AnT (xn)‖ ≤ ‖Qmax AnT (xn)‖+ ‖P(min An)−1T (xn)‖

< 1
2
εn‖T‖+ 1

2
εn‖T‖ = εn‖T‖,

as required. For n,m ∈ N with n < m, we have maxAn ≤ (minAm)− 1, and so

‖PAnT (xm)‖ ≤ ‖P(min Am)−1T (xm)‖ < εm‖T‖.

For n,m ∈ N with n > m, we have minAn > maxAm, and so

‖PAnT (xm)‖ ≤ ‖Qmax AmT (xm)‖ < εm‖T‖.

Finally, for T ∈ M , and for each δ > 0, there exists an n ∈ N so that ‖T − Tn‖ < δ,

and thus

|〈λ, T 〉| < |〈λ, Tn〉|+ δ ≤ (1 + ε1)‖Tn(xn)‖+ δ

≤ (1 + ε1)‖T (xn)‖+ δ(2 + ε1).

As this holds for each δ > 0, we see that |〈λ, T 〉| ≤ (1 + ε1) supn ‖T (xn)‖.

Definition 3.4.15. Let E be a reflexive Banach space with a 1-unconditional basis (en).

We say that (en) is of block p-type, for 1 < p <∞, if we can find an increasing sequence

(sn) of integers, such that for each sequence of scalars (an), we have

∥∥∥ ∞∑
n=1

anen

∥∥∥ =

(
∞∑

m=1

∥∥∥ sm+1−1∑
n=sm

anen

∥∥∥p
)1/p

.
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Thus, for 1 < p < ∞, the standard unit vector basis of lp is of block p-type. For

example, the Figiel spaces lp
(⊕∞

n=1 l
pn
mn

)
are also of block p-type, where (pn)∞n=1 ⊆

(1,∞) and (mn)∞n=1 is a sequence of integers (see [Figiel, 1972] or [Laustsen, Loy, 2003]

for more details).

We introduce this definition as it will allow us to “sum-up” a sequence of vectors in E

into a single vector in E, provided these vectors have a suitable pairwise-disjoint support.

This is the motivation behind this whole construction: the intuitive idea is to approximate

λ ∈ A(E)◦ by an elementary tensor, and then to use Proposition 3.4.9 to “move-along”

the support until we can ignore our elementary tensor (that is, apply Qn to everything for

a suitably large n), and then re-approximate, hoping for convergence. Of course, we then

have to sum our elementary tensors, or we have gained nothing.

Lemma 3.4.16. Let E be a reflexive Banach space with a 1-unconditional basis (en)

which is of block p-type, for some p ∈ (1,∞), with respect to (sn). Then (e∗n) is of block

q-type, where p−1 + q−1 = 1, with respect to (sn).

Proof. For each m ∈ N, let Mn = lin{ei : sm ≤ i < sm+1} ∈ FIN(E). We can verify

thatE is then naturally isometrically isomorphic to lp(
⊕

nMn), and soE ′ is naturally iso-

metrically isomorphic to lq(
⊕

nM
′
n). We can then easily check that M ′

n is isometrically

isomorphic to lin{e∗i : sm ≤ i < sm+1} ∈ FIN(E ′), so that we are done.

We can now prove our key result, which tells us that for a Banach space E of block

p-type, any member of A(E)◦ can be approximated, on a finite-dimensional subspace of

B(E), by an elementary tensor in E⊗̂E ′.

Theorem 3.4.17. Let E be of block p-type with respect to a 1-unconditional basis (en),

for 1 < p < ∞. Let λ ∈ A(E)◦, let M ∈ FIN(B(E)), let ε > 0, and let p−1 + q−1 = 1.

Then we can find x ∈ E and µ ∈ E ′ with ‖x‖ < ‖λ‖1/p(1+ε)1/p, ‖µ‖ < ‖λ‖1/q(1+ε)1/q,

and such that

|〈λ, T 〉 − 〈µ, T (x)〉| < ε‖λ‖‖T‖ (T ∈M).

Proof. By Lemma 3.4.11(3), we can find n1 such that ‖TQn1‖ < 1
2
ε‖T‖ for each T ∈

M ∩ A(E). Let M0 ⊆ M be a subspace of M such that M0 ∩ A(E) = {0} and M =

M0 ⊕ (M ∩ A(E)). Let (εn) be a sequence of positive reals such that
∑∞

n=1 εn < ε/3.

If the result is true in the case where ‖λ‖ = 1, then we can find x and µ with ‖x‖ <

(1 + ε)1/p and ‖µ‖ < (1 + ε)1/q and with |‖λ‖−1〈λ, T 〉 − 〈µ, T (x)〉| < ε‖T‖ for each

T ∈ M . Then let x̂ = ‖λ‖1/px and µ̂ = ‖λ‖1/qµ so that ‖x̂‖ < ‖λ‖1/p(1 + ε)1/p and
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‖µ̂‖ < ‖λ‖1/q(1 + ε)1/q and, for each T ∈M , we have |〈λ, T 〉 − 〈µ̂, T (x̂)〉| < ε‖λ‖‖T‖,

as required. Thus we may suppose henceforth that ‖λ‖ = 1.

Let (en) be of block p-type with respect to (sn). We can use Proposition 3.4.14, applied

to M0, (εn) and (sn), to find sequences (xn) and (An). Recall the definitions of l1(E ′)

and l∞(E) = l1(E ′)′. Let

X = {(T (xn))∞n=1 : T ∈M0} ⊂ l∞(E),

so that X is a finite-dimensional subspace of l∞(E). Define Φ ∈ X ′ by

〈Φ, (T (xn))〉 = 〈λ, T 〉 (T ∈M0).

As |〈λ, T 〉| ≤ (1 + ε1)‖(T (xn))‖∞, we have that ‖Φ‖ ≤ 1 + ε1. Then, by Proposition

3.4.10, as X is finite-dimensional, we can find (µn) ∈ l1(E ′) such that
∑∞

n=1 ‖µn‖ ≤

1 + ε1 + ε2 < 1 + ε and 〈Φ, (T (xn))〉 =
∑∞

n=1 〈µn, T (xn)〉 for each T ∈M0.

For each n ∈ N, set µ̂n = PAn(µn), and set

x =
∞∑

n=1

xn‖µ̂n‖1/p and µ =
∞∑

n=1

µ̂n‖µ̂n‖−1+1/q.

For m ∈ N, let Bm = {i ∈ N : sm ≤ i < sm+1}. As the (xn) have pairwise-disjoint

support, and (supp(xn)) is union subordinate to (Bm), we have, by the block p-type nature

of the basis (en), that

‖x‖ =
( ∞∑

n=1

‖xn‖p‖µ̂n‖
)1/p

=
( ∞∑

n=1

‖µ̂n‖
)1/p

=
( ∞∑

n=1

‖PAn(µn)‖
)1/p

≤
( ∞∑

n=1

‖µn‖
)1/p

< (1 + ε)1/p.

Similarly, by the above lemma, and the fact that (An) = (supp µ̂n) is union subordinate

to (Bm), we have

‖µ‖ =
( ∞∑

n=1

‖µ̂n‖q‖µ̂n‖−q+1
)1/q

=
( ∞∑

n=1

‖µ̂n‖
)1/q

< (1 + ε)1/q.

Then, for T ∈M0, we have

〈µ, T (x)〉 =
∞∑

n=1

∞∑
m=1

〈PAn(µn), T (xm)〉.

By condition (2) in Proposition 3.4.14, for each T ∈M0, we have∣∣∣∣∣∑
n6=m

〈PAn(µn), T (xm)〉

∣∣∣∣∣ ≤
∞∑

n=1

∣∣∣∣∣〈µn,
∑
m6=n

PAn(T (xm))〉

∣∣∣∣∣
≤

∞∑
n=1

‖µn‖
∞∑

m=1

εm‖T‖ ≤ ‖T‖

(
∞∑

m=1

εm

)(
∞∑

n=1

‖µn‖

)
< 1

3
ε(1 + ε1 + ε2)‖T‖.
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Then, again by condition (2), for T ∈M0, we have∣∣∣∣∣〈λ, T 〉 −
∞∑

n=1

〈µ̂n, T (xn)〉

∣∣∣∣∣ ≤
∞∑

n=1

‖µn‖‖PAn(T (xn))− T (xn)‖

<

∞∑
n=1

εn‖µn‖‖T‖ < ‖T‖
(

sup
n
‖µn‖

)( ∞∑
n=1

εn

)
< 1

3
ε(1 + ε1 + ε2)‖T‖.

Consequently, for T ∈M0, we have

|〈λ, T 〉 − 〈µ, T (x)〉| < 2
3
ε(1 + ε1 + ε2)‖T‖,

and we may suppose that 2
3
ε(1 + ε1 + ε2) < ε. Finally, for T ∈M ∩A(lp), by the choice

of n1, we have

|〈µ, T (x)〉| ≤
∞∑

n=1

|〈PAn(µn), T (xn)〉| ≤
∞∑

n=1

‖µn‖‖TQn1‖

< 1
2
ε(1 + ε1 + ε2)‖T‖ < ε‖T‖,

as required, since 〈λ, T 〉 = 0 and ‖λ‖ = 1.

Now suppose thatE is super-reflexive. Then, for an ultrafilter U , (E)U is reflexive, and

we have φ1 : (E)U⊗̂(E ′)U → B(E)′, so that θ1 : B(E)′′ → B((E)U) is a homomorphism,

for either Arens product. We can define a bilinear map ρ : E × E ′ → (E)U⊗̂(E ′)U by

ρ(x, µ) = (x)⊗ (µ) for x ∈ E and µ ∈ E ′. It is clear that ρ is norm-decreasing, so that ρ

extends to a norm-decreasing map ρ : E⊗̂E ′ → (E)U⊗̂(E ′)U . Then, for T ∈ B(E), we

have

〈φ1(ρ(x⊗ µ)), T 〉 = 〈(µ), T (x)〉 = 〈T, x⊗ µ〉,

for x ∈ E and µ ∈ E ′. Thus the following diagram commutes:

E⊗̂E ′ κEb⊗E′- B(E)′

(E)U⊗̂(E ′)U

ρ

?

φ 1

-

We conclude that ρ is an isometry, as φ1 is norm-decreasing.

Theorem 3.4.18. Let E be a super-reflexive Banach space and be of block p-type with re-

spect to a 1-unconditional basis (en), for 1 < p <∞. Then the map φ1 : (E)U⊗̂(E ′)U →

B(E)′ is surjective for a suitable ultrafilter U . In fact, for λ ∈ B(E)′, we can find

σ ∈ (E)U⊗̂(E ′)U with φ1(σ) = λ and ‖σ‖ = ‖λ‖.
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Proof. Let I be the collection of finite-dimensional subspaces of B(E), partially ordered

by inclusion. Let U be an ultrafilter on I which refines the order filter, so that, for M ∈ I ,

we have {N ∈ I : M ⊆ N} ∈ U .

Pick λ ∈ A(E)◦ and, for M ∈ I , let xM ∈ E and µM ∈ E ′ be given by Theorem

3.4.17, applied with εM = (dimM)−1. Then ‖xM‖ < (1 + εM)1/p‖λ‖1/p and ‖µM‖ <

(1+ εM)1/q‖λ‖1/q, so that, if we set x = (xM) and µ = (µM), then x ∈ (E)U , µ ∈ (E ′)U ,

and

‖x‖‖µ‖ = lim
M∈U

‖xM‖‖µM‖ ≤ lim
M∈U

(1 + εM)‖λ‖ = ‖λ‖.

Then, for each T ∈ B(E), we have

|〈λ, T 〉 − 〈φ1(x⊗ µ), T 〉| = |〈λ, T 〉 − lim
M∈U

〈µM , T (xM)〉| < lim
M∈U

εM‖λ‖‖T‖ = 0,

so that φ1(x⊗ µ) = λ, and hence ‖x‖‖µ‖ = ‖λ‖.

Now let λ ∈ B(E)′. Then let τ = κ′A(E)(λ) ∈ E⊗̂E ′ and λ0 = λ − κEb⊗E′(τ) ∈

A(E)◦. Then let σ ∈ (E)U⊗̂(E ′)U be such that φ1(σ) = λ0 and ‖σ‖ = ‖λ0‖. Thus

φ1(σ + ρ(τ)) = λ, and so

‖λ‖ ≤ ‖σ + ρ(τ)‖ ≤ ‖σ‖+ ‖ρ(τ)‖ = ‖λ0‖+ ‖τ‖.

For ε > 0, let T ∈ B(E)[1] be such that |〈λ0, T 〉| ≥ ‖λ0‖ − ε. Similarly, let S ∈

F(E)[1] be such that |〈S, τ〉| ≥ ‖τ‖ − ε. We may suppose that S =
∑n

i=1 µi ⊗ xi ∈

E ′ ⊗ E, where each xi and µi has finite support. Thus, there exists N ∈ N so that

PNSPN = S. Recall that QN = IdE − PN . By increasing N , we may suppose that

|〈QNRQN , τ〉| < ε‖R‖ for each R ∈ B(E) (we do this by picking a representative of

τ in E⊗̂E ′, and approximation). Then, by again increasing N , we may suppose that

‖x‖p = ‖QN(x) + PN(x)‖p = ‖QN(x)‖p + ‖PN(x)‖p for each x ∈ E (as E is of block

p-type). As PNSPN = S, we thus have, for each x ∈ E,

‖S(x) +QNTQN(x)‖ =
(
‖PNSPN(x)‖p + ‖QNTQN(x)‖p

)1/p

≤
(
‖S‖p‖PN(x)‖p + ‖QNTQN‖p‖QN(x)‖p

)1/p

≤ ‖x‖max{‖S‖, ‖T‖} ≤ ‖x‖,

so that ‖S +QNTQN‖ ≤ 1. Then we have,

‖λ‖ = ‖λ0 + κEb⊗E′(τ)‖ ≥ |〈λ0 + κEb⊗E′(τ), S +QNTQN〉|

= |〈λ0, T 〉+ 〈S +QNTQN , τ〉| > ‖λ0‖+ ‖τ‖ − 3ε.
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As ε > 0 was arbitrary, we conclude that

‖λ‖ ≤ ‖σ + ρ(τ)‖ ≤ ‖λ0‖+ ‖τ‖ = ‖λ‖,

so that, in particular, ‖λ‖ = ‖σ + ρ(τ)‖.

Thus φ1 : (E)U⊗̂(E ′)U → B(E)′ is a quotient operator, and so θ1 : B(E)′′ → B((E)U)

is an isometry onto its range.

There is another way to look at this result. The natural embedding B(E) → B((E)U)

induces a quotient map B((E)U)′ → B(E)′, with the following diagram commuting:

B((E)U)′ -- B(E)′

(E)U⊗̂(E ′)U

κ

∪

6

φ 1

-

where κ = κ(E)U b⊗(E′)U
. This means for each λ ∈ B(E)′, if we view λ as a map from a

subspace of B((E)U) to C, then there is a Hahn-Banach extension of λ to a member of

(E)U⊗̂(E ′)U .

3.5 Ultrapowers of modules

We will improve upon the Principle of Local Reflexivity and apply the results to ultra-

powers of modules. These results are close to those in [Behrends, 1991], and we shall use

the results of this paper below.

We start by proving an improved version of Helley’s Lemma, giving a result first shown

in [Barton, Yu, 1996] (where they follow much the same presentation as here).

Lemma 3.5.1. Let E be a Banach space and let N ⊆ E ′ be a closed subspace. If N is

reflexive, then (◦N)◦ = N .

Proof. As (◦N)◦ is the weak∗-closure of N , we see that (◦N)◦ = N if and only if N is

weak∗-closed in E ′. Suppose that N is reflexive, and that (µα) is a bounded net in N such

that (µα) tends to µ ∈ E ′ in the weak∗-topology. Let λ = weak-limα µα so that λ ∈ N ,

as N is reflexive. Then, for x ∈ E, let x̂ = κE(x) +N◦ ∈ E ′′/N◦ = N ′, so that we have

〈µ, x〉 = lim
α
〈µα, x〉 = lim

α
〈κE(x) +N◦, µα〉 = lim

α
〈x̂, µα〉 = 〈x̂, λ〉

= 〈κE(x) +N◦, λ〉 = 〈λ, x〉.

As x ∈ E was arbitrary, we see that µ = λ ∈ N , as required.
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We can now give an improvement of Helley’s Lemma.

Theorem 3.5.2. Let E be a Banach space, N ⊆ E ′ be a closed, reflexive subspace,

Φ ∈ E ′′ and ε > 0. Then there exists x ∈ E with ‖x‖ ≤ (1 + ε)‖Φ‖ and 〈Φ, µ〉 = 〈µ, x〉

for each µ ∈ N .

Proof. Let X = E/◦N so that X ′ = (◦N)◦ = N as N is reflexive. Then X ′′ = E ′′/N◦,

so let Φ̂ = Φ + N◦ ∈ X ′′. As X is reflexive, Φ̂ = x̂ ∈ X = E/◦N . Thus we can find

x ∈ E with x+ ◦N = x̂ and ‖x‖ ≤ (1 + ε)‖x̂‖ = (1 + ε)‖Φ̂‖ ≤ (1 + ε)‖Φ‖. Finally, for

µ ∈ N , we have

〈µ, x〉 = 〈µ, x+ ◦N〉 = 〈µ, x̂〉 = 〈Φ̂, µ〉 = 〈Φ +N◦, µ〉 = 〈Φ, µ〉.

We will now sketch how to “bootstrap” this result to give the principle of local reflex-

ivity. Note that the above is precisely the principle of local reflexivity when M ⊆ E ′′ is

one-dimensional (that is, M = CΦ), so the idea is to work with a space of functions, thus

reducing to a one-dimensional problem.

The following is from [Behrends, 1991].

Definition 3.5.3. Let E be a Banach space, M ∈ FIN(E ′′) and N ∈ FIN(E ′). A map

T : M → E is an ε-isomorphism along N when T is a (1 + ε)-isomorphism onto its

range and 〈µ, T (Φ)〉 = 〈Φ, µ〉 for Φ ∈M and µ ∈ N .

Let (Fi)
n
i=1 and (Gj)

m
j=1 be families of Banach spaces. Let Ai : B(M,E) → Fi be an

operator, for 1 ≤ i ≤ n, and let ψj : B(M,E) → Gj be an operator, for 1 ≤ j ≤ m.

For 1 ≤ i ≤ n, let fi ∈ Fi, and for 1 ≤ j ≤ m, let Cj ⊆ Gj be a convex set. Then M

satisfies:

1. the exact conditions (Ai, fi), for 1 ≤ i ≤ n, and

2. the approximate conditions (ψj, Cj), for 1 ≤ j ≤ m,

if for each N ∈ FIN(E ′) and ε > 0, there exists an ε-isomorphism T : M → E along

N such that Ai(T ) = fi, for 1 ≤ i ≤ n, and ψj(T ) ∈ (Cj)ε = {y + z : y ∈ Cj, z ∈

Gj, ‖z‖ ≤ ε}, for 1 ≤ j ≤ m.

When M is a finite-dimensional Banach space and E is a Banach space, we have that

M ′ has the approximation property and the Radon-Nikodým property, so that B(M,E) =

M ′⊗̌E, B(M,E)′ = M⊗̂E ′ and B(M,E)′′ = B(M,E ′′).

So, for M ∈ FIN(E ′′), the inclusion map M → E ′′ lies in B(M,E)′′; we denote this

map by IdM . Define AM : B(M,E) → B(M ∩ κE(E), E) to be the restriction operator,
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and let ιM : M ∩ κE(E) → E be the map ιM(κE(x)) = x. Then the usual Principle

of Local Reflexivity simply asserts that each M ∈ FIN(E ′′) satisfies the exact condition

(AM , ιM).

Given (Ai) as in the above definition, we have that A′i : F ′
i → M⊗̂E ′, and that

A′′i : B(M,E ′′) → F ′′
i .

Theorem 3.5.4. Let E be a Banach space, M ∈ FIN(E ′′), and let (Fi), (Ai), (yi), (Gj),

(ψj) and (Cj) be as in the above definition. Then the following are equivalent:

1. M satisfies the exact conditions (Ai, yi)
n
i=1 and the approximate conditions

(ψj, Cj)
m
j=1;

2. IdM is weak∗-continuous on the weak∗-closure ofA′1(F
′
1)+· · ·+A′n(F ′

n),A′′i (IdM) =

κFi
(yi) for each i, and ψ′′j (IdM) lies in the weak∗-closure of κGj

(Cj), for each j.

Suppose that the map T 7→ (Ai(T ))n
i=1 from B(M,E) to A1 ⊕ · · · ⊕ An has a

closed range. Then we may replace IdM being weak∗-continuous on the weak∗-closure

of
∑n

i=1A
′
i(F

′
i ) by there existing some T : M → E which satisfies Ai(T ) = yi, for

1 ≤ i ≤ n (T need not satisfy any other condition).

Proof. This is [Behrends, 1991, Theorem 2.3], and the remark thereafter.

For example, the Principle of Local Reflexivity follows directly from this, as with

AM : B(M,E) → B(M∩κE(E), E) as above, we see thatAM is surjective, so the second

condition holds in a simplified form. Clearly there is some T : M → E with AM(T ) =

ιM (as M is finite-dimensional). A calculation shows that A′′M : B(M,E ′′) → B(M ∩

κE(E), E ′′) is also the restriction map, so that A′′M(IdM) = ιM , and so we immediate see

that each M satisfies the exact condition (AM , ιM).

To prove the principle of local reflexivity directly, we apply Helley’s lemma to IdM

and a suitable subspace of M⊗̂E ′ to find T ∈ B(M,E). Indeed, this subspace can be

N0 = M⊗̂N ⊆M⊗̂E ′, so that

〈µ, T (Φ)〉 = 〈Φ⊗ µ, T 〉 = 〈IdM ,Φ⊗ µ〉 = 〈Φ, µ〉 (Φ ∈M,µ ∈ N).

The other conditions follow by a suitable refinement of this argument (see, for exam-

ple, [Ryan, 2002, Theorem 5.54]). With some more work, we can also allow N to be a

reflexive subspace of E ′, given the strengthened version of Helley’s lemma above.

We want to extend the principle of local reflexivity to (bi)modules of Banach algebras.

LetA be a Banach algebra, and let E be a Banach left (or right, or bi-module)A-module,
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so that we can certainly apply the principle of local reflexivity to E. However, we also

want to take account of the A-module structure, that is, ensure that T : M → E is in

some sense an A-module homomorphism.

It will be helpful to recall that κE is a A-module homomorphism. For the following,

note that for L ∈ FIN(A) and M ∈ FIN(E ′′), we have

L ·M = {a · Φ : a ∈ L,Φ ∈M} ∈ FIN(E ′′).

Theorem 3.5.5. Let A be a Banach algebra and E be a Banach left A-module. Let

M ∈ FIN(E ′′), L ∈ FIN(A), N ∈ FIN(E ′), and ε > 0. Let M0 ∈ FIN(E ′′) be such that

L ·M +M ⊆M0. Then there exists T : M0 → E, a (1 + ε)-isomorphism onto its range,

such that:

1. 〈Φ, µ〉 = 〈µ, T (Φ)〉 for Φ ∈M0 and µ ∈ N ;

2. T (κE(x)) = x for κE(x) ∈M0 ∩ κE(E);

3. ‖a · T (Φ)− T (a · Φ)‖ ≤ ε‖a‖‖Φ‖ for a ∈ L and Φ ∈M .

A similar result holds for Banach right A-modules and Banach A-bimodules with condi-

tion (3) changed in the obvious way.

Proof. Let δ = ε/5 or 1, whichever is smaller. Let (ai)
n
i=1 be a set in L such that ‖ai‖ = 1

for each i, and such that

min
1≤i≤n

‖a− ai‖ < δ (a ∈ L, ‖a‖ = 1).

For 1 ≤ i ≤ n, define ψi : B(M0, E) → B(M,E) by

ψi(T )(Φ) = T (ai · Φ)− ai · T (Φ) (T ∈ B(M0, E),Φ ∈M).

Then ψ′i : M⊗̂E ′ →M0⊗̂E ′, and for Φ ∈M , µ ∈ E ′ and T ∈ B(M0, E), we have

〈ψ′i(Φ⊗ µ), T 〉 = 〈µ, ψi(T )(Φ)〉 = 〈µ, T (ai · Φ)− ai · T (Φ)〉.

Thus we have ψ′i(Φ⊗µ) = ai ·Φ⊗µ−Φ⊗µ ·ai. Then, for Φ ∈M and µ ∈ E ′, we have

〈ψ′′i (IdM0),Φ⊗ µ〉 = 〈IdM0 , ai · Φ⊗ µ− Φ⊗ µ · ai〉 = 〈ai · Φ, µ〉 − 〈Φ, µ · ai〉 = 0.

Hence M satisfies the approximate conditions (ψi, {0}), for 1 ≤ i ≤ n.

We can the apply the above theorem (with AM0 as well) to find T ∈ B(M0, E), a

(1+δ)-isomorphism onto its range, with conditions (1) and (2), and such that ‖ψi(T )‖ < δ
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for 1 ≤ i ≤ n. Then, for a ∈ L and Φ ∈ M with ‖a‖ = ‖M‖ = 1, we can find i with

‖a− ai‖ < δ. Then we have

‖a · T (Φ)− T (a · Φ)‖

≤ ‖(a− ai) · T (Φ)‖+ ‖ai · T (Φ)− T (ai · Φ)‖+ ‖T (ai · Φ− a.Φ)‖

< δ(1 + δ) + ‖ψi(T )‖+ (1 + δ)δ < 3δ + 2δ2 < ε.

Thus we are done, as δ < ε.

Similarly, we can easily adapt the above argument to give the result for right A-

modules and A-bimodules.

We can then apply this to an ultrapower construction. We state this for left modules;

the other cases are entirely similar. Note that, if E is a Banach left A-module, then so is

(E)U with co-ordinate-wise operations. We then have the map σ : (E)U → E ′′, (xi) 7→

weak*-limi∈U xi. We claim that this is a left A-module homomorphism. Indeed, for

a ∈ A, x = (xi) ∈ (E)U and µ ∈ E ′, we have

〈µ, a · σ(x)〉 = 〈µ · a, σ(x)〉 = lim
i∈U

〈µ · a, xi〉 = lim
i∈U

〈µ, a · xi〉 = 〈µ, σ(a · x)〉.

Proposition 3.5.6. Let A be a Banach algebra, and let E be a Banach left A-module.

Then there exist an ultrafilter U and an isometric (onto its range) left A-module homo-

morphism K : E ′′ → (E)U such that σ ◦ K = IdE′′ and with K restricted to E being

the canonical map E → (E)U . Consequently, we can view E ′′ has a one-complemented

submodule of (E)U .

An analogous statement holds for right- and bi-modules.

Proof. This is a standard ultrapower argument, similar to the proof of Theorem 3.4.17.

Example 3.5.7. Let A be a Banach algebra. Then A is a Banach A-bimodule, so there

exists an ultrafilter U and anA-bimodule homomorphismK : A′′ → (A)U with the above

properties. Now, (A)U has a natural algebra structure, andA′′ has the Arens products, but

it seems unlikely that K is a homomorphism. However, we do have

K(κA(a)2Φ) = K(a · Φ) = a ·K(Φ) (a ∈ A,Φ ∈ A′′),

where the module action of A on (A)U is the same as the action induced by the canonical

embeddingA → (A)U followed by the algebra product on (A)U . Similarly, this holds for
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3, and “on the right”, so that, for Φ,Ψ ∈ A′′, we have

K(Φ2Ψ) = K(Φ)K(Ψ) = K(Φ3Ψ)

when at least one of Φ,Ψ is in κA(A). �

Notice that the above example gives a way to define another bilinear “product” on A′′

by defining

Φ ∗Ψ = σ
(
K(Φ)K(Ψ)

)
.

This idea is studied in detail in [Iochum, Loupias, 1989] and [Godefroy, Iochum, 1988],

although in this paper, the authors study ∗ for general U and map K, as opposed to our

approach of trying to construct U andK which have special properties. In general, it turns

out that one cannot say a great deal about ∗ (so that, for example, ∗ need not be associative

in general). However, for unital C∗-algebrasA, this product ∗ actually always agrees with

the Arens products on A′′, a fact shown in [Godefroy, Iochum, 1988, Theorem II.1].

Theorem 3.5.8. Let A be an Arens regular Banach algebra, M ∈ FIN(A′′), N ∈

FIN(A′) and ε > 0. Let M0 = M + M2M and N0 = N + M · N . Then there

exists a (1 + ε)-isomorphism onto its range T : M0 → A such that:

1. 〈Φ, µ〉 = 〈µ, T (Φ)〉 for Φ ∈M0 and µ ∈ N0;

2. T (κA(a)) = a for κA(a) ∈M0 ∩ κA(A);

3. |〈µ, T (Φ2Ψ)− T (Φ)T (Ψ)〉| ≤ ε‖µ‖‖Φ‖‖Ψ‖ for µ ∈ N and Φ,Ψ ∈M .

Proof. Let δ > 0 be such that δ < ε and δ(1 + δ)(3 + δ) < ε. Let (µi)
n
i=1 ⊆ N be such

that ‖µi‖ = 1 for each i, and such that we have

min
1≤i≤n

‖µi − µ‖ < δ (µ ∈ N, ‖µ‖ = 1).

For 1 ≤ i ≤ n, define ψi : B(M0,A) → B(M0,A′) by

ψi(T )(Φ) = T (Φ) · µi (T ∈ B(M0,A),Φ ∈M0),

and define Ti ∈ B(M0,A′) by Ti(Φ) = Φ ·µi for Φ ∈M0. Then we have ψ′i : M0⊗̂A′′ →

M0⊗̂A′, and, for T ∈ B(M0,A), Φ ∈M0 and Λ ∈ A′′, we have

〈φ′i(Φ⊗ Λ), T 〉 = 〈Λ, φi(T )(Φ)〉 = 〈Λ, T (Φ) · µi〉 = 〈µi · Λ, T (Φ)〉.

Thus we have φ′i(Φ⊗ Λ) = Φ⊗ µi · Λ, and so

〈φ′′i (IdM0),Φ⊗ Λ〉 = 〈Φ, µi · Λ〉 = 〈Λ3Φ, µi〉 = 〈Λ,Φ · µi〉 = 〈κA′(Ti(Φ)),Λ〉,
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as A is Arens regular. Thus φ′′i (IdM0) = κB(M0,A′)(Ti). Again, we can then find T ∈

B(M0,A) satisfying (1) and (2), and such that ‖ψi(T )− Ti‖ < δ for 1 ≤ i ≤ n.

For µ ∈ N and Φ,Ψ ∈M with ‖µ‖ = ‖Φ‖ = ‖Ψ‖ = 1, let i be such that ‖µ−µi‖ < δ.

Then Φ2Ψ ∈M0 and Ψ · µ ∈ N0 so that we have

〈µ, T (Φ2Ψ)〉 = 〈Φ2Ψ, µ〉 = 〈Φ,Ψ · µ〉 = 〈Ψ · µ, T (Φ)〉.

As ‖ψi(T )− Ti‖ < δ, we have ‖T (Ψ) · µi −Ψ · µi‖ < δ, and so

‖T (Ψ) · µ−Ψ · µ‖

≤ ‖T (Ψ) · µ− T (Ψ) · µi‖+ ‖T (Ψ) · µi −Ψ · µi‖+ ‖Ψ · µi −Ψ · µ‖

< δ‖T (Ψ)‖+ δ + δ‖Ψ‖ ≤ δ(1 + δ) + 2δ.

Putting these together, we then get

|〈µ, T (Φ2Ψ)− T (Φ)T (Ψ)〉| = |〈Ψ · µ, T (Φ)〉 − 〈T (Ψ) · µ, T (Φ)〉|

< ‖T (Φ)‖
(
δ(1 + δ) + 2δ

)
≤ (1 + δ)

(
δ(1 + δ) + 2δ

)
= δ(1 + δ)(3 + δ) < ε,

as required, completing the proof.

Theorem 3.5.9. Let A be an Arens regular Banach algebra. Then there exists an ultrafil-

ter U and an isometryK : A′′ → (A)U such thatK ◦κA is the canonical mapA → (A)U ,

σ ◦K = IdA′′ and such that the map ∗, defined above, agrees with the Arens products on

A′′.

Proof. This is a standard ultrafilter argument, given the above theorem.

Let A be Arens regular, and K be given as above. For Φ,Ψ ∈ A′′, let K(Φ) = (ai)

and K(Ψ) = (bi), so that

Φ2Ψ = Φ3Ψ = Φ ∗Ψ = weak*-lim
i∈U

aibi,

which gives a symmetric definition of the Arens products (compare to Section 1.7).
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Chapter 4

Structure and semi-simplicity of B(E)′′

In this chapter we shall construct some examples of reflexive Banach spaces E for which

B(E) is not Arens regular. We shall also study the question of whether B(E)′′ is semi-

simple, presenting some joint work with Charles Read (see [Daws, Read, 2004]) which

shows, in particular, that B(lp)′′ is not semi-simple unless p = 2.

4.1 Arens regularity of B(E)

We now know that when E is super-reflexive, B(E) is Arens regular. In [Young, 1976,

Corollary 1], Young produced a reflexive Banach space E such that B(E) is not Arens

regular. Young’s approach is via group algebras (which are never Arens regular unless

they are finite-dimensional). We shall present a shorter, direct construction, and shall also

discuss why it seems to be difficult to prove (or find a counter-example) to the conjecture

that E is super-reflexive if and only if B(E) is Arens regular.

Firstly we need a good characterisation of when E is a reflexive Banach space.

Theorem 4.1.1. Let E be a Banach space. Then the following are equivalent:

1. E is not reflexive;

2. for each θ ∈ (0, 1) there exist sequences of unit vectors (xn) and (µn) in E and E ′,

respectively, such that

〈µm, xn〉 =

θ : m ≤ n,

0 : m > n.

Proof. This is [James, 1972, Lemma 1]. We can use some of the theory we have previ-

ously developed. When E is not reflexive, let θ ∈ (0, 1) and let M ∈ E ′′′ be such that
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κ′E(M) = 0 and θ < ‖M‖ < 1. Let Φ ∈ E ′′ be such that 〈M,Φ〉 = θ and ‖Φ‖ < 1.

Let µ1 ∈ E ′
[1] be such that 〈Φ, µ1〉 = θ. By adding a suitable vector from ker(Φ) ⊆ E ′,

we may suppose that ‖µ1‖ = 1. Then apply Helley’s Lemma (Theorem 3.5.2) to find

x1 ∈ E[1] with 〈µ1, x1〉 = 〈Φ, µ1〉 = θ. Similarly, we may suppose that ‖x1‖ = 1 (as

‖Φ‖ < 1).

Suppose we have found (xi)
n
i=1, (µi)

n
i=1 and (Φi)

n
i=1 with:

〈µi, xj〉 =

θ : i ≤ j,

0 : i > j,
(1 ≤ i, j ≤ n),

〈Φ, µi〉 = θ, ‖xi‖ = ‖µi‖ = 1 (1 ≤ i ≤ n).

Apply Helley’s Lemma to M to find µn+1 ∈ E ′ with (we may again similarly suppose)

‖µn+1‖ = 1, 〈Φ, µn+1〉 = θ, and, for 1 ≤ i ≤ n, 〈µn+1, xi〉 = 0. Similarly, apply Helley’s

Lemma to Φ to find xn+1 ∈ E with ‖x‖ = 1 and, for 1 ≤ i ≤ n + 1, 〈µi, x〉 = θ. Thus,

by induction, we have shown that (1)⇒(2).

Conversely, suppose that we have sequences (xn) and (µn) for some θ ∈ (0, 1). Let U

be a non-principal ultrafilter on N and set

Φ = weak*-lim
n∈U

xn ∈ E ′′ , M = weak*-lim
n∈U

µn ∈ E ′′′.

Then we have

〈Φ, µm〉 = lim
n∈U

〈µm, xn〉 = θ (m ∈ N),

so that 〈M,Φ〉 = limm∈U 〈Φ, µm〉 = θ. Conversely, we have

〈M,κE(xn)〉 = lim
m∈U

〈µm, xn〉 = 0 (x ∈ N),

so that if M = κE′(µ) for some µ ∈ E ′, we have

〈M,Φ〉 = 〈Φ, µ〉 = lim
n∈U

〈µ, xn〉 = lim
n∈U

〈M,κE(xn)〉 = 0,

a contradiction. Thus E is not reflexive.

Recall (Theorem 2.5.2) that if B(E) is Arens regular, then E must be reflexive. Con-

versely, we have the following.

Proposition 4.1.2. Let F be a non-reflexive Banach space and let (Mn, ‖ · ‖n) be a se-

quence of Banach spaces such that, for some ε > 0 and each M ∈ FIN(F ), M is

(1 + ε)-isomorphic to some subspace of some Mn. Let E =
⊕∞

n=1Mn as a linear space,

and suppose that E admits a norm ‖ · ‖ which satisfies:

4.1. Arens regularity of B(E)
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1. there exists C > 0 such that, when (xn) and (yn) are sequences in E with ‖yn‖n ≤

‖xn‖n for all n, we have ‖(yn)‖ ≤ C‖(xn)‖;

2. the natural inclusion maps ιn : Mn → E are uniformly bounded;

3. the natural projection maps πn : E →Mn are uniformly bounded.

Let E0 be the norm-completion of E. Then B(E0) is not Arens regular.

Proof. Condition (3) on the norm implies that for N ∈ N and λ ∈ M ′
N , we can define

λ0 ∈ E ′ by

〈λ0, (xn)〉 = 〈λ, xN〉 ((xn) ∈ E),

with ‖λ0‖ ≤ ‖πN‖‖λ‖. We can hence view M ′
N as a subspace of E ′ (note that E ′ = E ′

0).

Use Theorem 4.1.1 to find sequences (xn) in F and (µn) in F ′, for some θ ∈ (0, 1).

For each i ∈ N, let Ni = lin{x1, . . . , xi} ∈ FIN(F ), so that there exists n(i) ∈ N with

Ni being (1 + ε)-isomorphic to a subspace of Mn(i). For each i, j ∈ N, we can regard µj

as being in N ′
i , by restriction. As N ′

i is (1 + ε)-isomorphic to a quotient of M ′
n(i), we can

find λj ∈ M ′
n(i) such that λj maps to the image of µj under the quotient map, and such

that, say, 1 ≤ ‖λj‖ ≤ (1 + ε)‖µj‖ = 1 + ε.

We can hence find an increasing sequence (n(i))∞i=1 such that, for each i ∈ N, there

exist vectors (x
(i)
j )i

j=1 ⊆Mn(i) and (λ
(i)
j )i

j=1 ⊆M ′
n(i) such that

〈λ(i)
j , x

(i)
k 〉 =

θ : j ≤ k,

0 : j > k.
(1 ≤ j, k ≤ i).

We may also suppose that (1 + ε)−1 ≤ ‖x(i)
j ‖n(i) ≤ (1 + ε) and 1 ≤ ‖λ(i)

j ‖n(i) ≤ 1 + ε,

for each i and j.

For each N ∈ N, define TN : E → E by setting, for (xn) ∈ E, TN(xn) = (yn), where

yn =

〈λ
(i)
N , xn(i)〉x(i)

N : n = n(i), i ≥ N

0 : otherwise.
(n ∈ N)

For all n ∈ N, we thus have ‖yn‖ = 0, or that n = n(i) for some i ≥ N , and so

‖yn‖n ≤ ‖x(i)
N ‖‖λ

(i)
N ‖‖xn‖n ≤ (1 + ε)2‖xn‖n. By condition (1) on the norm, for each

N ∈ N, TN is continuous, and so TN extends to a member of B(E0). We also see that the

family (TN)∞N=1 is bounded.
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For N,M ∈ N and (xn) ∈ E, let TN(xn) = (yn) and TM(yn) = (zn), so that we have

yn(i) =

〈λ
(i)
N , xn(i)〉x(i)

N : i ≥ N,

0 : otherwise.
(i ∈ N)

zn =

〈λ
(i)
M , yn(i)〉x(i)

M : n = n(i), i ≥M,

0 : otherwise,

=

〈λ
(i)
N , xn(i)〉〈λ(i)

M , x
(i)
N 〉x

(i)
M : n = n(i), i ≥M, i ≥ N,

0 : otherwise,

=

θ〈λ
(i)
N , xn(i)〉x(i)

M : n = n(i), i ≥ N,M ≤ N

0 : otherwise,

Thus we see that TM ◦ TN = 0 for M > N .

Now suppose that M ≤ N , so that (TM ◦ TN)(ιn(i)(x
(i)
i )) = θ2ιn(i)(x

(i)
M ), for i ≥ N .

Thus

〈π′n(i)(λ
(i)
1 ), (TM ◦ TN)(ιn(i)(x

(i)
i ))〉 = θ3 (i ≥ N).

By conditions (2) and (3) on the norm, we have can thus define

〈λ, T 〉 = lim
i∈U

〈π′n(i)(λ
(i)
1 ), T (ιn(i)(x

(i)
i ))〉 (T ∈ B(E0)),

where U is some non-principal ultrafilter on N. Then 〈λ, TM ◦ TN〉 = θ3 for M ≤ N , and

0 for M > N . We conclude that B(E0) is not Arens regular by Theorem 1.7.2.

Corollary 4.1.3. Let p ∈ (1,∞) and E = lp(
⊕∞

n=1 l
1
n). Then E is reflexive, and B(E) is

not Arens regular.

Proof. A direct calculation shows that E ′ = lq(
⊕∞

n=1 l
∞
n ), where p−1 + q−1 = 1, and that

E is reflexive. It is easy to see that if Mn = l1n, then for each finite-dimensional subspace

M of l1 and each ε > 0, M is (1 + ε)-isomorphic to some subspace of some Mn. Clearly

the lp norm satisfies conditions (1), (2) and (3) in the above proposition, so that we are

done.

There are many other examples to which we could apply this idea. However, the key

idea is that we “glue together” a sequence of (we may suppose) finite-dimensional Banach

spaces which are asymptotically non-reflexive. Importantly, we suppose that we have

operators which manipulate each of these finite-dimensional spaces in an independent

way.
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If we were to start with an arbitrary reflexive, but not super-reflexive, Banach space,

then we could still find finite-dimensional subspaces which were asymptotically non-

reflexive (from the definition of what it means to be not super-reflexive). However, there is

no guarantee that we can define a (bounded) operator which can manipulate these finite-

dimensional subspaces in an independent way. This is precisely what we need to do,

however, if we try to reproduce the above proof.

The central problem here (and, to some extent, in previous sections) is that, for an

entirely arbitrary Banach space E, the only operators which we can write down are ap-

proximable or a scalar multiple of the identity. This is not a failure of our approach, but

rather, is an unsolved problem: does there exist a Banach space E such that every oper-

ator on E is the sum of an approximable (or compact) operator and a scalar multiple of

the identity? For some recent progress on this, see, for example, [Schlumprecht, 2003].

Suppose that we have a Banach space E such that B(E) = K(E) ⊕ C. We then see

that B(E) is Arens regular if and only if E is reflexive. It seems a slightly strong (and

perhaps unreasonable) conjecture that a reflexive Banach space E with B(E)/K(E) = C

is automatically super-reflexive.

Having said all of this, we now head on into the next section, where we shall show that

an algebraic property of B(lp) does indeed characterise the Hilbert space: namely when

B(lp)′′ is semi-simple.

4.2 Semi-simplicity of B(E)′′

Looking back to Section 1.5, we see that B(E) is trivially a semi-simple Banach algebra.

When E is a Hilbert space, as B(E)′′ is a C∗-algebra, it is also semi-simple. As such, it

seems a natural question to ask whether or not B(E)′′ is semi-simple for other Banach

spaces E: in particular, is B(lp)′′ semi-simple?

The first surprise is that there are reasonably well-behaved spaces E for which B(E)′′

is not semi-simple. The main result here (Corollary 4.2.9) was first demonstrated by

C.J. Read, by a direct construction of an element of the radical. We take a more algebraic

approach here.

For this section, let E be a reflexive Banach space. Then, as before, (E⊗̂E ′)′ = B(E),

so that B(E) is a dual Banach algebra (see Definition 1.6.5, and after Proposition 2.2.3).

Proposition 4.2.1. Let E be a Banach space. Then B(E) is a dual Banach algebra if and

only if E is reflexive.
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Proof. We need to show that when B(E) is a dual Banach algebra, E is reflexive. By

Proposition 1.6.6, let F be a Banach B(E)-bimodule and φ : B(E) → F ′ be a B(E)-

bimodule isomorphism.

Let (xn) be a bounded sequence in E and (µn) be a bounded sequence in E ′. Let

x0 ∈ E and µ0 ∈ E ′ be such that 〈µ0, x0〉 = 1, let Tn = µn ⊗ x0 and Sn = µ0 ⊗ xn, for

each n ∈ N. Let U be a non-principal ultrafilter on N, and define

λS = weak*-lim
n∈U

φ(Sn) ∈ F ′ , λT = weak*-lim
n∈U

φ(Tn) ∈ F ′.

As φ is an isomorphism, let T, S ∈ B(E) be such that φ(S) = λS and φ(T ) = λT . For

y ∈ F , as φ is a B(E)-bimodule homomorphism, we have

lim
n∈U

lim
m∈U

〈φ(TnSm), y〉 = lim
n∈U

lim
m∈U

〈µn, xm〉〈φ(µ0 ⊗ x0), y〉

= lim
n∈U

lim
m∈U

〈φ(Sm), y · Tn〉 = lim
n∈U

〈φ(S), y · Tn〉 = lim
n∈U

〈φ(TnS), y〉

= lim
n∈U

〈φ(Tn), S · y〉 = 〈φ(T ), S · y〉 = 〈φ(TS), y〉,

lim
m∈U

lim
n∈U

〈φ(TnSm), y〉 = lim
m∈U

lim
n∈U

〈µn, xm〉〈φ(µ0 ⊗ x0), y〉

= lim
m∈U

lim
n∈U

〈φ(Tn), Sm · y〉 = lim
m∈U

〈φ(T ), Sm · y〉 = lim
m∈U

〈φ(TSm), y〉

= lim
m∈U

〈φ(Sm), y · T 〉 = 〈φ(S), y · T 〉 = 〈φ(TS), y〉.

Hence we have

lim
n∈U

lim
m∈U

〈µn, xm〉 = lim
m∈U

lim
n∈U

〈µn, xm〉,

as φ(µ0 ⊗ x0) 6= 0, as φ is an isomorphism. By Theorem 1.4.7, we see that E must be

reflexive, as required.

Notice that κ′
Eb⊗E′

: B(E)′′ → B(E) is a projection; that is, κ′
Eb⊗E′

◦κB(E) is the identity

on B(E). Recall that E⊗̂E ′ is a Banach B(E)-bimodule. The following could be formu-

lated for general dual Banach algebras (see after Theorem 1.14 in [Dales, Lau, 2004]),

but we will only prove the limited version which we need.

Proposition 4.2.2. Let E be a reflexive Banach space, and let κ = κEb⊗E′ : E⊗̂E ′ →

B(E)′. Then we have the following:

1. κ is a B(E)-bimodule homomorphism;

2. κ′ is a B(E)-bimodule homomorphism;

3. for Φ ∈ B(E)′′ and τ ∈ E⊗̂E ′, we have Φ · κ(τ) = κ(κ′(Φ) · τ) and κ(τ) · Φ =

κ(τ · κ′(Φ));
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4. κ′ is a homomorphism for both Arens products on B(E)′′;

5. if we identify B(E) with its image in B(E)′′, then κ′ is a projection onto B(E), and

so we have B(E)′′ = B(E)⊕ kerκ′;

6. writing B(E)′′ = B(E)⊕ kerκ′, we have

(T,Γ1)2(S,Γ2) = (TS, T · Γ2 + Γ1 · S + Γ12Γ2) ∈ B(E)⊕ kerκ′,

for (T,Γ1), (S,Γ2) ∈ B(E)⊕ kerκ′, and similarly for the product 3.

Proof. 1. For S, T ∈ B(E) and τ ∈ E ′⊗̂E, we have

〈κ(T · τ), S〉 = 〈S, T · τ〉 = 〈S ◦ T , τ〉 = 〈κ(τ), S ◦ T 〉 = 〈T · κ(τ), S〉,

and similarly κ(τ · T ) = κ(τ) · T .

2. This is now standard from (1).

3. For T ∈ B(E), we have

〈Φ · κ(τ), T 〉 = 〈Φ, κ(τ) · T 〉 = 〈Φ, κ(τ · T )〉 = 〈κ′(Φ), τ · T 〉

= 〈T ◦ κ′(Φ), τ〉 = 〈T, κ′(Φ) · τ〉 = 〈κ(κ′(Φ) · τ), T 〉,

and similarly κ(τ) · Φ = κ(τ · κ′(Φ)).

4. For Φ,Ψ ∈ B(E)′′ and τ ∈ E⊗̂E ′, we have

〈κ′(Φ2Ψ), τ〉 = 〈Φ,Ψ · κ(τ)〉 = 〈Φ, κ(κ′(Ψ) · τ)〉 = 〈κ′(Φ) ◦ κ′(Ψ), τ〉,

and similarly,

〈κ′(Φ3Ψ), τ〉 = 〈Ψ, κ(τ) · Φ〉 = 〈Ψ, κ(τ · κ′(Φ))〉 = 〈κ′(Φ) ◦ κ′(Ψ), τ〉.

5. This is immediate.

6. We have κ′((T+Γ1)2(S+Γ2)) = κ′(TS)+κ′(Γ1)·S+T ·κ′(Γ2)+κ
′(Γ1)◦κ′(Γ2) =

T ◦ S, the rest following immediately.

We will continue to slightly abuse notation and treat B(E) as a subalgebra of B(E)′′,

thus writing T ∈ B(E)′′ instead of the more correct κB(E)(T ) ∈ B(E)′′, for T ∈ B(E).

In particular, IdE is the identity of B(E)′′, for either Arens product.

Proposition 4.2.3. LetE and κ be as before. Let Φ ∈ B(E)′′, and suppose that κ′(Φ) 6= 0.

Then Φ 6∈ radB(E)′′ for either Arens product.
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Proof. Pick x ∈ E and µ ∈ E ′ with κ′(Φ)(x) 6= 0 and 〈µ, κ′(Φ)(x)〉 = 1. Then let

T = µ⊗ x ∈ B(E), so that κ′(T2Φ)(x) = T (κ′(Φ)(x)) = x, and hence κ′(IdE − T2Φ)

has non-trivial kernel and so cannot be invertible. Thus IdE − T2Φ is not invertible in

B(E)′′, so that Φ 6∈ radB(E)′′ (by Theorem 1.5.5). The same holds for the second Arens

product.

Note that Proposition 4.2.2(6) shows that kerκ′ is an ideal of B(E)′′ for either Arens

product. Thus, by Proposition 1.5.6, rad kerκ′ = kerκ′ ∩ radB(E)′′. However, the last

proposition tells us that radB(E)′′ ⊆ kerκ′, so that radB(E)′′ = rad kerκ′. Thus we

can concentrate on kerκ′ ⊆ B(E)′′ when considering the radical of B(E)′′.

We will now consider the case where E = F ⊕G (so that F and G are required to be

reflexive). We can regard B(E) as an algebra of two-by-two matricies with entries from

B(F ), B(F,G) etc. Indeed, we have

B(E) =


A11 A21

A12 A22

 :
A11 ∈ B(F ), A21 ∈ B(G,F ),

A12 ∈ B(F,G), A22 ∈ B(G)

 ,

and so

B(E)′′ =


Φ11 Φ12

Φ21 Φ22

 :
Φ11 ∈ B(F )′′,Φ12 ∈ B(G,F )′′,

Φ21 ∈ B(F,G)′′,Φ22 ∈ B(G)′′

 .

Lemma 4.2.4. Let A be a unital Banach algebra, and let p, q ∈ A be orthogonal idem-

potents (that is, by definition, p2 = p, q2 = q and pq = qp = 0) such that p + q = eA.

Then

A =

pAp pAq

qAp qAq

 .

Let A be a subalgebra of A, and let B be an ideal in A, such that

A ⊆

pAp 0

qAp qAq

 , B ⊆

 0 0

qAp 0

 .

Then B lies in the radical of A.

Proof. Firstly note that for a ∈ A, we have a = eAaeA = pap+ paq+ qap+ qaq, so that

A does have the form of a two-by-two matrix algebra, at least linearly. Furthermore, for
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a, b ∈ A, we have

ab =
(
pap+ paq + qap+ qaq

)(
pbp+ pbq + qbp+ qbq

)
= papbp+ papbq + paqbp+ paqbq + qapbp+ qapbq + qaqbp+ aqabq

=

p(apb+ aqb)p p(apb+ aqb)q

q(apb+ aqb)p q(apb+ qab)q

 =

pap paq

qap qaq

pbp pbq

qbp qbq

 ,

so that the algebra structure on A also gives rise to a two-by-two matrix algebra.

Pick b ∈ B and a ∈ A. Then

eA + ba =

p 0

0 q

+

 0 0

qbp 0

pap 0

qap qaq

 =

 p 0

qbpap q

 ,

which has inverse
(

p 0
−qbpap q

)
. Thus, as a ∈ A was arbitrary, b ∈ rad A.

We can certainly apply this lemma to A = B(F ⊕ G)′′ = B(E)′′, with either of the

Arens products (with p and q being the projections onto F andG, respectively). However,

we have no hope of getting B(F ⊕ G)′′ into the correct form (i.e. that of A) in which to

apply the above lemma. However, with reference to the comment after Proposition 4.2.3,

we can work with kerκ′. Hence we wish to impose conditions on F and G so that kerκ′

has the form of an algebra of lower-triangular matrices.

We need some results on when the space B(F,G) is reflexive.

Theorem 4.2.5. Let F and G be reflexive Banach spaces. If B(F,G) = K(F,G), then

B(F,G) is reflexive. Suppose that at least one of F andG has the approximation property.

Then B(F,G) is reflexive if and only if B(F,G) = K(F,G).

Proof. The first part is [Ryan, 2002, Theorem 4.19], which is a direct calculation that the

unit ball of B(F,G) is weakly sequentially compact. The second part is [Ryan, 2002,

Theorem 4.20], which we will now sketch. As F and G are reflexive and one has

the approximation property, we know that K(F,G) = A(F,G) = F ′⊗̌G, and that

(F ′⊗̌G)′ = I(F ′, G′) = N (F ′, G′) = F ′′⊗̂G′ = F ⊗̂G′. Hence we have K(F,G)′′ =

(F ⊗̂G′)′ = B(F,G), so that F ⊗̂G′ is reflexive when B(F,G) is reflexive.

We wish to show that when B(F,G) is reflexive, we have that B(F,G) = K(F,G).

Towards a contradiction, suppose that T ∈ B(F,G) is not compact, so that for some se-

quence (xn) in F[1], (T (xn)) has no convergent subsequence. By moving to a subsequence

if necessary, we may suppose that (xn) is weakly convergent to x ∈ F[1], as the unit ball

of F is weakly sequentially compact. Then, taking a suitable subsequence of (xn − x),
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we obtain a bounded sequence (wn) which converges weakly to 0, but for which there

exists δ > 0 with ‖T (wn)‖ ≥ δ for each n ∈ N. Then let (µn) be a sequence in G′
[1] with

〈µn, T (wn)〉 = ‖T (wn)‖ for each n. As F ⊗̂G′ is reflexive, by moving to a subsequence,

we may suppose that (wn ⊗ µn) is weakly convergent to u ∈ F ⊗̂G′. Thus we have

〈T, u〉 = lim
n→∞

〈µn, T (wn)〉 = lim
n→∞

‖T (wn)‖ ≥ δ.

However, for S = λ⊗ y ∈ F ′⊗̌G, we have

〈u, S〉 = lim
n→∞

〈µn, S(wn)〉 = lim
n→∞

〈µn, y〉〈λ,wn〉 = 0,

as (wn) tends weakly to zero. By linearity and continuity, we have that 〈u, S〉 = 0 for

each S ∈ F ′⊗̌G, so that u = 0 as F ⊗̂G′ = (F ′⊗̌G)′. This contradiction completes the

proof.

Lemma 4.2.6. If every bounded linear map from G to F is compact, then kerκ′ has the

form of A, as in the above lemma.

Proof. We wish to show that for Φ ∈ B(G,F )′′ with κ′ ( 0 Φ
0 0 ) = 0, we actually have

Φ = 0. Then the required result follows by linearity. Now, κ′ ( 0 Φ
0 0 ) = 0 if and only if

〈Φ, λ〉 = 0 for each λ ∈ G⊗̂F ′ (noting that (G⊗̂F ′)′ = B(G,F )). It is thus enough to

show that κGb⊗F ′ : G⊗̂F ′ → B(G,F )′ is surjective, that is, G⊗̂F ′ is reflexive. We are

thus done, by the above theorem.

Finally, we would like B to not be the zero space.

Lemma 4.2.7. With F , G and κ as above, there is a non-zero Ψ ∈ kerκ′ ∩ B(F,G)′′ if

and only if B(F,G) is not reflexive.

Proof. As κ′ restricts to a projection of B(F,G)′′ onto B(F,G), this is clear.

Theorem 4.2.8. Let F andG be reflexive Banach spaces such that at least one has the ap-

proximation property, such that B(F,G) = K(F,G), and such that B(G,F ) 6= K(G,F ).

Then B(F ⊕G)′′, with either Arens product, is not semi-simple.

Proof. This follows directly from the above results.

Corollary 4.2.9. Choose p and q with 1 < p < q < ∞. Then B(lp ⊕ lq)′′ is not semi-

simple.

Proof. We shall see later (Theorem 5.1.7) that B(lq, lp) = K(lq, lp). By considering the

formal identity map from lp to lq we see that B(lp, lq) 6= K(lp, lq).
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4.3 Semi-simplicity of B(lp)′′

We shall now show that B(lp)′′ is not semi-simple for p 6= 2. This is joint work with

C.J Read; the main idea of the construction is Read’s, although the current proof is sim-

plified in the case of Proposition 4.3.6, and is entirely my own approach in the case of

Lemma 4.3.7 through Proposition 4.3.10.

Firstly, we note that we can concentrate on the case where p ∈ (1, 2). For a Banach

algebraA, letAop be the Banach algebra obtained fromA by reversing the product. Then,

letting p−1 + q−1 = 1, we have that B(lp)op is isometrically isomorphic to B(lp)a = B(lq)

by the map T 7→ T ′. We can then check that, at least when A is Arens regular, (A′′)op is

isometrically isomorphic to (Aop)′′, and thus conclude that B(lp)′′ is semi-simple if and

only if B(lq)′′ is semi-simple. Throughout this section, we shall suppose that p ∈ (1, 2).

The following construction is motivated by the previous section, where we proved, in

particular, that B(lp, l2)′′ is not semi-simple. We cannot find a copy of l2 in lp, but we can

find copies of l2n in lp, by a deep result of Dvoretsky (for example, [Figiel et al., 1977]).

In particular, for each n ∈ N, each ε > 0 and each infinite-dimensional Banach space E,

we can find a (1 + ε)-isomorphism T : l2n → M for some M ∈ FIN(E). In fact, we

can have that E ∈ FIN, as long as the dimension of E is sufficiently large (where there

are estimates on how large this must be). Furthermore, in the case where E = lp, we can

give an explicit construction of T , at least for some values of ε > 0 (see, for example,

[Ryan, 2002, Section 2.5]). We shall not need this, however.

4.3.1 Use of ultrapowers

Recall, from Section 3.4, the definition of when a super-reflexive Banach space E has

a 1-unconditional basis (en) of block p-type. When E is such a space, we can apply

Theorem 3.4.18 to show that, for a suitable ultrafilter U , the map φ1 : (E)U⊗̂(E ′)U →

B(E)′ is a quotient map, and thus that θ1 : B(E)′′ → B((E)U) is an isometry onto its

range. By the discussion after Proposition 2.6.3 (or by a brief, direct calculation), we

have shown that, if Φ ∈ B(E)′′ is the weak∗-limit of a bounded net (Tα) in B(E), then,

for x ∈ (E)U , we have

θ1(Φ)(x) = weak-lim
α

Tα(x).

This makes sense as (Tα(x)) is a bounded family in (E)U , and is thus relatively weakly-

compact, as (E)U is reflexive.
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Henceforth, when we mention the maps φ1 and θ1 or the ultrafilter U , we shall assume

that U is such that φ1 is a quotient operator.

Lemma 4.3.1. Let E be as above. Then, for each Φ ∈ B(E), each ε > 0, and each

x ∈ (E)U , there exists T ∈ B(E) with ‖T (x)− θ1(Φ)(x)‖ < ε and ‖T‖ ≤ ‖Φ‖.

Proof. By the above discussion, and by, for example, Helley’s Lemma, we know that

θ1(Φ)(x) is in the weak closure of {T (x) : T ∈ B(E), ‖T‖ ≤ ‖Φ‖}. As this set is

convex and bounded, its weak closure coincides with its norm closure, and hence we are

done.

As before, B(E) is Arens regular and IdE (or, more accurately, κB(E)(IdE)) is the

identity of B(E)′′.

Proposition 4.3.2. Let E be as above, and suppose that Φ 6∈ radB(E)′′. Then, for some

Ψ ∈ B(E)′′, the operator Id(E)U − θ1(Ψ) ◦ θ1(Φ) is not bounded below on (E)U .

Proof. As Φ 6∈ radB(E)′′, there exists Ψ ∈ B(E)′′ with the spectrum of Ψ2Φ containing

a non-zero complex number. By scaling Ψ, we may suppose that 1 lies in the boundary

of the spectrum of Ψ2Φ. Thus, there exist (λn), a sequence in C such that limn λn = 1,

with λnIdE − Ψ2Φ ∈ InvB(E)′′ for each n. Let Λn = (λnIdE − Ψ2Φ)−1 for each n,

and suppose that (Λn) is a bounded sequence. Then we have

‖IdE − Λn2(IdE −Ψ2Φ)‖ = ‖Λn2(λnIdE −Ψ2Φ)− Λn2(IdE −Ψ2Φ)‖

= ‖Λn2(λnIdE − IdE)‖ ≤ |1− λn| sup
n
‖Λn‖,

so that, by Proposition 1.6.1, Λn2(IdE − Ψ2Φ) is invertible for some n ∈ N, and as Λn

is invertible, this contradicts the fact that IdE − Ψ2Φ 6∈ InvB(E)′′. Note that we have

actually shown that no subsequence of (Λn) can be bounded.

Let Tn = θ1(Λn)‖θ1(Λn)‖−1, so as θ1 is an isomorphism onto its range, we certainly

have that ‖θ1(Λn)‖−1 → 0. Then we have∥∥∥Tn ◦
(
Id(E)U − θ1(Ψ) ◦ θ1(Φ)

)∥∥∥
= ‖θ1(Λn)‖−1

∥∥∥θ1

(
Λn2(λnIdE −Ψ2Φ)

)
+ θ1(Λn)(1− λn)

∥∥∥
≤ ‖θ1(Λn)‖−1‖Λn2(λnIdE −Ψ2Φ)‖+ ‖θ1(Λn)‖−1‖θ1(Λn)‖|1− λn|

= ‖θ1(Λn)‖−1 + |1− λn|,

which tends to 0 as n→∞. Thus Id(E)U − θ1(Ψ) ◦ θ1(Φ) cannot be bounded below.
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For completeness, we have the following.

Proposition 4.3.3. Let E be as above, and Φ ∈ B(E)′′. Suppose that there exists

Ψ ∈ B(E)′′ such that for each ε > 0, there exists x ∈ (E)U with ‖x‖ = 1 and

‖x− θ1(Ψ)(θ1(Φ)(x))‖ < ε. Then Φ 6∈ radB(E)′′.

Proof. Towards a contradiction, suppose that Φ ∈ radB(E)′′. Then, in particular, we

have IdE −Ψ2Φ ∈ InvB(E)′′. Let T = θ1((IdE −Ψ2Φ)−1), so that, for x ∈ (E)U with

‖x‖ = 1, we have

1 = ‖x‖ = ‖T (x)− T (θ1(Ψ)θ1(Φ)(x))‖ ≤ ‖T‖‖x− θ1(Ψ)θ1(Φ)(x)‖,

which is a contradiction.

4.3.2 Construction of an element in the radical

We shall now construct a non-zero element in radB(lp)′′, for a, from now on, fixed p ∈

(1, 2) (although much of what is below will work for any p ∈ (1,∞).)

As usual, let (en)∞n=1 be the standard unit vector basis for lp. Choose an increasing

sequence of integers (nk), and let N0 = 0, N1 = n1, Ni+1 = Ni + ni+1 and Ak = {i :

Nk−1 < i ≤ Nk}. Then we can find a linear map T : lp → lp which maps lin{ei : i ∈ Ak}

to a (1 + 1
k
)-isomorphic copy of l2nk

, say wi = T (ei). By this, we mean that if (ai)i∈Ak
is

a sequence of scalars, then

k − 1

k

(∑
i∈Ak

|ai|2
)1/2

≤

∥∥∥∥∥∑
i∈Ak

aiwi

∥∥∥∥∥
lp

≤ k + 1

k

(∑
i∈Ak

|ai|2
)1/2

.

Further, we may suppose that, when k 6= l, the sets {wi : i ∈ Ak} and {wi : i ∈ Al} are

disjointly supported in lp. That is, for i ∈ Al and j ∈ Ak, we have supp(wi)∩supp(wj) =

∅.

Thus, when (ak) is a sequence of scalars, we have∥∥∥∥∥T
(∑

k

akek

)∥∥∥∥∥ =

∥∥∥∥∥∑
k

∑
i∈Ak

aiwi

∥∥∥∥∥ =

(∑
k

∥∥∥∥∥∑
i∈Ak

aiwi

∥∥∥∥∥
p)1/p

≤

∑
k

(
k + 1

k

)p
(∑

i∈Ak

|ai|2
)p/2

1/p

≤ 2‖(ak)‖p, (4.1)

so that T ∈ B(lp) with ‖T‖ ≤ 2.

For a sequence of positive reals (an), recall that

lim sup
k→∞

ak := inf
k∈N

(
sup
j≥k

aj

)
= lim

k→∞

(
sup
j≥k

aj

)
,
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where (supj≥k aj)
∞
k=1 is clearly a decreasing sequence bounded below by 0. For each

A ⊆ N, let

ud(A) = lim sup
k→∞

|A ∩ Ak|
|Ak|

,

and let F = {A ⊆ N : ud(N \ A) = 0}. We claim that F is a filter on N; the only

non-trivial thing to check is that, for A,B ∈ F , we have A ∩B ∈ F , but this follows, as

ud(N \ (A ∩B)) = lim sup
k→∞

|Ak \ (A ∩B)|
|Ak|

≤ lim sup
k→∞

|Ak \ A|
|Ak|

+ lim sup
k→∞

|Ak \B|
|Ak|

= 0.

Let W be an ultrafilter on N refining F . As W is a filter, W becomes a directed set if

we partially orderW by reverse inclusion. Thus let V be an ultrafilter onW which refines

the order filter. In particular, for A ∈ W , the set VA = {B ∈ W : B ⊆ A} is in V . Define

Φ0 = weak*-lim
A∈V

TPA ∈ B(lp)′′,

where PA is the projection of lp onto those vectors with support in A ⊆ N. This Φ0 will

turn out to be our radical element.

Define ψ ∈ B((lp)U) by

ψ(x) = weak-lim
A∈V

PA(x) (x ∈ (lp)U).

Lemma 4.3.4. The map ψ is a projection onto the subspace

{x ∈ (lp)U : PA(x) = x (A ∈ W)} ⊆ (lp)U .

Furthermore, for each x ∈ (lp)U , the limit limA∈V PA(x) exists (we only know a priori

that the limit exists in the weak-topology, not the norm topology).

Proof. For µ ∈ (lq)U and B ∈ W , we have

〈µ, PB(ψ(x))〉 = lim
A∈V

〈P ′
B(µ), PA(x)〉 = lim

A∈V
〈µ, PB∩A(x)〉

= lim
A∈V

〈µ, PA(x)〉 = 〈µ, ψ(x)〉,

so that PB ◦ ψ = ψ, and hence ψ ◦ ψ = ψ. For x ∈ (lp)U with PA(x) = x for each

A ∈ W , we clearly have ψ(x) = x, as required.

Let C be the convex hull of {PA(x) : A ∈ W}, so that the norm and weak closures

of C coincide. Thus, for each ε > 0, we can find a convex combination S =
∑n

i=1 λiPAi

such that ‖S(x)− ψ(x)‖ < ε. Let A = A1 ∩ · · · ∩ An, so that A ∈ W , and PA(S(x)) =∑n
i=1 λiPAPAi

(x) = PA(x). Then

‖PA(x)− ψ(x)‖ = ‖PA(S(x))− PA(ψ(x))‖ < ‖PA‖ε = ε.
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Hence, for each B ∈ VA, we have

‖PB(x)− ψ(x)‖ = ‖PB(PA(x))− PB(ψ(x))‖ ≤ ‖PA(x)− ψ(x)‖ < ε.

Thus {B ∈ W : ‖PB(x)− ψ(x)‖ < ε} ⊇ VA ∈ V , so that ψ(x) = limA∈V PA(x).

Lemma 4.3.5. We have θ1(Φ0) = T ◦ ψ, and Φ0 6= 0.

Proof. Choose x ∈ (lp)U and µ ∈ (lq)U , so that

〈µ, θ1(Φ0)(x)〉 = lim
A∈V

〈µ, TPA(x)〉 = lim
A∈V

〈T ′(µ), PA(x)〉

= 〈T ′(µ), ψ(x)〉 = 〈µ, T (ψ(x))〉.

Thus θ1(Φ0) = T ◦ ψ.

Let φV1 : (lp)V⊗̂(lq)V → B(lp)′ be as usual (though using the ultrafilter V and not U)

and let θV1 = (φV1 )′. We have then actually also shown that θV1 (Φ0) = T ◦ ψV , where

ψV ∈ B((lp)V) is defined as for ψ ∈ B((lp)U).

Now let α : W → N be such that α(A) ∈ A for each A ∈ W . Then let xA = eα(A) so

that x = (xA) ∈ (lp)V . For each B ∈ W , we have

{A ∈ W : PB(xA) = xA} = {A ∈ W : α(A) ∈ B} ⊇ {A ∈ W : A ⊆ B} ∈ V ,

and so limA∈V ‖PB(xA)− xA‖ = 0. Thus PB(x) = x. So, by the proof of Lemma 4.3.4,

ψV(x) = x, and clearly T (x) 6= 0, so that θV1 (Φ0)(x) 6= 0, and hence Φ0 6= 0.

We aim to show by contradiction that Φ0 ∈ radB(lp)′′. Let B ∈ N, and let us say that

C ⊂ N is B-reasonable if |C ∩Ak| ≤ B for every k. For any r ∈ (1,∞), a vector x ∈ lr

is B-reasonable if supp(x) is B-reasonable. For an ultrafilter U , we say that x ∈ (lr)U is

B-reasonable if, for some representative (xi) of x, xi is B-reasonable for each i.

Proposition 4.3.6. Suppose that Φ0 6∈ radB(lp)′′. Then there exists Ψ ∈ B(lp)′′, B ∈ N

and a B-reasonable z ∈ (lp)U with the following properties:

1. ‖z‖ ≤ 1;

2. PA(z) = z for each A ∈ W;

3. if µz ∈ (lq)U with 〈µz, z〉 = ‖z‖ and ‖µz‖ = 1, then

|〈µz, θ1(Ψ)(T (z))〉| > 1

2
‖Ψ‖−1.
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Proof. By Proposition 4.3.2, we can find Ψ ∈ B(lp)′′ and x ∈ (lp)U with ‖x‖ = 1 and

‖θ1(Ψ2Φ)(x)− x‖ = ‖(θ1(Ψ) ◦ T ◦ ψ)(x)− x‖ < ε,

where ε > 0 is to be chosen later. With reference to Lemma 4.3.4, set y = limA∈V PA(x),

so that ‖y‖ ≤ 1 and ‖θ1(Ψ)(T (y))− x‖ < ε. In particular, we thus also have

‖θ1(Ψ)(T (y))‖ > 1− ε. (4.2)

Choose a representative (yi) of y with, for each i ∈ I , ‖yi‖ = ‖y‖ and yi =
∑

j yi,jej .

Then let γi,k =
(∑

j∈Ak
|yi,j|p

)1/p

, and let δi,k = maxj∈Ak
|yi,j|. Then, for each k and i,

we have(∑
j∈Ak

|yi,j|2
)1/2

= γi,k

(∑
j∈Ak

|yi,j|2

|γi,k|2

)1/2

≤ γi,k

(∑
j∈Ak

|yi,j|p

|γi,k|p
δ2−p
i,k γp−2

i,k

)1/2

= δ
1−p/2
i,k γ

p/2
i,k

(∑
j∈Ak

|yi,j|p

|γi,k|p

)1/2

= δ
1−p/2
i,k γ

p/2
i,k .

Hence, by equation (4.1), we have

‖T (yi)‖ ≤

(∑
k

(k + 1)p

kp

(∑
j∈Ak

|yi,j|2
)p/2

)1/p

≤

(∑
k

(k + 1)p

kp
δ

p(1−p/2)
i,k γ

p2/2
i,k

)1/p

.

(4.3)

Pick K ∈ N and choose B ∈ N so that B ≥ |Ak| for k ≤ K, and B1/p−1/2 >

(K + 1)/Kε. For each i ∈ N choose a B-reasonable set Di ⊂ N so that
∑

j∈Di
|yi,j|p

is maximal. For each i let ŷi = PN\Di
(yi), and define γ̂i,k and δ̂i,k for ŷi in an analogous

manner to the definitions of γi,k and δi,k. Note that, if B ≥ |Ak|, then γ̂i,k = 0 for each i.

For each i and k, γ̂i,k ≤ γi,k, and we have that either Ak ∩Di = Ak, so that δ̂i,k = 0, or

we have that ∑
j∈Ak∩Di

|yi,j|p ≥ B max
j∈Ak\Di

|yi,j|p = Bδ̂p
i,k,

so that

γp
i,k =

∑
j∈Ak∩Di

|yi,j|p +
∑

j∈Ak\Di

|yi,j|p ≥ Bδ̂p
i,k,

and hence δ̂i,k ≤ B−1/pγi,k. Thus, by equation (4.3),

‖T (ŷi)‖ ≤

(∑
k>K

(k + 1)p

kp
δ̂

p(1−p/2)
i,k γ̂

p2/2
i,k

)1/p

≤

(∑
k>K

(k + 1)p

kp
Bp/2−1γp

i,k

)1/p

= B1/2−1/p

(∑
k>K

(k + 1)p

kp
γp

i,k

)1/p

≤ K + 1

K
B1/2−1/p‖yi‖ < ε,
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by our choice of B.

Let z = y − ŷ = (PDi
(yi)), so that z is B-reasonable, and ‖z‖ ≤ 1. For each A ∈ W ,

we have y = PA(y), and so

‖PA(z)− z‖ = lim
i∈U

‖PA(PDi
(yi))− PDi

(yi)‖

≤ lim
i∈U

‖PA(yi)− yi‖ = ‖PA(y)− y‖ = 0.

Now let µz = (µz
i ) ∈ (lq)U be such that ‖µz

i ‖ = 1 and 〈µz
i , zi〉 = ‖zi‖ for each i. Then,

for each i, supp(zi) = supp(µz
i ) so that

〈µz
i , yi − zi〉 = 〈PDi

(µz
i ), PN\Di

(yi)〉 = 0.

Thus 〈µz, z〉 = 〈µz, y〉. For A ∈ W , as PA(z) = z, we have PA(µz) = µz, and so

‖z‖ = 〈µz, z〉 = 〈µz, y〉 = lim
A∈V

〈µz, PA(x)〉 = lim
A∈V

〈PA(µz), x〉 = 〈µz, x〉.

Let TK be T restricted to the subspace of vectors in lp whose support is contained in⋃
k>K Ak. Then we have T (z) = T (y − ŷ) = TK(z) and ‖TK‖ ≤ (K + 1)/K. As

‖T (ŷ)‖ < ε, and by equation 4.2, we have

‖z‖ ≥ ‖TK‖−1‖TK(z)‖ ≥ K(K + 1)−1(‖T (y)‖ − ‖T (y − z)‖)

≥ K(K + 1)−1(‖θ1(Ψ)(T (y))‖‖Ψ‖−1 − ε)

≥ K(K + 1)−1((1− ε)‖Ψ‖−1 − ε).

So finally we have

|〈µz, θ1(Ψ)(T (z))〉| ≥ |〈µz, θ1(Ψ)(T (y))〉| − ‖µz‖‖Ψ‖‖T (z − y)‖

≥ |〈µz, x〉| − |〈µz, x− θ1(Ψ)(T (y))〉| − ε‖Ψ‖

≥ ‖z‖ − ε− ε‖Ψ‖.

Thus, for each δ > 0, we can, by a choice of ε > 0 and K ∈ N, ensure that

|〈µz, θ1(Ψ)(T (z))〉| ≥ ‖Ψ‖−1(1− δ).

We thus have conclusions (1) and (2), and, setting δ = 1/2, we get conclusion (3).

We shall now study maps from l2 to lp, and show how this gives rise to a contradiction

with the above proposition. The following, suggested by Béla Bollobás, are an improve-

ment upon the original proofs which appeared in [Daws, Read, 2004].
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Lemma 4.3.7. Let

ε(k, p) = max{ε > 0 : ∃T ∈ B(l2k, l
p
k), ‖T‖ ≤ 1, |〈T (ej), ej〉| ≥ ε (1 ≤ j ≤ k)}.

Then we have ε(k, p) = k1/2−1/p.

Proof. Let Ik : l2k → lpk be the formal identity. We abuse notation, and write ej for the jth

standard unit vector basis element, in each lpk space.

Let a, b ∈ C, and let c = d = 2−1/2(|a|2 + |b|2)1/2, so that |c|2 + |d|2 = |a|2 + |b|2.

Then, as the function [0,∞) → [0,∞); t 7→ tp/2 is strictly convex, we have(
1
2
t+ 1

2
s
)p/2

< 1
2
tp/2 + 1

2
sp/2 (s, t ≥ 0, t 6= s),

so that, if |a| < |b|, we have

|c|p + |d|p = 2(1
2
|a|2 + 1

2
|b|2)p/2 < |a|p + |b|p.

As l2k has compact unit ball, we can find x ∈ l2k such that ‖x‖ = 1 and ‖Ik(x)‖ = ‖Ik‖.

The above argument shows that, if x =
∑k

j=1 xjej , then we must have |xj| = |xi| for each

i and j, or else Ik would not obtain its norm on x. Thus we have 1 =
∑k

j=1 |xj|2 = k|x1|2,

so that

‖Ik‖ = ‖Ik(x)‖ =
( k∑

j=1

|xj|p
)1/p

= k1/p|x1| = k1/p−1/2.

Thus we have ε(k, p) ≥ k1/2−1/p.

We now show that ε(k, p) ≤ k1/2−1/p. By convexity, and an induction argument, we

have that
m∑

i=1

pi|xi|p ≥
( m∑

i=1

pi|xi|
)p

,

for m ∈ N, (xi)
m
i=1 ⊆ C and (pi)

m
i=1 ⊆ [0, 1] with

∑m
i=1 pi = 1. Then, for (aj)

k
j=1 ⊆ C,

we have

|a1|p =
∣∣∣∑

±

21−k
(
a1 +

k∑
j=2

±aj

)∣∣∣p ≤ (∑
±

21−k
∣∣∣a1 +

k∑
j=2

±aj

∣∣∣)p

≤
∑
±

21−k
∣∣∣a1 +

k∑
j=2

±aj

∣∣∣p
= 2−k

(∑
±

∣∣∣a1 +
k∑

j=2

±aj

∣∣∣p +
∑
±

∣∣∣− a1 +
k∑

j=2

±aj

∣∣∣p) = 2−k
∑
±

∣∣∣ k∑
j=1

±aj

∣∣∣p.
Hence we have shown that

2−k
∑
±

∣∣∣ k∑
j=1

±aj

∣∣∣p ≥ max
1≤j≤k

|aj|p ((aj)
k
j=1 ⊆ C).
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Consequently, for T ∈ B(l2k, l
p
k) with ‖T‖ ≤ 1 and |〈T (ej), ej〉| ≥ ε for each 1 ≤ j ≤

k, we have

2−k
∑
±

∥∥∥T( k∑
j=1

±ej

)∥∥∥p

= 2−k
∑
±

k∑
i=1

∣∣∣〈T( k∑
j=1

±ej

)
, ei〉
∣∣∣p

=
k∑

i=1

2−k
∑
±

∣∣∣ k∑
j=1

±〈T (ej), ei〉
∣∣∣p ≥ k∑

i=1

|〈T (ei), ei〉|p ≥ kεp.

For any choice of signs, we have ‖
∑k

j=1±T (ej)‖ ≤ ‖T‖‖
∑k

j=1±ej‖2 = k1/2. Thus

kp/2 ≥ kεp, so that ε ≤ k1/2−1/p, and hence ε(k, p) = k1/2−1/p.

Lemma 4.3.8. Let S ∈ B(l2, lp), let (xi)
n
i=1 be an orthonormal set in l2, and let (Ai)

n
i=1

be a pairwise disjoint family of subsets of N. Suppose that ‖PAi
(S(xi))‖ ≥ ε for each

i ∈ N. Then ε ≤ ‖S‖n1/2−1/p.

Proof. For each i ∈ N, choose µi ∈ lq with ‖µi‖ = 1 and 〈µi, S(xi)〉 = ‖PAi
(S(xi))‖,

so (we may suppose, although it is automatic) that supp(µi) ⊆ Ai. Choose U ∈ B(l2)

with ‖U‖ = 1 and U(ei) = xi for 1 ≤ i ≤ n. Choose V ∈ B(lq) with ‖V ‖ = 1

and V (ei) = µi for 1 ≤ i ≤ n, which we may do, as the (µi) have disjoint support. Let

R = V ′◦S◦U ∈ B(l2, lp). Then we have, for 1 ≤ i ≤ n, |〈R(ei), ei〉| = |〈µi, S(xi)〉| ≥ ε.

For each q ∈ (1,∞), we identify lqn as the subspace of lq consisting of vectors sup-

ported on {1, 2, . . . , n}. Then let Rn ∈ B(l2n, l
p
n) be the restriction of R to l2n ⊆ l2,

followed by the projection of lp onto lpn. Then |〈Rn(ei), ei〉| ≥ ε for 1 ≤ i ≤ n, so by

Lemma 4.3.7, ε ≤ ‖S‖n1/2−1/p.

Recall that the sequence of integers (nk) was used to define the sets (Ak), and hence

the operator T , which in turn was used to define Φ0.

Lemma 4.3.9. If the sequence (nk) is such that nk →∞, then, for each S ∈ B(lp), each

B ∈ N and each ε > 0, we can find A ∈ F ⊂ W such that, for any B-reasonable x ∈ lp

and µ ∈ lq with 〈µ, x〉 = ‖µ‖ = ‖x‖ = 1, we have
∞∑

k=1

|〈µ, PAk∩ASTPAk∩A(x)〉| < ε.

Proof. Note that if x is B-reasonable and 〈µ, x〉 = ‖x‖ = ‖µ‖ = 1, then µ is automati-

cally B-reasonable.

For k ∈ N, let Tk = T ◦ PAk
so, as lpnk

is canonically isomorphic to lp(Ak), the image

of PAk
, we can view Tk as a map from lpnk

to lp. Then, for x ∈ lpnk
, we have

k − 1

k
‖x‖2 ≤ ‖Tk(x)‖ ≤

k + 1

k
‖x‖2, (4.4)
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so we can view Tk as an isomorphism from l2nk
onto its image in lp. Thus, for each k, let

Sk = S ◦ T ◦ PAk
: l2nk

→ lp, so that

‖Sk‖B(l2nk
,lp) ≤ ‖S‖‖T ◦ PAk

‖B(l2nk
,lp) ≤

k + 1

k
‖S‖ ≤ 2‖S‖,

by Equation (4.4). Let m ∈ N be maximal so that we can find (xi)
m
i=1, a set of B-

reasonable norm one vectors in l2nk
with pairwise-disjoint support, and (Bi)

m
i=1, a set of

B-reasonable pairwise-disjoint subsets of Ak, with ‖PBi
(Sk(xi))‖ ≥ ε, for each i. By

Lemma 4.3.8, we have ε ≤ 2‖S‖m1/2−1/p, so that m ≤ (2‖S‖ε−1)2p/(2−p).

Let

Ck =
m⋃

i=1

supp(xi) ∪
m⋃

i=1

Bi ⊆ Ak,

so that |Ck| ≤ 2Bm ≤ 2B(2‖S‖ε−1)2p/(2−p). Let A = N \
⋃∞

k=1Ck, so that for each k,

we have

|(N \ A) ∩ Ak||Ak|−1 = |Ck||Ak|−1 ≤ 2Bn−1
k (2‖S‖ε−1)2p/(2−p),

and thus lim supk→∞ |(N \ A) ∩ Ak||Ak|−1 = 0, so that A ∈ F .

Suppose we have a B-reasonable x ∈ l2nk
with Ck ∩ supp(x) = ∅, and we have a

B-reasonable µ ∈ lq with supp(µ) ∩ Ck = ∅. Then, by the maximality of m,

|〈µ, Sk(x)〉| ≤ ‖µ‖‖Psupp(µ)(Sk(x))‖ < ε‖µ‖‖x‖.

Thus, for a B-reasonable x ∈ lp, and µ ∈ lq, with 1 = 〈µ, x〉 = ‖x‖ = ‖µ‖, we have

∞∑
k=1

|〈µ, PAk∩ASTPAk∩A(x)〉| =
∞∑

k=1

|〈µ, PAk∩ASkPAk∩A(x)〉|

< ε

∞∑
k=1

‖PAk∩A(µ)‖‖PAk∩A(x)‖

≤ ε

(
∞∑

k=1

‖PAk∩A(µ)‖q

)1/q( ∞∑
k=1

‖PAk∩A(x)‖p

)1/p

≤ ε,

as required.

The following is based upon an idea of C.J. Read, although the preceding lemmas

remove the need for a long calculation which was used originally.

Proposition 4.3.10. If the sequence (nk) increases fast enough, then for S ∈ B(lp),

B ∈ N and ε > 0, we can find A ∈ F so that for any B-reasonable x ∈ lp and µ ∈ lq

with 〈µ, x〉 = ‖x‖ and ‖µ‖ = 1, we have |〈µ, PASTPA(x)〉| < ε‖x‖.
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Proof. First note that it is enough to prove the result in the case where ‖x‖ = 1, for

otherwise let y = ‖x‖−1x, so that ‖y‖ = 1 and 〈µ, y〉 = ‖x‖−1〈µ, x〉 = 1, so that

|〈µ, PASTPA(x)〉| = ‖x‖|〈µ, PASTPA(y)〉| < ε‖x‖, as required. Hence we shall sup-

pose that ‖x‖ = 1.

By “(nk) increasing fast enough”, we mean that

lim
k→∞

21+k+n1+...+nk−1

nk

= 0.

We can clearly construct such a sequence by induction.

If x =
∑∞

i=1 xiei and µ =
∑∞

i=1 µiei then, for each i ∈ N, µi = xi|xi|p−2. We then

have

|〈µ, PASTPA(x)〉| =

∣∣∣∣∣∑
i,j∈A

xj|xj|p−2xi〈ej, ST (ei)〉

∣∣∣∣∣
≤

∞∑
k=1

∣∣∣∣∣
∞∑
l=1

∑
i∈A∩Ak

∑
j∈A∩Al

xj|xj|p−2xi〈ej, ST (ei)〉

∣∣∣∣∣ ≤ α1 + α2 + α3,

where we shall define α1, α2 and α3 below. Note that, if we can find Ai ∈ F so that, with

A = A1, α1 is small, and similarly for A2 and A3, then setting A = A1 ∩ A2 ∩ A3 ∈ F

will ensure that |〈µ, PASTPA(x)〉| is small.

We first ensure that α1 can be made as small as we like by a choice of A ∈ F . Indeed,

α1 =
∞∑

k=1

∣∣∣∣∣
∞∑

l=k+1

∑
i∈A∩Ak

∑
j∈A∩Al

xj|xj|p−2xi〈ej, ST (ei)〉

∣∣∣∣∣
≤ B2

∞∑
k=1

∞∑
l=k+1

max
i∈A∩Ak,j∈A∩Al

|xj|p−1|xi||〈ej, ST (ei)〉|

≤ B2

∞∑
k=1

∞∑
l=k+1

max
i∈A∩Ak,j∈A∩Al

|〈ej, ST (ei)〉|, (4.5)

as both x and µ are B-reasonable. Let C be chosen later to be much larger than B. For

each k ∈ N and i ∈ Ak, let Ei ⊂ Ak+1 ∪ Ak+2 ∪ · · · be chosen so that, for each l > k,

|Ei ∩ Al| ≤ 2i+lC and
∑

j∈Ei
|〈ej, ST (ei)〉|p is maximal. Let A = N \

⋃∞
i=1Ei, so for

each k,

|(N \ A) ∩ Ak| =

∣∣∣∣∣
Nk−1⋃
i=1

Ei ∩ Ak

∣∣∣∣∣ ≤
Nk−1∑
i=1

|Ei ∩ Ak| ≤ C

Nk−1∑
i=1

2i+k ≤ C2Nk−1+k+1,

and so |(N \ A) ∩ Ak||Ak|−1 ≤ C21+k+n1+···+nk−1/nk. By the assumption on (nk), we

thus have |(N \ A) ∩ Ak||Ak|−1 → 0 as n→∞, so that ud(N \ A) = 0, and so A ∈ F .

Now, for each k ∈ N, l > k, i ∈ A∩Ak and j ∈ A∩Al, we have that j ∈ Al\
⋃Nl−1

r=1 Er,
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so that certainly j ∈ Al \ Ei. We hence see that

(2‖S‖)p ≥ ‖ST (ei)‖p =
∞∑

s=1

|〈es, ST (ei)〉|p

=
∑

s∈Al∩Ei

|〈es, ST (ei)〉|p +
∑

s∈Al\Ei

|〈es, ST (ei)〉|p

≥
∑

s∈Al∩Ei

|〈es, ST (ei)〉|p ≥ |Al ∩ Ei||〈ej, ST (ei)〉|p,

so that |〈ej, ST (ei)〉| ≤ 2‖S‖(2i+lC)−1/p. Thus

α1 ≤ B2

∞∑
k=1

∞∑
l=k+1

max
i∈A∩Ak,j∈A∩Al

2‖S‖(2i+lB′)−1/p

≤ 2‖S‖B2C−1/p

∞∑
k=1

∞∑
l=k+1

2−(Nk+l)/p

≤ DB2‖S‖C−1/p

for some constant D depending only on (nk)
∞
k=1. Thus, by choosing C sufficiently large,

we can make α1 arbitrarily small, independently of x and µ.

Now we will look at α2, which is

α2 =
∞∑

k=1

∣∣∣∣∣
k−1∑
l=1

∑
i∈A∩Ak

∑
j∈A∩Al

xj|xj|p−2xi〈ej, ST (ei)〉

∣∣∣∣∣
≤ B2

∞∑
k=1

∞∑
l=k+1

max
i∈A∩Ak,j∈A∩Al

|〈T ′S ′(ei), ej〉|.

Comparing this to Equation (4.5), and we see that we can use exactly the same argument

as above to ensure that α2 is arbitrarily small.

Finally, we need to show that α3 can be made small, where

α3 =
∞∑

k=1

∣∣∣∣∣ ∑
i,j∈A∩Ak

xj|xj|p−2xi〈ej, ST (ei)〉

∣∣∣∣∣ =
∞∑

k=1

|〈µ, PA∩Ak
STPA∩Ak

(x)〉| .

So by Lemma 4.3.9, we are done.

We now put Propositions 4.3.6 and 4.3.10 together.

Theorem 4.3.11. The element Φ0 lies in the radical of B(lp)′′. In particular, B(lp)′′ is not

semi-simple, for p ∈ (1,∞), p 6= 2.

Proof. Choose and fix (nk) so that Proposition 4.3.10 can be applied. Suppose towards a

contradiction that Φ0 6∈ radB(lp)′′, so that by Proposition 4.3.6, there exists Ψ ∈ B(lp)′′

and z ∈ (lp)U with

|〈µz, θ1(Ψ)(T (z))〉| > 1
2
‖Ψ‖−1.
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By Lemma 4.3.1, we can find S ∈ B(lp) with ‖S‖ ≤ ‖Ψ‖ and ‖θ1(Ψ)(T (z))−ST (z)‖ <

ε, so that |〈µz, ST (z)〉| > 1/2‖Ψ‖, if ε > 0 is sufficiently small. As z is such that

PA(z) = z for every A ∈ W , we also have PA(µz) = µz for every A ∈ W . Thus we have

lim
A∈V

|〈µz, PASTPA(z)〉| ≥ 1
2
‖Ψ‖−1.

However, by Proposition 4.3.10, for every δ > 0 we can find A ∈ F ⊂ W so that, for

each i, we have |〈µz
i , PASTPA(zi)〉| < δ. Thus we have

|〈µz, PASTPA(z)〉| ≤ δ,

and as δ > 0 was arbitrary, we have

lim
A∈V

|〈µz, PASTPA(z)〉| = 0.

This contradiction shows that Φ0 ∈ radB(lp)′′ and so B(lp)′′ is not semi-simple.

4.3.3 A generalisation

We can use the same idea as in Lemma 4.2.4 to find further examples of Banach spaces

E such that B(E)′′ is not semi-simple. This idea was first suggested by H.G. Dales, and

uses Theorem 1.6.2.

Proposition 4.3.12. Let A be a unital Banach algebra, and let p, q ∈ A be orthogonal

idempotents such that p + q = eA. If the subalgebra pAp is not semi-simple, then A is

not semi-simple.

Proof. As in Lemma 4.2.4, we can view A as a matrix algebra. Let c ∈ rad pAp be

non-zero, let a = pcp ∈ A, and pick b ∈ A. Then

ab =

pcp 0

0 0

pbp pbq

qbp qbq

 =

pcpbp pcpbq

0 0

 ,

so that

(ab)n =

(pcpbp)n (pcpbp)n−1(pcpbq)

0 0

 .

As c ∈ rad pAp, we see that limn→∞ ‖(pcpbp)n‖1/n = limn→∞ ‖(cbp)n‖1/n = 0. We

then have

‖(ab)n‖1/n = ‖(pcpbp)n + (pcpbp)n−1(pcpbq)‖1/n

≤ (‖(pcpbp)n‖+ ‖(pcpbp)n−1‖‖pcpbq‖)1/n → 0

as n→ 0. Thus, as b was arbitrary, a ∈ radA, and so A is not semi-simple.
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Let F and G be Banach spaces, and let E = F ⊕G. Then

B(E)′′ =


Φ11 Φ12

Φ21 Φ22

 : Φ11 ∈ B(F )′′,Φ12 ∈ B(G,F )′′ etc.

 .

We can thus apply the above proposition to see that if E is a Banach space with comple-

mented subspace F such that B(F )′′ is not semi-simple with respect to one of the Arens

products, then B(E)′′ is not semi-simple with respect to the same Arens product.

We now set out some results about general Lp(ν)-spaces, with the aim of showing that

B(Lp(ν))′′ is semi-simple if and only if Lp(ν) is isomorphic to a Hilbert space.

Proposition 4.3.13. Let ε > 0, p ∈ (2,∞) and ν be an arbitrary measure, and let (xn) be

a normalised sequence in Lp(ν) equivalent to the canonical basis of lp. Then there exists

a subsequence (xn(i)) which is (1 + ε)-equivalent to the basis of lp, and whose closed

linear span is (1 + ε)-complemented in Lp(ν).

Proof. This follows from the proof of [Kadec, Pełczyński, 1962, Theorem 2]; see also the

proof of [Heinrich, 1980, Theorem 10].

Proposition 4.3.14. Let p ∈ [1,∞), and let E be a separable subspace of Lp(ν) for some

measure ν. Then E is isometrically isomorphic to a subspace of Lp[0, 1].

Proof. This is [Guerre-Delabriére, 1992, Theorem IV.1.7].

Proposition 4.3.15. Let p ∈ [2,∞), and let E be an infinite-dimensional subspace of

Lp[0, 1]. Then either E is isomorphic to l2 or, for each ε > 0, E contains a subspace

which is (1 + ε)-isomorphic to lp.

Proof. This is [Guerre-Delabriére, 1992, Corollary IV.4.4].

Theorem 4.3.16. Let p ∈ (2,∞), ν be an arbitrary measure, and let E be a subspace of

Lp(ν) such that E is not isomorphic to a Hilbert space. Then B(E)′′ is not semi-simple.

Proof. Choose a separable subspace F of E, so that, by Theorem 4.3.14, F is isomet-

rically isomorphic to a subspace of Lp[0, 1]. Then by Proposition 4.3.15, either F is

isomorphic to l2, or F contains an isomorphic copy of lp. If the latter, then E contains an

isomorphic copy of lp, so that by Proposition 4.3.13, E contains a complemented copy of

lp, and so, by an application of Proposition 4.3.12, B(E)′′ is not semi-simple.

So the only case left to consider is when every separable subspace ofE is isomorphic to

l2. By the next lemma, E is then itself isomorphic to a Hilbert space, a contradiction.
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Lemma 4.3.17. Let E be a Banach space such that each separable subspace of E is

isomorphic to a Hilbert space. Then E itself is isomorphic to a Hilbert space.

Proof. Every separable Hilbert space is isometric to l2. Let F ⊆ E be a separable sub-

space and T : F → l2 be an isomorphism. Let [·, ·] be the inner-product on l2, and

define

[x, y]F = [T (x), T (y)] (x, y ∈ F ).

Then [·, ·]F is an inner product on F , and the norm ‖ · ‖F on F induced by this inner

product satisfies

‖T−1‖−1‖x‖ ≤ ‖x‖F ≤ ‖T‖‖x‖ (x ∈ F ).

Suppose that (Fn) is a sequence of separable subspace ofE such that, for each n, every

isomorphism T : Fn → l2 satisfies ‖T‖‖T−1‖ ≥ n. Let F be the closure of the linear

span of Fn, so that F is separable (see Lemma 5.2.4 for an indication as to why this is

true). Let T : F → l2 be an isomorphism. For each n, T (Fn) is a closed subspace of

l2 and is hence isometrically isomorphic to l2. Consequently, there is an isomorphism

S : Fn → l2 such that ‖S‖‖S−1‖ ≤ ‖T‖‖T−1‖, a contradiction for sufficiently large n.

We hence see that there is some constant K such that each separable subspace F of E

can be given an inner product [·, ·]F which satisfies

K−1‖x‖ ≤ [x, x]
1/2
F ≤ K‖x‖ (x ∈ F ).

Let I be the collection of separable subspaces of E, partially ordered by inclusion, and let

U be an ultrafilter refining the order filter on I . For x, y ∈ E, we can hence define

[x, y] = lim
F∈U

[x, y]F .

Then [·, ·] is an inner product; everything is trivial to check except that [x, x]1/2 is a norm

and not a semi-norm: this fact follows as

[x, x]1/2 = lim
F∈U

[x, x]
1/2
F ≥ lim

F∈U
K−1‖x‖ (x ∈ E).

By a similar argument, we see that [·, ·] induces a norm on E which is equivalent to the

existing norm on E; that is, E is isomorphic to a Hilbert space.

An examination of the above proof shows that if E is a Banach space such that each

finite-dimensional subspace of E is isomorphic to a Hilbert space, with uniform control

on the isomorphism-constant, then E is isomorphic to a Hilbert space.
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The class of Lg
p,λ spaces are defined in [Defant, Floret, 1993, Section 3.13], for 1 ≤

p ≤ ∞, 1 ≤ λ < ∞, to be Banach spaces E such that for each finite-dimensional

subspace M of E, and each ε > 0, we can find R ∈ B(M, lpm) and S ∈ B(lpm, E) for

some m ∈ N, such that SR(x) = x for each x ∈ M , and ‖S‖‖R‖ ≤ λ + ε. Then E

is an Lg
p-space if it is an Lg

p,λ-space for some λ. In [Defant, Floret, 1993, Section 23.2],

it is shown that for 1 < p < ∞, E is an Lg
p-space if and only if E is isomorphic to a

complemented subspace of some Lp(ν) space. Thus we have the following.

Corollary 4.3.18. Let E be an Lg
p-space. Then B(E)′′ is semi-simple if and only if E is

isomorphic to a Hilbert space. �

Summing up our results, we have the following.

Theorem 4.3.19. Let E be a Banach space such that at least one of the following holds:

1. E is reflexive and E = F ⊕ G with one of F and G having the approximation

property, B(F,G) = K(F,G) and B(F,G) 6= K(F,G);

2. E is a complemented subspace of Lp(ν), for some measure ν and 1 < p <∞, such

that E is not isomorphic to a Hilbert space;

3. E is a closed subspace of Lp(ν), for some measure ν and 2 < p < ∞, such that E

is not isomorphic to a Hilbert space;

4. E contains a complemented subspace F such that F has property (1), (2) or (3).

Then B(E)′′ is not semi-simple. 2

In particular, at present the only Banach spaces E for which B(E)′′ is semi-simple are

those isomorphic to a Hilbert space. It is tempting to conjecture that B(E)′′ is semi-simple

only if E is isomorphic to a Hilbert space, at least when E is super-reflexive. However,

given the remarks about when B(E) is Arens regular, it seems possible that some patho-

logical Banach space E could have B(E)′′ semi-simple, but E not being isomorphic to a

Hilbert space.
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Chapter 5

Closed ideals in B(E)

In this chapter we shall study the closed ideal structure of B(E). While operator ideals

and tensor norms give us a way of generating ideals in B(E), they are rarely closed in

B(E), with A(E) = E ′⊗̌E being the obvious exception. As each ideal of B(E) must

contain F(E), we see that A(E) is the smallest closed ideal in B(E), and as the unit

ball of E is compact if and only if E is finite-dimensional, we see that A(E) is always a

proper ideal for infinite-dimensional Banach spaces E.

We have seen a number of other obvious closed ideals, namely K(E) and W(E).

When E has the approximation property, A(E) = K(E), and when E is reflexive,

B(E) = W(E). As shown originally by Calkin, A(H) = K(H) is the unique proper,

closed ideal in B(H) for a separable Hilbert space H . In [Gohberg et al., 1967], Go-

hberg, Markus and Feldman showed that this result actually holds for lp, 1 ≤ p < ∞

and c0. In another direction, in [Luft, 1968] and [Gramsch, 1967], Gramsch and Luft

independently classified the closed ideals in B(H) for any Hilbert space H (see Theo-

rem 5.3.9). Until recently (see [Laustsen et al., 2004] for recent progress) this was the

complete list of Banach spaces for which we knew the full closed ideal structure of B(E).

See [Laustsen, Loy, 2003] for a good survey of known results.

We shall sketch a modern approach to the Gohberg, Markus and Feldman result (which

will provide proofs for some results stated in previous chapters). We will then give a

generalisation of the Gramsch and Luft results to the spaces lp(I), for 1 ≤ p < ∞ and

c0(I), for arbitrary infinite sets I . This presentation is heavily based upon the preprint

[Daws(2), 2004].
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5.1 Perfectly homogeneous bases

Recall the notions of a basis, unconditional basis and block-basis from Section 3.4. As

before, we write supp(x) for the support, with respect to a basis (en), of a vector x. We

use PA and Pn for the canonical projections associated with a basis.

Definition 5.1.1. Let E and F be Banach spaces with bases (en) and (fn) respectively.

Suppose that, for each sequence of scalars (an),
∑∞

n=1 anen converges if and only if∑∞
n=1 anfn converges. Then (en) and (fn) are equivalent.

Lemma 5.1.2. LetE and F be Banach spaces with bases (en) and (fn) respectively. Then

(en) and (fn) are equivalent if and only if there is an isomorphism T : E → F such that

T (en) = fn for each n.

Proof. This is an exercise involving the closed graph theorem, detailed in, for example,

[Megginson, 1998, Proposition 4.3.2].

Proposition 5.1.3. Let E = lp, for 1 ≤ p < ∞, or E = c0, let (en) be the standard unit

vector basis for E, and let (xn) be a normalised block-basis of (en). Let F be the closed

linear span of (xn) (so that F has (xn) as a basis). Then the map T : E → F , defined by

T (en) = xn for each n, is an isometry, and there is a norm-one projection P : E → F .

Proof. This is, for example, [Lindenstrauss, Tzafriri, 1977, Proposition 2.a.1]. We do the

lp case here, the c0 case following similarly. Let a = (an) ∈ lp, so that

∥∥∥ ∞∑
n=1

anxn

∥∥∥ =

(
∞∑

n=1

|an|p‖xn‖p

)1/p

= ‖a‖p =
∥∥∥ ∞∑

n=1

anen

∥∥∥,
where the first equality is because the (xn) have pairwise-disjoint support. Thus T is an

isometry.

Let (µn) be a sequence in lq (where, as usual, p−1 + q−1 = 1) such that 〈µn, xn〉 =

‖xn‖ = ‖µn‖ = 1, for each n. A simple calculation shows that this actually uniquely

defines (µn), and that, for each n, supp(xn) = supp(µn), so that (µn) is a block-basis in

lq (except, of course, in the p = 1 case). For x ∈ lp, define

P (x) =
∞∑

n=1

〈µn, x〉xn,

so that we have

‖P (x)‖ =

(
∞∑

n=1

|〈µn, x〉|p
)1/p

≤

(
∞∑

n=1

‖Psupp(xn)(x)‖p

)1/p

≤ ‖x‖p.
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Thus ‖P‖ ≤ 1, and we have P (xn) = xn for each n, so that P is a projection from E

onto F .

We say that a basis (en) for a Banach space E is perfectly homogeneous if every

(normalised) block-basis (xn) of (en) is equivalent to (en). Thus the standard bases of

lp, 1 ≤ p < ∞ and c0 are perfectly homogeneous. Actually, as shown by Zippin in

[Zippin, 1966], these are the only Banach spaces with perfectly homogeneous bases.

Our argument below is essentially that given in [Pietsch, 1980, Chapter 5]. It can also

be viewed as a more constructive version of the argument given in [Herman, 1968].

Lemma 5.1.4. Let E be lp, for 1 ≤ p < ∞, or c0, let (en) be the standard basis for

E, and let T ∈ B(E). Suppose that, for each bounded sequence (xn) in E such that

limn Pm(xn) = 0 and limn PmT (xn) = 0 for each m ∈ N, we have limn T (xn) = 0.

Then T is compact.

Proof. Suppose, towards a contradiction, that T ∈ B(E) satisfies the hypotheses but is

not compact. As K(E) = A(E), as in Lemma 3.4.8, we must have

δ := inf
n∈N

‖T − PnT‖ > 0,

as T is not approximable. Choose a sequence (xn) in E such that

‖xn‖ = 1 , ‖T (xn)− PnT (xn)‖ ≥ δ/2 (n ∈ N).

For each m, the image of Pm is finite-dimensional, so we can move to a subsequence

such that Pm(xn) and PmT (xn) converge. By a diagonal argument, we can find a subse-

quence (nk)
∞
k=1 such that Pm(xnk

) and PmT (xnk
) are Cauchy sequences, for eachm ∈ N.

Suppose that (T (xnk
)) is not a Cauchy sequence, so that, for some ε > 0, we can find

increasing sequences of integers (j(i)) and (k(i)) such that

‖T (xnj(i)
)− T (xnk(i)

)‖ ≥ ε > 0 (i ∈ N).

Then set yi = xnj(i)
− xnk(i)

for each i, so that as Pm(xnk
) and PmT (xnk

) are Cauchy-

sequences, we have

lim
i→∞

Pm(yi) = lim
i→∞

PmT (yi) = 0.

By the hypotheses, we must have limi→∞ T (yi) = 0, which is a contradiction. We con-

clude that (T (xnk
)) is a Cauchy-sequence.

Let y = limk→∞ T (xnk
). We then have

‖PmT (xnk
)− T (xnk

)‖ ≥ ‖Pnk
T (xnk

)− T (xnk
)‖ ≥ δ/2 (k ∈ N,m ≤ nk),
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so that ‖y− Pm(y)‖ ≥ δ/2 for each m ∈ N. This is a contradiction, which completes the

proof.

Proposition 5.1.5. Let E and F be Banach spaces of the form lp, for 1 ≤ p < ∞, or c0.

Let T ∈ B(E,F ) be such that T is not compact. Then there exists δ > 0 such that, for

each ε > 0, we can find a block-basis (xn) in E and a block-basis (yn) in F such that∑∞
n=1 ‖T (xn)− δyn‖ < ε.

Proof. This is a variant of the Bessaga-Pełcyński Selection Principle (see, for example,

[Megginson, 1998, Theorem 4.3.19]). As T is not compact, by the preceding lemma, we

can find a sequence of unit vectors (zn) such that limn Pm(zn) = limn PmT (zn) = 0 for

each m ∈ N, and such that T (zn) does not converge to zero. By perturbing each zn and

moving to a subsequence, we may suppose that (zn) is actually a block-basis, and that

for some δ > 0, we have limn ‖T (zn)‖ = δ−1. Then, for ε > 0, by again moving to

subsequence, we may suppose that δ−1 ≤ ‖T (zn)‖ ≤ δ−1 + εδ−12−n−1 for each n.

Let x1 = z1 and pick n1 such that ‖T (x1) − Pn1T (x1)‖ < εδ−12−3. As 0 =

limn Pn1T (zn), we can find m1 such that ‖Pn1T (zn)‖ < εδ−12−3 for each n ≥ m1.

Let x2 = zm1 and pick n2 > n1 such that ‖T (x2)− Pn2T (x2)‖ < εδ−12−4. We can then

pick m2 > m1 such that ‖Pn2T (zn)‖ < εδ−12−4 for each n ≥ m2. By induction, we

choose increasing sequences (nk) and (mk) such that, for each k ∈ N and j > k, we have

xk = zmk−1
, ‖T (xk)− Pnk

T (xk)‖ < εδ−12−k−2 , ‖Pnk
T (xj)‖ < εδ−12−k−2,

where we set n0 = 0 and P0 = 0.

Then (xk) is clearly a block-basis. For k ∈ N, let

ŷk = (Pnk
− Pnk−1

)T (xk) , yk = ŷk‖ŷk‖−1,

so that (yk) is a block-basis in F . Then we have

‖ŷk − T (xk)‖ ≤ ‖Pnk
T (xk)− T (xk)‖+ ‖Pnk−1

T (xk)‖ < εδ−12−k−1.

Thus we have

‖ŷk‖ ≤ ‖ŷk − T (xk)‖+ ‖T (xk)‖ ≤ εδ−12−k−1 + δ−1 + εδ−12−k−1,

‖ŷk‖ ≥ ‖T (xk)‖ − ‖T (xk)− ŷk‖ ≥ δ−1 − εδ−12−k−1,

so that −ε2−k−1 ≤ δ‖ŷk‖ − 1 ≤ ε2−k. Hence

‖yk − δT (xk)‖ ≤ ‖yk − δŷk‖+ δ‖ŷk − T (xk)‖ < |1− δ‖ŷk‖|+ δ2−k

≤ ε2−k + ε2−k−1 ≤ ε21−k.
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So in conclusion, we have
∞∑

k=1

‖yk − δ−1T (xk)‖ < 2ε.

Proposition 5.1.6. Let E and F be Banach spaces of the form lp, for 1 ≤ p < ∞, or

c0. Let T ∈ B(E,F ) be such that T is not compact. Let (en) and (fn) be the standard

bases for E and F respectively. Then there exists R ∈ B(E) and S ∈ B(F ) such that

STR(en) = fn for each n.

Proof. Use the preceding lemma to pick block-bases (xn) and (yn) for some ε ∈ (0, 1).

Let R ∈ B(E) be given by Proposition 5.1.3, so that R(en) = xn for each n ∈ N. Let G

be the closed linear span of the (yn). Using Proposition 5.1.3 again, let P be a norm-one

projection of F onto G, and let S0 ∈ B(F ) be such that S0(fn) = yn for each n. Then the

operator S−1
0 ◦ P ∈ B(F ) is well-defined, and satisfies S−1

0 P (yn) = fn for each n.

Define S1 : G → lin(T (xn)) by S1(yn) = T (xn) for each n. Then, for a sequence of

scalars (an), let y =
∑∞

n=1 anyn ∈ F , so that

‖S1(y)‖ =
∥∥∥ ∞∑

n=1

anT (xn)
∥∥∥ ≤ ‖T‖

∥∥∥ ∞∑
n=1

anxn

∥∥∥ = ‖T‖‖y‖,

again appealing to Proposition 5.1.3, as (xn) and (yn) are block-bases. Hence S1 is

bounded. For y as before, we also have

‖P (y)− PS1(y)‖ ≤ ‖y − S1(y)‖ =
∥∥∥ ∞∑

n=1

an(yn − T (xn))
∥∥∥

≤ ‖(an)‖∞
∞∑

n=1

‖yn − T (xn)‖ < ε‖y‖.

Hence we see that IdG − PS1 ∈ B(G) is such that ‖IdG − PS1‖ < ε < 1, so we can let

S2 = (PS1)
−1 ∈ B(G).

In conclusion, let S = S−1
0 PS2P , so that for each n ∈ N, we have

STR(en) = S−1
0 PS2PT (xn) = S−1

0 P (PS1)
−1PS1(yn) = S−1

0 P (yn) = fn.

Theorem 5.1.7. Let p and q be such that 1 ≤ p < q <∞. Then B(lq, lp) = K(lq, lp).

Proof. Suppose we have T ∈ B(lq, lp) \K(lq, lp). Let (en) and (fn) be the standard bases

for lq and lp respectively. By the above, we can find R ∈ B(lq) and S ∈ B(lp) so that

STR(en) = fn for each n. In particular, for each n ∈ N, we have

n1/p =
∥∥∥ n∑

i=1

fi

∥∥∥ =
∥∥∥ n∑

i=1

STR(ei)
∥∥∥ ≤ ‖S‖‖T‖‖R‖

∥∥∥ n∑
i=1

ei

∥∥∥ = ‖S‖‖T‖‖R‖n1/q,
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which is impossible, as we would then have ‖S‖‖T‖‖R‖ ≥ supn n
1/p−1/q = ∞.

Theorem 5.1.8. Let E = lp for 1 ≤ p <∞, or E = c0. If J is a non-trivial closed ideal

in B(E), then J = K(E).

Proof. It suffices to show that if T ∈ B(E) is not compact, then the (closed) ideal gener-

ated by T is B(E). This follows immediately from the above, as we can findR,S ∈ B(E)

such that STR = IdE .

In [Herman, 1968], the author proves a little more than the above, but only for spaces

with a perfectly homogeneous basis. Thus, by the Zippin result, the above theorem is all

we can say. Indeed, there are still no further examples known of Banach spaces E for

which A(E) is the unique closed ideal in B(E).

5.2 Ordinal and cardinal numbers

We want to have a way of measuring the “size” of a set which is not countable. The

tools we need are ordinal and cardinal numbers. Following a “naive” approach to set

theory (see [Halmos, 1960]) we formalise the usual natural numbers by setting 0 = ∅

and, for a natural number n, we set n+ = n ∪ {n}, the successor to n. We see that then

n+ = {n, n−1, n−2, . . . , 1, 0}. By the axiom of infinity (see [Halmos, 1960, Section 11])

there is a set which contains ∅ and the successor of each of its elements. We define ω to be

the smallest set which contains 0 and which contains the successor of each of its elements.

Thus ω is the set of natural numbers (well, to be precise, the natural numbers and 0, as we

have been following to the convention that 0 is not a natural number). Notice that each

natural number n satisfies the condition

n = {m : m ∈ n} = {m : m < n}

where the order < is induced by the binary relation ∈.

Definition 5.2.1. Let (S,≤) be a totally ordered set. Then (S,≤) is well-ordered if each

non-empty subset of S has a smallest element.

Let (S,≤S) and (T,≤T ) be partially ordered sets and f : S → T be a function. Then

f is order-preserving if f(a) ≤T f(b) whenever a, b ∈ S with a ≤S b. Then S and T are

similar if there is an order-preserving bijection f : S → T .

Let (S,≤) be a well-ordered set. Then an initial segment of S if a subset of S of the

form {a ∈ S : a < b} for some b ∈ S.
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Let S and T be well-ordered sets. Then S is a continuation of T if T is an initial

segment of S and the partial order on T is the restriction of the partial order on S.

We can show that given two well-ordered sets S and T , either S and T are similar, or

S is similar to an initial segment of T , or T is similar to an initial segment of S.

Definition 5.2.2. An ordinal is a well-ordered set (α,≤) such that

{η ∈ α : η < ξ} = ξ (ξ ∈ α).

We see that each natural number is an ordinal, as given n ∈ N, we have n = {n−1, n−

2, . . . , 1, 0} so that if m ∈ n then {k ∈ n : k < m} = {m− 1,m− 2, . . . , 1, 0} = m. We

also see that ω is an ordinal number, and that if α is an ordinal number, then so is α+.

We see that for an ordinal number α and η, ξ ∈ α, we have that η < ξ if and only if

η ∈ ξ, so that α is (well-) ordered by ∈. We also see that each initial segment of α is

equal to an element of α. Suppose that β is also an ordinal number, so that α and β are

well-ordered sets. Suppose that α is similar to an initial segment of β, so that α is similar

to an element of β, that is, we can treat α as an element of β. In a similar manner, we see

that either α = β or α ∈ β or β ∈ α.

A Zorn’s Lemma argument can be used to show that each set S admits a partial order

≤ such that (S,≤) is well-ordered (the well-ordering theorem). We can then show that

each well-ordered set S is similar to some (necessarily unique) ordinal number. In this

way, we can “count” the elements of any set.

We have a problem here though. There can be many different ways in which we can

well-order a set, and hence many different ways to “count” the elements of a set. For

example, given a countable set I , we can well-order I as ω, or as ω+. This example is a

little circular: what do we mean exactly by “countable”?

The Schröder-Bernstein theorem tells us that, when we have two sets S and T such

that there are injective maps f : S → T and g : T → S, we can find a bijective map

h : S → T . This gives us a way of comparing the size of sets. We then say that a set I is

countable (or countably-infinite) if there is a bijection I → ω.

We pick ω out in the definition because of the following fact: if n is an ordinal number

with n < ω, then there is no bijection between n and ω. We use this idea to make a

definition.

Definition 5.2.3. Let α be an ordinal number such that whenever β ∈ α, there is no

bijection between α and β. Then α is a cardinal number.
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We see that each natural number is a cardinal number, and that each cardinal number

is an ordinal number. Given a set S, the cardinality of S is the (unique) cardinal number

κ such that there is a bijection κ → S. We write |S| = κ. As already mentioned, ω is a

cardinal number; clearly it is the smallest infinite cardinal number, which we denote by

ℵ0.

Some care is required when talking about sets of ordinal or cardinal numbers, as the

collection of all ordinal numbers does not form a set. However, for example, we can show

that when given a cardinal number κ, always find an ordinal number β such that κ ∈ β but

such that there is no bijection κ → β. As β is a set, it thus makes sense to talk about the

smallest cardinal greater than κ, denoted by κ+ (which should not be confused with the

ordinal successor to κ which, in general, will have the same cardinality as κ). In this way,

we can form the cardinal numbers ℵ1,ℵ2, . . . ,ℵn, . . .. We define ℵω to be the smallest

cardinal greater than anything in the set {ℵn : n ∈ ω}. Then ℵω is not the successor of

any cardinal: it is a limit cardinal. Similarly, ℵ0 is a limit cardinal. We see that ℵ1, as an

ordinal, is the smallest ordinal which is not countable.

We can perform arithmetic on cardinal numbers. Given two cardinal numbers κ, σ,

we define κ + σ to be the cardinality of the set S ∪ T where S and T are sets such that

S ∩T = ∅, |S| = κ and |T | = σ. We can, of course, check that this does not depend upon

the choice of S or T . With S and T as above, we also have κ.σ = κ× σ = |S × T |. We

extend this to arbitrary sums and products in the obvious way.

We can show that

κ+ σ = κ× σ = max(κ, σ),

when at least one of κ and σ is infinite.

We have skipped many technical details in this sketch. A rigourous approach is taken

in, for example, citeHJ. Note that this book uses slightly different definitions to those

given above, but that, in the cases we are interested in, these boil down to being the same

thing.

Lemma 5.2.4. Let V be a vector space and X ⊆ V be some subset. Let Q[ı] be the

subfield of C consisting of complex numbers with rational real and imaginary parts. Let

Y =
{ n∑

k=1

akxk : n ∈ N, (ak)
n
k=1 ⊆ Q[ı], (xk)

n
k=1 ⊆ X

}
,

that is, the Q[ı]-linear span of X . When X is infinite, we have |Y | = |X|.
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Proof. As X ⊆ Y , we clearly have |Y | ≥ |X|. We can write Y as a countable union of

sets (Yn), where

Yn =
{ n∑

k=1

akxk : (ak)
n
k=1 ⊆ Q[ı], (xk)

n
k=1 ⊆ X

}
(n ∈ N).

Then |Y1| ≤ |Q[ı] × X| = |Q[ı]| × |X| = max(|X|,ℵ0) ≤ |X|, as |X| ≥ ℵ0. We also

have |Y2| ≤ |Y1 × Y1| = |Y1| × |Y1| = |X| × |X| = |X|. We see that, for each n ∈ N,

we have |Yn| ≤ |Y1 × Yn−1| = |X|, by induction. Then |Y | ≤
∑∞

n=1 |Yn| =
∑∞

n=1 |X| =

|N×X| = ℵ0 × |X| = |X|, as required.

5.3 Non-separable Banach spaces

We shall sketch the theory of unconditional bases in non-separable Banach spaces (called

extended unconditional bases in [Singer, 1981, Chapter 17]). The proofs of these results

follow in a simple way from the standard theory of unconditional bases which was pre-

sented in Section 3.4.

When X is a topological vector space (that is, a vector space with a topology which

makes addition and scalar-multiplication continuous) and (xα)α∈I is a family in X , we

say that (xα) sums unconditionally to x ∈ X , written x =
∑

α∈I xα, if, for each open

neighbourhood U of x, there is a finite A ⊆ I such that, if B ⊆ I is finite and A ⊆ B,

then
∑

α∈B xα ∈ U . This definition agrees with the usual one for sequences.

For a Banach space E, a family of vectors (eα)α∈I is an unconditional basis for E if,

for each x ∈ E, there is a unique family of scalars (aα) such that

x =
∑
α∈I

aαeα,

with summation interpreted as above. Again, if I is countable, then E is separable, and

this definition agrees with the usual one of an unconditional basis (c.f. Theorem 3.4.5).

As in the separable case, we can define bounded linear functionals e∗α ∈ E ′ such that

〈e∗α, eβ〉 =

1 : α = β,

0 : α 6= β.

If ‖eα‖ = 1 for each α, then the unconditional basis (xα) is normalised. In this case, the

family (e∗α) is bounded.

For each A ⊆ I , we can define a map PA : E → E,

PA(x) =
∑
α∈A

〈e∗α, x〉eα.
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A closed-graph argument shows that PA is bounded, so that PA is a projection onto the

subspace PA(E). For x ∈ E, we again define the support of x to be

supp(x) = {α ∈ I : 〈e∗α, x〉 6= 0}.

Thus PA(E) is the subspace of vectors in E with support contained in A. From our

meaning of summation, we can see that the support of x is always a countable subset of

I , for each x ∈ E.

A uniform boundedness argument shows that the family (PA)A⊆I is bounded, and by a

standard re-norming, we may suppose that ‖PA‖ = 1 for eachA ⊆ I (and so, in particular,

that ‖e∗α‖ = 1 for each α ∈ I). Henceforth we shall suppose that an unconditional basis

is normalised and that ‖PA‖ = 1 for each A ⊆ I .

The family (e∗α)α∈I forms an unconditional basis for the closure of its span inE ′. When

this closure is the whole of E ′, we say that (eα) is shrinking. We can show that (eα) is

shrinking if and only if

inf{‖P ′
A(µ)‖ : A ⊆ I, |I \ A| <∞} = 0 (5.1)

for each µ ∈ E ′, where |A| denotes the cardinality of A.

Let I be an infinite set and recall the definitions of c0(I) and lp(I), for 1 ≤ p <∞. In

a more explicit form than that given in Chapter 1, we have

c0(I) = {(xi)i∈I ⊆ C : ∀ ε > 0, |{i ∈ I : |xi| ≥ ε}| <∞}.

Similarly, for 1 ≤ p <∞, we have

lp(I) =

(xi)i∈I ⊆ C : ‖(xi)‖p :=

(∑
i∈I

|xi|p
)1/p

<∞

 .

Then the family of vectors (ei)i∈I , defined by ei = (δij)j∈I , is an unconditional basis for

c0(I) and lp(I). Here δij denotes the Kronecker delta. In all cases except p = 1, this basis

is also shrinking; when p = 1, (e∗i ) spans c0(I) ⊆ l∞(I) = l1(I)′.

The density character of a Banach space E is the least cardinality of a dense subset of

E. Thus E is separable if and only if E has density character ℵ0.

5.3.1 Generalisation of compact operators

Let E and F be Banach spaces. For an infinite cardinal κ and T ∈ B(E,F ), we say that

T is κ-compact if, for each ε > 0, we can find a subset X of E[1] with |X| < κ, and such
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that

inf{‖T (x− y)‖ : y ∈ X} ≤ ε (x ∈ E[1]).

This is clearly equivalent to the condition that for each ε > 0, we can find a subset Y of

F with |Y | < κ, and such that

inf{‖T (x)− y‖ : y ∈ Y } ≤ ε (x ∈ E[1]).

We write Kκ(E,F ) for the set of κ-compact operators. In [Luft, 1968] it is shown that

Kκ(E,F ) is a closed operator ideal; that is, we have the following.

Proposition 5.3.1. Let E and F be Banach spaces. Then Kκ(E,F ) is a closed subspace

of B(E,F ). Let D and G be Banach spaces, and T ∈ Kκ(E,F ), S ∈ B(D,E) and

R ∈ B(F,G). Then RTS ∈ Kκ(D,G). �

In particular, Kκ(E) is a closed ideal in B(E). The ℵ0-compact operators are just the

usual compact operators, so that Kℵ0(E,F ) = K(E,F ). For higher cardinals, there is

an easier description of κ-compact operators, subject to a technicality. For a cardinal κ,

the cofinality of κ, cf(κ), is the least ordinal σ ≤ κ such that there is an order-preserving

map f : σ → κ which is not bounded above. See, for example, [Hrbacek, Jech, 1999,

Chapter 9, Section 2]. Then cf(κ) is a cardinal; if cf(κ) = κ we say that κ is regular,

otherwise κ is singular. In particular, if κ is singular, then κ is a limit cardinal. Notice

that cf(ℵ0) = ℵ0, as if σ is an ordinal with σ < ℵ0, then σ is finite, and so any f : σ → ℵ0

will be bounded above.

Lemma 5.3.2. Let κ be a cardinal with cf(κ) > ℵ0 (so that κ > ℵ0). Then, if (An) is a

sequence of sets, each of cardinality less than κ, then |
⋃

nAn| < κ.

Proof. For each n ∈ N, let Bn =
⋃

m≤nAm so that (|Bn|) is an increasing sequence of

cardinals with, for each n, |Bn| ≤
∑n

m=1 |Am| < κ. As cf(κ) > ℵ0, (|Bn|) is bounded

above by some σ < κ, for otherwise, we could define f : ℵ0 → κ by f(n) = |Bn|, and

then f would be order-preserving and unbounded, showing that cf(κ) ≤ ℵ0, a contradic-

tion. Thus |
⋃

nAn| ≤ supn |Bn| ≤ σ < κ as required.

Notice that we can write ℵω as the countable union of sets strictly smaller than ℵω,

namely ℵω =
⋃

n∈ω ℵn.

Lemma 5.3.3. Let κ be a cardinal with cf(κ) > ℵ0, and let E and F be Banach spaces.

Then T ∈ B(E,F ) is κ-compact if and only if there is a set A ⊆ E with |A| < κ and

such that T (A) := {T (x) : x ∈ A} is dense in T (E).
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Proof. For T ∈ Kκ(E,F ) and n ∈ N, let An ⊂ E[1] be a set with |An| < κ and

inf{‖T (x− y)‖ : y ∈ An} ≤ n−1 (x ∈ E[1]).

Then let B =
⋃

nAn, so, by Lemma 5.3.2, |B| < κ, and T (B) is dense in T (E[1]). Then

we can let A =
⋃

n∈N nB, so that |A| = |B| and T (A) is dense in T (E).

The converse statement is clear.

Following Pietsch, we write X(E,F ) for the closed operator-ideal of B(E,F ) formed

by those operators with separable image. Thus X(E,F ) = Kℵ1(E,F ).

Example 5.3.4. Consider l1(ℵω), noting that cf(ℵω) = ℵ0. As ℵω is an ordinal, we have

ℵω = {α is an ordinal : α < ℵω} and thus, if α ∈ ℵω, either α is finite, or ℵn−1 ≤ |α| <

ℵn for some n ≥ 1. Define T ∈ B(l1(ℵω)) by

T (eα) =

eα : α < ω,

n−1eα : ℵn−1 ≤ |α| < ℵn.
(α ∈ ℵω).

Then T is clearly ℵω-compact, but if A is a dense subset of T (E[1]), then |A| = ℵω. Thus

the preceding lemma does not hold more generally. �

Lemma 5.3.5. LetE be a Banach space with density character κ. Then B(E) = Kκ+(E),

and, if cf(κ) > ℵ0, then Kκ(E) ( B(E).

Proof. As E contains a dense subset of cardinality κ, clearly every operator on T is κ+-

compact. If, further, cf(κ) > ℵ0, then by Lemma 5.3.3, if IdE is κ-compact, then for

some A ⊆ E with |A| < κ, we have that A is dense in E, a contradiction. Thus Kκ(E) is

a proper ideal in B(E).

Recall (Theorem 2.2.8) that for a Banach space E and T ∈ B(E), we have that T ∈

K(E) if and only if T ′ ∈ K(E ′). This does not generalise to κ-compact operators, as the

identity on l1 has separable range, but its adjoint is the identity on l∞, which does not

have separable range. The relation between T being κ-compact and T ′ being κ-compact

is considered only for the Hilbert space case in [Luft, 1968].

Proposition 5.3.6. Let E and F be Banach spaces, κ be an infinite cardinal, and T ∈

B(E,F ). If T ′ ∈ Kκ(F
′, E ′) then T ∈ Kκ(E,F ).

Proof. We may suppose that κ > ℵ0. Fix ε > 0. As T ′ ∈ Kκ(F
′, E ′), there exists

Y ⊂ F ′
[1] with |Y | < κ such that,

inf{‖T ′(µ− λ)‖ : λ ∈ Y } < ε (µ ∈ F ′
[1]).
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For each λ ∈ Y , pick xλ ∈ E[1] with |〈T ′(λ), xλ〉| > (1 − ε)‖T ′(λ)‖. Let Q[ı] be the

subfield of C comprising of complex numbers with rational real and imaginary parts, so

that Q[ı] is dense in C. Then let

X =

{
n∑

i=1

aixλi
: n ∈ N, (ai)

n
i=1 ⊆ Q[ı], (λi)

n
i=1 ⊆ Y

}
so that X is dense in lin(xλ)λ∈Y . By Lemma 5.2.4, |X| = |Y | < κ.

Suppose y ∈ E[1] is such that ‖T (x− y)‖ ≥ δ for every x ∈ X . Then ‖T (x− y)‖ ≥ δ

for every x ∈ lin(xλ)λ∈Y . By Hahn-Banach, we can find µ ∈ F ′ with 〈µ, T (x)〉 = 0 for

each x ∈ X , and such that 〈µ, T (y)〉 = δ and ‖µ‖ ≤ 1. We can then find λ ∈ Y with

‖T ′(µ− λ)‖ < ε. Then

(1− ε)‖T ′(λ)‖ ≤ |〈λ, T (xλ)〉| = |〈λ− µ, T (xλ)〉| = |〈T ′(λ− µ), xλ〉| < ε,

so that ‖T ′(λ)‖ < ε/(1− ε). Hence

δ = |〈µ, T (y)〉| ≤ ‖T ′(µ)‖ ≤ ‖T ′(µ− λ)‖+ ‖T ′(λ)‖ < ε+ ε/(1− ε) < 3ε,

if ε is sufficiently small. Thus we have

inf{‖T (x− y)‖ : x ∈ X} ≤ 3ε (y ∈ E[1]),

so as ε > 0 was arbitrary, we are done.

We now restrict ourselves to spaces with an unconditional basis.

Lemma 5.3.7. LetE have an unconditional basis (ei)i∈I , and let κ be an infinite cardinal.

If A ⊆ I with |A| = κ, then PA(E) has density character κ, and PA ∈ Kκ+(E) \ Kκ(E).

Proof. Let

X =

{
n∑

i=1

aieαi
: n ∈ N, (ai)

n
i=1 ⊆ Q[ı], (αi)

n
i=1 ⊆ A

}
,

so that, again, |X| = κ. If x ∈ PA(E), then x =
∑

i∈A xiei say, where, for ε > 0, we can

find a finite B ⊆ A with ∥∥∥x−∑
i∈B

xiei

∥∥∥ < ε.

We can clearly approximate
∑

i∈B xiei, to any required accuracy, by a member of X , and

thus we see that X is dense in PA(E). Hence PA ∈ Kκ+(E) by Lemma 5.3.3, and PA(E)

has density character κ.
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If κ = ℵ0 then PA ∈ Kκ(E) means that PA is compact, and thus that PA(E) is finite-

dimensional, which in turn means that A is finite, a contradiction. Thus, if PA ∈ Kκ(E),

then κ > ℵ0, and we can find a set Y ⊆ PA(E[1]) such that |Y | < κ and such that

inf{‖PA(x)− y‖ : y ∈ Y } ≤ 1/2 (x ∈ E[1]).

Then let B =
⋃

y∈Y supp(y) ⊆ I , so that |B| ≤ ℵ0×|Y | < κ. As |B| < κ = |A|, we can

find α ∈ A\B. Then eα ∈ PA(E), and, for each y ∈ Y , PB(y) = y, so that PA\B(y) = 0.

Thus, for y ∈ Y , we have 1 = ‖eα‖ = ‖PA\B(eα)‖ = ‖PA\B(eα − y)‖ ≤ ‖eα − y‖, a

contradiction which shows that PA 6∈ Kκ(E).

Proposition 5.3.8. Let E be a Banach space with an unconditional basis (ei)i∈I . For

cardinals κ, σ ≤ |I|, we have that Kκ(E) 6= Kσ(E) if κ 6= σ. Furthermore, K|I|(E) 6=

B(E).

Proof. We may suppose that κ < σ, so that Kκ(E) ⊆ Kσ(E). By Lemma 5.3.7, we can

find T ∈ Kκ+(E) \ Kκ(E) (indeed, we can have T = PA for a suitable set A ⊆ I), as

κ ≤ |I|. Then, as κ+ ≤ σ, T ∈ Kσ(E) but T 6∈ Kκ(E).

By Lemma 5.3.7, applied with A = I , we see that IdE is |I|+-compact, but not |I|-

compact, so that K|I|(E) 6= B(E).

Note that this is an improvement on Lemma 5.3.5, in the case where our Banach space

has an unconditional basis.

Thus, when E has an unconditional basis (ei)i∈I , we have a chain of closed ideals in

B(E),

{0} ( K(E) ( Kℵ1(E) ( · · · ( K|I|(E) ( K|I|+(E) = B(E).

Let E be a Banach space such that every closed ideal J in B(E) has the form J =

Kκ(E) for some cardinal κ. Then we say that B(E) has compact ideal structure. If,

further, when κ and σ are infinite cardinals less than or equal to the density character of

E, we have Kκ(E) = Kσ(E) only when κ = σ, and that B(E) = Kτ+(E) where τ is the

density character of E, then B(E) has perfect compact ideal structure.

Luft and Gramsch proved the following. Recall that the density character of an infinite-

dimensional Hilbert space is the same as its Hilbert space dimension, that is, the cardinal-

ity of a complete orthonormal system.

Theorem 5.3.9. Let H be an infinite-dimensional Hilbert space with density character κ.

Then B(H) has perfect compact ideal structure. Thus, the closed ideals in B(H) form an
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ordered chain

{0} ( K(H) ( Kℵ1(H) ( · · · ( Kκ(H) ( Kκ+(H) = B(H). �

We will show that this result holds for lp(I), 1 ≤ p < ∞ and c0(I), the l2(I) case

being precisely the theorem above.

As a foot-hold towards this goal, Theorem 5.1.8 is enough to show the following.

Proposition 5.3.10. Let I be an uncountable set, let E = lp(I), for 1 ≤ p < ∞, or

E = c0(I), and let T ∈ B(E) have separable range, but not be compact. Then the ideal

generated by T is X(E) = Kℵ1(E).

Proof. Note that the ideal generated by T is certainly contained in X(E), as T has sepa-

rable range. Let (xn)∞n=1 be a dense sequence in T (E), and let A =
⋃

n supp(xn) ⊆ I ,

so that A is countable and PAT = T . Since T is not compact, we can choose a sequence

(yn) in E[1] such that (T (yn)) has no convergent subsequence. Let B =
⋃

n supp(yn), so

that B is countable, and, as PB(yn) = yn for each n, PATPB cannot be compact.

We can view PATPB as an operator on lp(N) or c0(N), as appropriate. Thus, by

Theorem 5.1.8, the ideal generated by T contains an isomorphism from PB(E) to PA(E)

of the form

S(eβ(n)) = eα(n) (n ∈ N),

where we have enumerations A = {α(n) : n ∈ N} and B = {β(n) : n ∈ N}. We thus

see that, if C ⊆ I is countable, then the ideal generated by T contains PC .

Then, as above, for R ∈ X(E), we can find a countable C ⊆ I with PCR = R, and

thus R is in the ideal generated by T .

5.4 Closed ideal structure of B(lp(I)) and B(c0(I))

For the moment we can work with Banach spaces E which merely have an unconditional

basis. Our aim is to classify the closed ideals of B(E), but first we need some lemmas,

which can be seen as a generalisation of Proposition 3.4.9.

Lemma 5.4.1. Let E have an unconditional basis (ei)i∈I . Let κ ≥ ℵ0 be a cardinal and

T ∈ Kκ(E). Then we have:

1. if cf(κ) > ℵ0, then there exists A ⊆ I with |A| < κ and PAT = T ;

2. if cf(κ) = ℵ0, then, for each ε > 0, there exists A ⊆ I with |A| < κ and ‖PAT −

T‖ < ε.
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Proof. 1. We have κ > ℵ0. By Lemma 5.3.3, we can find X ⊆ E with |X| < κ and

with T (X) dense in T (E). Let A =
⋃

x∈X supp(T (x)), so that |A| ≤ |X| × ℵ0 < κ

and PA(T (x)) = T (x) for each x ∈ X . Thus we see that PAT = T , as required.

2. This result is clearly true for compact operators, so we may suppose that κ > ℵ0.

Let ε > 0. Then we can find Y ⊆ E with |Y | < κ and such that

inf{‖T (x)− y‖ : y ∈ Y } ≤ ε/4 (x ∈ E[1]).

Then letA =
⋃

y∈Y supp(y), so that |A| ≤ ℵ0×|Y | < κ as κ > ℵ0. Then PA(y) = y

for each y ∈ Y , so that, for x ∈ E[1] and y ∈ Y , we have

‖T (x)− y‖ = ‖T (x)− PA(y)‖ = ‖PI\AT (x) + PA(T (x)− y)‖

≥ ‖PI\AT (x)‖ − ‖PA(T (x)− y)‖ ≥ ‖PI\AT (x)‖ − ‖T (x)− y‖.

We can find y ∈ Y with ‖T (x) − y‖ ≤ ε/3 so that ε/3 ≥ ‖PI\AT (x)‖ − ε/3,

and thus ‖PI\AT (x)‖ < ε. As x ∈ E[1] was arbitrary, we see that ‖T − PAT‖ =

‖PI\AT‖ < ε, as required.

For an infinite cardinal κ, asKκ(E) is a closed ideal in B(E), we can form the quotient

B(E)/Kκ(E), which is a Banach algebra for the norm

‖T +Kκ(E)‖ = inf{‖T + S‖ : S ∈ Kκ(E)} (T ∈ B(E)).

Lemma 5.4.2. Let E have an unconditional basis (ei)i∈I . For T ∈ B(E), we have

‖T +Kκ(E)‖ = inf{‖PI\AT‖ : A ⊆ I, |A| < κ}.

Further, if cf(κ) > ℵ0, then we can find A ⊆ I with |A| < κ and ‖T + Kκ(E)‖ =

‖PI\AT‖.

Proof. For any κ, if A ⊆ I with |A| < κ, then PA ∈ Kκ(E), so that

‖PI\AT‖ = ‖T − PAT‖ ≥ ‖T +Kκ(E)‖.

Suppose we have ε > 0 and S ∈ Kκ(E) such that ‖T + S‖ + ε ≤ ‖T − PAT‖ for

each A ⊆ I with |A| < κ. By Lemma 5.4.1, we can find A ⊆ I with |A| < κ and

‖S − PAS‖ < ε/2. Then

‖PI\AT‖ = ‖PI\A(T + PAS)‖ ≤ ‖T + PAS‖ ≤ ‖T + S‖+ ‖PAS − S‖

< ε/2 + ‖PI\AT‖ − ε,
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a contradiction. This completes the first part of the proof.

If cf(κ) > ℵ0, then, for each n ∈ N, choose An ⊆ I with |An| < κ and

‖PI\AnT‖ < ‖T +Kκ(E)‖+ n−1.

Let A =
⋃

nAn, so that |A| < κ and, for each n ∈ N,

‖T +Kκ(E)‖ ≤ ‖PI\AT‖ = ‖PI\API\AnT‖ ≤ ‖PI\AnT‖ < ‖T +Kκ(E)‖+ n−1.

Thus we must have ‖T +Kκ(E)‖ = ‖PI\AT‖.

We can now prove a converse to Proposition 5.3.6, at least when E has a shrinking,

unconditional basis.

Proposition 5.4.3. LetE have a shrinking, unconditional basis (ei)i∈I , let κ be an infinite

cardinal, and let T ∈ Kκ(E). Then T ′ ∈ Kκ(E
′).

Proof. As (e∗i )i∈I is a basis forE ′, letQA ∈ B(E ′) be the analogue of PA ∈ B(E). Then a

quick calculation shows thatQA = P ′
A. Pick ε > 0, and let T ∈ Kκ(E). By Lemma 5.4.1,

for some A ⊆ I with |A| < κ, we have ‖T − PAT‖ < ε. Thus ‖T ′ − T ′QA‖ =

‖(T − PAT )′‖ < ε, so as QA ∈ Kκ(E
′), we have ‖T ′ + Kκ(E

′)‖ < ε. As ε > 0 was

arbitrary, we conclude that T ′ ∈ Kκ(E
′), as required.

For T ∈ B(E), let ideal(T ) be the algebraic ideal generated by T in B(E), and

ideal(T ) be its closure.

Lemma 5.4.4. LetE be a Banach space with an unconditional basis (ei)i∈I . Suppose that

for each cardinal κ ≥ ℵ0 and each T ∈ B(E) \ Kκ(E), we have Kκ+(E) ⊆ ideal(T ).

Then for each closed ideal J in B(E), we have J = Kκ(T ) for some cardinal κ.

Proof. If J ⊆ K(E), then J = K(E). Thus we may suppose that K(E) = Kℵ0(E) ( J .

Let

X = {σ : J \ Kσ(E) 6= ∅}

so that, by our assumption, if σ ∈ X , then Kσ+(E) ⊆ J . Suppose that X contains a

maximal element κ, so that κ ≥ ℵ1. Then, as κ ∈ X , we have Kκ+(E) ⊆ J , and as κ is

maximal in X , we have J \ Kκ+(E) = ∅, so that J ⊆ Kκ+(E). Thus J = Kκ+(E) as

required.

If X does not contain a maximum element, then, for some limit cardinal κ, X = {σ :

σ < κ}, and so κ 6∈ X , meaning that J ⊆ Kκ(E). Choose T ∈ Kκ(E) and ε > 0.
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Then, by Lemma 5.4.1, we can find A ⊆ I with |A| < κ and ‖PAT − T‖ < ε. As

PA ∈ K|A|+(E), PAT ∈ J . As ε > 0 was arbitrary and J is closed, T ∈ J . Thus

J = Kκ(E).

We thus wish to show that, for each T ∈ B(E) and each cardinal κ, if T is not κ-

compact, then Kκ+(E) ⊆ ideal(T ). At this point we have to restrict ourselves to consid-

ering E = lp(I), for 1 ≤ p <∞, or E = c0(I). Then, by the structure of E, if A,B ⊆ I

with |A| = |B|, then PB ∈ ideal(PA).

Lemma 5.4.5. Let E = lp(I), for 1 ≤ p < ∞, or E = c0(I), let κ ≥ ℵ0 be a cardinal,

and let T ∈ B(E) \Kκ(E). Then Kκ+(E) ⊆ ideal(T ) if and only if, for some A ⊆ I with

|A| = κ, PA ∈ ideal(T ).

Proof. If PA ∈ ideal(T ) for some A ⊆ I with |A| = κ, then PB ∈ ideal(PA) for every

B ⊆ I with |B| ≤ |A|. For S ∈ Kκ+(E), by Lemma 5.4.1, there exists B ⊆ I with

|B| ≤ κ and PBS = S. Thus S ∈ ideal(PB) ⊆ ideal(PA) ⊆ ideal(T ), so we see that

Kκ+(E) ⊆ ideal(T ).

Conversely, if Kκ+(E) ⊆ ideal(T ), then for A ⊆ I with |A| = κ, we have PA ∈

Kκ+(E), so that PA ∈ ideal(T ).

Proposition 5.4.6. Let E = lp(I), for 1 ≤ p < ∞, or E = c0(I). Suppose that for each

cardinal κ ≥ ℵ0 and each T ∈ B(E) \ Kκ(E), there exists A ⊆ I with |A| = κ and

PA ∈ ideal(T ). Then B(E) has perfect compact ideal structure.

Proof. Use Proposition 5.3.8, and Lemma 5.4.5 applied with Lemma 5.4.4.

5.5 When E has a shrinking basis

For the moment, we shall suppose only that E has a shrinking basis (eα)α∈I .

Proposition 5.5.1. Let E have a shrinking basis (eα)α∈I , let κ > ℵ0 be a cardinal, and

let T ∈ B(E) \ Kκ(E). Then we can find a family (xi)i∈κ of vectors in E such that for

some δ > 0 we have:

1. for i ∈ κ, we have ‖xi‖ = 1 and ‖T (xi)‖ ≥ δ;

2. for each i, j ∈ κ with i 6= j, we have suppT (xi) ∩ suppT (xj) = supp(xi) ∩

supp(xj) = ∅.
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Proof. As T 6∈ Kκ(E), let 2δ = ‖T + Kκ(E)‖ > 0. For A ⊆ I with |A| < κ, as

PA ∈ Kκ(E), we have that 2δ = ‖T +Kκ(E)‖ ≤ ‖T − TPA‖ = ‖TPI\A‖.

A simple Zorn’s Lemma argument shows that we can find a maximal family of vectors

X in E such that conditions (i) and (ii) hold.

If |X| ≥ κ, then we are done. Suppose, towards a contradiction, that |X| < κ, so

that if we set A =
⋃

x∈X supp(x) and B =
⋃

x∈X suppT (x), then |A| ≤ |X| × ℵ0 =

max(|X|,ℵ0) < κ and, similarly, |B| < κ. As E has a shrinking basis, we may set

C =
⋃
i∈B

suppT ′(e∗i ),

so that, again, |C| < κ. For y ∈ E, we have that B ∩ suppT (y) 6= ∅ if and only if, for

some i ∈ B, we have 0 6= 〈e∗i , T (y)〉 = 〈T ′(e∗i ), y〉, which implies that C ∩ supp(y) 6= ∅.

Thus, for each y ∈ E, we have suppTPI\C(y) ⊆ I \ B. Finally, let D = A ∪ C, so

that |D| < κ, and if y ∈ E with PI\D(y) = y, then suppT (y) ⊆ I \ B, so that by the

maximality of X , we must have ‖T (y)‖ < δ‖y‖. This implies that ‖TPI\D‖ ≤ δ, which

is a contradiction by our choice of δ.

We can then certainly apply this proposition to E = c0(I) or E = lp(I), for 1 < p <

∞.

Theorem 5.5.2. If E = c0(I) or E = lp(I) for 1 < p < ∞, then for a closed ideal J in

B(E), we have J = Kκ(E) for some cardinal κ.

Proof. We use Proposition 5.4.6, so let κ ≥ ℵ0 be a cardinal and T ∈ B(E) \ Kκ(E).

If κ = ℵ0, we need to show that, if T is not compact, then PA ∈ ideal(T ) for some

countable A ⊆ I . This follows directly from Proposition 5.3.10. Thus we may suppose

that κ > ℵ0. We can then apply Proposition 5.5.1 to find a family (xi)i∈κ and δ > 0 with

properties as in the proposition.

As (T (xi))i∈κ is a family of vectors with pairwise-disjoint support, we can find a fam-

ily (µi)i∈κ ⊆ E ′ with pairwise-disjoint support (recall that E has a shrinking basis) and

such that 〈µi, T (xj)〉 = δij , the Kronecker delta. As ‖T (xi)‖ ≥ δ for each i ∈ κ, we may

suppose that ‖µi‖ ≤ δ−1 for each i ∈ κ. Let K ⊆ I be some subset with |K| = κ, and let

φ : K → κ be a bijection. We can then define Q,S ∈ B(E) by

Q(x) =
∑
j∈K

T (xφ(j))〈µφ(j), x〉 S(x) =
∑
j∈K

xφ(j)〈µφ(j), Q(x)〉 (x ∈ E).

A calculation shows that, in all cases for E, ‖Q‖ ≤ δ−1‖T‖ and ‖S‖ ≤ δ−1‖Q‖ ≤

δ−2‖T‖. For i ∈ κ, we then have Q(T (xi)) = T (xi), and so ST (xi) = xi.
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Similarly, we can find a family (λi)i∈K ⊆ E ′ with pairwise-disjoint support and such

that 〈λi, xφ(j)〉 = δij , and ‖λi‖ = 1 for each i ∈ K. Then we may define R,U ∈ B(E) by

U
(∑

i∈I

aiei

)
=
∑
i∈K

aixφ(i) R(x) =
∑
j∈K

ej〈λj, x〉 (x ∈ E),

and again a calculation yields that ‖R‖ = 1 and that U is an isometry onto its range. Then,

for each j ∈ K, we have R(xφ(j)) = ej , so that RSTU(ej) = RST (xφ(j)) = R(xφ(j)) =

ej . Thus RSTU = PK , and as |K| = κ, we are done.

5.6 When E = l1(I)

As l1(I) does not have a shrinking basis, the method of proof used in Proposition 5.5.1

does not adapt to the l1 case. However, we shall see that the l1-norm has properties

meaning that we want to prove something different.

Lemma 5.6.1. For an infinite set I , T ∈ B(l1(I)) and A ⊆ I , we have

‖TPA‖ = sup{‖T (ei)‖ : i ∈ A}.

Proof. Just note that, if x =
∑

i∈A aiei, then

‖T (x)‖ =

∥∥∥∥∥∑
i∈A

aiT (ei)

∥∥∥∥∥ ≤∑
i∈A

|ai|‖T (ei)‖ ≤ ‖x‖ sup{‖T (ei)‖ : i ∈ A}.

Proposition 5.6.2. Let E = l1(I) for some index set I . Let κ > ℵ0 be a cardinal, let

ε ∈ (0, 1/2), and let T ∈ B(E) \ Kκ(E) be such that

1 ≥ ‖T‖ ≥ ‖T +Kκ(E)‖ ≥ 1− ε.

Then there exists K ⊆ I with |K| ≥ κ, and a family (Ai)i∈K of subsets of I , such that:

1. for i ∈ K, Ai is countable and ‖PAi
T (ei)‖ ≥ 1− 2ε;

2. for i, j ∈ K with i 6= j, Ai ∩ Aj = ∅.

Proof. For L ⊆ I and B = (Bi)i∈L a family of subsets of I , we say that (L,B) is

admissible if conditions (1) and (2) are satisfied. Let X be the collection of admissible

pairs; since ‖T‖ ≥ 1 − ε > 0, the set X is not empty by Lemma 5.6.1. Partially order

X be setting (L, (BL
i )i∈L) ≤ (J, (BJ

i )i∈J) if and only if L ⊆ J and, for each i ∈ L,

BJ
i = BL

i .
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Let Y ⊆ X be a chain, and let L0 =
⋃

(L,BL)∈Y L ⊆ I . Then, for i ∈ L0, we have

i ∈ L for some (L,BL) ∈ Y . Set Bi = BL
i . This is well-defined, for if i ∈ J for some

(J,BJ) ∈ Y , then either (L,BL) ≤ (J,BJ), so that BL
i = BJ

i , or (J,BJ) ≤ (L,BL) and

BJ
i = BL

i . Let B = (Bi)i∈L0 , so, if i ∈ L0, Bi is countable, and ‖PBi
T (ei)‖ ≥ 1 − 2ε.

Similarly, we can show that (L0, B) ∈ X and that (L0, B) is an upper bound for Y . We

can thus apply Zorn’s Lemma to find a maximal admissible pair (K, (Ai)i∈K).

If |K| ≥ κ then we are done. Otherwise, letB =
⋃

i∈K Ai so that |B| ≤ ℵ0×|K| < κ.

As (K,A) is maximal, suppose that for some i ∈ I \K we have ‖PI\BT (ei)‖ ≥ 1− 2ε.

Then set C = (I \B)∩ suppT (ei), so that C is countable and ‖PCT (ei)‖ ≥ 1− 2ε. This

contradicts the maximality of (K,A). Hence we see that

‖PI\BT (ei)‖ < 1− 2ε (i ∈ I \K).

By Lemma 5.6.1, we conclude that ‖PI\BTPI\K‖ ≤ 1 − 2ε. By Lemma 5.3.7, PB and

PK are κ-compact, so that

1− 2ε ≥ ‖PI\BTPI\K‖ = ‖T − TPK − PBTPI\K‖ ≥ ‖T +Kκ(E)‖ ≥ 1− ε.

This contradiction shows that |K| ≥ κ, as required.

Theorem 5.6.3. Let E = l1(I), and let J be a closed ideal in B(E). Then J = Kκ(E)

for some cardinal κ.

Proof. We use Proposition 5.4.6, so let κ ≥ ℵ0 be a cardinal and T ∈ B(E) \ Kκ(E). As

in the proof of Theorem 5.5.2, we may suppose that κ > ℵ0. Fix ε > 0. By Lemma 5.4.2,

we can find A ⊆ I with |A| < κ and ‖PI\AT‖ ≥ ‖T + Kκ(E)‖ ≥ ‖PI\AT‖(1 − ε/4).

Then, since PA ∈ Kκ(E), we have

‖PI\AT +Kκ(E)‖ = ‖T +Kκ(E)‖ ≥ (1− ε/4)‖PI\AT‖.

Let T0 = PI\AT‖PI\AT‖−1, so that

1 = ‖T0‖ ≥ ‖T0 +Kκ(E)‖ = ‖PI\AT +Kκ(E)‖‖PI\AT‖−1 ≥ 1− ε/4.

Apply Proposition 5.6.2 to T0 to find K ⊆ I with |K| = κ, and a family (Ak)k∈K of

subsets of I , such that:

1. for k ∈ K, Ak is countable, and ‖PAk
T0(ek)‖ ≥ 1− ε/2;

2. for j, k ∈ K with j 6= k, Aj ∩ Ak = ∅.
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For k ∈ K let vk = PAk
T0(ek)‖PAk

T0(ek)‖−1, so that ‖vk‖ = 1 and, recalling that

‖T0‖ = 1, we also have

‖T0(ek)− vk‖ =
∥∥∥PI\Ak

T0(ek) + PAk
T0(ek)

(
1− ‖PAk

T0(ek)‖−1
)∥∥∥

= ‖PI\Ak
T0(ek)‖+

∣∣∣‖PAk
T0(ek)‖ − 1

∣∣∣
= ‖PI\Ak

T0(ek)‖+ 1− ‖PAk
T0(ek)‖

= ‖T0(ek)‖+ 1− 2‖PAk
T0(ek)‖ ≤ 1 + 1− 2(1− ε/2) = ε.

Let F = lin(vk)k∈K , and define U : F → lin(T0(ek))k∈K by U(vk) = T0(ek). Then,

for x =
∑

k∈K akvk, we have, noting that the (vk) have pairwise-disjoint support,

‖U(x)‖ =
∥∥∥∑

k∈K

akT0(ek)
∥∥∥ ≤ ‖T0‖

∥∥∥∑
k∈K

akek

∥∥∥ = ‖T0‖‖x‖,

so that U is bounded. As the (vk) have pairwise disjoint support, we can find a projection

P : E → F with ‖P‖ = 1. Then, with x =
∑

k∈K akvk ∈ F , we have

‖x− PU(x)‖ = ‖P (x− U(x))‖ ≤ ‖x− U(x)‖ =
∥∥∥∑

k∈K

ak(vk − T0(ek))
∥∥∥

≤
(

sup
k∈K

‖vk − T0(ek)‖
)∑

k∈K

|ak| ≤ ε‖x‖.

Thus, if ε < 1, noting that IdF − PU ∈ B(F ), we have ‖IdF − PU‖ < 1, so that PU is

invertible in B(F ).

Then we have, for k ∈ K, PU(vk) = PT0(ek), so that vk = (PU)−1PT0(ek). Define

V : F → PK(E) by, for k ∈ K, V (vk) = ek, so that V is an isometry. Thus, letting

S = V (PU)−1P , we have ST0PK = PK . Thus

PK = ST0PK = ‖PI\AT‖−1SPI\ATPK ,

so that PK ∈ ideal(T ), as required.

This proof is the correct analogue of Theorem 5.5.2, for above we showed that

sup
k∈K

‖T (ek)− vk‖ < 1,

whereas for the lp and c0 cases we would need to show that∑
k∈K

‖T (ek)− vk‖q < 1,

where q−1 + p−1 = 1 (or q = 1 in the c0 case). However, if K is uncountable, then

such a sum must contain all but countably many terms which are actually zero. As we are

5.6. When E = l1(I)
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free to remove such terms (and still have K being of the same cardinality) we arrive at

precisely the conclusions of Proposition 5.5.1 (as least if we replace (ei) be a sequence of

disjointly-supported unit vectors (xi)).

To sum up, we have shown the following generalisation of the Gohberg, Markus and

Feldman theorem.

Theorem 5.6.4. Let I be an infinite set, and let E = lp(I) for 1 ≤ p <∞, or E = c0(I).

Then B(E) has perfect compact ideal structure. That is, the closed ideals in B(E) form

an ordered chain

{0} ( K(E) ( Kℵ1(E) ( · · · ( K|I|(E) ( K|I|+(E) = B(E).
�

5.7 Generalisation

An immediate question is whether there are any other Banach spaces E such that B(E)

has (perfect) compact ideal structure. However, even for non-separable spaces, we are

hampered by our lack of knowledge in the separable case.

Proposition 5.7.1. Let E be a Banach space such that B(E) has compact ideal struc-

ture. Suppose that F is a complemented subspace of E. Then B(F ) has compact ideal

structure.

Proof. Let F be complemented in E with projection P : E → F . Let J be a closed ideal

in B(F ), and define

J0 = lin{RST : S ∈ J, T ∈ B(E,F ), R ∈ B(F,E)} ⊆ B(E).

Clearly J0 is a closed ideal in B(E), so that J0 = Kκ(E) for some cardinal κ.

If S ∈ J , T ∈ B(E,F ) and R ∈ B(F,E), then PR ∈ B(F ) and T |F ∈ B(F ) so that

PRST |F ∈ J , as J is an ideal. Thus if U ∈ J0 then PU |F ∈ J . Let ι : F → E be the

inclusion map. Clearly, if V ∈ J , then ιV P ∈ J0.

We thus claim that J = Kκ(F ), for if V ∈ J then ιV P ∈ J0 so ιV P is κ-compact,

and thus V is κ-compact. Conversely, if W ∈ Kκ(F ) then ιWP is κ-compact, so that

ιWP ∈ J0, and thus PιWP |F = W ∈ J .

Thus, in practical terms, if we exhibit a Banach space E with B(E) having compact

ideal structure, we need separable complemented subspaces of E to be isomorphic to lp

or c0. If we look at spaces with an unconditional basis, then such spaces have a plethora
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of separable complemented subspaces. Indeed, in some special cases, we can show that

such spaces are trivial.

For Banach spaces E and F , the Banach-Mazur distance between E and F is

d(E,F ) = inf{‖T‖‖T−1‖ : T : E → F is an isomorphism}.

Proposition 5.7.2. Let E be a Banach space with an unconditional basis (ei)i∈I such that

every subspace PA(E), for countably infinite A ⊆ I , is isomorphic to some lp space (1 ≤

p < ∞), or to c0. Then each separable, complemented subspace of E is isomorphic to a

fixed lp space, or c0. Furthermore, if this fixed space is c0, l1 or l2, then E is isomorphic

to c0(I), l1(I) or l2(I), respectively.

Proof. Throughout this proof, we shall write l∞ for c0. Then suppose that for countably

infinite Ai ⊆ I , PAi
(E) is isomorphic to lpi , for i = 1, 2. Then let A = A1 ∪ A2 so that

PA(E) is isomorphic to lp say. Then PAi
(E) is isomorphic to a complemented subspace

of lp, and thus must be isomorphic to lp by [Lindenstrauss, Tzafriri, 1977, Theorem 2.a.3],

as every complemented, infinite-dimensional subspace of lp is isomorphic to lp. Thus lpi

is isomorphic to lp, and so pi = p, for i = 1, 2.

Now let F ⊆ E be a complemented, separable subspace. We can then find a countable

A ⊆ I with F ⊆ PA(E), so that F is isomorphic to a complemented subspace of lp, and

thus isomorphic to lp.

Now suppose that p = 1, 2 or∞ (the c0 case). Then, by [Lindenstrauss, Tzafriri, 1977,

Theorem 2.b.10], we know that each such space has exactly one unconditional basis, up to

equivalence. For each countably infinite A ⊆ I , let TA : PA(E) → lp be an isomorphism,

chosen such that ‖TA‖‖T−1
A ‖ ≤ 2d(PA(E), lp), the Banach-Mazur distance. Then it is

clear that, if we take an enumeration of A, A = {aA
n : n ∈ N}, then the sequence

(TA(eaA
n
)) is an unconditional basis for lp, and thus there exists KA ≥ 1 such that

K−1
A

(
∞∑

n=1

|bn|p
)1/p

≤

∥∥∥∥∥
∞∑

n=1

bnTA(eaA
n
)

∥∥∥∥∥ ≤ KA

(
∞∑

n=1

|bn|p
)1/p

for each sequence of scalars (bn). Then we have that, for a sequence of scalars (bn),

K−1
A ‖TA‖−1

(
∞∑

n=1

|bn|p
)1/p

≤

∥∥∥∥∥
∞∑

n=1

bneaA
n

∥∥∥∥∥ ≤ KA‖T−1
A ‖

(
∞∑

n=1

|bn|p
)1/p

.

Thus given an injection f : N → I , let Bf ≥ 1 be the minimal constant such that

B−1
f

(
∞∑

n=1

|bn|p
)1/p

≤

∥∥∥∥∥
∞∑

n=1

bnef(n)

∥∥∥∥∥ ≤ Bf

(
∞∑

n=1

|bn|p
)1/p
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holds for all sequences of scalars (bn). We claim that the family (Bf ) is bounded. For if

not, let fn : N → I be such that Bfn ≥ n, for each n ∈ N. Then let g : N → I be an

injective function chosen such that g(N) =
⋃

n∈N fn(N). Now pick N ∈ N, and given a

sequence of scalars (bn), let (cn) be a sequence of scalars such that

cn =

bm : g(n) = fN(m),

0 : otherwise.

Then, as FN and g are injective, and the image of g contains that image of FN , we see that(
∞∑

n=1

|bn|p
)1/p

=

(
∞∑

n=1

|cn|p
)1/p

≤ Bg

∥∥∥∥∥
∞∑

n=1

cneg(n)

∥∥∥∥∥ = Bg

∥∥∥∥∥
∞∑

m=1

bmefN (m)

∥∥∥∥∥ ,
and similarly∥∥∥∥∥

∞∑
m=1

bmefN (m)

∥∥∥∥∥ =

∥∥∥∥∥
∞∑

n=1

cneg(n)

∥∥∥∥∥ ≤ Bg

(
∞∑

n=1

|cn|p
)1/p

= Bg

(
∞∑

n=1

|bn|p
)1/p

.

As BfN
is minimal, we must have Bg ≥ BfN

, which contradicts (BfN
)∞N=1 being un-

bounded.

Hence let M = supf Bf <∞. Define T : E → lp(I) by T (ei) = di, (di)i∈I being the

standard basis for lp(I). Then, if x ∈ E, we have x =
∑∞

n=1 anef(n) for some injection

f : N → I and some sequence of scalars (an), so that

‖T (x)‖ =

(
∞∑

n=1

|an|p
)1/p

≤M

∥∥∥∥∥
∞∑

n=1

anef(n)

∥∥∥∥∥ = M‖x‖.

Conversely, given y =
∑

i∈I aidi ∈ lp(I), we can find an injection f : N → I such that

f(N) = {i ∈ I : ai 6= 0}. Define (bn)∞n=1 by

bn =

ai : f(n) = i,

0 : otherwise.

Then we have y =
∑∞

n=1 bndf(n) =
∑∞

n=1 bnT (ef(n)) ∈ lp(I). Let z =
∑∞

n=1 bnef(n) ∈

E, so that

‖z‖ =

∥∥∥∥∥
∞∑

n=1

bnef(n)

∥∥∥∥∥ ≤ Bf

(
∞∑

n=1

|bn|p
)1/p

≤M‖y‖.

Thus we see that T has an inverse, so that E is isomorphic to lp(I), as required.

We note that the case where 1 < p <∞, p 6= 2, seems to be a good deal harder.

If E is an arbitrary non-separable Banach space, suppose that we only know that every

closed ideal J of B(E) with Kℵ1(E) ⊆ J has J = Kκ(E) for some κ. By examining the
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proof of Proposition 5.7.1 we see that, if F is separable, we gain no information on the

ideal structure of B(F ) because then J0 ⊆ Kℵ1(E). So we could ask an easier question:

namely, are there more Banach spaces E so that, beyond the operators with separable

range, every closed ideal is an ideal of κ-compact operators? However, this is too easy,

for consider

E = l1(N)⊕ l2(I)

for some uncountable I . A moments thought shows that this rather simple example does

satisfy our conditions.

We hence conclude that the interesting questions, with regards to compact ideal struc-

ture, lie in studying the ideal structure of B(E) for separable Banach spaces E.

5.7. Generalisation
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spaces, (Marcel Dekker Inc., New York, 1992).
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(1 + ε)-isomorphism, 103

σ-algebra, 5

p-norm, 6

algebra, 14

agebra product, 14

commutative, 14

homomorphism, 14

invertible element, 14

involution, 24

isomorphism, 14

primitive, 16

radical, 16

representation, 15

semi-simple, 16

spectral radius, 16

spectrum, 16

subalgebra, 14

unit, 14

unital, 14

unitisation, 14

approximable operator, 30

approximation property, 38

bounded approximation property, 42

compact approximation property, 96

metric approximation property, 42

Arens products, 19

Arens irregular, 22

Arens regular, 21

Arens semi-regular, 70

mixed identity, 22

topological centres, 22

Banach algebra, see algebra, 17

approximate identity, 18

Arens regular, see Arens products

bounded approximate identity, 18

dual Banach algebra, 19

multiplier, 70

Banach module, 17, see module

weakly-compact action, 54

Banach space, 2

closed unit ball, 2

density character, 177

quotient, 4

quotient norm, 4

reflexive, 3

separable, 41

super-reflexive, 103

uniformly convex, 115

Banach-Mazur distance, 192

basis, see Schauder basis

Bocher integral, 48

derivative, 48

C∗-algebra, 23

cyclic, 25

normal element, 24

positive functional, 25
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pure state, 25

representation, 25

self-adjoint, 24

state, 25

cardinal, 174

cofinality, 178

limit cardinal, 175

regular, 178

singular, 178

cardinality, 175

characteristic function, 5

commutant, 118

compact ideal structure, 181

perfect, 181

compact operator, 35

dual space, 3

filter, 8

order filter, 9

principal ultrafilter, 9

ultrafilter, 8

non-principal, 9

finite co-dimension, 4

finite-rank operator, 30

finitely representable, 103

functional, 3

Grothendieck pair, 58

group algebra, 23

Hilbert space, 6

ideal, 14

left-ideal, 14

primitive, 16

right-ideal, 14

injective tensor norm, 30

inner product, 6

inner product space, 6

integral operators, 33

α-integral operators, 33

Pietsch integral operators, 41

integration, 5

isometry, 3

isomorphism, 3

measurable set, 5

measure, 5, see vector measure

complex measure, 5

measurable set, 5

measure space, 5

regular, 47

variation, 47

measure space, 5

module, 15

module homomorphism, 18

simple, 15

submodule, 15

modulus of convexity, 115

net, 8

norm, 2

operator norm, 2

quotient norm, 4

supremum norm, 5

normed space, 2

complete, 2

norming, 89

nuclear operators, 37

α-nuclear operators, 37
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operator, 2

κ-compact, 177

adjoint, 13

approximable, 30

bounded below, 3

compact, 35

finite-rank, 30

graph, 4

image, 3

kernel, 3

operator norm, 2

quotient operator, 4

trace, 31

weak operator topology, 118

operator ideal, 35

ordinal, 174

successor, 173

partial order, 8

chain, 8

directed set, 8

maximal, 8

minimal, 8

order filter, 9

order-preserving map, 173

partially ordered set, 8

similar, 173

total order, 8

totally ordered, 8

power set, 5

product topology, 9

projective tensor norm, 30

quotient operator, 4

Radon-Nikodým property, 41

representation, 15

left regular representation, 15

Schauder basis, 121

1-unconditional, 124

basic sequence, 121

block-basis, 128

boundedly complete, 124

co-ordinate functional, 123

equivalent, 169

normalised, 122

perfectly homogeneous, 170

shrinking, 177

shrinking basis, 124

support, 123

unconditional basis, 123, 176

unconditional basis constant, 124

simple function, 5

spectrum, 16

spectral radius, 16

tensor norm, 29

accessible, 32

adjoint, 31

dual norm, 31

finitely generated, 29

reasonable crossnorm, 28

totally accessible, 32

transpose, 29

uniform crossnorm, 29

tensor product, 28, see tensor norm

trace, 31

trace duality, 31
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ultrafilter, see filter, ultrafilter

countably incomplete, 101

ultrapower, 100

ultraproduct, 100

vector measure, 47

compact, 48

finite variation, 47

regular, 47

variation, 47

vector space, 1

weak∗-topology, 10

weak-topology, 10

weakly sequentially compact, 12

weakly-compact, 11

weakly-compact, see weak-topology or op-

erator, 12

well-ordered, 173, see partial order

continuation, 174

initial segment, 173
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