
From non-local games to quantum groups

Matthew Daws

Lancaster University

Lancaster, April 2024

Matthew Daws Games to quantum groups April 2024 1 / 27



Refereed games

Alice and Bob play a game against a referee.

All the rules are known in advance, and Alice and Bob can agree
on a strategy, but in each round they cannot communicate.

Given finite sets X ,Y (the questions) and A,B the answers.

In each round, the referee picks (x , y) ∈ X × Y at random
(distribution π(x , y)) and sends x to Alice, and y to Bob.

Alice replies with a ∈ A, and Bob replies with b ∈ B .

The rule function is

V : A × B × X × Y ; (a , b, x , y) 7→ V (a , b|x , y) ∈ {0, 1}.

V (a , b|x , y) = 1 means Alice and Bob win; otherwise they lose.
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Example: Graph colouring
Let G = (V ,E) be a finite simple graph, consisting of:

vertices V ;

simple undirected edges E ; write x ∼ y .

Recall that a colouring of a graph is an assignment of colours to
each vertex such that adjacent vertices are coloured differently.

Set question set X = Y = V and answer set A = B = {1, 2, · · · , c}.

Alice and Bob win if they can convince the referee they have
a colouring using c colours.

V (a , b|x , y) =


1 : x = y , a = b,

0 : x = y , a ̸= b,

0 : x ∼ y , a = b,

1 : otherwise.
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How to win?

How can Alice and Bob always win?

Need to know π(x , y).

Simplify things: assume π(x , y) has full support.

Definition
A “deterministic strategy” is for Alice and Bob to agree on functions

f : X → A; g : Y → B ,

and to always reply (f (x ), g(y)).

In the graph colouring game, they fix a colouring f = g in advance,
and always use this.

Always satisfies “same question, same answer” rule.

Actually must be a colouring to satisfy other rule.
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Random strategies
Definition
A “random strategy” is to pick a probability space (Ω,P) and for each
ω ∈ Ω have deterministic strategies fω, gω.

Alice and Bob agree in advance some random numbers, and so can
sample from the space without communicating. They can now give a
random answer

p(a , b|x , y) = P
(
ω : fω(x ) = a , gω(y) = b

)
.

Instead, for each x ∈ X define

Fx : Ω→ A; Fx (ω) = fω(x ),

similarly Gy . Then Fx ,Gy are random variables, with

p(a , b|x , y) = P
(
ω : Fx (ω) = a ,Gy(ω) = b

)
.

Matthew Daws Games to quantum groups April 2024 5 / 27



Random strategies cont.

p(a , b|x , y) = P
(
ω : Fx (ω) = a ,Gy(ω) = b

)
.

So having a random mixture of deterministic strategies is the same as,
for each input, having a random variable to sample your output from.

EV =
∑
x ,y

π(x , y)
∑
a,b

p(a , b|x , y)V (a , b|x , y).

As we assume π(x , y) > 0 for all x , y , if EV = 1 then∑
a,b

p(a , b|x , y)V (a , b|x , y) = 1,

for all x , y , and so

Definition
A perfect strategy is one satisfying

V (a , b|x , y) = 0 =⇒ p(a , b|x , y) = 0.
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Random doesn’t help

Everything is finite, so the σ-algebra generated by Fx ,Gy is finite, so
really we have a finite mixture of deterministic strategies:

pick fi : X → A, gi : Y → B with probability pi .

EV =

N∑
i=1

pi
∑
x ,y

π(x , y)V (fi (x ), gi (y)|x , y).

Picking the i which maximises the inner sum gives a deterministic
strategy which is at least as good as this random strategy.

In Applications, however, Alice and Bob might want to deliberately
give random answers, to avoid the referee learning too much.
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Quantum mechanics

A mathematical model of quantum mechanics is that the state of a
quantum system is described by a unit vector ψ in a C-inner product
space (Hilbert space) H.

Definition
A qubit is a unit vector ψ ∈ C2.

Basis

|0⟩ =
(

1
0

)
, |1⟩ =

(
0
1

)
.

Or maybe use the “spin” | ↑⟩, | ↓⟩. We can of course have mixtures

ψ =

(
1/

√
2

−1/
√

2

)
= 1√

2
| ↑⟩− 1√

2
| ↓⟩.
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Measurement
We cannot observe the state of a system directly, only “measure” it.
This is defined by a self-adjoint operator (a matrix) A acting on H.
Perhaps we measure spin up as 1 and spin down as −1, so

A =

(
1 0
0 −1

)
.

So A has:

| ↑⟩ =
(

1
0

)
as an eigenvector for eigenvalue +1, and

| ↓⟩ =
(

0
1

)
as an eigenvector for eigenvalue −1.

When we measure a state ψ, we obtain a probabilistic outcome:

Express ψ in the unit-vector eigenbasis which diagonalises A.

ψ is a unit vector, so the coefficients in this basis have squares
which sum to 1: these are the probabilities.
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Example

A =

(
1 0
0 −1

)
, ψ =

(
1/

√
2

−1/
√

2

)
= 1√

2
| ↑⟩− 1√

2
| ↓⟩.

With probability 1/2 we obtain +1, and ψ collapses into | ↑⟩.
With probability 1/2 we obtain −1, and ψ collapses into | ↓⟩ (or
−| ↓⟩).

If instead

A =

(
1 0
0 1

)
then eigenvalue 1 has eigenbasis spanning the whole space, and we
instead take the orthogonal projection of ψ onto this eigenspace.

In this case, the projection is onto the whole space, so we always
get the measurement 1, and ψ does not change.
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Entanglement
The product of two systems is modelled by taking the tensor product
of the state spaces. So two qubits has a 2 × 2 = 4 dimensional state
space with basis

| ↑⟩ ⊗ | ↑⟩ = | ↑↑⟩, | ↑⟩ ⊗ | ↓⟩ = | ↑↓⟩, and | ↓↑⟩, | ↓↓⟩.

If we measure one system using A, this is the same as measuring the
whole system using A ⊗ I . E.g. consider the “Bell state”

ψ =
1√
2

(
| ↑↓⟩− | ↓↑⟩

)
, with A =

(
1 0
0 −1

)
.

Measuring the first qubit:

with probability 1/2 we get +1, and project onto eigenbasis
{| ↑↑⟩, | ↑↓⟩}, so ψ collapses to | ↑↓⟩;
with probability 1/2 we get −1, and project onto eigenbasis
{| ↓↑⟩, | ↓↓⟩}, so ψ collapses to | ↓↑⟩ (or −| ↓↑⟩).
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Spooky action at a distance

Alice and Bob share the state ψ in different labs (in 2023, circa 30
metres). If Alice performs this measurement, then with 50-50 chance,
she finds:

ψ collapses to either | ↑↓⟩ or | ↓↑⟩; and she measures

+1 with her qubit collapsing into | ↑⟩ and Bob’s qubit collapsing
into | ↓⟩;
−1 with her qubit collapsing into | ↓⟩ and Bob’s qubit collapsing
into | ↑⟩.

“Non-locality” but no information passes.

Aim: use our games with “quantum correlations” to explore this
non-local behaviour.

Matthew Daws Games to quantum groups April 2024 12 / 27



PVMs
Measurement can be abstracted to:

Write H as a sum of orthogonal subspaces;
express a state in this direct sum decomposition.

The operator projecting onto a subspace is a projection which is a
self-adjoint p with p2 = p. A direct sum decomposition corresponds to
projections p1, · · · , pn with

n∑
k=1

pk = 1 =⇒ pipj = pjpi = 0 (i ̸= j ).

Definition
Such a family (pi )

n
i=1 is a projection valued measure or PVM.

Given a state ψ, the probability of measuring output k is simply

(ψ|pkψ) = (ψ|p2
kψ) = (pkψ|pkψ) = ∥pkψ∥2.

[Mention POVMs?]
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Quantum correlations

Definition
A quantum correlation is described by Hilbert spaces HA,HB for
Alice and Bob, a shared state ψ ∈ HA ⊗HB , and for each input x ∈ X
a PVM (Px

a )a∈A, and similarly (Qy
b )b∈B . The associated correlation is

p(a , b|x , y) =
(
ψ
∣∣(Px

a ⊗ Qy
b )ψ

)
.

If ψ is separable, ψ = ψA ⊗ψB , then

p(a , b|x , y) = (ψA|Px
aψA)(ψB |Q

y
bψB )

which are just probabilities, so we’re back to a random mixture of
deterministic strategies, a “local strategy”.
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Approximate quantum correlations
Typically we have X = Y , |X | = n and A = B , |A| = k .

Definition
Let Cloc(n , k) and Cq(n , k) be the sets of correlation functions
p(a , b|x , y) arising from local strategies, respectively, quantum
strategies.

Theorem (Bell 1964, CHSH 1969)
Cloc(n , k) ⊊ Cq(n , k) even for n = k = 2.

As these are spaces of functions from a finite set to [0, 1] there is a
topology, and we can define Cqa(n , k) to be the closure of Cq(n , k)
(i.e. correlations we can approximate by quantum correlations.)

Theorem (Slofstra, 2019)
Cq(n , k) ⊊ Cqa(n , k) for sufficiently large n , k.
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Commuting quantum correlations

We replace HA ⊗HB by some abstract Hilbert space H.

Then “Px
a ⊗ Qy

b ” no longer makes sense.

Instead, pick PVMs (Px
a )a∈A and (Qy

b )b∈B both acting on H, and
insist they pairwise commute: Px

a Qy
b = Qy

b Px
a for each a , b.

If H is still finite-dimensional, this gives us nothing new
(non-obvious. . . )
So, let H be infinite-dimensional. Cqc(n , k) is the resulting “quantum
commuting correlations”.

Theorem (Ji, Natarajan, Vidick, Yuen, 2022??)
MIP=RE∗ which implies Cqa(n , k) ⊊ Cqc(n , k) for large enough
n , k. As a corollary, the Connes Embedding problem is false.
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Non-signalling correlations

[Skip?]
Stepping away from quantum theory. . .

Definition
A correlation p(a , b|x , y) is non-signalling when:

1 (a , b) 7→ p(a , b|x , y) is a probability;
2 PA(a |x ) =

∑
b p(a , b|x , y) is independent of y ;

3 PB (b|y) =
∑

a p(a , b|x , y) is independent of x .

This captures the idea that Alice and Bob cannot communicate. I
imagine an “oracle” which Alice and Bob send their inputs x , y to, and
the oracle replies with a , b. That PA(a |x ) is well-defined means that
Alice cannot learn about y or b even by observing which values a she
gets from her inputs x .
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Back to graph colouring

We only look at perfect strategies, where Alice and Bob can always win.

V (a , b|x , y) = 0 =⇒ p(a , b|x , y) = 0.

Definition
Given a graph G let χ(G) be the chromatic number of G , the
smallest number of colours needed for a vertex colouring.
Let χt (G) be the smallest number of colours needed for a perfect
strategy for the graph colouring game, using t ∈ {loc, q , qa , qc}.

Proposition
χ(G) = χloc(G)
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Hadamard Graphs

The Hadamard graph ΩN has vertex set all vectors in {±1}N (so
|V | = 2N ) and u ∼ v when u · v = 0.

Theorem (DeKlerk–Pasechnik 2005)
χ(Ω16) ⩾ 29.

Theorem (Avis-Hagasawa-Kikuchi-Sasaki, 2006)
χq(ΩN ) ⩽ N for all (even) N .

Lots of recent work on χq .

I think that it’s not known if the graph colouring game can distinguish
q from qa (or qa from qc).
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Synchronous Games and algebras

As usual, X = Y ,A = B .

Definition
A game is synchronous when V (a , b|x , x ) = 0 whenever a ̸= b. (Same
question must lead to same answer.)

Theorem (Paulsen et al. 2016)
In a perfect (q, qa, qc) strategy for a synchronous game, we may
suppose that Px

a = Qx
a for all x and a.

If we consider the C ∗-algebra generated by all the Px
a , then

X 7→ (ψ|Xψ) is a trace.
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C ∗-algebras

We have a collection A of operators on a Hilbert space H (in
finite-dimensions, just a collection of square matrices) which is:

An algebra, so a vector space where multiplication makes sense:
x , y ∈ A =⇒ xy ∈ A;

self-adjoint, so x ∈ A =⇒ x ∗ ∈ A;

there is a norm: ∥x∥2 = ∥x ∗x∥ where x ∗x is positive (all
eigenvalues are positive) and ∥x ∗x∥ is the largest eigenvalue;

A is closed for the topology induced by this norm.

A trace is a (bounded) map τ : A → C with τ(xy) = τ(yx ).
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Game algebras

We can analyse a synchronous game G by looking at its “game algebra”
A(G).

This algebra is generated by elements ex ,a , for x ∈ X , a ∈ A, with
the relations:

▶ each ex ,a is a projection: ex ,a = e∗
x ,a = e2

x ,a ;
▶ for each x we have

∑
a ex ,a = 1.

with further relations that V (a , b|x , y) = 0 =⇒ ex ,aey,b = 0.

Aside: the algebra generated by projections e1, · · · , en with
∑

k ek = 1
is C ([n ]) ∼= C[Cn ] the group algebra of the cyclic group of order n , via
the Fourier transform. So the free algebra we consider is

C ([n ]) ⋆ · · · ⋆ C ([n ]) ∼= C(Cn ⋆ · · · ⋆ Cn)

the group algebra of a free product of cyclic groups.
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Building deterministic strategies

Let θ : A(G) → C be a unital ∗-homomorphism.

So θ(ex ,a) ∈ C is a projection, so must equal 0 or 1;

that
∑

a θ(ex ,a) = 1 means that for each x there is exactly one a
with θ(ex ,a) = 1; call this f (x ).

V (a , b|x , y) = 0 =⇒ θ(ex ,a)θ(ey,b) = 0 so a ̸= f (x ) or b ̸= f (y)
so (a , b) ̸= (f (x ), f (y))

contrapositive: (a , b) = (f (x ), f (y)) =⇒ V (a , b|x , y) = 1

that is, V (f (x ), f (y)|x , y) = 1 for all x , y .

i.e. f is a perfect deterministic strategy.

Similarly, a quantum strategy arises from a ∗-homomorphism
A(G) → Mn . A quantum commuting strategy arises from a
∗-homomorphism A(G) → A for some C ∗-algebra admitting a faithful
state. (qa strategies arise from Rω.)
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Graph homomorphism game

Consider now two graphs G = (VG ,EG) and H = (VH ,EH ). A
homomorphism is a function f : VG → VH with x ∼ y in G implying
that f (x ) ∼ f (y) in H .
We can define a game with input set VG and output set VH . Alice and
Bob need to convince the referee they really have a graph
homomorphism G → H , so

V (a , b|x , y) =


0 : x = y , a ̸= b,

0 : x ∼ y , a ≁ b,

1 : otherwise.

This game can distinguish qa and q (using an “artificial” graph built
from the binary constraint satisfaction game Slofstra used to show
Cqa ̸= Cq .)
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Graph isomorphism game
We now set both input and output sets to be VG ∪VH (disjoint union).
The players must convinced the referee they have an isomorphism
between the graphs. Classically this would be f : VG → VH so that
x , y ∈ VG have the same “relation” as f (x ), f (y) in VH .

“relation” means one of “equal”, “adjacent”, “not adjacent”.

The game algebra generators ex ,a form a square matrix which ends up
having the form

(ex ,a) =

[
0 f
f ⊤ 0

]
where f = (fx ,y)x∈VG ,y∈VH .

Then f is a “quantum permutation” aka “magic unitary”:

each entry fx ,y is a projection,

rows and columns sum to 1.

Finally, fAH = AG f where AG ,AH are the adjacency matrices of G ,H .
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To quantum groups
Consider O+

n the ∗-algebra generated by the entries of a quantum
permutation matrix of size n .

This has extra structure:

∆ : fx ,y 7→
∑
z

fx ,z ⊗ fz ,y , S(fx ,y) = fy,x , ϵ(fx ,y) = δx ,y

turn O+
n into a Hopf-algebra.

There is a tracial state which makes O+
n into a CQGA: the

algebraic version of a compact quantum group.

Compact quantum groups are non-commutative objects which
generalise the (commutative) function algebras on compact groups.
O+

n is the quantum permutation group, objects which have a rich
combinatorial structure.
Insisting that f commutes with AG , the adjacency matrix of a graph,
leads to a quotient algebra, the quantum automorphism group of G.
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Isomorphisms

So the graph isomorphism game is a natural generalisation of the
quantum automorphism group of a single graph.
Somewhat a surprise that the same idea turns up!

Theorem (Mančinska–Roberson)
For graphs G,H the following are equivalent:

G ,H are “quantum isomorphic”: there is a perfect qc strategy
for playing the graph isomorphism game;

for any planar graph K, the number of graph homomorphisms
from K to G, respectively H , agree.

The proof uses analysis of the representation theory of O+
n and related

ideas.

Matthew Daws Games to quantum groups April 2024 27 / 27


