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A biased coin?

I suspect a coin I have is biased. I toss it 12 times, and get

9 heads and 3 tails.

Before we begin, let's just think: do we think this data does support

the idea that the coin is biased in favour of heads?
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Coin example: the probabilities

We will assume that each toss of the coin is identical and independent.

So once we know the real chance of getting a head, p, we know

everything about the probabilities.

If we toss the coin N times then how can we get n heads (and so

N − n tails)? We need a bit of combinatorics: there are(
N

n

)
=

N !

n !(N − n)!

ways to get n heads is some order.

The probability of getting n heads is pn , and of getting N − n tails is

(1− p)N−n . So in total the probability is

f (n) =

(
N

n

)
pn(1− p)N−n .

This is the \binomial distribution".
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Likelihoods

Notice that

f (n) =

(
N

n

)
pn(1− p)N−n .

depends on p. As we don't know the value of p, it is better to include

it in the notation, and write f (n |p).

But we have our data: we know the value of n . And we don't know the

value of p.

So let's turn the notation around, and de�ne the likelihood of p as

lik(p) = f (n |p).
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Estimation

What value of p is \most likely", given our data?

A common way to answer this is via \maximum likelihood estimation".

We estimate p as

p̂ = argmaxp lik(p).

That is, our estimate p̂ is the value of p which gives the greatest

likelihood.

For practical calculations, looking at log lik(p) is usually easier.
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For the coin example

We have that

log lik(p) = log f (n |p) = log

(
N

n

)
pn(1− p)N−n

= log

(
N

n

)
+ n log(p) + (N − n) log(1− p).

Maximising over p:

d

dp
log lik(p) =

n

p
−

N − n

1− p
=

n(1− p) − p(N − n)

p(1− p)
=

n − pN

p(1− p)
.

The turning point is at n − pN = 0 so p̂ = n/N
[Maths hat on: we should check that this really is the maximum. It is!]
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Mean, standard deviation etc.

All the standard formulaes we know for means, standard deviations

etc. can be justi�ed using maximum likelihood, or small extensions.

So this gives a simple idea which can unify a lot of elementary

statistics.
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Hypothesis testing

The classical statistical approach is (Neyman{Pearson) hypothesis

testing. We formulate two hypotheses, which are asymmetric:

De�nition

H0 is the \null hypothesis" which is the \status quo".

H1 is the \alternative hypothesis" which is the sort of departure from

H0 which interests us.

H0 and H1 are sometimes mutually exclusive, but need not cover

all possible outcomes.

But sometimes H1 will simply be \anything is possible", against

some more speci�c H0.

Our aim is to perform a \statistical test" with the aim of (maybe)

\rejecting" H0 in favour of H1.
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Coin example: the setup

We are interested in what is the probability of getting a head. Let's

call this p. We shall then test

H0 : p = 1/2 against H1 : p 6= 1/2.

As we suspect that heads are more likely, we could instead test

H0 : p = 1/2 against H1 : p > 1/2.
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Type I and II errors

There are two possible errors we can make when performing a

hypothesis test:

H0 could be rejected when it is true (a type I error);

H0 could be accepted when it is false (a type II error).

As we think of H0 as the conservative / safe choice, we regard type I

errors as more serious than type II errors.

The probability of a type I error is also called the \size" or

\signi�cance level" of the test.

We typically construct tests by �xing a \size" we are happy with (e.g.

5%) and then �nding the test which the smallest type II error.
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p-values

In practise, almost all tests involve computing a \statistic" Z (some

value from the data) and rejecting H0 if Z is \large". Here \large" will

depend on the size of the test.

The interpretation is the following:

1 We assume H0 is true.

2 If H0 is true, then Z has a very small probability of being large.

3 If with our data Z does turn out to be large, then we think: that

was very unlikely if H0 were true, so we have evidence to reject H0.

Notice that H1 did not appear. We use H1 in the construction of the

test, but it is worth remembering that ultimately we are \rejecting H0"

and not \accepting H1".

The probability which occurs in (2) is the \p-value". It's the

probability, assuming H0 is true, of seeing data, as, or more, extreme,

than the data we have.
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Coin example: p-values

It seems intuitively obvious (and can be Mathematically justi�ed) that

when testing H0 : p = 1/2 against H1 : p 6= 1/2 we should reject H0 if

the observed number of heads (the value n) is very small or very large.

In our example, we had N = 12, and we can draw up a table of the

chance of getting n heads, assuming H0 holds:
n probability

0 0.000244141
1 0.002929688
2 0.016113281
3 0.053710938
4 0.120849609
5 0.193359375
6 0.225585938
7 0.193359375
8 0.120849609
9 0.053710938
10 0.016113281
11 0.002929688
12 0.000244141

We observed n = 9. Thus \extreme or

more" would be n = 9, 10, 11 or 12, or

also n = 3, 2, 1 or 0.

The total probability of these is 14.6%.

So we do not reject H0 at the 5% level.
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One-sided test

Maybe we prefer to test

H1 : p > 1/2.

This gives a \one-tailed test", so values as or more extreme that n = 9

are now only n = 10,n = 11,n = 12.

This gives the p-value of 7.3%. So we still do not reject H0.
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A di�erent experiment

I suspect a coin I have is biased. I toss it until I have seen

3 tails: I observe HHTHHHTHHHHT, which is 9 heads.

The probability model is now di�erent.

I am interested in the probability of seeing n heads before the 3rd

tail is thrown.

That's the same as tossing the coin n + 2 times and getting

exactly 2 tails, and then throwing a further tail.

f (n |p) =

(
n + 2

n

)
pn(1− p)2 × (1− p).

If H0 is true then

f (n) =

(
n + 2

n

)(1
2

)n+3
.
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New p-values

For the next experiment, we could get any number of heads before the

3rd tail, so \more extreme" now means obtaining 9 or more heads.

The sum of all these probabilities is 3.3%.

So the the 5% level this gives evidence to reject H0.

What's odd is that the data was exactly the same as before. So by

changing the experimental design, we seem to have changed the

statistical signi�cance of the result.

This seems like nonsense to me. (For example, suppose you were

spying on me tossing the coin, and your video link happened to break

exactly on the 12th throw. Should your interpretation of the data

change just because I may or may not have stopped the experiment

after you stopped watching?)
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Likelihoods and common tests

Almost all the standard textbook statistical tests arise from

\(Generalised) Likelihood Ratio Tests" where we compare the

likelihood of the data if H0 is true against the likelihood of the data if

H1 is true, and reject if this ratio is high.

What I like about this is that again you can use one simple principle

(which can even, under special conditions, be proved to be \the best

test") to justify a lot of elementary hypothesis testing.

Suddenly statistics does not seem as ad hoc as it might.
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Some messages about hypothesis testing

When you perform a test, say from a textbook, keep in mind:

What are the assumptions about the data? Are they appropriate?

What are H0 and H1.

Is rejecting or accepting H0 (against H1) actually what you want

to do?

Particularly important is what p-values are.

Suppose we �nd a p-value of 2%.

This means that, if H0 is true, then the chance of seeing data as or

more extreme than the data we have, is 2%.

This is absolutely not \the probability that H0 is true is 2%".

At the 5% level, even if H0 is true, we expect by chance alone to reject

H0 about 5% of the time. One in twenty times we'll get \a statistically

signi�cant" result just by luck.
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A better way: Bayesian statistics

Do we have time?
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A better way: Bayesian statistics
Remember the likelihood:

lik(p) = f (n |p).

What, intuitively, we want to know is \what is the probability

distribution of p, given the data we have?"

Bayes Theorem allows us to �nd this:

P(p|n) =
f (n |p)P(p)

P(n)
.

There are two problems:

What is P(p)? We need a \prior" belief about what p is. There is

a lot of literature on this, and I think it's considered less

philosophically suspect than it used to be.

What is P(n)? This is the \total probability" of seeing our data,

averaged over all possible values of p. Usually this is impossible to

�nd, except by complicated numerical methods. But in 2020 we

now have good software to do this sort of thing.
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For the coin example
We have

P(p|n) =
f (n |p)P(p)

P(n)
.

We know that p is a value between 0 and 1 and the total probability

should be 1, so ∫
1

0

P(p|n) dp = 1.

This allows us to calculate P(n) is a roundabout way. We know that

f (n |p) ∝ pn(1− p)N−n .

Let's impose a \uniform prior", P(p) = 1. This reects a lack of

knowledge about the coin before we did an experiment.

So P(p|n) = λpn(1− p)N−p for some constant λ chosen to make the

integral equal to one. It turns out that

λ =
n !(N − n)!

(N + 1)!
.
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For the coin example (cont.)

We have N = 12 and n = 9. Then P(p|n), the \posterior distribution",
looks like:

This distribution does suggest that the coin is biased.

Matthew Daws (UCLan) Statistics January 2020 21 / 21


