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Multipliers of Banach algebras

For a Banach algebra A, we always assume that A is faithful: if a ∈ A and
bac = 0 for all b, c ∈ A, then a = 0.

Recall that the multiplier algebra is M(A), consisting of pairs of maps (L,R) with
aL(b) = R(a)b for a, b ∈ A. If A is Arens regular and has a bounded approximate
identity,

M(A) =
{
x ∈ A∗∗ : xa, ax ∈ A (a ∈ A)

}
.

Homework: Let θ : A→ B(A) be the left-regular representation, θ(a) : b 7→ ab.
Show that we can identify M(A) with{

T ∈ B(A) : Tθ(a), θ(a)T ∈ θ(A) (a ∈ A)
}
.

For a locally compact group G , the algebra L1(G ) always has a contractive
approximate identity (so is faithful). The algebra A(G ) has a bounded
approximate identity only when G is amenable, but is always faithful.
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Multipliers of L1(G )

We identify M(G ) with the dual of C0(G ), and then our coproduct ∆ induces a
product on M(G ):

〈µ ∗ λ, f 〉 =

∫
G×G

f (st) dµ(s) dλ(t) (f ∈ C0(G ), µ, λ ∈ M(G )).

Theorem
For any locally compact group G, we have an isometric isomorphism between
M(L1(G )) and M(G ).

Proof.

We embed L1(G ) into C0(G )∗ = M(G ) by integration. Then L1(G ) is an ideal in
M(G ), so we get a contraction M(G )→ M(L1(G )). Conversely, given
(L,R) ∈ M(L1(G )), let (eα) be a cai for L1(G ), and define µ ∈ M(G ) to be the
weak∗-limit of L(eα).
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Multipliers of A(G )

Theorem

Let A ⊆ C0(G ) be a sub-algebra such that:

A is a Banach algebra for some norm such that the inclusion A→ C0(G ) is
continuous;

for each s ∈ G there exists a ∈ A with a(s) = 1 and ‖a‖ ≤ 2;

for each s ∈ G there is an open set U containing s, and a ∈ A with a|U ≡ 1.

Then we can identify M(A) with {f ∈ C b(G ) : fa ∈ A (a ∈ A)}.

Proof.

As A is commutative, M(A) = {T : A→ A : T (ab) = T (a)b (a, b ∈ A)}. The
rest is homework.

Observe that A(G ) satisfies all these conditions. Observe that
M(C00(G )) = C (G ), the algebra of all continuous functions.
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Completely bounded multipliers of A(G )

We see that

M(A(G )) = {T ∈ B(A(G )) : T (ab) = T (a)b (a, b ∈ A(G ))}
= {f ∈ C b(G ) : fa ∈ A(G ) (a ∈ A(G ))}.

Given T ∈ M(A(G )), we see that T ∗ ∈ B(VN(G )). Hence

I ⊗ T ∗ : Mn ⊗ VN(G ) = Mn(VN(G ))→ Mn(VN(G )),

where Mn(VN(G )) is a von Neumann algebra acting on `2n ⊗ L2(G ).

We say that T is completely bounded if I ⊗ T ∗ is bounded, uniformly in n ∈ N.
Write McbA(G ) for the algebra of such multipliers.

So, formally, McbA(G ) is a subalgebra of C b(G ). Can we find a characterisation
which doesn’t involve maps on VN(G )?
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Gilbert’s Theorem

Theorem

Let f ∈ C b(G ). The following are equivalent:

1 f ∈ McbA(G );

2 there exists a Hilbert space K, and bounded continuous maps α, β : G → K,
such that f (st−1) = (α(s)|β(t)) for s, t ∈ G.

Proof.

See Jolissaint, 1992. (History: Jolissaint points us to Cowling and Haagerup,
Inventiones, 1989. They point us to Bozejko and Fendler, 1984, who attribute the
result to Gilbert, unpublished, late 70s).
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Completely bounded maps
Remember that a map T from a C∗-algebra A to B(H) is completely bounded if
and only if we can find a ∗-representation π : A→ B(K ) and bounded maps
P,Q : H → K with

T (x) = Q∗π(x)P (x ∈ A).

So, suppose we have α, β : G → K bounded and continuous with

f (st−1) =
(
α(s)

∣∣β(t)
)

(s, t ∈ G ).

Then define α̃ : L2(G )→ L2(G ,K ) = L2(G )⊗ K by α̃(ξ) = (ξ(r)α(r))r∈G .
Notice then that

(λ(s)⊗ 1)α̃(ξ) =
(
ξ(s−1r)α(s−1r)

)
r∈G

(s ∈ G ).

If we form β̃ similarly, then we can define a completely bounded map
T : VN(G )→ B(L2(G )) by

T (x) = β̃∗(x ⊗ 1)α̃ (x ∈ VN(G )).

Notice that T is clearly normal.
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Easy direction continued

Then for ξ, η ∈ L2(G ) and s ∈ G ,(
T (λ(s−1))ξ

∣∣η) =
(
β̃∗(λ(s−1)⊗ 1)α̃ξ

∣∣η)
=

∫
G

(
ξ(sr)α(sr)

∣∣η(r)β(r)
)

dr

=

∫
G

ξ(sr)η(r)(α(sr)|β(r)) dr

= f (srr−1)

∫
G

ξ(sr)η(r) dr = f (s)
(
λ(s−1)ξ

∣∣η).
Thus T (λ(s−1)) = f (s)λ(s−1). As T is normal, it follows that T maps into
VN(G ).

Remember that A(G )→ C0(G ) is the map ωξ,η 7→
(
(λ(s−1)ξ|η)

)
s∈G

. It follows
that T is the adjoint of the multiplier induced by f . Thus f is completely
bounded.
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The converse
Now suppose that f is completely bounded, say inducing T : VN(G )→ VN(G )
which has the form

T (x) = Q∗π(x)P (x ∈ VN(G )),

where π : VN(G )→ B(K ) is a ∗-representation. As T is normal, we may suppose
that π is too. Notice that we may assume that π(1) = 1. Then the map
σ : G → B(K ); s 7→ π(λ(s)) is a continuous unitary representation. Now notice
that for s ∈ G and ω ∈ A(G ),

f (s)〈λ(s−1), ω〉 = 〈λ(s−1), f ω〉 = 〈T (λ(s−1)), ω〉 = 〈Q∗π(λ(s−1))P, ω〉,

and so Q∗σ(s)P = f (s−1)λ(s). Pick ξ0 ∈ L2(G ) a unit vector, and define

α(s) = σ(s−1)Pλ(s)ξ0, β(s) = σ(s−1)Qλ(s)ξ0 (s ∈ G ).

Thus, for s, t ∈ G ,(
α(s)

∣∣β(t)
)

=
(
Q∗σ(t−1)∗σ(s−1)Pλ(s)ξ0

∣∣λ(t)ξ0
)

= f (st−1)
(
λ(ts−1)λ(s)ξ0

∣∣λ(t)ξ0
)

= f (st−1).
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Hilbert C∗-modules

We have seen that the space C b(G ,K ) is very useful. How can we think about
this abstractly?

Let A be a C∗-algebra. A pre-Hilbert C∗-module over A is a right A-module E
where E admits an A-valued sesquilinear map satisfying:

1 (x |·) is a linear map E → A and (x |y)∗ = (y |x);

2 (x |x) ≥ 0 in the C∗-algebra sense, and (x |x) = 0 =⇒ x = 0;

3 (x |y · a) = (x |y)a.

Henceforth all inner-products will be linear on the right.

We can define a norm on E by ‖x‖ = ‖(x |x)‖1/2A ; this is a norm, which follows by
first showing a Cauchy-Schwarz inequality for (·|·). When E is complete, we say
that E is Hilbert C∗-module.

Notice that
‖x · a‖2 = ‖(x · a|x)a‖ = ‖(x |x · a)∗a‖ = ‖a∗(x |x)a‖ ≤ ‖(x |x)‖‖a∗a‖ = ‖x‖2‖a‖2.
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Examples

If A = C, then we just recover the notion of a Hilbert space.

Given A, we can turn A into a Hilbert C∗-module over itself by defining
(a|b) = a∗b.

Let K be a Hilbert space, and form the algebraic tensor product A� K .
This becomes a pre-Hilbert C∗-module for(

a⊗ ξ
∣∣b ⊗ η) = a∗b(ξ|η),

with the module action (a⊗ ξ) · b = ab ⊗ ξ.

To show that this is positive definite, notice that we can write any tensor in
A� K as

∑
ak ⊗ ξk with the (ξk) being orthonormal. Then the

inner-product is
∑

k a∗kak ≥ 0.

Let A⊗ K be the completion of A� K .

Indeed, if (ei ) is an orthonormal basis for K , then A⊗ K consists of those
families (ai ) in A such that

∑
i a
∗
i ai converges in A (notice that this is

weaker than
∑

i ‖ai‖2 <∞).
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Morphisms

Let E and F be Hilbert C∗-modules over A. A map T : E → F is adjointable if
there exists a map T ∗ : F → E with(

T (x)
∣∣y) =

(
x |T ∗(y)

)
(x ∈ E , y ∈ F ).

Homework: Show that T and T ∗ are linear, and using the Closed Graph
Theorem, that T and T ∗ are bounded. Show furthermore that T and T ∗ are
A-module maps.

Unlike for Hilbert spaces, if T is bounded and linear (and an A-module map) then
we cannot always find T ∗.

Clearly T ∗∗ = T , and it’s easy to see that ‖T ∗T‖ = ‖T‖2. We write L(E ,F ) for
the collection of adjointable maps E → F . Then L(E ) is a C∗-algebra.

Consider the “finite-rank” map

θx,y : E → F ; z 7→ x · (y |z) (z ∈ E ),

where x ∈ F and y ∈ E . This is adjointable, because θ∗x,y = θy ,x . Let K(E ) be
the closure of the linear span of such maps in L(E ,F ).
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Links with multipliers

Theorem

Consider A as a module over itself. Then K(A) ∼= A and L(A) ∼= M(A).

Proof.

Let a, b ∈ A, so that θa,b(c) = a(b|c) = ab∗c , and hence θa,b is left multiplication
by ab∗. As A has an approximate identity, it’s not hard to see that K(A) ∼= A.
Given T ∈ L(A), define (L,R) ∈ M(A) by

L(a) = T (a), R(a) = T ∗(a∗)∗ (a ∈ A).

Then a∗L(b) = (a|T (b)) = (T ∗(a)|b) = T ∗(a)∗b = R(a∗)b. So we have a map
L(A)→ M(A). This is onto, as given (L,R) ∈ M(A), the map L is adjointable,
with L∗(a) = R(a∗)∗.

For general E , we have that K(E ) is an ideal in L(E ), and, considering K(E ) as a
C∗-algebra, we have that M(K(E )) ∼= L(E ).
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Links with continuous functions

Theorem

We can identify C0(G )⊗ K with C0(G ,K ).

Proof.

Algebraically, we identify f ⊗ ξ with (f (s)ξ)s∈G . Then∥∥∥∑
k

fk ⊗ ξk
∥∥∥2

=
∥∥∥∑

j,k

f ∗j fk(ξj |ξk)
∥∥∥

C0(G)
= sup

s∈G

∣∣∣∑
j,k

fj(s)fk(s)(ξj |ξk)
∣∣∣

= sup
s∈G

∣∣∣∑
j,k

(
fj(s)ξj

∣∣fk(s)ξk
)∣∣∣ = sup

s∈G

∥∥∥∑
k

fk(s)ξk

∥∥∥2

.

Finally, a partition of unity argument shows that the image of C0(G )�K is dense
in C0(G ,K ).
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For morphisms

Theorem

We can identify L(C0(G ),C0(G )⊗ K ) with C b(G ,K ).

Proof.

Given F ∈ C b(G ,K ), we define T : C0(G )→ C0(G ,K ) by
T (f ) =

(
f (s)F (s)

)
s∈G

. This is adjointable, with T ∗(g) =
(
(F (s)|g(s))

)
s∈G

for

g ∈ C0(G ,K ).
Conversely, given T : C0(G )→ C0(G ,K ) adjointable, notice that

T ∗(g)(s)f (s) = (T ∗(g)|f )(s) = (g |T (f ))(s) = (g(s)|T (f )(s)) (s ∈ G ).

It follows that if f1(s) = f2(s) = 1, then (g(s)|T (f1)(s)) = (g(s)|T (f2)(s)) for all
g ; thus T (f1)(s) = T (f2)(s). Let this be F (s), so T (f ) = fF . Similar arguments
show that F is continuous, and bounded.
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More links between multipliers and adjointable maps

Theorem

We have that K(A⊗ K ) ∼= A⊗min B0(K ) as C∗-algebras, and thus
L(A⊗ K ) ∼= M(A⊗min B0(K )).

Proof.
Algebraically, we define

Θ : θa⊗ξ,b⊗η 7→ ab∗ ⊗ θξ,η,

where θξ,η : K → K ; γ 7→ ξ(η|γ), so θξ,η ∈ B0(K ). It’s easy to see that this
defines a homomorphism between a dense subalgebra of K(A⊗ K ) and a dense
subalgebra of A⊗ B0(K ).
So it remains to show that Θ is an isometry (or at least bounded) and so extends
by continuity: this I believe is tricky! (See [Lance]).
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Back to groups

Remember that we have W ∈ M
(
C0(G )⊗ B0(H)

)
for H = L2(G ),

W ξ(s, t) = ξ(s, s−1t) (s, t ∈ G ).

Thus W induces some

W ∈ L(C0(G )⊗ H) = L
(
C0(G ,H)

)
.

Homework: follow the isomorphisms through to show that

W : f 7→
(
λ(s)f (s)

)
s∈G

(f ∈ C0(G ,H)).

(Indeed, if H is any Hilbert space, and σ is a unitary representation of G on H,
then we can define V ∈ L

(
C0(G ,H)

)
in the same way f 7→ (σ(s)f (s))s∈G . This

induces a unitary V ∈ M(C0(G )⊗ B0(H)): this is the notion of a
corepresentation.)

Matthew Daws (Leeds) Locally compact groups and duality June 2010 17 / 20

Slicing

Given ξ ∈ K , we can define

ι⊗ ξ : A⊗ K → A; a⊗ η 7→ a(ξ|η).

This is adjointable with

(ι⊗ ξ)∗ : A→ A⊗ K ; a 7→ a⊗ ξ.

(This requires a small amount of work: homework!)

Fix a unit vector ξ0 ∈ K . Using these maps, we can view L(A,A⊗ K ) as a
complemented submodule of L(A⊗ K ):

L(A,A⊗ K )→ L(A⊗ K ); α 7→ α(ι⊗ ξ0),

L(A⊗ K )→ L(A,A⊗ K ); T 7→ T (ι⊗ ξ0)∗,

which follows, as (ι⊗ η)(ι⊗ ξ)∗ = (η|ξ) idA.
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Applications

Let α ∈ L(A,A⊗ K ) and T ∈ L(A⊗ K ) be related by α = T (ι⊗ ξ0)∗. Let
A ⊆ B(H). As L(A⊗ K ) ∼= M(A⊗ B0(K )), let T be related to
T ∈ M(A⊗ B0(K )) ⊆ B(H ⊗ K ).

We can define an operator α̃ : H → H ⊗ K by α̃(ξ) = T (ξ ⊗ ξ0). Then:

I α̃ only depends upon α (and not T ).
I Infact, α̃∗α̃ = α∗α ∈ L(A) ∼= M(A) ⊆ B(H).
I This is the generalisation of the way we moved from C b(G ,K ) to
B(L2(G ), L2(G ,K )).

Given a non-degenerate ∗-homomorphism φ : A→ B, we can extend φ⊗ ι
to multiplier algebras, and hence define S = (φ⊗ ι)T ∈ M(B ⊗ B0(K )).
Form S using S , and let φ ∗ α = S(ι⊗ ξ0)∗ ∈ L(B,B ⊗ K ). Then:

I φ ∗ α only depends upon α, not T .
I indeed, for any ξ ∈ K , we have that (ι⊗ ξ)(φ ∗ α) = φ

(
(ι⊗ ξ)α

)
in

L(B).
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Example
For example, we can apply the second construction to ∆ to give a map

L(C0(G ),C0(G )⊗ K )→ L(C0(G × G ),C0(G × G )⊗ K ); α 7→ ∆ ∗ α.

This is just the map

C b(G ,K )→ C b(G × G ,K ); α 7→
(
α(st)

)
(s,t)∈G×G

.

Gilbert’s theorem asks that

f (st−1) =
(
β(t)

∣∣α(s)
)

(s, t ∈ G ).

(Remember: inner-products are linear on the right now!) This is equivalent to

f (r) =
(
β(s)

∣∣α(rs)
)

(s, r ∈ G ).

In our abstract language, we get

(1⊗ β)∗(∆ ∗ α) = f ⊗ 1 ∈ M(C0(G )⊗ C0(G )) = C b(G × G ).
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