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Recall: Topological centres

Let A be a Banach algebra with a faithful multiplication. Left
and right Arens products on A** extend the multiplication on A.

@ The left and right topological centres of A** are
3i(A™,0) = {me A*: n— mOn is w*-w* cont.},
(A, ) = {me A n— ndm is w*-w* cont.}.

@ The canonical quotient map q : A** — (A*A)* yields

(A*A*.0) = (A*,0)/(AAL.

@ The topological centre of (A*A)* is

3i((A*AY*) = {me (A*A)* : n— mOnis w*-w* cont.}.



Algebraic descriptions of topological centres

@ We have
3i(A*,.0) = {me A*: mOn=m{n ¥V ne A*},
3t(A*, ) = {me A : nOm=ndm V ne A}
@ If (A*A) is two-sided introverted in A*, then < is also
defined on (A*A)*. In this case,
3i((A*AY*) = {me (A*AY*: mOn=m{n ¥V ne (A*A)*}.

@ Question: In general, can 3;((A*A)*) also be described
in terms of TWO products?



Right-left subalgebras and quotient algebras

We define Ag = {me A™: (A*A)Om C (A*A)}.
@ Ay is a subalgebra of (A**, {).
@ Let (A*A); = q(AR) = {me (A*A)* : (A*A)Om C (A*A)}.
Then
((A* AR, ©) = (AR, O)/(AA)*.
(A*A)g = (A*A)* iff (A*A) is two-sided introverted in A*.

@ Both A5 and (A*A)x are left topological semigroups.
We can also consider 3:(Ag) and 3:((A*A)j).

@ More general, for any left introverted subspace X of A*,

the algebra Xj; can be defined.



An algebraic description of 3;((A*A)*)

Proposition. (H.-N.-R.) Let A be a Banach algebra. Then

3t((A*A)*) = {me (A*A)g: mOn = mGn ¥V nec (A*A)*}.
Corollary. If me (A*A)*, then
m e 3:((A*A)*) <= A-mC 3(A™.0).

Corollary. If (A%2) = A (e.g., A= L{(G)), then

A3(A*O)CA < A 3((AA*) CA.



Strong identity of (A*A)*

@ Recall: If (A%) = A, then A has a BRAI iff (A*A)* is unital
(Grosser-Losert 84).

So, a LCQG G is co-amenable iff (LUC(G)*,0) is unital, where
LUC(G) = (Loo(G) % Ly (G)).

@ If eis an identity of ((A*A)*,0), then e is a left identity of
({(A*A)R, ©).

@ e c (A*A)* is called a strong identity if e is an identity of
((A*A)*,0) and an identity of ((A*A)g, ¢).



When does (A*A)* have a strong identity?

Proposition. (H.-N.-R.) Suppose that (A?)

(i) (A*A)* has a strong identity;
(ii) (A*A)j is right unital;
)
)

(iii
(iv) id € 3:((A*A)R),

Ahas a BRAl and (A*A) = (AA*A);

where (A*A)* C B(A*) canonically.

=A TFAE.



SIN quantum groups

@ Recall: ALCG Gis SIN if eg has a basis of compact sets
invariant under inner automorphisms.

It is known that G is SIN iff LUC(G) = RUC(G) (Milnes 90).

@ ALCQG G is called SIN if LUC(G) = RUC(G).

This class includes: discrete, compact, co-commutative G,
and G with L{(G) having a central approximate identity.
Corollary. T.FA.E.
() G is a co-amenable SIN quantum group;
(i) LUC(G)p is right unital;
(i) LUC(G)* has a strong identity;
)

(iv) id € 3:(LUC(G)R) -



The commutative quantum group case

Let G be a locally compact group.
@ Recall: For me LUC(G)* and f € LUC(G),
mi(f)(s) = (m,f) (s€G).
Zy(G) .= {me LUC(G)* : m,(f) € LUC(G) V f € LUC(G)}.
@ For f € LUC(G), me Zy(G), and n e LUC(G)*, let
(f,mxn) .= (m(f),n).

Then (Zy(G), ) is a Banach algebra.



The commutative quantum group case

@ 3 (LUC(G)*) = {me Zy(G) : mOn = mxnVn e LUC(G)*}
(Lau 86).

By our algebraic description of 3:((A*A)*), we obtained

3((LUC(G)*) = {m € LUC(G)% : mOIn = m&nvn € LUC(G)*}.

@ Question: Do we have (LUC(G)g, <) = (Zu(G),*)?

@ Answer: They are equal iff G is SIN.



The commutative quantum group case

@ Note that for any Banach algebra A and any left introverted

subspace X of A*, the algebra X5 can be defined.

We shall see that Z;(G) has the form Xj.
@ LUCy (G) := LUC(G) as a subspace of /.(G).

@ LUC, _(G)is leftintroverted in (o (G) = ¢1(G)*.

Then (LUC, (G)*,0y,) and (LUC,__(G)x, ¢, ) are defined.

So, there are five Banach algebras associated with LUC(G) - - -



The five Banach algebras associated with LUC(G)

In general, we have (LUC, _(G)*,0,) = (LUC(G)*,0);
(2u(G),*) = (LUC1 (G), Ory) # (LUC(G)R, <)

@ So, (Zy(G), ) has the form (X5, ).

It can be seen that T.F.A.E.
(i) LUC(G)* = LUC(G)R;
(i) Gis SIN;
(i) LUC, (G)* = LUC,_(G)%.

Note that the equalities in (i) and (iii) are equalities of SPACES.



Some algebraic characterizations of SIN groups

Theorem. (H.-N.-R.) Let G be a locally compact group. T.F.A.E.
(i) Gis SIN;

(i) (LUC(G)R, <) = (Zu(G),#);

(i) LUC(G)g is a subalgebra of Zy(G);

(iv) de € 3t(LUC(G)R);

(v) (LUC(G)g, <) is unital;

(vi) LUC(G)* has a strong identity.

@ In (iv), (v), LUC(G)5 cannot be replaced by Z,(G),

since Je is always an identity of (Zy(G), *).



Compact and discrete groups

@ In general, the three algebras (LUC(G)*,0),
(LUC(G)R, <€), and (Zy(G), x) are different.

@ G iscompact < (LUC(G)*,0) = (LUC(G)R, <)

In this case, (LUC(G)*,0) = (LUC(G)x, ¢) = (Zu(G), *) .

o Gisdiscrete «— (UC(G)*,0) = (UC(G)x, O).

@ The equivalence holds for some general quantum groups.



An auxiliary topological centre of (A*A)* — motivation

@ Some asymmetry phenomena (Lau-Ulger 96; H.-N.-R.):
3i({(A*A)") = AM(A) <= A-3:(A™,0) C A;
(A 0)=A << 3(A*0)-ACA.
@ Interrelationship between topological centre problems:
me 3((A*A*) = A-mC 3(A*,0);
me? =  A-mC 3(A™, ).

@ Automatic normality problem for certain right
A-module maps on A*.



An auxiliary topological centre of (A*A)*

One subspace of (A*A)* can help for all of these problems.

Definition. (H.-N.-R.) For a Banach algebra A, the auxiliary
topological centre of (A*A)* is defined by

3t((A*A)* ) = {m € (A*A)* : ndm = nOmin A**Vn € (A**A)}.
Similarly, 3:((AA*)*), can be defined.
® 3:((A"A)")o = 3t({(A"A)") If 3¢(A™, 1) = 3:(A™, ) .

@ Under the canonical quotient map q : A** — (A*A)*,

(A, 0) — 3((A*A)*),  31(A™,0) — 31((A* A ), .



3t((A*AY*),, —some applications

@ Forme (A*A)*, we have
m e 3;((A*A)*) < A-mC 3;(A*,0);

m e 3:((A*A)")e <= A-mC 3(A™, ).

o If (A2 =A (e.g., A= Li(G)), then
A 3 (A4 0)CA <= A 3((AA") CA;

A-3(A*,0)CA <« A 3 ((A*A*), C A.



3t((A*A)*), — some applications

Proposition. (H.-N.-R.) If Ais of type (M), then

JATO)=A = 3:((AA)"), = LM(A);

AT 0)=A = 3((AA)")o = RM(A).

@ Surprisingly, LSAI and RSAI of A are not related to the
usual topo centres 3;((A*A)*) and 3:((AA*)*), but related
and 3:((A*A)*) .

to auxiliary topo centres 3:((AA*)*),



3t((A*AY*),, —some applications

Corollary. If Ais of type (M) with 3;(A**,0) = 3:(A*, )

(e.g., A is commutative), then

AisSAl <=  3,((A*A)*) = RM(A).

@ “<—="was shown by Lau-Losert (93) for A(G) with G

amenable.

@ There exist unital WSC Banach algebras A such that
3t(A™,0) = A G 31(A*,$). Inthis case, the above

equivalence does not hold.



Module homomorphisms on A*

Ba(A*) := bounded right A-module maps on A*.
B3(A*) := normal bounded right A-module maps on A*.

Ba«+(A*) := bounded right (A**, {>)-module maps on A*.

o RM(A) = B5(A*) C Ba-(A*) C Ba(AY).

In fact, we have

Bp-+(A") = {T € Ba(A") : T*(A) € 3:(A™, O)}-



The canonical representation of (A*A)* on A*

@ Let d: (A*A)* — Ba(A*) be the contractive and injective

algebra homo m+~— m;, where m;(f) = mOf.

Then @ is surjective if A has a BRAI.

@ Let Abe a completely contractive Banach algebra. Then
d: (A*A)* — CBa(A%)
is a c.c. algebra homomorphism. If A has a BRAI, then
O((A*A)*) C CBa(A") C Ba(A*) = O((A*A)%);
in this case, we have

Ba(A*) = CBa(A*) and RM(A) = RMy(A).



Topological centres and automatic normality

Using the canonical repn ¢ : (A*A)* — Ba(A*), we can study
Arens irregularity properties of A through module maps on A*.

For example, we have the following generalization of a result by
Neufang (00) on L¢(G).

Proposition. (H.-N.-R.) If Ais of type (M). T.FA.E.
(i) 3t(A™, Q) = A;

(i) Bas=(A*) = B3(A*).



Commutation relations

Consider the two sequences:
Ba(A") S Ba=(A") C Ba(AY);
AB(A®)® C a=B(A")° C aB7(AY)°,

where “c” denotes commutant in B(A*).

o If (A%) = A, then

B3(A") € aB(A*)° C Baes (A") C Ba(A")
= pe B(A*)C = 4B (A)C .
@ If A has a BLAI, then

Ba(A*) C aB(A*)¢ = Ba-(A*) C Ba(A)
— e B(AY) = AB7(A%)C.



SAl and bicommutant theorem

In the following, LM(A), RM(A) C B(A*).

Proposition. (H.-N.-R.) Let A be a Banach algebra of type (M).
(i) AisLSAl < LM(A)*° =LM(A);
(i) Ais RSAl < RM(A)*° = RM(A).

@ There is even a unital WSC A which is LSAI but not RSAI.

So, the above bicommutation relations are not equivalent.

Corollary. Let A be a unital WSC involutive Banach algebra
(e.g., A= Ly(G) of discrete G). Then

Ais SAl — A = A.



The convolution quantum group algebra case

Let G be a LCQG. In the following, “c” is taken in B(L(G)).

Corollary. If L1(G) separable, T.FA.E.

(i) G is co-amenable and L{(G) is SAI.

Proposition. (H.-N.-R.)

Gis compact <— RM(L{(G))° = LM(L(G)).



The Fourier algebra case

Corollary. Let G be a locally compact group.
(i) B(G)°° = B(G) < G is amenable and A(G) is SAl.

(i) A(G)*° = A(G) < G is compact and A(G) is SAI.

(1) B(G)° = B(G) — G is amenable and discrete.

(2) A(G)° = A(G) < G isfinite.

@ The above B(G) can also be replaced by B, (G).



