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Recall: Topological centres

Let A be a Banach algebra with a faithful multiplication. Left
and right Arens products on A∗∗ extend the multiplication on A.

The left and right topological centres of A∗∗ are

Zt (A∗∗,�) = {m ∈ A∗∗ : n 7−→ m�n is w∗-w∗ cont.},

Zt (A∗∗,♦) = {m ∈ A∗∗ : n 7−→ n♦m is w∗-w∗ cont.}.

The canonical quotient map q : A∗∗ −→ 〈A∗A〉∗ yields

(〈A∗A〉∗,�) ∼= (A∗∗,�)/〈A∗A〉⊥ .

The topological centre of 〈A∗A〉∗ is

Zt (〈A∗A〉∗) = {m ∈ 〈A∗A〉∗ : n 7−→ m�n is w∗-w∗ cont.}.



Algebraic descriptions of topological centres

We have

Zt (A∗∗,�) = {m ∈ A∗∗ : m�n = m♦n ∀ n ∈ A∗∗},

Zt (A∗∗,♦) = {m ∈ A∗∗ : n�m = n♦m ∀ n ∈ A∗∗}.

If 〈A∗A〉 is two-sided introverted in A∗, then ♦ is also
defined on 〈A∗A〉∗. In this case,

Zt (〈A∗A〉∗) = {m ∈ 〈A∗A〉∗ : m�n = m♦n ∀ n ∈ 〈A∗A〉∗}.

Question: In general, can Zt (〈A∗A〉∗) also be described
in terms of TWO products?



Right-left subalgebras and quotient algebras

We define A∗∗R := {m ∈ A∗∗ : 〈A∗A〉♦m ⊆ 〈A∗A〉}.

A∗∗R is a subalgebra of (A∗∗,♦).

Let 〈A∗A〉∗R := q(A∗∗R ) = {m ∈ 〈A∗A〉∗ : 〈A∗A〉♦m ⊆ 〈A∗A〉}.

Then

(〈A∗A〉∗R,♦) ∼= (A∗∗R ,♦)/〈A∗A〉⊥ .

〈A∗A〉∗R = 〈A∗A〉∗ iff 〈A∗A〉 is two-sided introverted in A∗.

Both A∗∗R and 〈A∗A〉∗R are left topological semigroups.

We can also consider Zt (A∗∗R ) and Zt (〈A∗A〉∗R) .

More general, for any left introverted subspace X of A∗,

the algebra X ∗R can be defined.



An algebraic description of Zt(〈A∗A〉∗)

Proposition. (H.-N.-R.) Let A be a Banach algebra. Then

Zt (〈A∗A〉∗) = {m ∈ 〈A∗A〉∗R : m�n = m♦n ∀ n ∈ 〈A∗A〉∗}.

Corollary. If m ∈ 〈A∗A〉∗, then

m ∈ Zt (〈A∗A〉∗) ⇐⇒ A ·m ⊆ Zt (A∗∗,�) .

Corollary. If 〈A2〉 = A (e.g., A = L1(G)), then

A · Zt (A∗∗,�) ⊆ A ⇐⇒ A · Zt (〈A∗A〉∗) ⊆ A .



Strong identity of 〈A∗A〉∗

Recall: If 〈A2〉 = A, then A has a BRAI iff 〈A∗A〉∗ is unital
(Grosser-Losert 84).

So, a LCQG G is co-amenable iff (LUC(G)∗,�) is unital, where
LUC(G) = 〈L∞(G) ? L1(G)〉.

If e is an identity of (〈A∗A〉∗,�), then e is a left identity of
(〈A∗A〉∗R,♦).

e ∈ 〈A∗A〉∗ is called a strong identity if e is an identity of
(〈A∗A〉∗,�) and an identity of (〈A∗A〉∗R,♦).



When does 〈A∗A〉∗ have a strong identity?

Proposition. (H.-N.-R.) Suppose that 〈A2〉 = A. T.F.A.E.

(i) 〈A∗A〉∗ has a strong identity;

(ii) 〈A∗A〉∗R is right unital;

(iii) A has a BRAI and 〈A∗A〉 = 〈AA∗A〉;

(iv) id ∈ Zt (〈A∗A〉∗R),

where 〈A∗A〉∗ ⊆ B(A∗) canonically.



SIN quantum groups

Recall: A LCG G is SIN if eG has a basis of compact sets
invariant under inner automorphisms.

It is known that G is SIN iff LUC(G) = RUC(G) (Milnes 90).

A LCQG G is called SIN if LUC(G) = RUC(G) .

This class includes: discrete, compact, co-commutative G,
and G with L1(G) having a central approximate identity.

Corollary. T.F.A.E.

(i) G is a co-amenable SIN quantum group;

(ii) LUC(G)∗R is right unital;

(iii) LUC(G)∗ has a strong identity;

(iv) id ∈ Zt (LUC(G)∗R) .



The commutative quantum group case

Let G be a locally compact group.

Recall: For m ∈ LUC(G)∗ and f ∈ LUC(G),

mr (f )(s) := 〈m, fs〉 (s ∈ G) .

ZU(G) := {m ∈ LUC(G)∗ : mr (f ) ∈ LUC(G) ∀ f ∈ LUC(G)}.

For f ∈ LUC(G), m ∈ ZU(G), and n ∈ LUC(G)∗, let

〈f ,m ∗ n〉 := 〈mr (f ),n〉 .

Then (ZU(G), ∗) is a Banach algebra.



The commutative quantum group case

Zt (LUC(G)∗) = {m ∈ ZU(G) : m�n = m∗n ∀n ∈ LUC(G)∗}

(Lau 86).

By our algebraic description of Zt (〈A∗A〉∗), we obtained

Zt (LUC(G)∗) = {m ∈ LUC(G)∗R : m�n = m♦n ∀n ∈ LUC(G)∗}.

Question: Do we have (LUC(G)∗R,♦) = (ZU(G), ∗) ?

Answer: They are equal iff G is SIN.



The commutative quantum group case

Note that for any Banach algebra A and any left introverted

subspace X of A∗, the algebra X ∗R can be defined.

We shall see that ZU(G) has the form X ∗R.

LUC`∞(G) := LUC(G) as a subspace of `∞(G).

LUC`∞(G) is left introverted in `∞(G) = `1(G)∗ .

Then (LUC`∞(G)∗,�`1) and (LUC`∞(G)∗R,♦`1) are defined.

So, there are five Banach algebras associated with LUC(G) · · ·



The five Banach algebras associated with LUC(G)

In general, we have (LUC`∞(G)∗,�`1) = (LUC(G)∗,�) ;

(ZU(G), ∗) = (LUC`∞(G)∗R,♦`1) 6= (LUC(G)∗R,♦) .

So, (ZU(G), ∗) has the form (X ∗R,♦).

It can be seen that T.F.A.E.

(i) LUC(G)∗ = LUC(G)∗R ;

(ii) G is SIN;

(iii) LUC`∞(G)∗ = LUC`∞(G)∗R .

Note that the equalities in (i) and (iii) are equalities of SPACES.



Some algebraic characterizations of SIN groups

Theorem. (H.-N.-R.) Let G be a locally compact group. T.F.A.E.

(i) G is SIN;

(ii) (LUC(G)∗R,♦) = (ZU(G), ∗) ;

(iii) LUC(G)∗R is a subalgebra of ZU(G) ;

(iv) δe ∈ Zt (LUC(G)∗R) ;

(v) (LUC(G)∗R,♦) is unital;

(vi) LUC(G)∗ has a strong identity.

In (iv), (v), LUC(G)∗R cannot be replaced by ZU(G) ,

since δe is always an identity of (ZU(G), ∗) .



Compact and discrete groups

In general, the three algebras (LUC(G)∗,�) ,
(LUC(G)∗R,♦), and (ZU(G), ∗) are different.

G is compact ⇐⇒ (LUC(G)∗,�) = (LUC(G)∗R,♦) .

In this case, (LUC(G)∗,�) = (LUC(G)∗R,♦) = (ZU(G), ∗) .

G is discrete ⇐⇒ (UC(Ĝ)∗,�) = (UC(Ĝ)∗R,♦) .

The equivalence holds for some general quantum groups.



An auxiliary topological centre of 〈A∗A〉∗ – motivation

Some asymmetry phenomena (Lau-Ülger 96; H.-N.-R.):

Zt (〈A∗A〉∗) = RM(A) ⇐⇒ A · Zt (A∗∗,�) ⊆ A ;

Zt (A∗∗,�) = A ⇐⇒ Zt (A∗∗,�) · A ⊆ A .

Interrelationship between topological centre problems:

m ∈ Zt (〈A∗A〉∗) ⇐⇒ A ·m ⊆ Zt (A∗∗,�) ;

m ∈ ? ⇐⇒ A ·m ⊆ Zt (A∗∗,♦) .

Automatic normality problem for certain right
A-module maps on A∗.



An auxiliary topological centre of 〈A∗A〉∗

One subspace of 〈A∗A〉∗ can help for all of these problems.

Definition. (H.-N.-R.) For a Banach algebra A, the auxiliary
topological centre of 〈A∗A〉∗ is defined by

Zt (〈A∗A〉∗)♦ = {m ∈ 〈A∗A〉∗ : n♦m = n�m in A∗∗ ∀n ∈ 〈A∗∗A〉}.

Similarly, Zt (〈AA∗〉∗)
�

can be defined.

Zt (〈A∗A〉∗)♦ = Zt (〈A∗A〉∗) if Zt (A∗∗,�) = Zt (A∗∗,♦) .

Under the canonical quotient map q : A∗∗ −→ 〈A∗A〉∗,

Zt (A∗∗,�) −→ Zt (〈A∗A〉∗), Zt (A∗∗,♦) −→ Zt (〈A∗A〉∗)♦ .



Zt(〈A∗A〉∗)♦ – some applications

For m ∈ 〈A∗A〉∗, we have

m ∈ Zt (〈A∗A〉∗) ⇐⇒ A ·m ⊆ Zt (A∗∗,�) ;

m ∈ Zt (〈A∗A〉∗)♦ ⇐⇒ A ·m ⊆ Zt (A∗∗,♦) .

If 〈A2〉 = A (e.g., A = L1(G)), then

A · Zt (A∗∗,�) ⊆ A ⇐⇒ A · Zt (〈A∗A〉∗) ⊆ A ;

A · Zt (A∗∗,♦) ⊆ A ⇐⇒ A · Zt (〈A∗A〉∗)♦ ⊆ A .



Zt(〈A∗A〉∗)♦ – some applications

Proposition. (H.-N.-R.) If A is of type (M), then

Zt (A∗∗,�) = A ⇐⇒ Zt (〈AA∗〉∗)
�

= LM(A) ;

Zt (A∗∗,♦) = A ⇐⇒ Zt (〈A∗A〉∗)♦ = RM(A) .

Surprisingly, LSAI and RSAI of A are not related to the

usual topo centres Zt (〈A∗A〉∗) and Zt (〈AA∗〉∗), but related

to auxiliary topo centres Zt (〈AA∗〉∗)
�

and Zt (〈A∗A〉∗)♦ .



Zt(〈A∗A〉∗)♦ – some applications

Corollary. If A is of type (M) with Zt (A∗∗,�) = Zt (A∗∗,♦)

(e.g., A is commutative), then

A is SAI ⇐⇒ Zt (〈A∗A〉∗) = RM(A) .

“⇐=” was shown by Lau-Losert (93) for A(G) with G

amenable.

There exist unital WSC Banach algebras A such that

Zt (A∗∗,�) = A $ Zt (A∗∗,♦) . In this case, the above

equivalence does not hold.



Module homomorphisms on A∗

BA(A∗) := bounded right A-module maps on A∗.

Bσ
A(A∗) := normal bounded right A-module maps on A∗.

BA∗∗(A∗) := bounded right (A∗∗,♦)-module maps on A∗.

RM(A) ∼= Bσ
A(A∗) ⊆ BA∗∗(A∗) ⊆ BA(A∗) .

In fact, we have

BA∗∗(A∗) = {T ∈ BA(A∗) : T ∗(A) ⊆ Zt (A∗∗,♦)}.



The canonical representation of 〈A∗A〉∗ on A∗

Let Φ : 〈A∗A〉∗ −→ BA(A∗) be the contractive and injective

algebra homo m 7−→ mL , where mL(f ) = m�f .

Then Φ is surjective if A has a BRAI.

Let A be a completely contractive Banach algebra. Then

Φ : 〈A∗A〉∗ −→ CBA(A∗)

is a c.c. algebra homomorphism. If A has a BRAI, then

Φ(〈A∗A〉∗) ⊆ CBA(A∗) ⊆ BA(A∗) = Φ(〈A∗A〉∗) ;

in this case, we have

BA(A∗) = CBA(A∗) and RM(A) = RMcb(A) .



Topological centres and automatic normality

Using the canonical repn Φ : 〈A∗A〉∗ −→ BA(A∗) , we can study
Arens irregularity properties of A through module maps on A∗.

For example, we have the following generalization of a result by
Neufang (00) on L1(G).

Proposition. (H.-N.-R.) If A is of type (M). T.F.A.E.

(i) Zt (A∗∗,♦) = A ;

(ii) BA∗∗(A∗) = Bσ
A(A∗) .



Commutation relations
Consider the two sequences:

Bσ
A(A∗) ⊆ BA∗∗(A∗) ⊆ BA(A∗) ;

AB(A∗)c ⊆ A∗∗B(A∗)c ⊆ ABσ(A∗)c ,

where “c” denotes commutant in B(A∗).

If 〈A2〉 = A, then

Bσ
A(A∗) ⊆ AB(A∗)c ⊆ BA∗∗(A∗) ⊆ BA(A∗)

= A∗∗B(A∗)c = ABσ(A∗)c .

If A has a BLAI, then

Bσ
A(A∗) ⊆ AB(A∗)c = BA∗∗(A∗) ⊆ BA(A∗)

= A∗∗B(A∗)c = ABσ(A∗)c .



SAI and bicommutant theorem

In the following, LM(A), RM(A) ⊆ B(A∗) .

Proposition. (H.-N.-R.) Let A be a Banach algebra of type (M).

(i) A is LSAI ⇐⇒ LM(A)cc = LM(A) ;

(ii) A is RSAI ⇐⇒ RM(A)cc = RM(A) .

There is even a unital WSC A which is LSAI but not RSAI.

So, the above bicommutation relations are not equivalent.

Corollary. Let A be a unital WSC involutive Banach algebra

(e.g., A = L1(G) of discrete G). Then

A is SAI ⇐⇒ Acc = A .



The convolution quantum group algebra case

Let G be a LCQG. In the following, “c” is taken in B(L∞(G)) .

Corollary. If L1(G) separable, T.F.A.E.

(i) M(G)cc = M(G) ;

(ii) G is co-amenable and L1(G) is SAI .

Proposition. (H.-N.-R.)

G is compact ⇐⇒ RM(L1(G))c = LM(L1(G)) .



The Fourier algebra case

Corollary. Let G be a locally compact group.

(i) B(G)cc = B(G) ⇐⇒ G is amenable and A(G) is SAI.

(ii) A(G)cc = A(G) ⇐⇒ G is compact and A(G) is SAI.

(1) B(G)c = B(G) ⇐⇒ G is amenable and discrete.

(2) A(G)c = A(G) ⇐⇒ G is finite.

The above B(G) can also be replaced by Bλ(G).


