・ロト ・四ト ・ヨト ・ヨト

Dual factorization property

Denis Poulin

Carleton University

Leeds, June 2010

Table of contents

Background

Strong Topological Centre

Dual Factorization Property

 α -Nuclear Operators

<□ > < @ > < E > < E > E のQC

æ

<ロ> (日) (日) (日) (日) (日)

Background

э.

< 日 > < 同 > < 回 > < 回 > < 回 > <

Arens Product

For $m, n \in A^{**}$, $f \in A^*$ and $a, b \in A$

Left Arens Product : (A^{**}, \Box) .

Right Arens product : (A^{**}, \triangle) .

а.

・ロト ・四ト ・ヨト ・ヨト

Arens Product

Left topological centre of A^{**} is defined by

$$Z_{\ell}(A^{**}) = \{ m \in A^{**} \mid m \Box n = m \triangle n, \text{ for every } n \in A^{**} \}$$
$$= \{ m \in A^{**} \mid \lambda_m \text{ is } w^* - w^* - \text{continuous} \}$$

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Arens Product

Left topological centre of A^{**} is defined by

$$Z_{\ell}(A^{**}) = \{ m \in A^{**} \mid m \Box n = m \triangle n, \text{ for every } n \in A^{**} \}$$
$$= \{ m \in A^{**} \mid \lambda_m \text{ is } w^* - w^* - \text{continuous} \}$$

A Banach algebra A is called

• Arens regular if
$$Z_{\ell}(A^{**}) = A^{**}$$

・ロト ・四ト ・ヨト ・ヨト

Arens Product

Left topological centre of A^{**} is defined by

$$Z_{\ell}(A^{**}) = \{ m \in A^{**} \mid m \Box n = m \triangle n, \text{ for every } n \in A^{**} \}$$
$$= \{ m \in A^{**} \mid \lambda_m \text{ is } w^* - w^* - \text{continuous} \}$$

A Banach algebra A is called

- Arens regular if $Z_{\ell}(A^{**}) = A^{**}$
- left strongly Arens irregular if $Z_{\ell}(A^{**}) = A$

・ロト ・聞 ト ・ 聞 ト ・ 聞 ト

Multipliers

A **left multiplier on** A is a bounded linear operator $T : A \longrightarrow A$ such that for $a, b \in A$,

$$T(ab) = T(a)b$$

LM(A) and RM(A) denote respectively the left and right multipliers of A.

а.

< 日 > < 同 > < 回 > < 回 > < 回 > <

Strong Topological Centre

▲ロト ▲母ト ▲ヨト ▲ヨト → ヨ → のへで

Strong Topological Center

Definition

(Neufang, P.) The strong left topological centre of A^{**} is defined by

 $SZ_{\ell}(A^{**}) = \{m \in A^{**} : \lambda_m = T^{**}, \text{ for some } T \in B(A)\}$

・ロト ・雪ト ・ヨト ・ヨト

÷.

Strong Topological Center

Definition

(Neufang, P.) The strong left topological centre of A^{**} is defined by

$$SZ_\ell(A^{**}) = \{m \in A^{**} : \lambda_m = T^{**}, \text{ for some } T \in B(A)\}$$

The idea

$$\lambda_m : A^{**} \longrightarrow A^{**}$$

・ロト ・雪ト ・ヨト ・ヨト

÷.

Strong Topological Center

Definition

(Neufang, P.) The strong left topological centre of A^{**} is defined by

$$SZ_\ell(A^{**}) = \{m \in A^{**} : \lambda_m = T^{**}, \text{ for some } T \in B(A)\}$$

The idea

$$\begin{array}{rcccc} \lambda_m : \mathcal{A}^{**} & \longrightarrow & \mathcal{A}^{**} \\ (\lambda_m)_* : \mathcal{A}^* & \longrightarrow & \mathcal{A}^* \end{array}$$

・ロト ・雪ト ・ヨト ・ヨト

÷.

Strong Topological Center

Definition

(Neufang, P.) The strong left topological centre of A^{**} is defined by

$$SZ_\ell(A^{**}) = \{m \in A^{**} : \lambda_m = T^{**}, \text{ for some } T \in B(A)\}$$

The idea

$$\lambda_m : A^{**} \longrightarrow A^{**}$$
$$(\lambda_m)_* : A^* \longrightarrow A^*$$
$$(\lambda_m)_{**} : A \longrightarrow A$$

・ロト ・四ト ・ヨト ・ヨト

1 9 9 C

Strong Topological Center

Definition

(Neufang, P.) The strong left topological centre of A^{**} is defined by

$$SZ_\ell(A^{**}) = \{m \in A^{**} : \lambda_m = T^{**}, \text{ for some } T \in B(A)\}$$

Position in A^{**}

$$A \subseteq SZ_{\ell}(A^{**}) \subseteq Z_{\ell}(A^{**}) \subseteq A^{**}$$

æ

・ロト ・四ト ・ヨト ・ヨト

Strong Topological Centre

Theorem (Hu, N., R.)

$$SZ_{\ell}(A^{**}) = Z_{\ell}(A^{**}) \cap \{m \in A^{**} \mid m \Box A \subseteq A\}$$

< 日 > < 同 > < 回 > < 回 > < 回 > :

3

Strong Topological Centre

Theorem (Hu, N., R.)

$$SZ_{\ell}(A^{**}) = Z_{\ell}(A^{**}) \cap \{m \in A^{**} \mid m \Box A \subseteq A\}$$

Corollary

- 1. if A is an ideal in A^{**} then $SZ_{\ell}(A^{**}) = Z_{\ell}$.
- 2. If A is Arens regular then $SZ_{\ell}(A^{**}) = \{m \in A^{**} \mid m \Box A \subseteq A\}$. In particular for C^* -algebras.

а.

・ロト ・聞 ト ・ 聞 ト ・ 聞 ト

Difference left / right

Example

(Neufang, P.) Let S be a right zero semigroup i.e.

$$s_1 \cdot s_2 = s_2 \qquad (\forall s_1, s_2 \in S).$$

Difference left / right

Example (Neufang, P.) Let *S* be a right zero semigroup i.e.

$$s_1 \cdot s_2 = s_2$$
 ($\forall s_1, s_2 \in S$).

 $(I^1(S), *)$ is Arens regular. The Arens product is given by

$$u \Box v = u \triangle v = \langle u, 1 \rangle v$$
 $(u, v \in (l^1(S))^{**})$

・ロト ・雪ト ・ヨト ・ヨト

э.

・ロト ・四ト ・ヨト ・ヨト

э.

Difference left / right

Example (Neufang, P.) Let *S* be a right zero semigroup i.e.

$$s_1 \cdot s_2 = s_2 \qquad (\forall s_1, s_2 \in S).$$

 $(l^1(S), *)$ is Arens regular. The Arens product is given by

$$u \Box v = u \triangle v = \langle u, 1 \rangle v \qquad (u, v \in (l^{1}(S))^{**})$$

$$\{u \in (l^{1}(S))^{**} \mid u \Box l^{1}(S) \subseteq l^{1}(S)\} = (l^{1}(S))^{**}$$

・ロト ・ 一下・ ・ ヨト・

э.

Difference left / right

Example (Neufang, P.) Let *S* be a right zero semigroup i.e.

$$s_1 \cdot s_2 = s_2 \qquad (\forall s_1, s_2 \in S).$$

 $(l^1(S), *)$ is Arens regular. The Arens product is given by

$$u \Box v = u \triangle v = \langle u, 1 \rangle v \qquad (u, v \in (l^{1}(S))^{**})$$

$$\{u \in (l^{1}(S))^{**} \mid u \Box l^{1}(S) \subseteq l^{1}(S)\} = (l^{1}(S))^{**}$$

$$\{v \in (l^{1}(S))^{**} \mid l^{1}(S) \Box v \subseteq l^{1}(S)\} = l^{1}(S)$$

Difference left / right

Example (Neufang, P.) Let *S* be a right zero semigroup i.e.

$$s_1 \cdot s_2 = s_2 \qquad (\forall s_1, s_2 \in S).$$

 $(I^1(S), *)$ is Arens regular. The Arens product is given by

$$u \Box v = u \triangle v = \langle u, 1 \rangle v \qquad (u, v \in (l^{1}(S))^{**})$$

$$\{u \in (l^{1}(S))^{**} \mid u \Box l^{1}(S) \subseteq l^{1}(S)\} = (l^{1}(S))^{**}$$

$$\{v \in (l^{1}(S))^{**} \mid l^{1}(S) \Box v \subseteq l^{1}(S)\} = l^{1}(S)$$

$$SZ_{\ell}((I^{1}(S))^{**}) = (I^{1}(S))^{**}$$

・ロト ・雪ト ・ヨト ・ヨト

э.

Difference left / right

Example (Neufang, P.) Let *S* be a right zero semigroup i.e.

$$s_1 \cdot s_2 = s_2 \qquad (\forall s_1, s_2 \in S).$$

 $(l^1(S), *)$ is Arens regular. The Arens product is given by

$$u \Box v = u \triangle v = \langle u, 1 \rangle v \qquad (u, v \in (l^{1}(S))^{**})$$

$$\{u \in (l^{1}(S))^{**} \mid u \Box l^{1}(S) \subseteq l^{1}(S)\} = (l^{1}(S))^{**}$$

$$\{v \in (l^{1}(S))^{**} \mid l^{1}(S) \Box v \subseteq l^{1}(S)\} = l^{1}(S)$$

$$SZ_{\ell}((l^{1}(S))^{**}) = (l^{1}(S))^{**}$$
$$SZ_{r}((l^{1}(S))^{**}) = l^{1}(S)$$

・ロト ・聞ト ・ヨト ・ヨト

э.

Background	Strong Topological Centre	Dual Factorization Property	α -Nuclear Operators
	A**	LM(A)	

▲ロト ▲掛ト ▲ヨト ▲ヨト 三ヨー のへで

Ξ.

・ロト ・個ト ・モト ・モト

æ

< ロ > < 同 > < 回 > < 回 > < 回 >

Proposition

(Neufang, P.) Let A be a Banach algebra with a BAI. Let \mathcal{E} be a fixed mixed unit.

$$i_L(LM(A)) = \{m \in A^{**} \mid m \Box A \subseteq A \text{ and }$$

æ

< ロ > < 同 > < 回 > < 回 > < 回 >

Proposition

(Neufang, P.) Let A be a Banach algebra with a BAI. Let \mathcal{E} be a fixed mixed unit.

$$i_L(LM(A)) = \{m \in A^{**} \mid m \Box A \subseteq A \text{ and } m \triangle \mathcal{E} = m\}$$

3

《曰》《曰》 《曰》 《曰》

Strong Topological Centre

Theorem (Hu, N., R.) Let A be a Banach algebra.

 $SZ_{\ell}(A^{**}) = Z_{\ell} \cap \{m \in A^{**} \mid m \Box A \subseteq A\}$

э.

・ロト ・ 一下・ ・ 日 ・ ・ 日 ・

Strong Topological Centre

Theorem (Hu, N., R.) Let A be a Banach algebra.

 $SZ_{\ell}(A^{**}) = Z_{\ell} \cap \{m \in A^{**} \mid m \Box A \subseteq A\}$

Theorem

(Neufang, P.) Let A be a Banach algebra with a BAI

$$SZ_{\ell}(A^{**}) = Z_{\ell} \cap$$

э.

・ロト ・ 一下・ ・ 日 ・ ・ 日 ・

Strong Topological Centre

Theorem (Hu, N., R.) Let A be a Banach algebra.

 $SZ_{\ell}(A^{**}) = Z_{\ell} \cap \{m \in A^{**} \mid m \Box A \subseteq A\}$

Theorem

(Neufang, P.) Let A be a Banach algebra with a BAI

$$SZ_{\ell}(A^{**}) = Z_{\ell} \cap LM(A)$$

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Strong Topological Centre

Example

(Neufang-P.) Let c_0 and c the Banach algebra of all sequences converging to 0 and of all the convergent sequences respectively.

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Strong Topological Centre

Example

(Neufang-P.) Let c_0 and c the Banach algebra of all sequences converging to 0 and of all the convergent sequences respectively.

$$(c_0)^{**} = (c)^{**} = l^{\infty}$$
 $LM(c_0) = l^{\infty}$ $LM(c) = c.$

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Strong Topological Centre

Example

(Neufang-P.) Let c_0 and c the Banach algebra of all sequences converging to 0 and of all the convergent sequences respectively.

$$(c_0)^{**} = (c)^{**} = l^{\infty}$$
 $LM(c_0) = l^{\infty}$ $LM(c) = c.$

$$SZ_{I}((c_{0})^{**}) = I^{\infty}$$

 $SZ_{I}((c)^{**}) = c$

Possible cases (Neufang, P.)

$A \subseteq \underline{SZ_{\ell}(A^{**})} \subseteq Z_{\ell}(A^{**}) \subseteq A^{**}$

▲ロト ▲御ト ▲ヨト ▲ヨト 三ヨ - のへで

《曰》《曰》 《曰》 《曰》

÷.

Possible cases (Neufang, P.)

$A \subseteq \underline{SZ_{\ell}(A^{**})} \subseteq Z_{\ell}(A^{**}) \subseteq A^{**}$

Example

•
$$A = SZ_{\ell} = Z_{\ell}$$

• $(L^1(\mathbb{R}), *)$

а.

イロト イヨト イヨト イヨト

Possible cases (Neufang, P.)

$$A\subseteq {\color{black}{\it SZ}_\ell(A^{**})}\subseteq Z_\ell(A^{**})\subseteq A^{**}$$

Example

•
$$A = SZ_{\ell} = Z_{\ell}$$

• $(L^1(\mathbb{R}), *)$

•
$$SZ_{\ell} = A$$
 and $Z_{\ell} = A^{**}$

► Unital C*-algebra

₽__

イロト イヨト イヨト イヨト

Possible cases (Neufang, P.)

$$A\subseteq {\it SZ_\ell}(A^{**})\subseteq Z_\ell(A^{**})\subseteq A^{**}$$

Example

•
$$A = SZ_{\ell} = Z_{\ell}$$

• $(L^1(\mathbb{R}), *)$

•
$$SZ_{\ell} = A$$
 and $Z_{\ell} = A^{**}$
• Unital C^{*} -algebra

•
$$SZ_{\ell} = Z_{\ell} = A^{**}$$

• (l^1, \cdot)
Possible cases (Neufang, P.)

Example

$$A = SZ_{\ell} \subsetneq Z_{\ell} \subsetneq A^{**}$$
$$A = A(SU(3))$$

▲ロト ▲理 ▼ ▲ 目 ▼ ▲ 国 ▼ ▲ 回 ▼

₹_

Possible cases (Neufang, P.)

Example

►
$$A = SZ_{\ell} \subsetneq Z_{\ell} \subsetneq A^{**}$$

► $A = A(SU(3))$

$$A \subsetneq SZ_{\ell}(A^{**}) \subsetneq Z_{\ell} \subsetneq A^{**} \land A = K(c_0)$$

Ξ.

・ロト ・四ト ・ヨト ・ヨト

Possible cases (Neufang, P.)

Example

•
$$A = SZ_{\ell} \subsetneq Z_{\ell} \subsetneq A^{**}$$

• $A = A(SU(3))$

$$A \subsetneq SZ_{\ell}(A^{**}) \subsetneq Z_{\ell} \subsetneq A^{**} \land A = K(c_0)$$

•
$$A \subsetneq SZ_{\ell} = LM(A) \subsetneq Z_{\ell} = A^{**}$$

• Non-unital C^* -algebra

Possible cases (Neufang, P.)

Example

•
$$A = SZ_{\ell} \subsetneq Z_{\ell} \subsetneq A^{**}$$

• $A = A(SU(3))$

$$A \subsetneq SZ_{\ell}(A^{**}) \subsetneq Z_{\ell} \subsetneq A^{**}$$
$$A = K(c_0)$$

►
$$A \subsetneq SZ_{\ell} = LM(A) \subsetneq Z_{\ell} = A^{**}$$

► Non-unital *C**-algebra

•
$$A \subsetneq SZ_{\ell}(A^{**}) = Z_{\ell} \subsetneq A^{**}$$

► The nuclear operators (N(I^p(G)), *)^{op} where G is a locally compact discrete group.

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э.

・ロト ・ 一下・ ・ 日 ・ ・ 日 ・

Strong Topological Centre

Corollary

(Hu, N., R.) Let $\mathbb G$ be a locally compact co-amenable quantum group then

 $SZ_{\ell}(L^1(\mathbb{G})) = L^1(\mathbb{G})$

- 4 同 6 4 日 6 4 日 6

э.

Strong Topological Centre

Corollary

(Hu, N., R.) Let $\mathbb G$ be a locally compact co-amenable quantum group then

$$SZ_{\ell}(L^1(\mathbb{G})) = L^1(\mathbb{G})$$

Corollary

(Hu, N., R.) Let G be a locally compact amenable group, then

$$SZ_{\ell}(A(G)^{**}) = A(G)$$

Note that $Z_{\ell}(A(SU(3))^{**}) \neq A(SU(3))$ but SU(3) is compact

< ロ > < 同 > < 回 > < 回 > < 回 >

Strong Topological Centre

Corollary

(Hu, N., R.) Let \mathbb{G} be a locally compact co-amenable quantum group then

$$SZ_{\ell}(L^1(\mathbb{G})) = L^1(\mathbb{G})$$

Corollary

(Hu, N., R.) Let G be a locally compact amenable group, then

$$SZ_{\ell}(A(G)^{**}) = A(G)$$

Corollary

(Lau) Let G be a locally compact amenable group. If A(G) is Arens regular, then G is finite.

3

《曰》《曰》 《曰》 《曰》

Strong Topological Centre

Theorem (Neufang, P.) Let A be a Banach algebra with a BAI

$SZ_{\ell}(A^{**}) = Z_{\ell} \cap LM(A)$

э.

・ロト ・ 一下・ ・ 日 ・ ・ 日 ・

Strong Topological Centre

Theorem (Neufang, P.) Let A be a Banach algebra with a BAI

 $SZ_{\ell}(A^{**}) = Z_{\ell} \cap LM(A)$

Theorem

(Neufang, P.) Let A be a Banach algebra with a BAI

$$SZ_{\ell}(A^{**}) = LM(A)$$

э.

・ロト ・ 一下・ ・ 日 ・ ・ 日 ・

Strong Topological Centre

Theorem (Neufang, P.) Let A be a Banach algebra with a BAI

 $SZ_{\ell}(A^{**}) = Z_{\ell} \cap LM(A)$

Theorem

(Neufang, P.) Let A be a Banach algebra with a BAI

$$SZ_{\ell}(A^{**}) = LM(A) \iff A^* = A^*A$$

а.

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Dual factorization property

2

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

QUESTION

Characterize the Banach algebra A such that $A^* = A^*A$

э.

《曰》《曰》 《曰》 《曰》

QUESTION

Characterize the Banach algebra A such that $A^* = A^*A$

(Granirer) For A(G), this property implies that G is **compact**

Dual Factorization Property

▲ロト ▲母 ▼ ▲目 ▼ ▲目 ▼ ● ● ●

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Dual Factorization Property

Definition (Neufang, P.) A Banach algebra A has the

1. left strong dual factorization property if $A^* = A^*A$,

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Dual Factorization Property

Definition (Neufang, P.) A Banach algebra A has the

- 1. left strong dual factorization property if $A^* = A^*A$,
- 2. left dual factorization property if $A^* = \overline{A^*A}$,

ъ

< ロ > < 同 > < 回 > < 回 > < 回 >

Dual Factorization Property

Definition

(Neufang, P.) A Banach algebra A has the

- 1. left strong dual factorization property if $A^* = A^*A$,
- 2. left dual factorization property if $A^* = \overline{A^*A}$,
- 3. left weak dual factorization property if $A^* = \overline{\langle A^*A \rangle}$.

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Dual Factorization Property

Example

 (Neufang, P.) A reflexive Banach algebra A has the left and right weak dual factorization property.

(人間) シスヨン スヨン

ъ

Dual Factorization Property

Example

 (Neufang, P.) A reflexive Banach algebra A has the left and right weak dual factorization property.

The space l² equipped with pointwise multiplication has the dual factorization property but not the strong dual factorization property.

Dual Factorization Property

Example

 (Neufang, P.) A reflexive Banach algebra A has the left and right weak dual factorization property.

The space l² equipped with pointwise multiplication has the dual factorization property but not the strong dual factorization property.

▶ (Neufang, P.) A(E) has the left weak dual factorization property if and only if $I(E^*) = \overline{N(E^*)}^{\parallel \cdot \parallel_I}$

With a BAI

▲ロ ▶ ▲母 ▶ ▲目 ▶ ▲目 ▶ ● ● ● ● ● ●

Ξ.

・ロト ・聞 ト ・ 聞 ト ・ 聞 ト

With a BAI

Theorem **(Lau, Ü.)** Let A be a Banach algebra with a BAI, then $A^* = A^*A$ if and only if (A^{**}, \Box) is unital.

э.

・ロト ・ 一下・ ・ 日 ・ ・ 日 ・

With a BAI

Theorem **(Lau, Ü.)** Let A be a Banach algebra with a BAI, then $A^* = A^*A$ if and only if (A^{**}, \Box) is unital.

Theorem (Lau, Ü.) Let A be a Banach algebra with a BAI, then $A^* = A^*A$ if and only if

$$\{m \in A^{**} \mid A \cdot m \subseteq A\} \subseteq Z_{\ell}(A^{**}).$$

æ

Picture of the situation (with a BAI)

Picture of the situation (with a BAI)

Picture of the situation (with a BAI)

< ロ > < 同 > < 回 > < 回 > < 回 >

Picture of the situation (with a BAI)

а.

With a BAI

Theorem (Neufang, P.) Let A be a Banach algebra with a BAI Then 1. $A^* = A^*A$ if and only if

$$RM(A) = \{m \in A^{**} \mid A \cdot m \subseteq A\}$$

2. $A^* = AA^*$ if and only if

$$LM(A) = \{ m \in A^{**} \mid m \cdot A \subseteq A \}$$

《曰》《曰》 《曰》 《曰》

When A has no BAI

▲ロト ▲理 ▼ ▲ 目 ▼ ▲ 国 ▼ ▲ の < ⊙

< 日 > < 同 > < 回 > < 回 > < 回 > <

When A has no BAI

Definition

Let $(A, || ||_A)$ be a Banach algebra. A Banach algebra $(B, || ||_B)$ is a right abstract Segal algebra in A if the following conditions are satisfied :

1. The algebra B is a dense right ideal of A,

э.

< ロ > < 同 > < 回 > < 回 > < 回 > <

When A has no BAI

Definition

Let $(A, || ||_A)$ be a Banach algebra. A Banach algebra $(B, || ||_B)$ is a right abstract Segal algebra in A if the following conditions are satisfied :

- 1. The algebra B is a dense right ideal of A,
- 2. There is a constant C > 0 such that for each $b \in B$

 $\|b\|_A \leq C \|b\|_B.$

When A has no BAI

Definition

Let $(A, || ||_A)$ be a Banach algebra. A Banach algebra $(B, || ||_B)$ is a right abstract Segal algebra in A if the following conditions are satisfied :

- 1. The algebra B is a dense right ideal of A,
- 2. There is a constant C > 0 such that for each $b \in B$

 $\|b\|_A \leq C \|b\|_B.$

 There is a constant M > 0 such that for each a ∈ A and b ∈ B,

 $\|ba\|_B \leq M \|b\|_B \|a\|_A.$

・ロト ・ 一下・ ・ 日 ・ ・ 日 ・

э.

▲ 伊 ト ▲ ヨ ト → ヨ ト - ヨ - -

When A has no BAI

Definition

Let $(A, || ||_A)$ be a Banach algebra. A Banach algebra $(B, || ||_B)$ is a right abstract Segal algebra in A if the following conditions are satisfied :

- 1. The algebra B is a dense right ideal of A,
- 2. There is a constant C > 0 such that for each $b \in B$

 $\|b\|_A \leq C \|b\|_B.$

 There is a constant M > 0 such that for each a ∈ A and b ∈ B,

 $\|ba\|_B \leq M \|b\|_B \|a\|_A.$

A Banach algebra $(B, || ||_B)$ is a symmetric abstract Segal algebra in A if it's a left and right abstract Segal algebra in A.

2

・ロト ・四ト ・ヨト ・ヨト

When A has no BAI

Example

► A faithful Banach algebra A is a right abstract Segal algebra in its closure in RM(A).

< 日 > < 同 > < 回 > < 回 > < 回 > <

When A has no BAI

Example

► A faithful Banach algebra A is a right abstract Segal algebra in its closure in RM(A).

► The Schatten p class S_p(H) on a Hilbert space H is an abstract symmetric Segal algebra in K(H).

・ロト ・ 一下・ ・ ヨト・

э.

When A has no BAI

Example

► A faithful Banach algebra A is a right abstract Segal algebra in its closure in RM(A).

► The Schatten p class S_p(H) on a Hilbert space H is an abstract symmetric Segal algebra in K(H).

► The Lebesgue-Fourier algebra is a abstract symmetric Segal algebra in A(G).
・ロト ・ 一下・ ・ 日 ・ ・ 日 ・

э.

When A has no BAI

Lemma

(Mustafayev) Let $(A, || ||_A)$ be a Banach algebra and $(B, || ||_B)$ an abstract right Segal algebra in A. Then there is an injection from $< B^*B > into A^*$.

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э.

When A has no BAI

Lemma

(Mustafayev) Let $(A, || ||_A)$ be a Banach algebra and $(B, || ||_B)$ an abstract right Segal algebra in A. Then there is an injection from $< B^*B >$ into A^* .

Corollary

(Mustafayev) Let $(A, || ||_A)$ be a Banach algebra with a BAI and $(B, || ||_B)$ an abstract right Segal algebra in A. Then $< B^*B > \subseteq < A^*A >$.

3

< 日 > < 同 > < 回 > < 回 > < 回 > <

When A has no BAI

Lemma

(Mustafayev) Let $(A, || ||_A)$ be a Banach algebra and $(B, || ||_B)$ an abstract right Segal algebra in A. Then there is an injection from $< B^*B >$ into A^* .

Theorem

(Neufang, P.) Let $(A, || ||_A)$ be a Banach algebra. Then there is no proper abstract right Segal algebra $(B, || ||_B)$ in A such that $B^* = B^*B$.

э.

・ロト ・聞 ト ・ 聞 ト ・ 聞 ト

When A has no BAI

Lemma

(Mustafayev) Let $(A, || ||_A)$ be a Banach algebra and $(B, || ||_B)$ an abstract right Segal algebra in A. Then there is an injection from $< B^*B >$ into A^* .

Theorem

(Neufang, P.) Let $(A, || ||_A)$ be a Banach algebra. Then there is no proper abstract right Segal algebra $(B, || ||_B)$ in A such that $B^* = B^*B$.

Theorem

(Neufang, P.) Let A be a faithful Banach algebra. If A has the left(resp. right) strong dual factorization property then the norm of A is equivalent to the norm of RM(A) (resp. LM(A)).

э.

・ロト ・聞 ト ・ 聞 ト ・ 聞 ト

When A has no BAI

Lemma

(Mustafayev) Let $(A, || ||_A)$ be a Banach algebra and $(B, || ||_B)$ an abstract right Segal algebra in A. Then there is an injection from $< B^*B >$ into A^* .

Theorem

(Neufang, P.) Let $(A, || ||_A)$ be a Banach algebra. Then there is no proper abstract right Segal algebra $(B, || ||_B)$ in A such that $B^* = B^*B$.

Theorem

(Neufang, P.) Let A be a faithful Banach algebra. If A has the left(resp. right) strong dual factorization property then the norm of A is equivalent to the norm of RM(A) (resp. LM(A)).

ъ.

・ロト ・四ト ・ヨト ・ヨト

α -Nuclear Operators

- 4 戸 ト 4 三 ト 4 三 ト

ъ

Tensor norm

A tensor norm α on the class of all normed spaces assigns to each pair (E, F) of normed spaces E and F a norm α on the algebraic tensor product $E \otimes F$ such that the following conditions are satisfied :

- 4 同 ト - 4 三 ト - 4 三 ト

ъ

Tensor norm

A tensor norm α on the class of all normed spaces assigns to each pair (E, F) of normed spaces E and F a norm α on the algebraic tensor product $E \otimes F$ such that the following conditions are satisfied :

1. α is reasonable i.e for each $u \in E \otimes F$, $\epsilon(u) \leq \alpha(u) \leq \pi(u)$.

э.

< 日 > < 同 > < 回 > < 回 > < 回 > <

Tensor norm

A tensor norm α on the class of all normed spaces assigns to each pair (E, F) of normed spaces E and F a norm α on the algebraic tensor product $E \otimes F$ such that the following conditions are satisfied :

1. α is reasonable i.e for each $u \in E \otimes F$, $\epsilon(u) \leq \alpha(u) \leq \pi(u)$.

2. α satisfies the property : if for $T_i \in L(E_i, F_i)$, we have that

$$T_1 \otimes T_2 : E_1 \otimes_\alpha E_2 \to F_1 \otimes_\alpha F_2, \|T_1 \otimes T_2\| \le \|T_1\| \|T_2\|.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Tensor norm

A tensor norm α on the class of all normed spaces assigns to each pair (E, F) of normed spaces E and F a norm α on the algebraic tensor product $E \otimes F$ such that the following conditions are satisfied :

- 1. α is reasonable i.e for each $u \in E \otimes F$, $\epsilon(u) \leq \alpha(u) \leq \pi(u)$.
- 2. α satisfies the property : if for $T_i \in L(E_i, F_i)$, we have that

$$T_1 \otimes T_2 : E_1 \otimes_\alpha E_2 \to F_1 \otimes_\alpha F_2, \|T_1 \otimes T_2\| \le \|T_1\| \|T_2\|.$$

3. for each pair of Banach spaces *E* and *F*, and each $u \in E \otimes F$, we have

 $\alpha(u) = \inf\{\alpha(u, M \otimes N) : M \in FIN(E), N \in FIN(F), u \in M \otimes N\}.$

α -Nuclear Operators

э.

・ロト ・聞 ト ・ 聞 ト ・ 聞 ト

α -Nuclear Operators

Let *E* be a Banach space and α be a tensor norm.

$$J_{lpha}:E^{*}\hat{\otimes}_{lpha}E
ightarrow B(E)$$

For $e, x \in E$ and $f \in E^*$, we have

 $J_{\alpha}(f \otimes x)(e) = \langle f, e \rangle x$

э.

・ロト ・ 一下・ ・ 日 ・ ・ 日 ・

α -Nuclear Operators

Let *E* be a Banach space and α be a tensor norm.

$$J_{\alpha}: E^* \hat{\otimes}_{\alpha} E \to B(E)$$

For $e, x \in E$ and $f \in E^*$, we have

$$J_{\alpha}(f\otimes x)(e) = \langle f, e \rangle x$$

The Banach of the α -nuclear operators denoted by $N_{\alpha}(E)$ is the image of J_{α} equipped with the quotient norm. This algebra is en operator ideal in B(E).

《曰》 《圖》 《臣》 《臣》

1 9 4 C

 α -Nuclear Operators

《曰》《曰》 《曰》 《曰》

Ξ.

α -Nuclear Operators

Define $\phi : E^{**} \hat{\otimes}_{\pi} E^* \to N_{\alpha}(E)^*$ by $\langle \phi(\Lambda \otimes \mu), T \rangle = \langle T \cdot \Lambda, \mu \rangle$ with $T \in N_{\alpha}(E), \mu \in E^*$ and $\Lambda \in E^{**}$.

$$(N_{\alpha}(E))^{**} \qquad B(E^{**})$$

$$\kappa_{N_{\alpha}} \int \\ N_{\alpha}(E) \longleftrightarrow B(E)$$

・ロト ・四ト ・ヨト ・ヨト

э.

α -Nuclear Operators

Define $\phi : E^{**} \hat{\otimes}_{\pi} E^* \to N_{\alpha}(E)^*$ by $\langle \phi(\Lambda \otimes \mu), T \rangle = \langle T \cdot \Lambda, \mu \rangle$ with $T \in N_{\alpha}(E)$, $\mu \in E^*$ and $\Lambda \in E^{**}$.

Define $\theta : N_{\alpha}(E)^{**} \to B(E^{**})$ as $\theta = \phi^*$.

$$(N_{\alpha}(E))^{**} \xrightarrow{\theta} B(E^{**})$$

$$\kappa_{N_{\alpha}} \int \\ N_{\alpha}(E) \longleftrightarrow B(E)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ● ○○

α -Nuclear Operators

Define $\phi: E^{**} \hat{\otimes}_{\pi} E^* \to N_{\alpha}(E)^*$ by $\langle \phi(\Lambda \otimes \mu), T \rangle = \langle T \cdot \Lambda, \mu \rangle$ with $T \in N_{\alpha}(E), \ \mu \in E^*$ and $\Lambda \in E^{**}$.

Define $\theta: N_{\alpha}(E)^{**} \to B(E^{**})$ as $\theta = \phi^*$.

α -Nuclear Operators

- 4 伊 ト 4 ヨ ト 4 ヨ ト

ъ

α -Nuclear Operators

Theorem

(Neufang, P.) Let E be a Banach space. Let α be a tensor norm. Suppose that $N_{\alpha}(E)$ has the left strong dual factorization property then α is the injective tensor norm.

- 4 伊 ト 4 ヨ ト 4 ヨ ト

α -Nuclear Operators

Theorem

(Neufang, P.) Let E be a Banach space. Let α be a tensor norm. Suppose that $N_{\alpha}(E)$ has the left strong dual factorization property then α is the injective tensor norm.

Proof.

 $N_{\alpha}(E)$ has the left strong dual factorization property implies that the norm of $N_{\alpha}(E)$ and $RM(N_{\alpha}(E)) = B(E)$ are equivalent. This is true only if α is the injective tensor norm.

э

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

α -Nuclear Operators

Theorem

(Lau, Ü.) A(E) has the left strong dual factorization property if E^* has the bounded approximation property and $I(E^*) = N(E^*)$.

ъ

< ロ > < 同 > < 回 > < 回 > < 回 >

α -Nuclear Operators

Theorem

(Lau, Ü.) A(E) has the left strong dual factorization property if E^* has the bounded approximation property and $I(E^*) = N(E^*)$.

Corollary

Let E be a Banach space such that E^* has the bounded approximation property. Let A = A(E). Then $A^* = A^*A$ if and only if $I(E^*) = N(E^*)$.

ъ

What happens for the right ?

Denis Poulin Carleton University: Dual factorization property

Lau and Ülger showed that A(E) does not have the right strong dual factorization property when E^* has the bounded approximation property and $I(E^*) = N(E^*)$ with E not reflexive.

ъ

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

What happens for the right ?

Theorem

(Neufang, P.) Let *E* be a Banach space such that E^* has the bounded approximation property. Let A = A(E). Then $A^* = AA^*$ if and only if *E* is a reflexive Banach space.

< ロ > < 同 > < 回 > < 回 > < 回 >

What happens for the right ?

Theorem

(Neufang, P.) Let E be a Banach space such that E^* has the bounded approximation property. Let A = A(E). Then $A^* = AA^*$ if and only if E is a reflexive Banach space.

Proof.

If *E* reflexive then A(E) Arens regular [Young]. Thus have the right strong dual factorization property.

If $A^* = AA^*$ then $SZ_r(A(E)^{**}) = RM(A(E)) = B(E)$. But $SZ_r(A(E)) = W(E)$ thus we get that B(E) = W(E). So E is reflexive.

э

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

QUESTION

Does the left strong dual factorization property imply the existence of a bounded left approximate identity ?

- 4 同 ト - 4 目 ト - 4 目 ト

ъ

Lau-Ülger conjecture

Theorem

(Lau, Ü.) Let A be a weakly sequentially complete Banach algebra with a sequential BAI. The following are equivalent.

- 1. $A^* = A^*A$.
- 2. $A^* = AA^*$.
- 3. A is unital.

- 4 同 ト - 4 目 ト - 4 目 ト

ъ

Lau-Ülger conjecture

Theorem

(Lau, Ü.) Let A be a weakly sequentially complete Banach algebra with a sequential BAI. The following are equivalent.

- 1. $A^* = A^*A$.
- 2. $A^* = AA^*$.
- 3. A is unital.

Conjecture

Let A be a weakly sequentially complete Banach algebra with a BAI. If $A^* = A^*A$, then A is unital.

æ

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

Partial answers

(Lau, Ü.) Weakly sequentially complete Banach algebra with a sequential BAI.

э

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Partial answers

- (Lau, Ü.) Weakly sequentially complete Banach algebra with a sequential BAI.
- (Ülger) Arens regular Banach algebra.

(人間) くうり くうり

э

Partial answers

- (Lau, Ü.) Weakly sequentially complete Banach algebra with a sequential BAI.
- (Ülger) Arens regular Banach algebra.
- Reflexive Banach algebra.

- 4 同 ト - 4 目 ト - 4 目 ト

ъ

Partial answers

- (Lau, Ü.) Weakly sequentially complete Banach algebra with a sequential BAI.
- (Ülger) Arens regular Banach algebra.
- Reflexive Banach algebra.
- Banach algebra A such that A* has the Radon-Nicodym property.

< 日 > < 同 > < 回 > < 回 > < 回 > <

Partial answers

- (Lau, Ü.) Weakly sequentially complete Banach algebra with a sequential BAI.
- (Ülger) Arens regular Banach algebra.
- Reflexive Banach algebra.
- Banach algebra A such that A* has the Radon-Nicodym property.
- ► (Neufang, P.) Banach algebra such that SZ_I(A^{**}) = A. In particular, left strongly Arens irregular Banach algebra.

э.

Partial answers

- (Lau, Ü.) Weakly sequentially complete Banach algebra with a sequential BAI.
- (Ülger) Arens regular Banach algebra.
- Reflexive Banach algebra.
- Banach algebra A such that A* has the Radon-Nicodym property.
- ► (Neufang, P.) Banach algebra such that SZ_l(A^{**}) = A. In particular, left strongly Arens irregular Banach algebra.
- (Neufang, P.) Banach algebra which is an ideal in its second dual.

< 日 > < 同 > < 回 > < 回 > < 回 > <