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Operator Spaces
A Natural Quantization of Banach Spaces



Banach Spaces

A Banach space is a complete normed space (V/C, | - ||).

In Banach spaces, we consider

Norms and Bounded Linear Maps.

Classical Examples:

Co(£2), M(£2) = Co(D)*, (1), Lp(X,p), 1<p<oo



Hahn-Banach Theorem: Let V C W be Banach spaces. We have

W
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with [|o]] = [[¢]].

It follows from the Hahn-Banach theorem that for every Banach space
(V.|| - ||) we can obtain an isometric inclusion

(VoD = Roo (), | - lloo)

where we may choose I = V{* to be the closed unit ball of V*.

So we can regard ¢oo(I) as the home space of Banach spaces.



Classical Theory

loo (1)

Banach Spaces
(Vi) = oo (T)

Noncommutative Theory
B(H)
Operator Spaces

(V,??) — B(H)

norm closed subspaces of B(H)?



Matrix Norm and Concrete Operator Spaces [Arveson 1969]

Let B(H) denote the space of all bounded linear operators on H. For
each n € N,

H'=H®- & H=/{[¢]: ¢ € H}
IS again a Hilbert space. We may identify
Mp,(B(H)=B(H®...®H)
by letting

Y

T &) = | X Tigés
J
and thus obtain an operator norm || - ||n on Mn(B(H)).

A concrete operator space is norm closed subspace V of B(H) together
with the canonical operator matrix norm || - ||, on each matrix space
Mn(V).



Examples of Operator Spaces

e Every C*-algebra A, i.e. norm closed *-subalgebra of some B(H), is
an operator space.

e A= Cpy(2) or A= Cy(S2) for locally compact space.

e Every operator algebra, i.e. norm closed subalgebra of some B(H), is
an operator space.

e Every von Neumann algebra M, i.e. a strong operator topology (resp.
w,0.t , weak* topology) closed *-subalgebra of B(H).

o Loo(X, ) for some measure space (X, u).

e Weak* closed operator algebras of some B(H).



Completely Bounded Maps

Let o : V — W be a bounded linear map. For each n € N, we can define
a linear map

by letting

on([vij]) = [e(v;)].

The map ¢ is called completely bounded if

lolleb = sup{|lenl| : n € N} < oo,

We let CB(V, W) denote the space of all completely bounded maps from
V into W.

In general ||¢ll # ||@]l- Let t be the transpose map on M,(C). Then

[tlley = n, but [|t]| = 1.



Theorem: If ¢ : V — W = (Cu(£2) is a bounded linear map, then ¢ is
completely bounded with

leller = [leell-
Proof: Given any contractive [v;;] € Mn(V), [¢(v;;)] is an element in

Mn(Cy(€2)) = Cp(2, Mp) = {[fij] 1 2 € QL — [fi;(z)] € Mn}.

Then we have

SUD{H[SO(UZ'j)(w)]HMn L x € 2}

= supq| Z a;p(vij)(x)B] -z € Q,[lajla = |8l = 1}

i, (@)

,J=1
n
= SUD{|90(.21 a;viiBi)(x)] 1z € Q, |lall2 =Bl = 1}
1,)—
< el sup{|le:]lvi1 18511 = lall2 = [|B]l2 = 1}
< lelllilvslll < flell-
This shows that ||en|| < ||e]| for all n =1,2,---. Therefore, we have

lell = llg2ll = --- = llenll = --- = llellep-



Arveson-Wittstock-Hahn-Banach Theorem

Let V C W C B(H) be operator spaces.
%4

T NP

v —~ - B(H)
with [|@]lcp = llllch-

In particular, if B(H) = C, we have ||¢|l. = ||| This, indeed, is a
generalization of the classical Hahn-Banach theorem.
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Operator Space Structure on Banach Spaces

Let V be a Banach space. Then there are many different operator space
structures on V.

Min(V): We may obtain a minimal operator space structure on V given
by

pel

Max(V): We may obtain a maximal operator space structure on V given
by

reV — 7€ lo(l, Blla(N))) = H B(l2(N) )y,
0eB(V,I)

where I = B(/5(N)); and for each ¢ € I, we get

T:p€el— plx) € B(4y(N).
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Column and Row Hilbert Spaces
Let H = C™ be an m-dimensional Hilbert space .

H.: There is a natural column operator space structure on H given by

He = Mm,l(c) C Mm(C).

H,: Similarly, there is a row operator space structure given by

Hyr = Ml,m(c) C M (C).

Moreover, Pisier introduced an OH structure on H by considering the
complex interperlation over the matrix spaces

Mn(OH) = (Mn(Hc>aMn(Hr))% — (Mn(MAX(HDaMn(MIN(H)))%

All these matrix norm structures are distinct from MIN(H) and MAX(H).
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Abstract Operator Spaces

Theorem [R 1988]: Let V be a Banach space with a norm || - ||n on
each matrix space M, (V). Then V is completely isometrically isometric
to a concrete operator space if and only it satisfies

x O

o = max{||x||n, ||y]|m}

M1, H
n+m

M2. |laxzBln < llefl||z[ln] S]]

for all x € M, (V),y € Mmn(V) and «, 8 € M, (C).
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Dual Operator Spaces

Let V and W be operator spaces. Then the space CB(V,W) of all
completely bounded maps from V into W is an operator space with a
canonical operator space matrix norm given by

Mnp(CB(V,W)) = CB(V, Mp(W)).

In particular, if we let W = C, then the dual space V* = CB(V,C) has
a natural operator space matrix norm given by

We call V* the operator dual of V.

More Examples
e T(lo(N)) = K(£x(N))* = B(£a(N))x;

o M(Q2) = Cp(2)*, operator dual of C*-algebras A*;
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Operator Preduals

Let V be a dual space with a predual Vi and let V be an operator space.
Then V* is an operator space (with the natural dual operator space
structure).

Due to the Hahn-Banach theorem, we have the isometric inclusion

Vi — V7™,

This defines an operator space structure on Vi, called the dual operator
space structure on V.

Question: Do we the complete isometry (Vi)* =V ? More precisely,
can we guarantee that we have the isometric isomorphism

Mn((V)*) = My (V) for each n € N?

Answer: No. Excercise.
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Theorem [E-R 1990]: Let M be a von Neumann algebra and M, the
unique predual of M. With the dual operator space strucutre My «— M*
on M, we have the complete isometry

(M.)* = M.

Therefore, we can say that M, is the operator predual of M.

Qurstion: What can we say if M =V is not a von Neumann algebra 7
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Quotient Operator Spaces

Let V — W be operator spaces. Then there exists a natural quotient
operator space structure on W/V given by the isometric identification

Mn(W/V) = Mp(W)/Mn(V) = {z+ Mn(V) 1 z = [x;5] € Mp(W)}.
We call W/V the quotient operator space.

Now let M C B(H) be a von Neumann algebra. Then M is a weak¥*
closed subsapce of B(H). Its predual M, can be isometrically identified
with the quotient space T (H)/M . Then we can also obtain a quotient
operator space strucutre on M

Theorem: Let M C B(H) be a von Neumann algebra. We have the
complete isometry

T(H)/M| = M.

17



Proof: Since the restriction map w € T(H) — f = wipy € Mx is a
complete contraction with kernel M |, it induces a complete contraction

w:T(H)/ M| — My

On the other hand, let us assume that ® = [f;;] € Mp(Mx) = CB°(M, Mp).
It is known from von Neumann algebra theory that every normal cb
map has a norm preserving mornal cb extension ® € CB°(B(H), My) =
Mn(T(H)).

Therefore, m : T(H)/M | — My must be a completely isometric isomor-
phism
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Theorem [P-B 1990]: If V has MIN (respectively, MAX) operator
space structure, then V* has MAX (respectively, MIN) operator space
structure, , i.e. we have the complete isometries

MIN(V)* = MAX(V*) and MAX(V)* = MIN(V*).

If G is a locally compact group, then
e Cp(G) and L (G) have the MIN operator space structure, and

e M(G) and L1(G) have the natural MAX operator space structure.
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Banach Algebras Associated with Locally Compact Groups
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Let G be a locally compact group with a left Haar measure ds.

Then we have commutative C*-algebras and von Neumann algebras

Co(G) € Cp(G) € Loo(G)

with pointwise multiplication.

Moreover, we have a natural Banach algebra structure on the convolu-
tion algebra L1(G) = Loo(G)« and the measure algebra M(G) = Co(G)*
given by

Frgt) = [ F()g(sM)ds
and
(14 v, h) = /G h(st)dpu(s)du(t)

for all h € Loo(G).
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Group C*-algebras and Group von Neumann Algebras

For each s € GG, there exists a unitary As on L»>(G) given by

AsE(t) = £(s7 1)

Then X induces a contractive *-representation A : L1(G) — B(L>(G))
given by

A(f) = /Gf(s)/\sds-

We let CY(G) = A(Ll(G))“'” denote the reduced group C*-algebra of G.

s.o.t

We let L(G) = ML1(G)) = {)s : s € G} C B(L>(G)) be the left
group von Neumann algebra of G.
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If G is an abelian group, then L1(G) is commutative. Therefore, C{(G)
and L(G) are commutative and we have

C3(G) = Co(G) and L(G) = Loc(G),

where G = {x : G — T : continuous homo} is the dual group of G.

Example: Let G = Z. Then ¢1(Z) is unital commutative. In this case,
we have

C3(Z) = C(T) and L(Z) = Loo(T).

Therefore, for a general group G, we can regard CY(G) and L(G) as the
dual object of Co(G) and Lo (G), respectively.
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Fall Group C*-algebra

Let 7, : G — B(Hy) be the universal representation of G. Then my
induces a contractive *-representation m, : L1(G) — B(Hy) given by

mu(f) = /G f(s)my(s)ds.

We let C*(G) = 7ru(L1)H°|| denote the full group C*-algebra of G.

It is known that we have a canonical C*-algebra quotient
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Fourier Algebra A(G)

Let
AG) ={f:G—=C:f(s) = (Askn)}

be the space of all coeffient of regular representation A. It was shown
by Eymard in 1964 that A(G) with the norm

1Ly = inf{lIglllInl] = f(s) = (As€lm) }

and pointwise publication is a commutative Banach algebra, i.e. we
have

1f9llacey < Ifllallgllace)-
We call A(G) the Fourier algebra of G.

We note that A(G) with the above norm is isometrically isomorphic to
the predual L(G)«. More over, if G is an abelian group, we have

A(G) = L1(O).

Therefore, we can regard A(G) as the natural dual of L1(G).
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Operator Space Structure on A(G)

It is known that we can isometrically identify A(G) with the predual
L(G)« of the group von Neumann algebra. Then we can obtain a natural
operator space structure on A(G) given by the canonical inclusion

A(G) — A(G)™™ = L(G)*".
With this operator space structure, we have the complete isometry

AG)* = L(Q).

We also have canonical operator space structures on
B\(G) = C{(®)* and B(G) = C*(G)*.
We have the completely isometric inclusion

A(G) — B)\(G) — B(G).
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A continuous function ¢ : G — C is called a multiplier of A(G) if the
multiplication map m, defines a map on A(G), i.e. we have

my P € A(G) — pyp € A(G).
We let M A(G) denote the space of all multipliers of A(G).

We let M, A(G) denote the space of all completely bounded multipliers
of A(G), i.e. |Imyl|qp < 0.

There exists a natural operator space structure on

MpA(G) € CB(A(G), A(G)).
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Classical Case Noncommutative Case

Loo(G) L(G)
Co(G) CX(&)
L1(G) A(GR)
M(G) By\(G) € B(G) C MypA(G) € MA(G).

If G is amenable, we have

B\(G) = B(G) = Mg A(G) = MA(G).
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Amenability of ¢

A locally compact group G is called amenable if there exists a left
invariant mean on Loo((G), i.e. there exists a positive linear functional

m . Loo(G) — C

such that m(1) = 1 and m(sh) = m(h) for all s € G and h € Loo(G),
where we define sh(t) = h(st).

Theorem: The following are equivalent:

1. G is amenable;

2. (G satisfies the Fglner condition: for every € > 0 and compact subset
C C @G, there exists a compact subset K C G such that

| KAsK]|

<€ for all s € C;
p(K)

3. A(G) has a bounded (or contractive) approximate identity.
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Applications to Related Areas

C*-algebras and von Neumann algebras
Non-self-adjoint operator algebras
Abstract harmonic analysis/locally compact quantum groups

Non-commutative Lp-Spaces

Non-commutative probablilty/non-commutative matingale theory

Non-commutative harmonic analysis

Quantum information theory
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