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Pontryagin Duality

Let G be a locally compact abelian group. There exists a dual group

Ĝ = {γ : G→ T : continuous homomorphisms}.

Ĝ has a canonical abelian group structure and we have the homeomor-

phism

ˆ̂G ∼= G.

In particular, we have the Plancherel theorem

L2(Ĝ) = L2(G).

Question: How do we generalize this to non-abelian groups ?

2



Groups Algebras

Let G be a locally compact group and let

λ : G→ B(L2(G))

denote the left regular representation of G, respectively. We are inter-

ested in the following operator algebras.

L∞(G) L(G)

C0(G) C∗λ(G)

• L(G) denote the left group von Neumann algebra on L2(G) and

• C∗λ(G) denote the corresponding reduced group C*-algebra.

3



This represents a nice duality since if G is an abelian group with dual

group Ĝ, we have

L∞(G) L(G) = L∞(Ĝ)

C0(G) C∗λ(G) = C0(Ĝ)
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Co-multiplication on L∞(G)

To recover the group structure from L∞(G), we need to consider a

co-multiplication

Γa : f ∈ L∞(G) → Γa(f) ∈ L∞(G)⊗̄L∞(G)

given by

Γa(f)(s, t) = f(st).

It is easy to see the Γa is a normal injective *-homomorphism such that

it satisfies the co-associativity condition

(Γa ⊗ ι)Γa = (ι⊗ Γa)Γa

i.e. we have

(Γa ⊗ ι)Γa(f)(s, t, u) = f((st)u) = f(s(tu)) = (ι⊗ Γa)Γa(f)(s, t, u).

We call (L∞(G),Γa) a commutative Hopf von Neumann algebra.
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Co-involution on L∞(G)

To recover the inverse of G, we can consider a co-involution

κa(h) = ȟ

which is a weak* continuous *-anti-automorphsim on L∞(G) such that

Γa ◦ κa = Σ(κa ⊗ κa) ◦ Γa.

Moreover, we can use the left Haar measure to obtain a normal faithful

weight

ϕa : h ∈ L∞(G)+ → ϕa(h) =
∫
G
h(s)ds ∈ [0,+∞]

on L∞(G) such that (ι⊗ ϕa)Γ(h) = ϕa(h)1 since

(ι⊗ ϕa)Γ(h)(s) =
∫
G
h(st)dt = (

∫
G
h(t)dt) = ϕa(h).

So we call ϕa a left Haar weight on L∞(G).
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Commutative Kac Algebras

Then (L∞(G),Γa, κa, ϕa) is a commutative co-involutive Hopf von Neu-

mann algebra with a left Haar weight.

On the other hand, it was shown by Takesaki in 1969 that every

commutative co-involutive Hopf von Neumann algebra with a Haar

weight Kac algebra co-involutive commutative Hopf von Neumann al-

gebra (M,Γ, κ, ϕ) must be like this, associated with a locally compact

group G

They are just commutative Kac algebras.
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Co-involutive Hopf Structure on L(G)

There is a natural co-associative co-multiplication

ΓG : L(G) → L(G)⊗̄L(G)

on L(G) given by

ΓG(λs) = λs ⊗ λs.

This is co-commutative in the sense that

Σ ◦ ΓG = ΓG.

To recover the inverse, we consider a co-involution κG on L(G) given

by

κG(λs) = λs−1.

Moreover, we can obtain a normal faithful (Plancherel) weight ϕG on

L(G). So (L(G),ΓG, κG, ϕG) is a co-commutative Kac algebra.

Remark If G is a discrete group, then

ϕG(x) = ψG(x) = 〈xδe|δe〉.
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Kac Algebras

G. Kac introduced Kac algebras K = (M,Γ, κ, ϕ), for unimodular case,

in the 60’s.

The theory was completed for general (non-unimodular) case in the

70’s by two groups: Kac-Vainerman in Ukraine and Enock-Schwartz in

France (see Enock-Schwartz’s book 1992).

There exists a perfect Pontryagin duality

ˆ̂K = K.

Examples:

• Commutative Kac algebras (L∞(G),Γa, κa, ϕa)

• Co-commutative Kac algebras (L(G),ΓG, κG, ϕG)
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Non-trivial Example

The first example of non-commutative and non-cocommutative Kac

algebra (LCQG) was given by Kac and Paljutkin 1965.

This can be given by considering the same algebra

L(G) = C⊕ C⊕ C⊕ C⊕M2

but having a twisted (non-co-commutative) co-multiplication. It turns

out that this is the only

non-commutative and non-co-commutative

Kac algebra (LCQG) G of order 8.
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Locally Compact Quantum Groups (LCQG)

The notion of quantum groups was introduced by Drinfel’d in his 1986
ICM talk. Here, we consider the analysis aspect of quantum groups, i,e
we consider the quantization of locally compact groups.

In 1987, Woronowicz discovered SUq(2,C), a natural quantum deforma-
tion of SU(2,C). He showed that SUq(2,C) does not correspond to any
Kac algebra due to the missing of bounded co-involution.

Since then, several different definitions of LCQG have been given by

• Baaj and Skandalis 1993: Regular Multiplicative Unitaries

• Woronowicz 1996: Manageable Multiplicative Unitaries

• Kustermans and Vaes 2000: Quantum Groups, C∗-algebra setting

• Kustermans and Vaes: 2003: Quantum Groups, von Neumann algebra

setting.
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Kustermans and Vaes’ Definition

A LCQG is G = (M,Γ, ϕ, ψ) consisting of

(1) a von Neumann algebra M

(2) a co-multiplication Γ : M → M⊗̄M , i.e. a unital normal *-
homomorphism satisfying the co-associativity condition

(id⊗ Γ) ◦ Γ = (Γ⊗ id) ◦ Γ.

(3) a left Haar wight ϕ, i.e. a n.f.s weight ϕ on M satisfying

(ι⊗ ϕ)Γ(x) = ϕ(x)1

(4) a right Haar weight ψ, i.e. n.f.s weight ψ on M satisfying

(ψ ⊗ ι)Γ(x) = ψ(x)1.

It is known that for every locally compact quantum group G = (M,Γ, ϕ, ψ),
there exists a dual quantum group Ĝ = (M̂, Γ̂, ϕ̂, ψ̂) such that we may
obtain the perfect Pontryagin duality

ˆ̂G = G.
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Every Kac algebra K = (M,Γ, κ, ϕ) is a LCQG since we can obtain the

right Haar weight

ψ = ϕ ◦ κ

via ϕ and κ !

Indeed, for a general LCQG G, the relation between left and right Haar

weights determines a (not necessarily bounded) co-involution called an-

tipode of G, on a dense subspace of M .

Let G = (M,Γ, ϕ, ψ) be a locally compact quantum group. We write

L∞(G) = M and L1(G) = M∗.

We also let C0(G) denote the quantum group C*-subalgebra contained

in L∞(G).

13



Commutative LCQGs are exactly Ga = (L∞(G),Γa, ϕa, ψa) with ψa =

ϕ ◦ κa, or equivalently, is determined by the right Haar measure of G.

Co-commutative LCQGs are exactly Ĝa = (L(G),ΓG, ϕG, ψG) with the

Plancherel weight ϕG = ψG.

• G is commutative if and only if Ĝ is co-commutative.

A LCQG G is Discrete if L1(G) is unital. In this case,

L∞(G) =
∏
Mn(α) and C0(G) = c0 −⊕Mn(α).

A LCQG G is compact if C0(G) is unital.

• G is discrete if and only if Ĝ is compact.

• G is finite dim if and only if it is discrete and compact.

In this case, it is a finite dim Kac algebra.
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Bicrossed Product

Bicrossed product of finite groups was studied by G. Macky, W.M. Singer

1972, Takeuchi 1981.

Suppose that G1 and G2 are two subgroups of a finite group G such

that G1 ∩G2 = {e} and every g ∈ G can be (uniquely) written as

g = g1g2.

In this case, we can

• obtain a pair of compatible actions of G1 and G2 on each other, and

• a pair of compatible 2-cocycles for these actions so that G1 and G2

form a cocycle matched pair.

Then G1 and G2 form a matched pair and G can be identified with the

bicrossed product of G1 and G2.
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Bicrossed Product Construction

S. Majid gave the first infinite dimensional non-trivial example of Kac
algebras in 1991

More non-trivial examples of LCQGs are given by Baaj-Skandalis 1993,
Baaj-Skandalis-Vaes 2003, Vaes-Vainerman 2003, and et al.

Theorem [Baaj-Skadalis 1993]: There exist a locally compact quan-
tum groups G such that

C0(G) = K(H) and L∞(G) = B(H).

Theorem [Baaj-Skadalis-Vaes 2003]: There exist a locally compact
quantum groups G such that

L∞(G) = B(H) = L∞(Ĝ).

Theorem [Vainerman and Fima, Fima]: There exists a locally com-
pact quantum groups G such that both L∞(G) and L∞(Ĝ) are type
II1-factors, or type IIIλ factors.

In these cases, G is non-compact and non-discrete.
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Banach Algebra Structure on L1(G) = M∗

The co-multiplication

Γ : L∞(G) → L∞(G)⊗̄L∞(G)

induces an associative completely contractive multiplication

? = Γ∗ : f1 ⊗ f2 ∈ L1(G)⊗̂L1(G) → f1 ? f2 = (f1 ⊗ f2) ◦ Γ ∈ L1(G)

on L1(G) = M∗ such that A = (L1(G), ?) is a faithful completely con-
tractive Banach algebra with

〈L1(G) ? L1(G)〉 = L1(G).

If Ga is a commutative LCQG, then ? = Γ∗ is just the convolution on
the convolution algebra

L1(Ga) = L1(G).

If Ĝa is a co-commutative LCQG, then ? = Γ̂∗ is just the pointwise
multiplication on the Fourier algebra

L1(Ĝa) = L(G)∗ = A(G).
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Fundamental Unitary Operators

If G is a finite group, we can obtain an operator

W =
∑
g∈G

δg ⊗ λg ∈ B(`2(G×G)).

This is actually a unitary operator on `2(G×G) since

Wξ(s, t) = ξ(s, s−1t) for all ξ ∈ `2(G×G).

Moreover, we see that for every f =
∑
s∈G fsδs ∈ `1(G), we have

(f ⊗ ι)(W ) =
∑
s∈G

fsλs = λ(f),

for every ω ∈ A(G), we have

(ι⊗ ω)(W ) =
∑
g∈G

δgω(g) ∈ `∞(G).
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Now if G is a LCQG, then there is a left fundamental unitary operator

W on L2(G)⊗ L2(G) such that

λ : f ∈ L1 → λ(f) = (f ⊗ ι)(W ) ∈ B(L2(G))

defines a completely contractive algebra homomorphism. We let

C0(Ĝ) = {λ(f) : f ∈ L1(G)}‖·‖

be the quantum C*-algebra of Ĝ and let

L∞(Ĝ) = {λ(f) : f ∈ L1(G)}s.o.t.

be the quantum von Neumann algebra of Ĝ.

It turns out that we have

C0(G) = {(ι⊗ f̂)(W ) : f̂ ∈ L1(Ĝ)}
‖·‖

be the quantum C*-algebra of G and

L∞(G) = {(ι⊗ f̂)(W ) : f̂ ∈ L1(Ĝ)}
s.o.t.

We can also have full quantum C*-algebras Cu0(G) and Cu0(Ĝ).
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Quantum Measure Algebra and cb-Centralzer Algebras

We let M(G) = C0(G)∗ to be the quantum measure algebra of G and

we let Mu(G) = Cu(G)∗ to be the full quantum measure algebra of G.

A cb-map S on L1(G) is called a cb-left centralizer (resp. a cb-right

centralizer) if

S(f ? g) = S(f) ? g (resp. T (f ? g) = f ? T (g)).

We let LMcbL1(G) (resp. RMcb(L1(G))) to be the space of completely

bounded left (resp. right) centralizers on L1(G).

We let Mcb(L1(G)) to be the space of completely bounded double cen-

tralizers on L1(G). A completely bounded double centralizer of L1(G)

if S and T are completely bounded maps on L1(G) such that

f ? S(g) = T (f) ? g for all f, g ∈ L1(G).
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Summary

C0(G) ⊆ L∞(G) C0(Ĝ) ⊆ L∞(Ĝ)

Cu0(G) Cu0(Ĝ)

LUC(G), RUC(G) LUC(Ĝ), RUC(Ĝ)

L1(G) ⊆M(G) ⊆Mu(G) L1(Ĝ) ⊆M(Ĝ) ⊆Mu(Ĝ)

LMcb(L1(G)), RMcb(L1(G)) LMcb(L1(Ĝ)), RMcb(L1(Ĝ))
Mcb(L1(G)) Mcb(L1(Ĝ))

Qlcb(G), Qrcb(G) Qlcb(Ĝ), Qrcb(Ĝ)
Qcb(G) Qcb(Ĝ).
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The Dual Structure of RMcb(L1(Ĝ)) and Mcb(L1(Ĝ))

There is a natural complete contraction Qr : L1(G) → RMcb(L1(Ĝ))∗.
We let Qrcb(L1(Ĝ)) be the closure of L1(G) w.r.t. this norm.

Theorem [H-N-R 2009]: There exists a complete isometry

RMcb(L1(Ĝ)) = Qrcb(L1(Ĝ))∗.

Therefore, RMcb(L1(Ĝ)) is a dual operator space. In fact, RMcb(L1(Ĝ))

is a dual Banach algebra, i.e. its multiplication is weak* continuous in

each component.

Daws considered the cb-double multiplier algebra Mcb(L1(G)) and its

predual Qcb(L1(Ĝ)).

Theorem [H-N-R 2009, Daws 2010]: There exists a complete isom-

etry

Mcb(L1(Ĝ)) = Qcb(L1(Ĝ))∗,

and Mcb(L1(Ĝ)) is a dual Banach algebra,
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Co-amenability of LCQGs

A locally compact quantum group is called co-amenable if L1(G) has a

bounded approximate identity.

Theorem [Bédos-Tuset]: Let G be a LCQG and Ĝ be its dual quan-

tum group. Then TFAE:

1. Ĝ is co-amenable, i.e. L1(Ĝ) has a BAI;

2. M(Ĝ) = C0(Ĝ)∗ is unital;

3. C0(Ĝ) = Cu(Ĝ) ⇔ M(Ĝ) = Mu(Ĝ).
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Theorem [K-R 1996 for Kac algebras, H-N-R 2009 for QGs]: Let

G be a locally compact quantum group. TFAE:

• Ĝ is co-amenable;

• ‖λ(f)‖ = ‖f‖ for all f ∈ L1(G)+

• λQ : Qcb(L1(Ĝ)) → C0(Ĝ) is an isometric (isomorphic) isomorphism.
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Amenable LCQGs

A locally compact quantum group is amenable if there exists a state
m : L∞(G) → C such that

(ι⊗m)Γ(x) = m(x)1 for all x ∈ L∞(G).

Theorem:

1. If Ĝ is co-amenable, i.e. L1(Ĝ) has a BAI, then G is amenable, i.e.
L∞(G) has a left invariant mean.

The converse is true if G is a discrete quantum group, i.e. if L1(G)
is unital, or G = G is a locally compact group.

2. If G is amenable, then both C0(Ĝ) and Cu0(Ĝ) are nuclear and L∞(Ĝ)
is injective.

Howerver it is not known whether C0(Ĝ) = Cu0(Ĝ), unless G is dis-
crete, or G = G is a locally compact group.
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Operator Amenability

Since L1(G) is a c.c. Banach algebra, we can consider the operator

amenability of L1(G).

It is clear that if L1(G) then L1(G) has a BAI and L∞(G) has a left

invariant mean.

Questions:

• It is interesting to know that if L1(G) is operator amenable, whether

L1(Ĝ) has a BAI.

• It is also interesting to know that whether L1(G) is operator amenable

if and only if L1(Ĝ) is operator amenable.

These are true for locally compact groups , and for discrete or compact

Kac algebras (R 1995 and R 1996).
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