Similarity for C*-algebras an introduction by a non-expert.

Thanks to Gilles Pisier, Erik Christensen, Stuart White and Roger Smith for discussions

The definition of length and all results are due to Gilles Pisier.

Groups

Dixmier and Day [1950 independently] showed that a bounded representation of an amenable group on a Hilbert space can be unitized.

A representation

$$
\pi: G \rightarrow(\text { invertibles on } H)
$$

is "strongly unitizable" if there is an invertible $T \in\left(\pi(G), \pi(G)^{*}\right)^{\prime \prime}$ such that $g \mapsto T \pi(g) T^{-1}$ is a unitary representation.

Theorem [Pisier, Simultaneous similarity, bounded generation and length, Archive 2005]
Every bounded representation of a discrete group $G \rightarrow$ Invertibles on H is strongly unitizable if, and only if, G is amenable.

Kadison similarity conjecture [1955]

Let \mathcal{A} be a unital C^{*}-algebra and let θ be unital bounded homomorphism from \mathcal{A} into $B(H)$. Show that there is an invertible $T \in B(H)$ such that $x \mapsto$ $T \theta(x) T^{-1}$ is a ${ }^{*}$-homomorphism.

There are results due to Christensen, Haagerup and others on C*-algebras and Paulsen [1984] on operator algebras and complete boundedness.

A unital operator algebra \mathcal{A} has the similarity property if, and only if, each bounded homomorphism $\pi: \mathcal{A} \rightarrow B(H)$ is completely bounded.

Theorem [Pisier, St Petersburg M J '99] A unital operator algebra \mathcal{A} has the similarity property if, and only if, it has finite length. The similarity degree and length are equal.

Gilles intuition on similarity and length: We call this [generation by diagonals and similarity] the "dual" view point because it is reminiscent of the fact that the closed convex hull C of a subset $B \subset E$ of a Banach space E is characterized by the implication

$$
\sup _{b \in B} f(b) \leq 1 \Longrightarrow \sup _{s \in C} f(s) \leq 1
$$

for all continuous real linear forms f. Although this is a wild analogy, we feel that our results on length are a kind of "nonlinear" analog of the very classical duality principle of convex hulls.

All integer values of length are attained for general operator algebras [Pisier] but the only current known values for C^{*} algebras are 1, 2 and 3 .

Allan's intuition on length: Every matrix over \mathcal{A} can be factorized in a good metric way with the length of the factors tending to infinity by the BlecherPaulsen Theorem or in a good algebraic way with length one; in general when the metric version is good, the algebraic one is poor and vice versa. Finite length encapsulates the opposing tensions of these two properties, metric/algebra, which lie at the core of operator algebras.

Idea

Scalar matrices and diagonal matrices over \mathcal{A} are good.

Notation

\mathcal{A} is subsequently a unital C^{*}-algebra $\mathbb{M}_{n, N}=n \times N$ matrices over \mathbb{C} $\mathbb{M}_{n}=n \times n$ matrices over \mathbb{C} $\mathbb{M}_{n}(\mathcal{A})=n \times n$ matrices over \mathcal{A} $\mathbb{D}_{n}(\mathcal{A})=n \times n$ diagonal matrices over \mathcal{A}

If $\left(x_{i j}\right) \in \mathbb{M}_{n}(\mathcal{A})$, then $\left(x_{i j}\right)=V D W$, where

$$
\begin{array}{rl}
V & =\operatorname{row}_{n}(1) \otimes I_{n} \\
& =\left(\begin{array}{ccccccccc}
1 & 1 & \cdots & 1 & 0 & \cdots & 0 & 0 & \cdots
\end{array}\right. \\
0 & 0
\end{array} \cdots \cdots
$$

$\in \mathbb{M}_{n, n^{2}}$,
$W=\left(\begin{array}{llll}I_{n} & I_{n} & \cdots & I_{n}\end{array}\right)^{\mathbf{T}}$
$\in \mathbb{M}_{n^{2}, n}$ and
D
$=\operatorname{diag}_{n^{2}}\left(x_{11}, x_{12}, \cdots, x_{1 n}, x_{21}, x_{22}, \cdots, x_{n n}\right)$
$\in \mathbb{D}_{n^{2}}(\mathcal{A})$.
This factorization is algebraically good, analytically poor as

$$
\|V\|\|D\|\|W\| \leq n\|X\|
$$

If $d, n \in \mathbb{N}$, define $\|\cdot\|_{(d)}$ on $\mathbb{M}(\mathcal{A})$ by
$\|X\|_{(d)}$
$=\inf \left\{\prod_{j=0}^{d}\left\|V_{j}\right\| \prod_{j=1}^{d}\left\|D_{j}\right\|:\right.$
where $X=V_{0} D_{1} V_{1} \cdots D_{d} V_{d}$ with
$V_{0}, V_{d}^{*} \in \mathbb{M}_{n, N}$
$V_{j} \in \mathbb{M}_{N}(1 \leq j \leq d-1)$ and
$\left.D_{j} \in \mathbb{D}_{N}(\mathcal{A})(1 \leq j \leq d)\right\}$

Lemma

(1) $\|\cdot\|_{(d)}$ is an operator space norm,
(2) $\|X\| \leq\|X\|_{(d+1)}$

$$
\leq\|X\|_{(d)} \leq\|X\|_{(1)} \leq n\|X\|,
$$

(3) $\|X Y\|_{(d+r)} \leq\|X\|_{(d)}\|Y\|_{(r)}$
(4) $\|\cdot\|_{(1)}=\|\cdot\|_{\mathrm{MAX}}$
is the maximal operator space norm.

Theorem

[Blecher + Paulsen,PAMS, 1991]
If \mathcal{A} is a unital operator algebra, then

$$
\lim _{d \rightarrow \infty}\|X\|_{(d)}=\|X\|
$$

for all $X \in \mathbb{M}_{n}(\mathcal{A})$ and all $n \in \mathbb{N}$.
Good analytically, poor algebraically.

Gilles Pisier's definition of length asks for efficiency both algebraically and analytically

Definition of length [Pisier, 1999]
The algebra \mathcal{A} has length $\leq d$ if, and only if, there is a constant K such that $\|X\|_{(d)} \leq K\|X\|$ for all $X \in \mathbb{M}_{n}(\mathcal{A})$ and all $n \in \mathbb{N}$. The length $l(\mathcal{A})$ is the minimum of d such that \mathcal{A} has length $\leq d$.

Length can be calculated via similarity and direct calculation of length.

Generally

Similarity calculation of degree(= length)
\leq Direct calculation of length

Definition

If $d, n \in \mathbb{N}$, let
$K_{(d)}(n)=K_{(d)}(n, \mathcal{A})$
$=\sup \left\{\|X\|_{(d)}: X \in \mathbb{M}_{n}(\mathcal{A}),\|X\| \leq 1\right\}$.
If $K \geq 1$, let
$N_{(d)}(n, K)$
$=\min \left\{N_{0}: X \in \mathbb{M}_{n}(\mathcal{A}),\|X\|_{(d)}<K\|X\|\right.$ with $N \leq N_{0}$ in factorization. $\}$.
Then $1 \leq K_{(d)}(n) \leq n$.

Lemma (Pisier) If \mathcal{A} is a unital C^{*} algebra and $p_{1}, p_{2} \cdots p_{n}$ are projections in \mathcal{A} with $\sum_{1}^{n} p_{j}=1$, then
$\left\|\left(p_{1}, \cdots, p_{n}\right)\right\|_{(1)}=1=\left\|\left(p_{1}, \cdots, p_{n}\right)\right\|$.
Proof Here row.row ${ }^{*}=1$ gives the second equality. Let $W=\left(w_{i j}\right)$ be a unitary matrix in \mathbb{M}_{n} with $\left|w_{i j}\right|=$ $n^{-1 / 2}$ for $1 \leq i, j \leq n$. Let

$$
\begin{aligned}
& V=(1,1, \cdots, 1) \in \mathbb{M}_{1, n} \quad \text { and } \\
& D=\operatorname{diag}\left(\sum_{j=1}^{n} \overline{w_{j i}} p_{j}\right) \in \mathbb{D}(\mathcal{A}) .
\end{aligned}
$$

Then
$\left(p_{1}, \cdots, p_{n}\right)=V D W$ and
$\|V\|=n^{1 / 2},\|D\|=n^{-1 / 2},\|W\|=1$.

Examples

1. $\mathcal{A}=\mathbb{C}^{k}=l_{\infty}^{k}$ has

$$
(k / 2)^{1 / 2} \leq K_{(1)} \leq(k-1)^{1 / 2}
$$

using duality, Clifford algebras and
$C_{r}^{*}\left(\mathbb{F}_{k-1}\right)$. Here $K_{(2)}=1$.
2. $\mathcal{A}=\mathbb{M}_{k}$ has
$K_{(1)}(n)=\min \left\{n, k^{3 / 2}\right\}, \quad K_{(2)} \leq k$
$K_{(3)} \leq k^{1 / 2} \quad$ and
$K_{(4)}=1 \quad$ with $N_{(4)}(n, 1) \leq k^{2} n$.
3. $\mathcal{A}=\mathcal{M}$ is a $I I_{1}$ factor with
property Γ, then
$3 \leq l(\mathcal{M}) \leq 5 \quad$ with $K_{(5)}=1 \quad[$ Pisier $]$
$l(\mathcal{M})=3 \quad[$ Christensen $]$.
4. $\mathcal{A}=N$ is a properly infinite von

Neumann algebra, then $l(N)=3$,
$K_{(3)}=1$ and $N_{(3)}(n, 1)=n$.

Corollary of [Pisier] and

 [Christensen, Smith, S] using Popa's constructive methods Let \mathcal{M} be separable $I I_{1}$ factor with property Γ. There is a hyperfinite subfactor R in \mathcal{M} such that each continuous R-bimodule map ϕ from \mathcal{M} is completely bounded with $\|\phi\|_{c b}=\|\phi\|$.Proposition [Pisier] A unital
C^{*}-algebra has length 1 if, and only if, it is finite dimensional.

Theorem [Pisier] A unital
C^{*}-algebra has length 2 if, and only if,
\mathcal{A} is amenable.
Theorem [Pisier] For each $d \in \mathbb{N}$ there is an operator algebra \mathcal{A} with length d.

Theorem [Pisier] Every C*-algebra has finite length if, and only if, there are $d, K \in \mathbb{N}$ such that
$K_{(d)}(n, \mathcal{A}) \leq K$ for all $n \in \mathbb{N}$ and all (unital) C^{*}-algebras \mathcal{A}.

Pisier's conjecture

$$
l^{\infty}\left(l^{\infty}\left(\mathbb{M}_{k}: k \in \mathbb{N}\right)\right)
$$

has infinite length.

Table of lengths of various algebras calculated by similarity or by length arguments.
$?$ = currently calculable
?? = unknown
$\mathcal{S}=$ Estimate by similarity.
$\mathcal{L}=$ Estimate by length.

Algebra	Length	\mathcal{S}	\mathcal{S}	\mathcal{L}	\mathcal{L}	\mathcal{L}
\mathcal{A}	$l(\mathcal{A})$	d	$K_{(d)}$	d	$K_{(d)}$	$N_{(d)}(n, K)$
Abelian \mathbb{C}^{k}	1	$?$	$?$	1	$?$	$?$
Matrix \mathbb{M}_{k}	1	$?$	$?$	1	$K_{(4)}=1$	$n k^{2}$
Amenable \mathcal{A}	2	2	$1 ?$	$? ?$	$? ?$	$? ?$
$I_{\infty}, I I_{\infty}, I I I$	3	3	$1 ?$	3	1	n
$I I_{1} R$	3	3	$1 ?$	4	1	∞
Γ-factor \mathcal{M}	3	3	$?$	5	1	n^{2}

