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Groups

Dixmier and Day [1950 independently]
showed that a bounded representation
of an amenable group on a Hilbert space
can be unitized.

A representation
TG — (invertibles on H )

is “strongly unitizable” if there is an in-
vertible T' € (7(G), W(G)*)” such that
g — Tr(¢)T! is a unitary represen-
tation.

Theorem [Pisier, Simultaneous
similarity, bounded generation and length,
Archive 2005]
Every bounded representation of a dis-
crete group G — Invertibles on H is
strongly unitizable if, and only if, G is
amenable.



Kadison similarity conjecture [1955]

Let A be a unital C*-algebra and let 6
be unital bounded homomorphism from
A into B(H). Show that there is an
invertible T € B(H) such that x —
TO(x)T ! is a *-homomorphism.

There are results due to Christensen,
Haagerup and others on C*-algebras and
Paulsen [1984] on operator algebras and
complete boundedness.

A unital operator algebra A has the
similarity property if, and only if, each
bounded homomorphism 7 : A — B(H)
is completely bounded.



Theorem |[Pisier, St Petersburg M
J 799/ A unital operator algebra A
has the similarity property if, and only
if, it has finite length. The similarity
degree and length are equal.

Gilles intuition on stmilarity and length:
We call this [generation by diagonals
and similarity| the “dual” view point
because it is reminiscent of the fact that
the closed convex hull C' of a subset
B C FE of a Banach space E is char-
acterized by the implication

sup f(b) <1 == sup f(s) <1

beB seC
for all continuous real linear forms f.
Although this is a wild analogy, we feel
that our results on length are a kind of
“nonlinear” analog of the very classical
duality principle of convex hulls.
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All integer values of length are attained
for general operator algebras |Pisier| but
the only current known values for C*-
algebras are 1, 2 and 3.

Allan’s intuition on length: Every
matrix over A can be factorized in a
cood metric way with the length of the
factors tending to infinity by the Blecher
Paulsen Theorem or in a good algebraic
way with length one; in general when
the metric version is good, the algebraic
one 1s poor and vice versa. Finite length
encapsulates the opposing tensions of
these two properties, metric/algebra, which
lie at the core of operator algebras.



Idea

Scalar matrices and diagonal matrices
over A are good.

Notation

A is subsequently a unital C*-algebra
M, y = n X N matrices over C

M, = n X n matrices over C

M, (A) = n x n matrices over A

Dy (A) = n x n diagonal matrices over A



If (:CZ]) € M, (A), then (:L‘Zj) =VDW,

where

V:mwn(l) ® I
(11... 10---00 --- Q\
00---01 --

3 .10 ---0

\0O - 00...01-- 1)
c M, 2,

T

EMnQ’n and
D
— di&gnQ ($117 L12, " yL1n, L21,L22, " " 7337171)
GDnQ(A).

This factorization is algebraically good,
analytically poor as

VDWW < mfl X



If d,n € N, define H : H(d) on M(.A)
by

X )

d d
=f{] [ IV;I 1] I1D51:
j=0 j=1

where X = VyD1Vq--- D, V,; with
Vo, Vd* = Mn,N

V,eMpy (1<j<d-1) and
DjeDy(A) (1 <j<d)}

Lemma
(1) [+ ll(q) 1s an operator space norm,
(2) XN < 1XT g4
< [ Xgy < 1XT1y < nf|X]],
(3) XY gary < IX 1Y 1y
@) Ny = I haax
is the maximal operator space norm.
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Theorem
Blecher + Paulsen, PAMS, 1991]

If A is a unital operator algebra, then
fim | X g) = X

d— 00

for all X € M,(A) and all n € N.

Good analytically, poor algebraically.

Gilles Pisier’s definition of length asks
for efficiency both algebraically and
analytically



Definition of length [Pisier, 1999

The algebra A has length < d if, and
only if, there is a constant K such that
HXH(d) < K| X]|| for all X € My(.A)
and all n € N. The length [(A) is the

minimum of d such that A has length
<d.

Length can be calculated via similarity
and direct calculation of length.

Generally

Similarity calculation of degree(= length)
< Direct calculation of length

10



Definition

If d,n €N, let
K<d>(n) — K(d)(n,fl)
=sup{[[X(g): X € Mn(A), [|X]| < 1}.

If K >1, let

Ngy(n, K)

— min{Np: X € My(A), | Xl < K|
with N < Ny in factorization. }.

Then 1 < K(4)(n) < n.
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Lemma (Pisier) If A is a unital C*-
algebra and py, py - - - py, are projections
in A with ) {'p; = 1, then

Proof  Here row.row™ = 1 gives the
second equality. Let W = (ww) be
a unitary matrix in My, with |w;;| =
n~12 for 1 <1,7 <n. Let

V=(11---,1) e My, and
n
D = diag( Zw_ﬂp]) cD(A).
j=1
Then

(p1,---,pn) = VDW and
V|| =nl2 ||D|| =n~ 2, W] = 1.
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Examples
1. A=CF=1% has
(k/2)Y? < Ky < (k= 1)V
using duality, Clifford algebras and
C;f(Fk_l) Here K(Q) = 1.
2. .A — Mk has
- 2
K(1y(n) = min{n, K3/ b Ky <k
K(?)) S ]{1/2 and
K(4) =1 with N<4)(n, 1) < n.
3. A= Mis a Il factor with
property I', then
3<UM) <5 with K5y =1 [Pisier]
[(M) =3 [Christensen].
4. A = N is a properly infinite von

Neumann algebra, then [(N) = 3,
K3 =1and Ngy(n, 1) =n.
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Corollary of [Pisier| and
[Christensen, Smith, S| using
Popa’s constructive methods
Let M be separable I factor with
property I'. There is a hyperfinite
subfactor R in M such that each
continuous R-bimodule map ¢ from
M is completely bounded with

Ioller = 2]l
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Proposition |Pisier] A unital
C*-algebra has length 1 if, and only if,
it is finite dimensional.

Theorem |[Pisier] A unital
C*-algebra has length 2 if, and only if,
A is amenable.

Theorem [Pisier] For each d € N
there is an operator algebra A with
length d.

Theorem [Pisier] Every C*-algebra

has finite length if, and only if, there
are d, K € N such that
Kg)(n, A) < K for all n € N and all

(unital) C*-algebras A.

Pisier’s conjecture
ZOO(ZOO(Mk: ke N))
has infinite length.

15



Table of lengths of various algebras
calculated by similarity or by length
arqguments.

? = currently calculable

7?7 = unknown

S = Estimate by similarity.
L = Estimate by length.

Algebra | Length | S| & | L L L
Abelian C* 1 (2] 7 |1 ? ?
Matrix M, 1 tT T Ky =1 nk?

Amenable A 2 2117 |77 77 77
I 11 111 3 3117 |3 1 n

I R 3 3117 | 4 1 00
[-factor M 3 31 7 |5 1 n?
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