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Abstract. Groups first entered mathematics in their geometric guise, as col-

lections of all symmetries of a given object, be it a finite set, a polygon, a

metric space or a manifold. Original definitions of quantum groups (also in
the topological context) had rather algebraic character. In these lectures we

describe several examples of quantum symmetry groups of a given quantum

(or classical) space. The theory is based on the notion of actions of (com-
pact) quantum groups on C∗-algebras and viewing symmetry groups as uni-

versal objects acting on a given structure. Such approach was suggested by
Woronowicz already in the late 1970s and later developed by Wang, Banica,

Bichon, Goswami, So ltan and others.

Plan of lectures

Lecture 1 Actions of compact quantum groups: definition of actions, notion of
continuity/nondegeneracy, invariant states, ergodicity, categories of quan-
tum groups or semigroups acting on a given C∗-algebra and preserving
some additional structure ([Wor], [Wan], [Pod], [So1]).

Lecture 2 Quantum symmetry groups of finite structures: quantum permuta-
tion groups, quantum symmetry groups of graphs, Wang and Van Daele’s
universal compact quantum groups ([Wan], [BBC], [Bic], [VDW], [So2]).

Lecture 3 Quantum isometry groups of noncommutative manifolds: quantum
isometry groups of spectral triples, quantum symmetry groups of Bratteli
diagrams and quantum isometry groups associated to group C∗-algebras
([Gos], [BG1], [BG2] [BGS], [BS]).
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