On higher-dimensional amenability of Banach algebras

Zinaida Lykova

Newcastle University, UK
Leeds, June 2010

Amenability

B. E. Johnson (1972): \mathcal{A} is amenable
\Longleftrightarrow for each Banach \mathcal{A}-bimodule X, every continuous derivation $D: \mathcal{A} \rightarrow X^{*}$ is inner, that is, $D(a)=a \cdot f-f \cdot a$ for some $f \in X^{*}$.
(Here $(a \cdot f)(x)=f(x \cdot a)$ and $(f \cdot a)(x)=f(a \cdot x)$ for $\left.a \in \mathcal{A}, f \in X^{*}, x \in X.\right)$

Amenability

B. E. Johnson (1972): \mathcal{A} is amenable
\Longleftrightarrow for each Banach \mathcal{A}-bimodule X, every continuous derivation $D: \mathcal{A} \rightarrow X^{*}$ is inner, that is, $D(a)=a \cdot f-f \cdot a$ for some $f \in X^{*}$.
(Here $(a \cdot f)(x)=f(x \cdot a)$ and $(f \cdot a)(x)=f(a \cdot x)$ for $a \in \mathcal{A}, f \in X^{*}, x \in X$.)
\Longleftrightarrow the continuous Hochschild cohomology $\mathcal{H}^{1}\left(\mathcal{A}, X^{*}\right)=\{0\}$ for all Banach \mathcal{A}-bimodules X.

Amenability

B. E. Johnson (1972): \mathcal{A} is amenable
\Longleftrightarrow for each Banach \mathcal{A}-bimodule X, every continuous derivation $D: \mathcal{A} \rightarrow X^{*}$ is inner, that is, $D(a)=a \cdot f-f \cdot a$ for some $f \in X^{*}$.
(Here $(a \cdot f)(x)=f(x \cdot a)$ and $(f \cdot a)(x)=f(a \cdot x)$ for $a \in \mathcal{A}, f \in X^{*}, x \in X$.)
\Longleftrightarrow the continuous Hochschild cohomology $\mathcal{H}^{1}\left(\mathcal{A}, X^{*}\right)=\{0\}$ for all Banach \mathcal{A}-bimodules X.
$\Longleftrightarrow \mathcal{H}^{n}\left(\mathcal{A}, X^{*}\right)=\{0\}$ for all $n \geq 1$ and for all Banach \mathcal{A}-bimodules X.

Amenability

B. E. Johnson (1972): \mathcal{A} is amenable
\Longleftrightarrow for each Banach \mathcal{A}-bimodule X, every continuous derivation $D: \mathcal{A} \rightarrow X^{*}$ is inner, that is, $D(a)=a \cdot f-f \cdot a$ for some $f \in X^{*}$.
(Here $(a \cdot f)(x)=f(x \cdot a)$ and $(f \cdot a)(x)=f(a \cdot x)$ for $a \in \mathcal{A}, f \in X^{*}, x \in X$.)
\Longleftrightarrow the continuous Hochschild cohomology $\mathcal{H}^{1}\left(\mathcal{A}, X^{*}\right)=\{0\}$ for all Banach \mathcal{A}-bimodules X.
$\Longleftrightarrow \mathcal{H}^{n}\left(\mathcal{A}, X^{*}\right)=\{0\}$ for all $n \geq 1$ and for all Banach \mathcal{A}-bimodules X.
\Longleftrightarrow there exists a virtual diagonal $M \in(\mathcal{A} \hat{\otimes} \mathcal{A})^{* *}$ such that for all $a \in \mathcal{A}$,

$$
a M=M a, \pi^{* *}(M) a=a
$$

Here π is the product map on \mathcal{A}.

On amenability of operator algebras

A. Connes, U. Haagerup, G. Elliott: Amenability for C^{*}-algebras is equivalent to nuclearity.

On amenability of operator algebras

A. Connes, U. Haagerup, G. Elliott: Amenability for C^{*}-algebras is equivalent to nuclearity.

For example, $C_{0}(\Omega)$ for any locally compact space Ω, and $\mathcal{K}(H)$ are amenable.

On amenability of operator algebras

A. Connes, U. Haagerup, G. Elliott: Amenability for C^{*}-algebras is equivalent to nuclearity.

For example, $C_{0}(\Omega)$ for any locally compact space Ω, and $\mathcal{K}(H)$ are amenable.
S. Wassermann: $\mathcal{B}(H)$ is not nuclear, so it is not amenable.

On amenability of operator algebras

A. Connes, U. Haagerup, G. Elliott: Amenability for C^{*}-algebras is equivalent to nuclearity.

For example, $C_{0}(\Omega)$ for any locally compact space Ω, and $\mathcal{K}(H)$ are amenable.
S. Wassermann: $\mathcal{B}(H)$ is not nuclear, so it is not amenable.
S.A. Argyros and R.G. Haydon (2009) have constructed a Banach \mathcal{L}_{∞}-space X such that $\mathcal{B}(X)=\mathcal{K}(X) \oplus \mathbf{C}$.

On amenability of operator algebras

A. Connes, U. Haagerup, G. Elliott: Amenability for C^{*}-algebras is equivalent to nuclearity.

For example, $C_{0}(\Omega)$ for any locally compact space Ω, and $\mathcal{K}(H)$ are amenable.
S. Wassermann: $\mathcal{B}(H)$ is not nuclear, so it is not amenable.
S.A. Argyros and R.G. Haydon (2009) have constructed a Banach \mathcal{L}_{∞}-space X such that $\mathcal{B}(X)=\mathcal{K}(X) \oplus \mathbf{C}$.
N. Gronbaek, B.E. Johnson and G.A. Willis (1994) proved that, for a Banach \mathcal{L}_{∞}-space $X, \mathcal{K}(X)$ is amenable, hence $\mathcal{B}(X)=\mathcal{K}(X) \oplus \mathbf{C}$ is amenable too.

Open Problem. Describe infinite-dimensional Banach spaces E such that the Banach algebra $\mathcal{B}(E)$ is not amenable/ is amenable.

Note: it is known that $\mathcal{B}\left(l_{p}\right)$ is not amenable for $1 \leq p \leq \infty$ (S . Wassermann, C.J. Read, G. Pisier, N. Ozawa, V. Runde).

The Hochschild (co)homology groups of \mathcal{A}

Let \mathcal{A} be a Banach algebra and X be a Banach \mathcal{A}-bimodule. The continuous homology $\mathcal{H}_{n}(\mathcal{A}, X)$ of A with coefficients in X is defined to be the nth homology

$$
\mathcal{H}_{n}\left(\mathcal{C}_{\sim}(\mathcal{A}, X)\right)=\operatorname{Ker} b_{n-1} / \operatorname{Im} b_{n}
$$

of the standard homological chain complex $\left(\mathcal{C}_{\sim}(\mathcal{A}, X)\right)$:

$$
0 \longleftarrow X \stackrel{b_{0}}{\longleftarrow} X \hat{\otimes} \mathcal{A} \longleftarrow \ldots \longleftarrow X \hat{\otimes} \mathcal{A}^{\hat{\otimes} n} \stackrel{b_{n}}{\longleftarrow} X \hat{\otimes} \mathcal{A}^{\hat{\otimes}(n+1)} \longleftarrow \ldots,
$$

where the differentials b_{*} are given by

$$
b_{n}\left(x \otimes a_{1} \otimes \cdots \otimes a_{n+1}\right)=\left(x \cdot a_{1} \otimes a_{2} \otimes \cdots \otimes a_{n+1}\right)+
$$

$\sum_{i=1}^{n}(-1)^{i}\left(x \otimes a_{1} \otimes \cdots \otimes a_{i} a_{i+1} \otimes \cdots \otimes a_{n+1}\right)+(-1)^{n+1}\left(a_{n+1} \cdot x \otimes a_{1} \otimes \cdots \otimes a_{n}\right)$.
The Hochschild cohomology groups of \mathcal{A} with coefficients in the dual \mathcal{A}-bimodule X^{*}

$$
\mathcal{H}^{n}\left(\mathcal{A}, X^{*}\right) \cong H^{n}\left(\left(\mathcal{C}_{\sim}(\mathcal{A}, X)\right)^{*}\right)
$$

the cohomology groups of the dual complex $\left(\mathcal{C}_{\sim}(\mathcal{A}, X)\right)^{*}$.

n-amenability of Banach algebras

A.L.T Paterson (1996): For $n \geq 1, \mathcal{A}$ is called n-amenable if $\mathcal{H}^{n}\left(\mathcal{A}, X^{*}\right)=\{0\}$ for every Banach \mathcal{A}-bimodule X.

n-amenability of Banach algebras

A.L.T Paterson (1996): For $n \geq 1, \mathcal{A}$ is called n-amenable if $\mathcal{H}^{n}\left(\mathcal{A}, X^{*}\right)=\{0\}$ for every Banach \mathcal{A}-bimodule X.
\mathcal{A} is n-amenable
\Longleftrightarrow for each Banach \mathcal{A}-bimodule X, every continuous derivation $D: \mathcal{A} \rightarrow Y^{*}$, where $Y^{*}=\left(X \hat{\otimes} \mathcal{A}^{\hat{\otimes}(n-1)}\right)^{*}$ is inner, that is, $D(a)=a \cdot f-f \cdot a$ for some $f \in Y^{*}$.
(Here \mathcal{A}-module multiplication on Y^{*} depends on b_{n-1}.)

n-amenability of Banach algebras

A.L.T Paterson (1996): For $n \geq 1, \mathcal{A}$ is called n-amenable if $\mathcal{H}^{n}\left(\mathcal{A}, X^{*}\right)=\{0\}$ for every Banach \mathcal{A}-bimodule X.
\mathcal{A} is n-amenable
\Longleftrightarrow for each Banach \mathcal{A}-bimodule X, every continuous derivation $D: \mathcal{A} \rightarrow Y^{*}$, where $Y^{*}=\left(X \hat{\otimes} \mathcal{A}^{\hat{\otimes}(n-1)}\right)^{*}$ is inner, that is, $D(a)=a \cdot f-f \cdot a$ for some $f \in Y^{*}$.
(Here \mathcal{A}-module multiplication on Y^{*} depends on b_{n-1}.)
$\Longleftrightarrow \mathcal{H}^{p}\left(\mathcal{A}, X^{*}\right)=\{0\}$ for all $p \geq n$ and for all Banach \mathcal{A}-bimodules X.

n-amenability of Banach algebras

A.L.T Paterson (1996): For $n \geq 1, \mathcal{A}$ is called n-amenable if $\mathcal{H}^{n}\left(\mathcal{A}, X^{*}\right)=\{0\}$ for every Banach \mathcal{A}-bimodule X.
\mathcal{A} is n-amenable
\Longleftrightarrow for each Banach \mathcal{A}-bimodule X, every continuous derivation $D: \mathcal{A} \rightarrow Y^{*}$, where $Y^{*}=\left(X \hat{\otimes} \mathcal{A}^{\hat{\otimes}(n-1)}\right)^{*}$ is inner, that is, $D(a)=a \cdot f-f \cdot a$ for some $f \in Y^{*}$.
(Here \mathcal{A}-module multiplication on Y^{*} depends on b_{n-1}.)
$\Longleftrightarrow \mathcal{H}^{p}\left(\mathcal{A}, X^{*}\right)=\{0\}$ for all $p \geq n$ and for all Banach \mathcal{A}-bimodules X.
Virtual diagonals and higher-dimensional amenability of Banach algebras were investigated by E.G. Effros and A. Kishimoto (1987) for unital algebras and by A.L.T. Paterson and R.R. Smith $(1996,1997)$ in the non-unital case.

The weak bidimension $d b_{w} \mathcal{A}$ of a Banach algebra \mathcal{A}

Yu.V. Selivanov (1995): The weak bidimension of \mathcal{A} is

$$
d b_{w} \mathcal{A}=\inf \left\{n: \mathcal{H}^{n+1}\left(\mathcal{A}, X^{*}\right)=\{0\} \text { for all Banach } \mathcal{A} \text {-bimodule } X\right\} .
$$

The weak bidimension $d b_{w} \mathcal{A}$ of a Banach algebra \mathcal{A}

Yu.V. Selivanov (1995): The weak bidimension of \mathcal{A} is

$$
d b_{w} \mathcal{A}=\inf \left\{n: \mathcal{H}^{n+1}\left(\mathcal{A}, X^{*}\right)=\{0\} \text { for all Banach } \mathcal{A} \text {-bimodule } X\right\} .
$$

It is obvious that \mathcal{A} is n-amenable $\Longleftrightarrow d b_{w} \mathcal{A} \leq n-1$.

The weak bidimension $d b_{w} \mathcal{A}$ of a Banach algebra \mathcal{A}

Yu.V. Selivanov (1995): The weak bidimension of \mathcal{A} is

$$
d b_{w} \mathcal{A}=\inf \left\{n: \mathcal{H}^{n+1}\left(\mathcal{A}, X^{*}\right)=\{0\} \text { for all Banach } \mathcal{A} \text {-bimodule } X\right\} .
$$

It is obvious that \mathcal{A} is n-amenable $\Longleftrightarrow d b_{w} \mathcal{A} \leq n-1$.
\mathcal{A} is n-amenable but not $(n-1)$-amenable $\Longleftrightarrow d b_{w} \mathcal{A}=n-1$.

The weak bidimension $d b_{w} \mathcal{A}$ of a Banach algebra \mathcal{A}

Yu.V. Selivanov (1995): The weak bidimension of \mathcal{A} is

$$
d b_{w} \mathcal{A}=\inf \left\{n: \mathcal{H}^{n+1}\left(\mathcal{A}, X^{*}\right)=\{0\} \text { for all Banach } \mathcal{A} \text {-bimodule } X\right\} .
$$

It is obvious that \mathcal{A} is n-amenable $\Longleftrightarrow d b_{w} \mathcal{A} \leq n-1$.
\mathcal{A} is n-amenable but not $(n-1)$-amenable $\Longleftrightarrow d b_{w} \mathcal{A}=n-1$.
\mathcal{A} is amenable $\Longleftrightarrow \mathcal{A}$ is 1 -amenable $\Longleftrightarrow d b_{w} \mathcal{A}=0$.

Examples of n-amenable Banach algebras

The upper triangular 2×2-complex matrices T_{2} and $\mathcal{K}\left(l_{2} \hat{\otimes} l_{2}\right)$ are 2 -amenable but not (1-)amenable, that is,

$$
d b_{w} T_{2}=1 \text { and } d b_{w} \mathcal{K}\left(l_{2} \hat{\otimes} l_{2}\right)=1
$$

Examples of n-amenable Banach algebras

The upper triangular 2×2-complex matrices T_{2} and $\mathcal{K}\left(l_{2} \hat{\otimes} l_{2}\right)$ are 2 -amenable but not (1-)amenable, that is,
$d b_{w} T_{2}=1$ and $d b_{w} \mathcal{K}\left(l_{2} \hat{\otimes} l_{2}\right)=1$.
l_{1} and $\mathcal{N}(H)$ are 3 -amenable but not 2 -amenable, that is,
$d b_{w} l_{1}=2$ and $d b_{w} \mathcal{N}(H)=2$.

Examples of n-amenable Banach algebras

The upper triangular 2×2-complex matrices T_{2} and $\mathcal{K}\left(l_{2} \hat{\otimes} l_{2}\right)$ are 2 -amenable but not (1-)amenable, that is,
$d b_{w} T_{2}=1$ and $d b_{w} \mathcal{K}\left(l_{2} \hat{\otimes} l_{2}\right)=1$.
l_{1} and $\mathcal{N}(H)$ are 3 -amenable but not 2 -amenable, that is,
$d b_{w} l_{1}=2$ and $d b_{w} \mathcal{N}(H)=2$.
l_{2} and $\mathcal{H S}(H)$ are not n-amenable for all n, that is,
$d b_{w} l_{2}=\infty$ and $d b_{w} \mathcal{H} \mathcal{S}(H)=\infty$.
(A.L.T. Paterson, Yu.V. Selivanov, A. Ya. Helemskii)

Examples of n-amenable Banach algebras

In 1997 A.L.T. Paterson and R.R. Smith proved that the Banach algebra $B_{n}=S^{n-1}\left(A_{4}\right)$ is $(n+1)$-amenable but not n-amenable.

Here A_{4} is the Banach subalgebra of $M_{4}(\mathbb{C})$ of elements of the form

$$
\left[\begin{array}{llll}
* & 0 & 0 & 0 \\
0 & * & 0 & 0 \\
* & * & * & 0 \\
* & * & 0 & *
\end{array}\right]
$$

The two-point suspension $S\left(A_{4}\right)$ of the algebra A_{4} is the subalgebra of $B\left(\mathbb{C}^{2} \oplus \mathbb{C}^{4}\right)$ whose elements are of the form

$$
\left[\begin{array}{ll}
d & 0 \\
u & a
\end{array}\right]
$$

$d \in \mathcal{D}_{2}$ the diagonal 2×2 complex matrices, $a \in A_{4}, u \in \mathcal{B}\left(\mathbb{C}^{2}, \mathbb{C}^{4}\right)$.

Questions

Question. Are there C^{*}-algebras which are 2-amenable but not amenable? which are 3 -amenable but not 2 -amenable?

Questions

Question. Are there C^{*}-algebras which are 2-amenable but not amenable? which are 3 -amenable but not 2 -amenable?

Question. Are there Fourier algebras $A(G)$ which are 2-amenable but not amenable? which are 3 -amenable but not 2 -amenable?

Is there a locally compact group G such that $A(G)$ is biflat, but not amenable?

Questions

Question. Are there C^{*}-algebras which are 2-amenable but not amenable? which are 3 -amenable but not 2 -amenable?

Question. Are there Fourier algebras $A(G)$ which are 2-amenable but not amenable? which are 3 -amenable but not 2 -amenable?

Is there a locally compact group G such that $A(G)$ is biflat, but not amenable?
The following is known:
H. Leptin: $A(G)$ has b.a.i $\Longleftrightarrow G$ is amenable.
B.E. Forrest and V. Runde (2005): $A(G)$ is amenable $\Longleftrightarrow G$ admits an abelian subgroup of finite index.
V. Runde (2009): If $A(G)$ is biflat then either (a) G admits an abelian subgroup of finite index, or (b) G is non-amenable and does not contain a discrete copy of the free group of two generators.

Questions

Question. Are there C^{*}-algebras which are 2-amenable but not amenable? which are 3 -amenable but not 2 -amenable?

Question. Are there Fourier algebras $A(G)$ which are 2-amenable but not amenable? which are 3 -amenable but not 2 -amenable?

Is there a locally compact group G such that $A(G)$ is biflat, but not amenable?
The following is known:
H. Leptin: $A(G)$ has b.a.i $\Longleftrightarrow G$ is amenable.
B.E. Forrest and V. Runde (2005): $A(G)$ is amenable $\Longleftrightarrow G$ admits an abelian subgroup of finite index.
V. Runde (2009): If $A(G)$ is biflat then either (a) G admits an abelian subgroup of finite index, or (b) G is non-amenable and does not contain a discrete copy of the free group of two generators.

Open Problem. Find $d b_{w} \mathcal{B}(H)$.

Amenability and flatness

A.Ya. Helemskii (1984): \mathcal{A} is amenable
$\Longleftrightarrow \mathcal{A}_{+}$is biflat
$\Longleftrightarrow \mathcal{A}$ is biflat and \mathcal{A} has a bounded approximate identity.

Amenability and flatness

A.Ya. Helemskii (1984): \mathcal{A} is amenable
$\Longleftrightarrow \mathcal{A}_{+}$is biflat
$\Longleftrightarrow \mathcal{A}$ is biflat and \mathcal{A} has a bounded approximate identity.
$l_{1}, \mathcal{N}(H)$ and $\mathcal{K}\left(l_{2} \hat{\otimes} l_{2}\right)$ are biflat, but not amenable.

Amenability and flatness

A.Ya. Helemskii (1984): \mathcal{A} is amenable
$\Longleftrightarrow \mathcal{A}_{+}$is biflat
$\Longleftrightarrow \mathcal{A}$ is biflat and \mathcal{A} has a bounded approximate identity.
$l_{1}, \mathcal{N}(H)$ and $\mathcal{K}\left(l_{2} \hat{\otimes} l_{2}\right)$ are biflat, but not amenable.
A module $Y \in \mathcal{A}$-mod- \mathcal{A} is called flat if for any admissible complex \mathcal{X} of Banach \mathcal{A}-bimodules

$$
0 \longleftarrow X_{0} \stackrel{\phi_{0}}{\longleftarrow} X_{1} \stackrel{\phi_{1}}{\longleftarrow} X_{2} \stackrel{\phi_{2}}{\longleftarrow} X_{3} \longleftarrow \cdots
$$

the complex $\mathcal{X} \widehat{\otimes}_{\mathcal{A}-\mathcal{A}} Y$:

$$
0 \longleftarrow X_{0} \widehat{\otimes}_{\mathcal{A}-\mathcal{A}} Y \stackrel{\phi_{0} \widehat{\otimes}_{\mathcal{A}-\mathcal{A}}{ }^{i d_{Y}}}{\longleftarrow} X_{1} \widehat{\otimes}_{\mathcal{A}-\mathcal{A}} Y \stackrel{\phi_{1} \widehat{\otimes}_{\mathcal{A}-\mathcal{A}^{i d} d_{Y}}^{\longleftarrow}}{X_{2}} \widehat{\otimes}_{\mathcal{A}-\mathcal{A}} Y
$$

is exact.
Here $\widehat{\otimes}_{\mathcal{A}-\mathcal{A}}$ is the projective tensor product of Banach \mathcal{A}-bimodules.

n-amenability and flat resolutions of \mathcal{A}_{+}

Theorem 1. [Yu.V. Selivanov (1995)] Let \mathcal{A} be a Banach algebra. For each integer $n \geq 0$ the following properties of \mathcal{A} are equivalent:
(i) $d b_{w} \mathcal{A} \leq n$;

n-amenability and flat resolutions of \mathcal{A}_{+}

Theorem 1. [Yu.V. Selivanov (1995)] Let \mathcal{A} be a Banach algebra. For each integer $n \geq 0$ the following properties of \mathcal{A} are equivalent:
(i) $d b_{w} \mathcal{A} \leq n$;
(ii) \mathcal{A} is $(n+1)$-amenable, that is, $\mathcal{H}^{n+1}\left(\mathcal{A}, X^{*}\right)=\{0\}$ for all $X \in \mathcal{A}$-mod- \mathcal{A};

n-amenability and flat resolutions of \mathcal{A}_{+}

Theorem 1. [Yu.V. Selivanov (1995)] Let \mathcal{A} be a Banach algebra. For each integer $n \geq 0$ the following properties of \mathcal{A} are equivalent:
(i) $d b_{w} \mathcal{A} \leq n$;
(ii) \mathcal{A} is $(n+1)$-amenable, that is, $\mathcal{H}^{n+1}\left(\mathcal{A}, X^{*}\right)=\{0\}$ for all $X \in \mathcal{A}$-mod- \mathcal{A};
(iii) the \mathcal{A}-bimodule \mathcal{A}_{+}has a flat admissible resolution of length n in the category of \mathcal{A}-mod- \mathcal{A};

n-amenability and flat resolutions of \mathcal{A}_{+}

Theorem 1. [Yu.V. Selivanov (1995)] Let \mathcal{A} be a Banach algebra. For each integer $n \geq 0$ the following properties of \mathcal{A} are equivalent:
(i) $d b_{w} \mathcal{A} \leq n$;
(ii) \mathcal{A} is $(n+1)$-amenable, that is, $\mathcal{H}^{n+1}\left(\mathcal{A}, X^{*}\right)=\{0\}$ for all $X \in \mathcal{A}$-mod- \mathcal{A};
(iii) the \mathcal{A}-bimodule \mathcal{A}_{+}has a flat admissible resolution of length n in the category of \mathcal{A}-mod- \mathcal{A};
(iv) if $0 \longleftarrow \mathcal{A}_{+} \stackrel{\varepsilon}{\longleftarrow} P_{0} \stackrel{\phi_{0}}{\longleftarrow} P_{1} \stackrel{\phi_{1}}{\longleftarrow} \cdots P_{n-1} \stackrel{\phi_{n-1}}{\leftrightarrows} Y \longleftarrow 0 \quad(0 \longleftarrow \mathcal{A} \longleftarrow \mathcal{P})$
is an admissible resolution of \mathcal{A}_{+}in which all the modules P_{i} are flat in $\mathcal{A}-\bmod -\mathcal{A}$, then Y is also flat in \mathcal{A}-mod- \mathcal{A}.

It is well known that $d b_{w} \mathcal{A}=d b_{w} \mathcal{A}_{+}$.

Ideals with b.a.i and essential modules

Proposition 1. [Z.A. Lykova and M.C. White (1998)] Let \mathcal{A} be a Banach algebra and let I be a closed two-sided ideal of \mathcal{A}. Suppose that I has a b.a.i. Then,
(i) for any Banach I-bimodule Z,

$$
\mathcal{H}_{n}(I, Z)=\mathcal{H}_{n}(\mathcal{A}, \overline{I Z I}) \text { and } \mathcal{H}^{n}\left(I, Z^{*}\right)=\mathcal{H}^{n}\left(\mathcal{A},(\overline{I Z I})^{*}\right) \text { for all } n \geq 1
$$

Ideals with b.a.i and essential modules

Proposition 1. [Z.A. Lykova and M.C. White (1998)] Let \mathcal{A} be a Banach algebra and let I be a closed two-sided ideal of \mathcal{A}. Suppose that I has a b.a.i. Then,
(i) for any Banach I-bimodule Z,

$$
\mathcal{H}_{n}(I, Z)=\mathcal{H}_{n}(\mathcal{A}, \overline{I Z I}) \text { and } \mathcal{H}^{n}\left(I, Z^{*}\right)=\mathcal{H}^{n}\left(\mathcal{A},(\overline{I Z I})^{*}\right) \text { for all } n \geq 1
$$

(ii) for any Banach A/I-bimodule Y,

$$
\mathcal{H}_{n}(A / I, Y)=\mathcal{H}_{n}(A, Y) \text { and } \mathcal{H}^{n}\left(A / I, Y^{*}\right)=\mathcal{H}^{n}\left(A, Y^{*}\right) \text { for all } n \geq 0
$$

Ideals with b.a.i and essential modules

Proposition 1. [Z.A. Lykova and M.C. White (1998)] Let \mathcal{A} be a Banach algebra and let I be a closed two-sided ideal of \mathcal{A}. Suppose that I has a b.a.i. Then,
(i) for any Banach I-bimodule Z,

$$
\mathcal{H}_{n}(I, Z)=\mathcal{H}_{n}(\mathcal{A}, \overline{I Z I}) \text { and } \mathcal{H}^{n}\left(I, Z^{*}\right)=\mathcal{H}^{n}\left(\mathcal{A},(\overline{I Z I})^{*}\right) \text { for all } n \geq 1
$$

(ii) for any Banach A/I-bimodule Y,

$$
\mathcal{H}_{n}(A / I, Y)=\mathcal{H}_{n}(A, Y) \text { and } \mathcal{H}^{n}\left(A / I, Y^{*}\right)=\mathcal{H}^{n}\left(A, Y^{*}\right) \text { for all } n \geq 0
$$

Remark 1. Proposition 1 shows that in the case of Banach algebras \mathcal{A} with b.a.i. we can restrict ourselves to the category of essential Banach modules in questions on $d b_{w}$ and $\mathcal{H}^{n}\left(\mathcal{A}, X^{*}\right)$.

$d b_{w} \mathcal{A} \geq \max \left\{d b_{w} I, d b_{w} \mathcal{A} / I\right\}$ for a closed two-sided ideal I with a b.a.i.

Proposition 2. [Z.A. Lykova and M.C. White (1998)] Let \mathcal{A} be a Banach algebra and let I be a closed two-sided ideal of \mathcal{A}. Suppose that I has a b.a.i.. Then
(i) the n-amenability of A implies the n-amenability of the two Banach algebras A / I and I;

$d b_{w} \mathcal{A} \geq \max \left\{d b_{w} I, d b_{w} \mathcal{A} / I\right\}$ for a closed two-sided ideal I with a b.a.i.

Proposition 2. [Z.A. Lykova and M.C. White (1998)] Let \mathcal{A} be a Banach algebra and let I be a closed two-sided ideal of \mathcal{A}. Suppose that I has a b.a.i.. Then
(i) the n-amenability of A implies the n-amenability of the two Banach algebras A/I and I;
(ii) $d b_{w} I \leq d b_{w} A$ and $d b_{w} A / I \leq d b_{w} A$.

$d b_{w} \mathcal{A} \widehat{\otimes} \mathcal{B}$

B.E. Johnson (1972):

If Banach algebras \mathcal{A} and \mathcal{B} are amenable then their tensor product $\mathcal{A} \widehat{\otimes}$ is amenable too.

$d b_{w} \mathcal{A} \widehat{\otimes} \mathcal{B}$

B.E. Johnson (1972):

If Banach algebras \mathcal{A} and \mathcal{B} are amenable then their tensor product $\mathcal{A} \widehat{\otimes}$ is amenable too.

Suppose $d b_{w} \mathcal{A}=m$ and $d b_{w} \mathcal{B}=q$. Question: What can we say about the higher-dimensional amenability of $\mathcal{A} \widehat{\otimes} \mathcal{B}$?

$d b_{w} \mathcal{A} \widehat{\otimes} \mathcal{B}$

B.E. Johnson (1972):

If Banach algebras \mathcal{A} and \mathcal{B} are amenable then their tensor product $\mathcal{A} \widehat{\otimes}$ is amenable too.

Suppose $d b_{w} \mathcal{A}=m$ and $d b_{w} \mathcal{B}=q$. Question: What can we say about the higher-dimensional amenability of $\mathcal{A} \widehat{\otimes} \mathcal{B}$?

In 1996 Yu. Selivanov remarked without proof that, for \mathcal{A} and \mathcal{B} with bounded approximate identities,

$$
d b_{w} \mathcal{A} \widehat{\otimes} \mathcal{B}=d b_{w} \mathcal{A}+d b_{w} \mathcal{B}
$$

In 2002 he gave a proof of the formula in the particular case of algebras with identities and his proof depends heavily on the existence of identities.

In this talk

- we show that the formula

$$
d b_{w} \mathcal{A} \widehat{\otimes} \mathcal{B}=d b_{w} \mathcal{A}+d b_{w} \mathcal{B}
$$

is correct for algebras \mathcal{A} and \mathcal{B} b.a.i..

In this talk

- we show that the formula

$$
d b_{w} \mathcal{A} \widehat{\otimes} \mathcal{B}=d b_{w} \mathcal{A}+d b_{w} \mathcal{B}
$$

is correct for algebras \mathcal{A} and \mathcal{B} b.a.i..

- We show further that the formula does not hold for algebras with no b.a.i, nor for algebras with only 1 -sided b.a.i.

In this talk

- we show that the formula

$$
d b_{w} \mathcal{A} \widehat{\otimes} \mathcal{B}=d b_{w} \mathcal{A}+d b_{w} \mathcal{B}
$$

is correct for algebras \mathcal{A} and \mathcal{B} b.a.i..

- We show further that the formula does not hold for algebras with no b.a.i, nor for algebras with only 1 -sided b.a.i.
- The well-known trick adjoining of an identity to the algebra does not work for the tensor product of algebras.

The homological properties of the tensor product algebras $\mathcal{A} \widehat{\otimes} \mathcal{B}$ and $\mathcal{A}_{+} \widehat{\otimes} \mathcal{B}_{+}$are different.

Pseudo-resolutions in categories of Banach modules \mathcal{K}

Definition 1. For $X \in \mathcal{K}$, a complex
$0 \longleftarrow X \stackrel{\varepsilon}{\longleftarrow} Q_{0} \stackrel{\phi_{0}}{\longleftarrow} Q_{1} \stackrel{\phi_{1}}{\longleftarrow} Q_{2} \longleftarrow \ldots$ is called a pseudo-resolution of X in \mathcal{K} if it is weakly admissible, and a flat pseudo-resolution of X in \mathcal{K} if, in addition, all the modules in \mathcal{Q} are flat in \mathcal{K}.

Flat pseudo-resolution of \mathcal{A} with b.a.i. in \mathcal{A}-mod- \mathcal{A}

We put $\beta_{n}(\mathcal{A})=\mathcal{A}^{\widehat{\otimes}^{n+2}}, n \geq 0$, and let $d_{n}: \beta_{n+1}(\mathcal{A}) \rightarrow \beta_{n}(\mathcal{A})$ be given by

$$
\begin{gathered}
d_{n}\left(a_{0} \otimes \ldots \otimes a_{n+2}\right)= \\
\sum_{k=0}^{n+1}(-1)^{k}\left(a_{0} \otimes \ldots \otimes a_{k} a_{k+1} \otimes \ldots \otimes a_{n+2}\right) .
\end{gathered}
$$

One can prove that the complex

$$
0 \leftarrow \mathcal{A} \stackrel{\pi}{\longleftarrow} \beta_{0}(\mathcal{A}) \stackrel{d_{0}}{\longleftarrow} \beta_{1}(\mathcal{A}) \stackrel{d_{1}}{\longleftarrow} \cdots \leftarrow \beta_{n}(\mathcal{A}) \stackrel{d_{n}}{\leftrightarrows} \beta_{n+1}(\mathcal{A}) \leftarrow \ldots,
$$

where $\pi: \beta_{0}(\mathcal{A}) \rightarrow \mathcal{A}: a \otimes b \mapsto a b$, is a flat pseudo-resolution of the \mathcal{A}-bimodule \mathcal{A}. We denote it by $0 \leftarrow \mathcal{A} \stackrel{\pi}{\leftarrow} \beta(\mathcal{A})$.

Banach algebras \mathcal{A} with b.a.i. and with $d b_{w} \mathcal{A} \leq n$

Theorem 2. [B.E. Johnson; Z.A. Lykova] Let \mathcal{A} be a Banach algebra with b.a.i.. For each integer $n \geq 0$ the following properties of \mathcal{A} are equivalent:
(i) $d b_{w} \mathcal{A} \leq n$;

Banach algebras \mathcal{A} with b.a.i. and with $d b_{w} \mathcal{A} \leq n$

Theorem 2. [B.E. Johnson; Z.A. Lykova] Let \mathcal{A} be a Banach algebra with b.a.i.. For each integer $n \geq 0$ the following properties of \mathcal{A} are equivalent:
(i) $d b_{w} \mathcal{A} \leq n$;
(ii) \mathcal{A} is $(n+1)$-amenable, that is, $\mathcal{H}^{n+1}\left(\mathcal{A}, X^{*}\right)=\{0\}$ for all $X \in \mathcal{A}$-mod- \mathcal{A};

Banach algebras \mathcal{A} with b.a.i. and with $d b_{w} \mathcal{A} \leq n$

Theorem 2. [B.E. Johnson; Z.A. Lykova] Let \mathcal{A} be a Banach algebra with b.a.i.. For each integer $n \geq 0$ the following properties of \mathcal{A} are equivalent:
(i) $d b_{w} \mathcal{A} \leq n$;
(ii) \mathcal{A} is $(n+1)$-amenable, that is, $\mathcal{H}^{n+1}\left(\mathcal{A}, X^{*}\right)=\{0\}$ for all $X \in \mathcal{A}$-mod- \mathcal{A};
(iii) $\mathcal{H}^{m}\left(\mathcal{A}, X^{*}\right)=\{0\}$ for all $m \geq n+1$ and for all $X \in \mathcal{A}$-essmod- \mathcal{A};
(iv) $\mathcal{H}_{n+1}(\mathcal{A}, X)=\{0\}$ and $\mathcal{H}_{n}(\mathcal{A}, X)$ is a Hausdorff space for all $X \in$ \mathcal{A}-essmod- \mathcal{A};

Banach algebras \mathcal{A} with b.a.i. and with $d b_{w} \mathcal{A} \leq n$

Theorem 2. [B.E. Johnson; Z.A. Lykova] Let \mathcal{A} be a Banach algebra with b.a.i.. For each integer $n \geq 0$ the following properties of \mathcal{A} are equivalent:
(i) $d b_{w} \mathcal{A} \leq n$;
(ii) \mathcal{A} is $(n+1)$-amenable, that is, $\mathcal{H}^{n+1}\left(\mathcal{A}, X^{*}\right)=\{0\}$ for all $X \in \mathcal{A}$-mod- \mathcal{A};
(iii) $\mathcal{H}^{m}\left(\mathcal{A}, X^{*}\right)=\{0\}$ for all $m \geq n+1$ and for all $X \in \mathcal{A}$-essmod- \mathcal{A};
(iv) $\mathcal{H}_{n+1}(\mathcal{A}, X)=\{0\}$ and $\mathcal{H}_{n}(\mathcal{A}, X)$ is a Hausdorff space for all $X \in$ \mathcal{A}-essmod- \mathcal{A};
(v) if $0 \longleftarrow \mathcal{A} \stackrel{\varepsilon}{\longleftarrow} P_{0} \stackrel{\phi_{0}}{\longleftarrow} P_{1} \stackrel{\phi_{1}}{\longleftarrow} \cdots P_{n-1} \stackrel{\phi_{n-1}}{\longleftarrow} Y \longleftarrow 0 \quad(0 \longleftarrow \mathcal{A} \longleftarrow \mathcal{P})$
is a pseudo-resolution of \mathcal{A} in \mathcal{A}-essmod- \mathcal{A} such that all the modules P_{i} are flat in \mathcal{A}-essmod- \mathcal{A}, then Y is also flat in \mathcal{A}-essmod- \mathcal{A}.

Banach algebras \mathcal{A} with b.a.i. and with $d b_{w} \mathcal{A} \leq n$

Theorem 2. [B.E. Johnson; Z.A. Lykova] Let \mathcal{A} be a Banach algebra with b.a.i.. For each integer $n \geq 0$ the following properties of \mathcal{A} are equivalent:
(i) $d b_{w} \mathcal{A} \leq n$;
(ii) \mathcal{A} is $(n+1)$-amenable, that is, $\mathcal{H}^{n+1}\left(\mathcal{A}, X^{*}\right)=\{0\}$ for all $X \in \mathcal{A}$-mod- \mathcal{A};
(iii) $\mathcal{H}^{m}\left(\mathcal{A}, X^{*}\right)=\{0\}$ for all $m \geq n+1$ and for all $X \in \mathcal{A}$-essmod- \mathcal{A};
(iv) $\mathcal{H}_{n+1}(\mathcal{A}, X)=\{0\}$ and $\mathcal{H}_{n}(\mathcal{A}, X)$ is a Hausdorff space for all $X \in$ \mathcal{A}-essmod- \mathcal{A};
(v) if $0 \longleftarrow \mathcal{A} \stackrel{\varepsilon}{\longleftarrow} P_{0} \stackrel{\phi_{0}}{\longleftarrow} P_{1} \stackrel{\phi_{1}}{\longleftarrow} \cdots P_{n-1} \stackrel{\phi_{n-1}}{\longleftarrow} Y \longleftarrow 0 \quad(0 \longleftarrow \mathcal{A} \longleftarrow \mathcal{P})$
is a pseudo-resolution of \mathcal{A} in \mathcal{A}-essmod- \mathcal{A} such that all the modules P_{i} are flat in \mathcal{A}-essmod- \mathcal{A}, then Y is also flat in \mathcal{A}-essmod- \mathcal{A}.
(vi) the \mathcal{A}-bimodule \mathcal{A} has a flat pseudo-resolution of length n in the category of \mathcal{A}-essmod- \mathcal{A}.

$$
d b_{w}(\mathcal{A} \widehat{\otimes} \mathcal{B}) \geq \max \left\{d b_{w} \mathcal{A}, d b_{w} \mathcal{B}\right\}
$$

Proposition 3. [Yu.V Selivanov; Z.A. Lykova] Let \mathcal{A} and \mathcal{B} be Banach algebras with b.a.i.. Then

$$
d b_{w}(\mathcal{A} \widehat{\otimes} \mathcal{B}) \geq \max \left\{d b_{w} \mathcal{A}, d b_{w} \mathcal{B}\right\}
$$

$$
d b_{w}(\mathcal{A} \widehat{\otimes} \mathcal{B}) \geq \max \left\{d b_{w} \mathcal{A}, d b_{w} \mathcal{B}\right\}
$$

Proposition 3. [Yu.V Selivanov; Z.A. Lykova] Let \mathcal{A} and \mathcal{B} be Banach algebras with b.a.i.. Then

$$
d b_{w}(\mathcal{A} \widehat{\otimes} \mathcal{B}) \geq \max \left\{d b_{w} \mathcal{A}, d b_{w} \mathcal{B}\right\}
$$

Questions. Is it true that for all Banach algebras \mathcal{A} and \mathcal{B}

$$
\begin{gathered}
d b_{w}(\mathcal{A} \widehat{\otimes} \mathcal{B}) \leq d b_{w} \mathcal{A}+d b_{w} \mathcal{B} ? \\
d b_{w}(\mathcal{A} \widehat{\otimes} \mathcal{B}) \geq \max \left\{d b_{w} \mathcal{A}, d b_{w} \mathcal{B}\right\} ?
\end{gathered}
$$

The tensor product algebra $\mathcal{A} \widehat{\otimes} \mathcal{B}$ of biflat Banach algebras \mathcal{A} and \mathcal{B} is biflat.

Proposition 4. [Z.A. Lykova] Let \mathcal{A} and \mathcal{B} be Banach algebras, let X be an essential Banach \mathcal{A}-bimodule and let Y be an essential Banach \mathcal{B}-bimodule. Suppose X is flat in \mathcal{A}-mod- \mathcal{A} and Y is flat in \mathcal{B}-mod- \mathcal{B}. Then $X \widehat{\otimes} Y$ is flat in $\mathcal{A} \widehat{\otimes} \mathcal{B}-\bmod -\mathcal{A} \widehat{\otimes} \mathcal{B}$.

Theorem 3. [Z.A. Lykova] The tensor product algebra $\mathcal{A} \widehat{\otimes} \mathcal{B}$ of biflat Banach algebras \mathcal{A} and \mathcal{B} is biflat.

Proof. A biflat Banach algebra is essential (Helemskii). Hence, by Proposition 4, $\mathcal{A} \widehat{\otimes} \mathcal{B}$ is flat in $\mathcal{A} \widehat{\otimes}-\bmod -\mathcal{A} \widehat{\otimes} \mathcal{B}$.

The tensor product $\mathcal{X} \widehat{\otimes} \mathcal{Y}$ of bounded complexes

Definition 2. Let \mathcal{X}, \mathcal{Y} be chain complexes in Ban:

$$
0 \stackrel{\phi_{-1}}{\longleftarrow} X_{0} \stackrel{\phi_{0}}{\leftrightarrows} X_{1} \stackrel{\phi_{1}}{\leftrightarrows} X_{2} \stackrel{\phi_{2}}{\longleftarrow} X_{3} \longleftarrow \cdots
$$

and

$$
0 \stackrel{\psi_{-1}}{\leftarrow} Y_{0} \stackrel{\psi_{0}}{\leftrightarrows} Y_{1} \stackrel{\psi_{1}}{\leftrightarrows} Y_{2} \stackrel{\psi_{2}}{\leftrightarrows} Y_{3} \longleftarrow \cdots .
$$

The tensor product $\mathcal{X} \widehat{\otimes} \mathcal{Y}$ of bounded complexes \mathcal{X} and \mathcal{Y} in \mathcal{B} an is the chain complex

$$
\begin{equation*}
0 \stackrel{\delta_{-1}}{\longleftarrow}(\mathcal{X} \widehat{\otimes} \mathcal{Y})_{0} \stackrel{\delta_{0}}{\leftrightarrows}(\mathcal{X} \widehat{\otimes} \mathcal{Y})_{1} \stackrel{\delta_{1}}{\longleftarrow}(\mathcal{X} \widehat{\otimes} \mathcal{Y})_{2} \longleftarrow \cdots, \tag{1}
\end{equation*}
$$

where

$$
(\mathcal{X} \widehat{\otimes} \mathcal{Y})_{n}=\bigoplus_{m+q=n} X_{m} \widehat{\otimes} Y_{q}
$$

and

$$
\delta_{n-1}(x \otimes y)=\phi_{m-1}(x) \otimes y+(-1)^{m} x \otimes \psi_{q-1}(y)
$$

$x \in X_{m}, y \in Y_{q}$ and $m+q=n$.

Proposition 5. [Z.A. Lykova] Let \mathcal{A}_{1} and \mathcal{A}_{2} be Banach algebras.
Let $0 \leftarrow X \underset{\longleftarrow}{\varepsilon_{1}} \mathcal{X}$ be a pseudo-resolution of X in \mathcal{A}_{1}-essmod- \mathcal{A}_{1} such that all modules in \mathcal{X} are flat in $\mathcal{A}_{1}-\bmod -\mathcal{A}_{1}$ and
$0 \leftarrow Y \stackrel{\varepsilon_{2}}{\longleftarrow} \mathcal{Y}$ be a pseudo-resolution of Y in \mathcal{A}_{2}-essmod- \mathcal{A}_{2} such that all modules in \mathcal{Y} are flat in $\mathcal{A}_{2}-\bmod -\mathcal{A}_{2}$.

Then $0 \leftarrow X \widehat{\otimes} Y \stackrel{\varepsilon_{1} \otimes \varepsilon_{2}}{\longleftarrow} \mathcal{X} \widehat{\otimes} \mathcal{Y}$ is a pseudo-resolution of $X \widehat{\otimes} Y$ in $\mathcal{A}_{1} \widehat{\otimes} \mathcal{A}_{2}$-essmod$\mathcal{A}_{1} \widehat{\otimes} \mathcal{A}_{2}$ such that all modules in $\mathcal{X} \widehat{\otimes} \mathcal{Y}$ are flat in $\mathcal{A}_{1} \widehat{\otimes} \mathcal{A}_{2}-\bmod -\mathcal{A}_{1} \widehat{\otimes} \mathcal{A}_{2}$.

$d b_{w} \mathcal{A}<n$ for \mathcal{A} with b.a.i.

Recall that a continuous linear operator $T: X \rightarrow Y$ between Banach spaces X and Y is topologically injective if it is injective and its image is closed, that is, $T: X \rightarrow \operatorname{Im} T$ is a topological isomorphism.

Proposition 6. [Yu. V. Selivanov; Z.A. Lykova] Let \mathcal{A} be a Banach algebra with b.a.i. and let $(0 \leftarrow \mathcal{A} \leftarrow \mathcal{P})$:

$$
\begin{equation*}
0 \longleftarrow \mathcal{A} \stackrel{\varepsilon}{\longleftarrow} P_{0} \stackrel{\phi_{0}}{\longleftarrow} \cdots P_{n-1} \stackrel{\phi_{n-1}}{\leftrightarrows} P_{n} \longleftarrow 0 \tag{2}
\end{equation*}
$$

be a flat pseudo-resolution of \mathcal{A} in \mathcal{A}-essmod- \mathcal{A}. Then

$$
d b_{w} \mathcal{A}<n \quad \Longleftrightarrow
$$

for every X in \mathcal{A}-essmod- \mathcal{A}, the operator

$$
\phi_{n-1} \otimes_{\mathcal{A}-\mathcal{A}} 1_{X}: P_{n} \widehat{\otimes}_{\mathcal{A}-\mathcal{A}} X \rightarrow P_{n-1} \widehat{\otimes}_{\mathcal{A}-\mathcal{A}} X
$$

is topologically injective.

Lemma 1. [Yu. V. Selivanov] Let E_{0}, E, F_{0} and F be Banach spaces, and let $S: E_{0} \rightarrow E$ and $T: F_{0} \rightarrow F$ be continuous linear operators. Suppose S and T are not topologically injective. Then the continuous linear operator

$$
\Delta: E_{0} \widehat{\otimes} F_{0} \rightarrow\left(E_{0} \widehat{\otimes} F\right) \oplus\left(E \widehat{\otimes} F_{0}\right)
$$

defined by

$$
\Delta(x \otimes y)=(x \otimes T(y), S(x) \otimes y) \quad\left(x \in E_{0}, y \in F_{0}\right)
$$

is not topologically injective.

$d b_{w}(\mathcal{A} \widehat{\otimes} \mathcal{B})$ for Banach algebras with b.a.i.

Theorem 4. [Z.A. Lykova] Let \mathcal{A} and \mathcal{B} be Banach algebras with bounded approximate identities. Then

$$
d b_{w}(\mathcal{A} \widehat{\otimes} \mathcal{B})=d b_{w} \mathcal{A}+d b_{w} \mathcal{B}
$$

Proof. Suppose $d b_{w} \mathcal{A}=m$ and $d b_{w} \mathcal{B}=q$ where $0<m, q<\infty$.
By Theorem 2, $d b_{w} \mathcal{A}=m$ implies there is a flat pseudo-resolution $0 \leftarrow \mathcal{A} \stackrel{\varepsilon_{1}}{\longleftarrow}$ (\mathcal{P}, ϕ) of length m in the category \mathcal{A}-essmod- \mathcal{A}. By Proposition 6, there exists $X \in \mathcal{A}$-essmod- \mathcal{A} such that the operator

$$
\phi_{m-1} \otimes_{\mathcal{A}-\mathcal{A}} 1_{X}: P_{m} \widehat{\otimes}_{\mathcal{A}-\mathcal{A}} X \rightarrow P_{m-1} \widehat{\otimes}_{\mathcal{A}-\mathcal{A}} X
$$

is not topologically injective.
Similarly, $d b_{w} \mathcal{B}=q$ implies that there is a flat pseudo-resolution $0 \leftarrow \mathcal{B} \stackrel{\varepsilon_{2}}{\longleftarrow}$ (\mathcal{Q}, ψ) of length q in the category \mathcal{B}-essmod- \mathcal{B} and there exist $Y \in \mathcal{B}$-essmod- \mathcal{B}
such that the operator

$$
\psi_{q-1} \otimes_{\mathcal{B}-\mathcal{B}} 1_{Y}: Q_{q} \widehat{\otimes}_{\mathcal{B}-\mathcal{B}} Y \rightarrow Q_{q-1} \widehat{\otimes}_{\mathcal{B}-\mathcal{B}} Y
$$

is not topologically injective.
By Proposition 5, $0 \leftarrow \mathcal{A} \widehat{\otimes} \mathcal{B}^{\varepsilon_{1} \otimes \varepsilon_{2}}(\mathcal{P} \widehat{\otimes} \mathcal{Q}, \delta)$ is a flat pseudo-resolution of $\mathcal{A} \widehat{\otimes} \mathcal{B}$ in $\mathcal{A} \widehat{\otimes} \mathcal{B}$-essmod- $\mathcal{A} \widehat{\otimes} \mathcal{B}$ of length $m+q$.

Take $Z=X \widehat{\otimes} Y$ in $\mathcal{A} \widehat{\otimes} \mathcal{B}$-essmod- $\mathcal{A} \widehat{\otimes} \mathcal{B}$.
By Lemma 1, the operator

$$
\begin{aligned}
& \delta_{m+q-1} \otimes_{\mathcal{A} \widehat{\otimes} \mathcal{B}-\mathcal{A} \widehat{\otimes} \mathcal{B}} 1_{Z}:(\mathcal{P} \widehat{\otimes} \mathcal{Q})_{m+q} \widehat{\otimes}_{\mathcal{A} \widehat{\otimes} \mathcal{B}-\mathcal{A} \widehat{\otimes} \mathcal{B}} Z \\
& \rightarrow(\mathcal{P} \widehat{\otimes} \mathcal{Q})_{m+q-1} \widehat{\otimes}_{\mathcal{A} \widehat{\otimes} \mathcal{B}-\mathcal{A} \widehat{\otimes} \mathcal{B}} Z
\end{aligned}
$$

is not topologically injective. Therefore, by Proposition 6, $d b_{w}(\mathcal{A} \widehat{\otimes} \mathcal{B})=m+q$.

Corollary 1. [Z.A. Lykova] Let \mathcal{A} be an amenable Banach algebra and \mathcal{B} be Banach algebras with b.a.i. Then
(i)

$$
d b_{w}(\mathcal{A} \widehat{\otimes} \mathcal{B})=d b_{w} \mathcal{B}
$$

(ii) $\mathcal{A} \widehat{\otimes} \mathcal{B}$ is n-amenable $\Longleftrightarrow \mathcal{B}$ is n-amenable.

$d b_{w}(\mathcal{A} \widehat{\otimes} \mathcal{B})$ for biflat \mathcal{A} and \mathcal{B}

Theorem 5. [Z.A. Lykova] Let \mathcal{A} and \mathcal{B} be biflat Banach algebras. Then (i)

$$
\begin{gathered}
d b_{w}(\mathcal{A} \widehat{\otimes} \mathcal{B})=0 \text { and } \\
d b_{w}\left(\mathcal{A}_{+} \widehat{\otimes}^{\mathcal{B}}\right)=d b_{w} \mathcal{A}+d b_{w} \mathcal{B}=0
\end{gathered}
$$

if \mathcal{A} and \mathcal{B} have two-sided b.a.i.;
(ii)

$$
\begin{gathered}
d b_{w}(\mathcal{A} \widehat{\otimes} \mathcal{B}) \leq 1 \text { and } \\
d b_{w}\left(\mathcal{A}_{+} \widehat{\otimes} \mathcal{B}_{+}\right)=d b_{w} \mathcal{A}+d b_{w} \mathcal{B}=2
\end{gathered}
$$

if \mathcal{A} and \mathcal{B} have left [right], but not two-sided b.a.i.;

$$
\begin{align*}
& d b_{w}(\mathcal{A} \widehat{\otimes} \mathcal{B}) \leq 2 \text { and } \tag{iii}\\
& d b_{w}\left(\mathcal{A}_{+} \widehat{\otimes} \mathcal{B}_{+}\right)=d b_{w} \mathcal{A}+d b_{w} \mathcal{B}=4
\end{align*}
$$

if \mathcal{A} and \mathcal{B} have neither left nor right b.a.i.

The algebra $\mathcal{K}\left(\ell_{2} \widehat{\otimes} \ell_{2}\right)$ of compact operators

Example 1. The algebra $\mathcal{K}\left(\ell_{2} \widehat{\otimes} \ell_{2}\right)$ of compact operators on $\ell_{2} \widehat{\otimes} \ell_{2}$ is a biflat Banach algebra with a left, but not two-sided bounded approximate identity (Gronbaek, Johnson, Willis; Selivanov). By Theorem 5, for $n \geq 1$,

$$
d b_{w}\left[\mathcal{K}\left(\ell_{2} \widehat{\otimes} \ell_{2}\right)\right]^{\widehat{\otimes} n} \leq 1
$$

and

$$
d b_{w}\left[\mathcal{K}\left(\ell_{2} \widehat{\otimes} \ell_{2}\right)_{+}\right]^{\widehat{\otimes} n}=n .
$$

The tensor algebra $E \widehat{\otimes} F$ generated by the duality $(E, F,\langle\cdot, \cdot\rangle)$

Example 2. Let (E, F) be a pair of infinite-dimensional Banach spaces endowed with a nondegenerate jointly continuous bilinear form

$$
\langle\cdot, \cdot\rangle: E \times F \rightarrow \mathbf{C}
$$

that is not identically zero. The space $\mathcal{A}=E \widehat{\otimes} F$ is a $\widehat{\otimes}$-algebra with respect to the multiplication defined by

$$
\left(x_{1} \otimes x_{2}\right)\left(y_{1} \otimes y_{2}\right)=\left\langle x_{2}, y_{1}\right\rangle x_{1} \otimes y_{2}, x_{i} \in E, y_{i} \in F
$$

Then $\mathcal{A}=E \widehat{\otimes} F$ is called the tensor algebra generated by the duality $(E, F,\langle\cdot, \cdot\rangle)$.
It is known that \mathcal{A} is biprojective, and has neither a left nor a right b.a.i. (Yu.V. Selivanov; A. Grothendieck).

In particular, if E is a Banach space with the approximation property, then the algebra $\mathcal{A}=E \widehat{\otimes} E^{*}$ is isomorphic to the algebra $\mathcal{N}(E)$ of nuclear operators on E.

By Theorem 5, for $n \geq 1$,

$$
d b_{w}[E \widehat{\otimes} F]^{\widehat{\otimes} n} \leq 2 \text { and } d b_{w}\left[(E \widehat{\otimes} F)_{+}\right]^{\widehat{\otimes} n}=2 n .
$$

Example 3. Let \mathcal{B} be the algebra of 2×2-complex matrices of the form

$$
\left[\begin{array}{ll}
a & b \\
0 & 0
\end{array}\right]
$$

with matrix multiplication and norm. It is known that \mathcal{B} is 2-amenable, biprojective, has a left, but not right identity (A.L.T. Paterson). By Theorem 5, for $n \geq 1$,

$$
\begin{gathered}
d b_{w}[\mathcal{B}]^{\widehat{\otimes} n}=1, \quad \text { and } d b_{w}\left[\mathcal{B}_{+}\right]^{\widehat{\otimes} n}=n ; \\
d b_{w}\left[\mathcal{B} \widehat{\otimes} \mathcal{K}\left(\ell_{2} \widehat{\otimes} \ell_{2}\right)\right]^{\widehat{\otimes} n}=1,
\end{gathered}
$$

and

$$
d b_{w}\left[\mathcal{B}_{+} \widehat{\otimes} \mathcal{K}\left(\ell_{2} \widehat{\otimes} \ell_{2}\right)_{+}\right]^{\widehat{\otimes} n}=2 n
$$

External products of Hochschild cohomology of Banach algebras with b.a.i.

Theorem 6. [Z.A. Lykova] Let \mathcal{A} and \mathcal{B} be Banach algebras with b.a.i., let X be an essential Banach \mathcal{A}-bimodule and let Y be an essential Banach \mathcal{B}-bimodule. Then for $n \geq 0$, up to topological isomorphism,

$$
\mathcal{H}^{n}\left(\mathcal{A} \widehat{\otimes} \mathcal{B},(X \widehat{\otimes} Y)^{*}\right)=H^{n}\left(\left(\mathcal{C}_{\sim}(\mathcal{A}, X) \widehat{\otimes} \mathcal{C}_{\sim}(\mathcal{B}, Y)\right)^{*}\right)
$$

Theorem 7. [Z.A. Lykova] Let \mathcal{A} and \mathcal{B} be Banach algebras with b.a.i., let X be an essential Banach \mathcal{A}-bimodule and let Y be an essential Banach \mathcal{B}-bimodule. Suppose \mathcal{A} is amenable. Then, for $n \geq 0$, up to topological isomorphism,

$$
\mathcal{H}^{n}\left(\mathcal{A} \widehat{\otimes} \mathcal{B},(X \widehat{\otimes} Y)^{*}\right)=\mathcal{H}^{n}\left(\mathcal{B},(X /[X, \mathcal{A}] \widehat{\otimes} Y)^{*}\right)
$$

where $b \cdot(\bar{x} \otimes y)=(\bar{x} \otimes b \cdot y)$ and $(\bar{x} \otimes y) \cdot b=(\bar{x} \otimes y \cdot b)$ for $\bar{x} \in X /[X, \mathcal{A}]$, $y \in Y$ and $b \in \mathcal{B}$.

The simplicial cohomology of $L^{1}\left(\mathbf{R}_{+}^{k}\right) \widehat{\otimes} \mathcal{C}$

Let \mathcal{A} be the Banach algebra $L^{1}\left(\mathbf{R}_{+}\right)$of complex-valued, Lebesgue measurable functions f on \mathbf{R}_{+}with finite L^{1}-norm and convolution multiplication.

Theorem 8. [F. Gourdeau, Z.A.L. and M.C. White; Z.A.Lykova] Let \mathcal{C} be an amenable Banach algebra. Then

$$
\begin{gathered}
\mathcal{H}_{n}\left(L^{1}\left(\mathbf{R}_{+}^{k}\right) \widehat{\otimes} \mathcal{C}, L^{1}\left(\mathbf{R}_{+}^{k}\right) \widehat{\otimes} \mathcal{C}\right) \cong\{0\} \text { if } n>k \\
\mathcal{H}^{n}\left(L^{1}\left(\mathbf{R}_{+}^{k}\right) \widehat{\otimes} \mathcal{C},\left(L^{1}\left(\mathbf{R}_{+}^{k}\right) \widehat{\otimes} \mathcal{C}\right)^{*}\right) \cong\{0\} \text { if } n>k
\end{gathered}
$$

up to topological isomorphism,

$$
\mathcal{H}_{n}\left(L^{1}\left(\mathbf{R}_{+}^{k}\right) \widehat{\otimes} \mathcal{C}, L^{1}\left(\mathbf{R}_{+}^{k}\right) \widehat{\otimes} \mathcal{C}\right) \cong \bigoplus^{\binom{k}{n}} L^{1}\left(\mathbf{R}_{+}^{k}\right) \widehat{\otimes}(\mathcal{C} /[\mathcal{C}, \mathcal{C}]) \text { if } n \leq k ;
$$

and

$$
\mathcal{H}^{n}\left(L^{1}\left(\mathbf{R}_{+}^{k}\right) \widehat{\otimes} \mathcal{C},\left(L^{1}\left(\mathbf{R}_{+}^{k}\right) \widehat{\otimes} \mathcal{C}\right)^{*}\right) \cong \bigoplus^{\binom{k}{n}}\left[L^{1}\left(\mathbf{R}_{+}^{k}\right) \widehat{\otimes}(\mathcal{C} /[\mathcal{C}, \mathcal{C}])\right]^{*}
$$

if $n \leq k$.

Applications to the cyclic cohomology

Theorem 9. [Z.A. Lykova] Let \mathcal{A} be a Banach algebra. Suppose that $d b_{w} \mathcal{A}=$ m and $m=2 L$ is an even integer. Then,
(i) for all $\ell \geq L, H C_{2 \ell+2}(\mathcal{A})=H C_{m}(\mathcal{A})$ and $H C_{2 \ell+3}(\mathcal{A})=H C_{m+1}(\mathcal{A})$;
(ii) $H P_{0}(\mathcal{A})=H C_{m}(\mathcal{A})$ and $H P_{1}(\mathcal{A})=H C_{m+1}(\mathcal{A})$;
(iii) for all $\ell \geq L, H C^{2 \ell+2}(\mathcal{A})=H C^{m}(\mathcal{A})$ and $H C^{2 \ell+3}(\mathcal{A})=H C^{m+1}(\mathcal{A})$;
(iv) $H P^{0}(\mathcal{A})=H C^{m}(\mathcal{A})$ and $H P^{1}(\mathcal{A})=H C^{m+1}(\mathcal{A})$.
(v) $H E^{0}(\mathcal{A})=H P^{0}(\mathcal{A})=H C^{m}(\mathcal{A})$ and $H E^{1}(\mathcal{A})=H P^{1}(\mathcal{A})=H C^{m+1}(\mathcal{A})$.

There are similar formulae for odd m.

Theorem 10. [A. Ya. Helemskii; M. Khalkhali; Z.A. Lykova] Let \mathcal{A} be a biflat Banach algebra. Then
(i) for all $\ell \geq 0, H C_{2 \ell}(\mathcal{A})=\mathcal{A} /[\mathcal{A}, \mathcal{A}]$ and $H C_{2 \ell+1}(\mathcal{A})=\{0\}$;
(ii) $H P_{0}(\mathcal{A})=\mathcal{A} /[\mathcal{A}, \mathcal{A}]$ and $H P_{1}(\mathcal{A})=\{0\}$;
(iii) for all $\ell \geq 0, H C^{2 \ell}(\mathcal{A})=\mathcal{A}^{\text {tr }}$ and $H C^{2 \ell+1}(\mathcal{A})=\{0\}$;
(iv) $H E^{0}(\mathcal{A})=H P^{0}(\mathcal{A})=\mathcal{A}^{\text {tr }}$ and $H E^{1}(\mathcal{A})=H P^{1}(\mathcal{A})=\{0\}$.

Thank you

