On higher-dimensional amenability of Banach algebras

Zinaida Lykova

Newcastle University, UK

Leeds, June 2010

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!\mathrm{X}$ –

B. E. Johnson (1972): \mathcal{A} is **amenable** \iff for each Banach \mathcal{A} -bimodule X, every continuous derivation $D : \mathcal{A} \to X^*$ is inner, that is, $D(a) = a \cdot f - f \cdot a$ for some $f \in X^*$.

(Here $(a \cdot f)(x) = f(x \cdot a)$ and $(f \cdot a)(x) = f(a \cdot x)$ for $a \in \mathcal{A}$, $f \in X^*$, $x \in X$.)

B. E. Johnson (1972): \mathcal{A} is **amenable** \iff for each Banach \mathcal{A} -bimodule X, every continuous derivation $D : \mathcal{A} \to X^*$ is inner, that is, $D(a) = a \cdot f - f \cdot a$ for some $f \in X^*$.

(Here $(a \cdot f)(x) = f(x \cdot a)$ and $(f \cdot a)(x) = f(a \cdot x)$ for $a \in \mathcal{A}$, $f \in X^*$, $x \in X$.)

 \iff the continuous Hochschild cohomology $\mathcal{H}^1(\mathcal{A}, X^*) = \{0\}$ for all Banach \mathcal{A} -bimodules X.

B. E. Johnson (1972): \mathcal{A} is **amenable** \iff for each Banach \mathcal{A} -bimodule X, every continuous derivation $D : \mathcal{A} \to X^*$ is inner, that is, $D(a) = a \cdot f - f \cdot a$ for some $f \in X^*$.

(Here $(a \cdot f)(x) = f(x \cdot a)$ and $(f \cdot a)(x) = f(a \cdot x)$ for $a \in \mathcal{A}$, $f \in X^*$, $x \in X$.)

 \iff the continuous Hochschild cohomology $\mathcal{H}^1(\mathcal{A}, X^*) = \{0\}$ for all Banach \mathcal{A} -bimodules X.

 $\iff \mathcal{H}^n(\mathcal{A}, X^*) = \{0\}$ for all $n \ge 1$ and for all Banach \mathcal{A} -bimodules X.

B. E. Johnson (1972): \mathcal{A} is **amenable** \iff for each Banach \mathcal{A} -bimodule X, every continuous derivation $D : \mathcal{A} \to X^*$ is inner, that is, $D(a) = a \cdot f - f \cdot a$ for some $f \in X^*$.

(Here $(a \cdot f)(x) = f(x \cdot a)$ and $(f \cdot a)(x) = f(a \cdot x)$ for $a \in \mathcal{A}$, $f \in X^*$, $x \in X$.)

 \iff the continuous Hochschild cohomology $\mathcal{H}^1(\mathcal{A}, X^*) = \{0\}$ for all Banach \mathcal{A} -bimodules X.

 $\iff \mathcal{H}^n(\mathcal{A}, X^*) = \{0\}$ for all $n \ge 1$ and for all Banach \mathcal{A} -bimodules X.

 \iff there exists a **virtual diagonal** $M \in (\mathcal{A} \otimes \mathcal{A})^{**}$ such that for all $a \in \mathcal{A}$,

$$aM = Ma, \ \pi^{**}(M)a = a.$$

Here π is the product map on \mathcal{A} .

A. Connes, U. Haagerup, G. Elliott: Amenability for C^* -algebras is equivalent to *nuclearity*.

A. Connes, U. Haagerup, G. Elliott: Amenability for C^* -algebras is equivalent to *nuclearity*.

For example, $C_0(\Omega)$ for any locally compact space Ω , and $\mathcal{K}(H)$ are amenable.

A. Connes, U. Haagerup, G. Elliott: Amenability for C^* -algebras is equivalent to *nuclearity*.

For example, $C_0(\Omega)$ for any locally compact space Ω , and $\mathcal{K}(H)$ are amenable.

S. Wassermann: $\mathcal{B}(H)$ is not nuclear, so it is not amenable.

A. Connes, U. Haagerup, G. Elliott: Amenability for C^* -algebras is equivalent to *nuclearity*.

For example, $C_0(\Omega)$ for any locally compact space Ω , and $\mathcal{K}(H)$ are amenable.

S. Wassermann: $\mathcal{B}(H)$ is not nuclear, so it is not amenable.

S.A. Argyros and R.G. Haydon (2009) have constructed a Banach \mathcal{L}_{∞} -space X such that $\mathcal{B}(X) = \mathcal{K}(X) \oplus \mathbf{C}$.

A. Connes, U. Haagerup, G. Elliott: Amenability for C^* -algebras is equivalent to *nuclearity*.

For example, $C_0(\Omega)$ for any locally compact space Ω , and $\mathcal{K}(H)$ are amenable.

S. Wassermann: $\mathcal{B}(H)$ is not nuclear, so it is not amenable.

S.A. Argyros and R.G. Haydon (2009) have constructed a Banach \mathcal{L}_{∞} -space X such that $\mathcal{B}(X) = \mathcal{K}(X) \oplus \mathbf{C}$.

N. Gronbaek, B.E. Johnson and G.A. Willis (1994) proved that, for a Banach \mathcal{L}_{∞} -space X, $\mathcal{K}(X)$ is amenable, hence $\mathcal{B}(X) = \mathcal{K}(X) \oplus \mathbb{C}$ is amenable too.

Open Problem. Describe infinite-dimensional Banach spaces E such that the Banach algebra $\mathcal{B}(E)$ is not amenable/ is amenable.

Note: it is known that $\mathcal{B}(l_p)$ is not amenable for $1 \leq p \leq \infty$ (S. Wassermann, C.J. Read, G. Pisier, N. Ozawa, V. Runde).

The Hochschild (co)homology groups of \mathcal{A}

Let \mathcal{A} be a Banach algebra and X be a Banach \mathcal{A} -bimodule. The **continuous** homology $\mathcal{H}_n(\mathcal{A}, X)$ of A with coefficients in X is defined to be the *n*th homology

 $\mathcal{H}_n(\mathcal{C}_{\sim}(\mathcal{A}, X)) = \operatorname{Ker} b_{n-1} / \operatorname{Im} b_n$

of the standard homological chain complex $(\mathcal{C}_{\sim}(\mathcal{A}, X))$:

$$0 \longleftarrow X \stackrel{b_0}{\longleftarrow} X \hat{\otimes} \mathcal{A} \longleftarrow \ldots \longleftarrow X \hat{\otimes} \mathcal{A}^{\hat{\otimes} n} \stackrel{b_n}{\longleftarrow} X \hat{\otimes} \mathcal{A}^{\hat{\otimes} (n+1)} \longleftarrow \ldots,$$

where the differentials b_* are given by

$$b_n(x \otimes a_1 \otimes \cdots \otimes a_{n+1}) = (x \cdot a_1 \otimes a_2 \otimes \cdots \otimes a_{n+1}) +$$

 $\sum_{i=1}^{n} (-1)^{i} (x \otimes a_{1} \otimes \cdots \otimes a_{i} a_{i+1} \otimes \cdots \otimes a_{n+1}) + (-1)^{n+1} (a_{n+1} \cdot x \otimes a_{1} \otimes \cdots \otimes a_{n}).$ The Hochschild cohomology groups of \mathcal{A} with coefficients in the dual \mathcal{A} -bimodule X^{*}

 $\mathcal{H}^n(\mathcal{A}, X^*) \cong H^n((\mathcal{C}_{\sim}(\mathcal{A}, X))^*)$

the cohomology groups of the dual complex $(\mathcal{C}_{\sim}(\mathcal{A}, X))^*$.

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!\mathrm{X}$ –

A.L.T Paterson (1996): For $n \ge 1$, \mathcal{A} is called *n*-amenable if $\mathcal{H}^n(\mathcal{A}, X^*) = \{0\}$ for every Banach \mathcal{A} -bimodule X.

A.L.T Paterson (1996): For $n \ge 1$, \mathcal{A} is called *n*-amenable if $\mathcal{H}^n(\mathcal{A}, X^*) = \{0\}$ for every Banach \mathcal{A} -bimodule X.

 \mathcal{A} is *n*-amenable

 $\iff \text{ for each Banach } \mathcal{A}\text{-bimodule } X \text{, every continuous derivation } D : \mathcal{A} \to Y^* \text{,}$ where $Y^* = (X \hat{\otimes} \mathcal{A}^{\hat{\otimes} (n-1)})^*$ is inner, that is, $D(a) = a \cdot f - f \cdot a$ for some $f \in Y^*$.

(Here \mathcal{A} -module multiplication on Y^* depends on b_{n-1} .)

A.L.T Paterson (1996): For $n \ge 1$, \mathcal{A} is called *n*-amenable if $\mathcal{H}^n(\mathcal{A}, X^*) = \{0\}$ for every Banach \mathcal{A} -bimodule X.

 \mathcal{A} is *n*-amenable

 $\iff \text{ for each Banach } \mathcal{A}\text{-bimodule } X \text{, every continuous derivation } D : \mathcal{A} \to Y^* \text{,}$ where $Y^* = (X \hat{\otimes} \mathcal{A}^{\hat{\otimes} (n-1)})^*$ is inner, that is, $D(a) = a \cdot f - f \cdot a$ for some $f \in Y^*$.

(Here \mathcal{A} -module multiplication on Y^* depends on b_{n-1} .)

 $\iff \mathcal{H}^p(\mathcal{A}, X^*) = \{0\}$ for all $p \ge n$ and for all Banach \mathcal{A} -bimodules X.

A.L.T Paterson (1996): For $n \ge 1$, \mathcal{A} is called *n*-amenable if $\mathcal{H}^n(\mathcal{A}, X^*) = \{0\}$ for every Banach \mathcal{A} -bimodule X.

 \mathcal{A} is *n*-amenable

 $\iff \text{ for each Banach } \mathcal{A}\text{-bimodule } X \text{, every continuous derivation } D : \mathcal{A} \to Y^* \text{,}$ where $Y^* = (X \hat{\otimes} \mathcal{A}^{\hat{\otimes} (n-1)})^*$ is inner, that is, $D(a) = a \cdot f - f \cdot a$ for some $f \in Y^*$.

(Here \mathcal{A} -module multiplication on Y^* depends on b_{n-1} .)

 $\iff \mathcal{H}^p(\mathcal{A}, X^*) = \{0\}$ for all $p \ge n$ and for all Banach \mathcal{A} -bimodules X.

Virtual diagonals and higher-dimensional amenability of Banach algebras were investigated by E.G. Effros and A. Kishimoto (1987) for unital algebras and by A.L.T. Paterson and R.R. Smith (1996, 1997) in the non-unital case.

Yu.V. Selivanov (1995): The weak bidimension of \mathcal{A} is

 $db_w \mathcal{A} = \inf \{n : \mathcal{H}^{n+1}(\mathcal{A}, X^*) = \{0\} \text{ for all Banach } \mathcal{A} - \text{bimodule } X\}.$

Yu.V. Selivanov (1995): The weak bidimension of \mathcal{A} is

 $db_w \mathcal{A} = \inf \{n : \mathcal{H}^{n+1}(\mathcal{A}, X^*) = \{0\} \text{ for all Banach } \mathcal{A} - \text{bimodule } X\}.$

It is obvious that \mathcal{A} is *n*-amenable $\iff db_w \mathcal{A} \le n-1$.

Yu.V. Selivanov (1995): The weak bidimension of \mathcal{A} is

 $db_w \mathcal{A} = \inf \{n : \mathcal{H}^{n+1}(\mathcal{A}, X^*) = \{0\} \text{ for all Banach } \mathcal{A} - \text{bimodule } X\}.$

It is obvious that \mathcal{A} is *n*-amenable $\iff db_w \mathcal{A} \le n-1$.

 \mathcal{A} is *n*-amenable but not (n-1)-amenable $\iff db_w \mathcal{A} = n-1$.

Yu.V. Selivanov (1995): The weak bidimension of \mathcal{A} is

 $db_w \mathcal{A} = \inf \{n : \mathcal{H}^{n+1}(\mathcal{A}, X^*) = \{0\} \text{ for all Banach } \mathcal{A} - \text{bimodule } X\}.$

It is obvious that \mathcal{A} is *n*-amenable $\iff db_w \mathcal{A} \le n-1$.

 \mathcal{A} is *n*-amenable but not (n-1)-amenable $\iff db_w \mathcal{A} = n-1$.

 \mathcal{A} is amenable $\iff \mathcal{A}$ is 1-amenable $\iff db_w \mathcal{A} = 0.$

The upper triangular 2×2 -complex matrices T_2 and $\mathcal{K}(l_2 \otimes l_2)$ are 2-amenable but not (1-)amenable, that is,

 $db_w T_2 = 1$ and $db_w \mathcal{K}(l_2 \hat{\otimes} l_2) = 1$.

The upper triangular 2×2 -complex matrices T_2 and $\mathcal{K}(l_2 \otimes l_2)$ are 2-amenable but not (1-)amenable, that is,

 $db_w T_2 = 1$ and $db_w \mathcal{K}(l_2 \hat{\otimes} l_2) = 1$.

 l_1 and $\mathcal{N}(H)$ are 3-amenable but not 2-amenable, that is,

 $db_w l_1 = 2$ and $db_w \mathcal{N}(H) = 2$.

The upper triangular 2×2 -complex matrices T_2 and $\mathcal{K}(l_2 \otimes l_2)$ are 2-amenable but not (1-)amenable, that is,

 $db_w T_2 = 1$ and $db_w \mathcal{K}(l_2 \hat{\otimes} l_2) = 1$.

 l_1 and $\mathcal{N}(H)$ are 3-amenable but not 2-amenable, that is,

 $db_w l_1 = 2$ and $db_w \mathcal{N}(H) = 2$.

 l_2 and $\mathcal{HS}(H)$ are not *n*-amenable for all *n*, that is,

 $db_w l_2 = \infty$ and $db_w \mathcal{HS}(H) = \infty$.

(A.L.T. Paterson, Yu.V. Selivanov, A. Ya. Helemskii)

In 1997 A.L.T. Paterson and R.R. Smith proved that the Banach algebra $B_n = S^{n-1}(A_4)$ is (n + 1)-amenable but not *n*-amenable.

Here A_4 is the Banach subalgebra of $M_4(\mathbb{C})$ of elements of the form

*	0	0	0
0	*	0	0
*	*	*	0
*	*	0	*

The two-point suspension $S(A_4)$ of the algebra A_4 is the subalgebra of $B(\mathbb{C}^2 \oplus \mathbb{C}^4)$ whose elements are of the form

$$\left[\begin{array}{rr} d & 0 \\ u & a \end{array}\right]$$

 $d \in \mathcal{D}_2$ the diagonal 2×2 complex matrices, $a \in A_4$, $u \in \mathcal{B}(\mathbb{C}^2, \mathbb{C}^4)$.

– Typeset by $\mbox{Foil}{\rm T}_{\!E}\!{\rm X}$ –

Question. Are there C^* -algebras which are 2-amenable but not amenable? which are 3-amenable but not 2-amenable?

Question. Are there C^* -algebras which are 2-amenable but not amenable? which are 3-amenable but not 2-amenable?

Question. Are there Fourier algebras A(G) which are 2-amenable but not amenable? which are 3-amenable but not 2-amenable?

Is there a locally compact group G such that A(G) is biflat, but not amenable?

Question. Are there C^* -algebras which are 2-amenable but not amenable? which are 3-amenable but not 2-amenable?

Question. Are there Fourier algebras A(G) which are 2-amenable but not amenable? which are 3-amenable but not 2-amenable?

Is there a locally compact group G such that A(G) is biflat, but not amenable?

The following is known:

H. Leptin: A(G) has b.a.i $\iff G$ is amenable.

B.E. Forrest and V. Runde (2005): A(G) is amenable $\iff G$ admits an abelian subgroup of finite index.

V. Runde (2009): If A(G) is biflat then either (a) G admits an abelian subgroup of finite index, or (b) G is non-amenable and does not contain a discrete copy of the free group of two generators.

Question. Are there C^* -algebras which are 2-amenable but not amenable? which are 3-amenable but not 2-amenable?

Question. Are there Fourier algebras A(G) which are 2-amenable but not amenable? which are 3-amenable but not 2-amenable?

Is there a locally compact group G such that A(G) is biflat, but not amenable?

The following is known:

H. Leptin: A(G) has b.a.i $\iff G$ is amenable.

B.E. Forrest and V. Runde (2005): A(G) is amenable $\iff G$ admits an abelian subgroup of finite index.

V. Runde (2009): If A(G) is biflat then either (a) G admits an abelian subgroup of finite index, or (b) G is non-amenable and does not contain a discrete copy of the free group of two generators.

Open Problem. Find $db_w \mathcal{B}(H)$.

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!X$ –

Amenability and flatness

A.Ya. Helemskii (1984): \mathcal{A} is amenable

 $\iff \mathcal{A}_+ \text{ is biflat}$

 $\iff \mathcal{A}$ is biflat and \mathcal{A} has a bounded approximate identity.

Amenability and flatness

A.Ya. Helemskii (1984): \mathcal{A} is amenable

 $\iff \mathcal{A}_+ \text{ is biflat}$

 $\iff \mathcal{A}$ is biflat and \mathcal{A} has a bounded approximate identity.

 l_1 , $\mathcal{N}(H)$ and $\mathcal{K}(l_2 \hat{\otimes} l_2)$ are biflat, but not amenable.

Amenability and flatness

A.Ya. Helemskii (1984): \mathcal{A} is amenable

 $\iff \mathcal{A}_+ \text{ is biflat}$

 $\iff \mathcal{A}$ is biflat and \mathcal{A} has a bounded approximate identity.

 l_1 , $\mathcal{N}(H)$ and $\mathcal{K}(l_2 \hat{\otimes} l_2)$ are biflat, but not amenable.

A module $Y \in \mathcal{A}$ -mod- \mathcal{A} is called *flat* if for any admissible complex \mathcal{X} of Banach \mathcal{A} -bimodules

$$0 \longleftarrow X_0 \xleftarrow{\phi_0} X_1 \xleftarrow{\phi_1} X_2 \xleftarrow{\phi_2} X_3 \longleftarrow \cdots$$

the complex $\mathcal{X}\widehat{\otimes}_{\mathcal{A}-\mathcal{A}}Y$:

$$0 \longleftarrow X_0 \widehat{\otimes}_{\mathcal{A}-\mathcal{A}} Y \stackrel{\phi_0 \widehat{\otimes}_{\mathcal{A}-\mathcal{A}} id_Y}{\longleftarrow} X_1 \widehat{\otimes}_{\mathcal{A}-\mathcal{A}} Y \stackrel{\phi_1 \widehat{\otimes}_{\mathcal{A}-\mathcal{A}} id_Y}{\longleftarrow} X_2 \widehat{\otimes}_{\mathcal{A}-\mathcal{A}} Y \longleftarrow \cdots$$

is exact.

Here $\widehat{\otimes}_{\mathcal{A}-\mathcal{A}}$ is the projective tensor product of Banach \mathcal{A} -bimodules.

– Typeset by $\mbox{Foil}{\rm T}_{\!E}\!{\rm X}$ –

Theorem 1. [Yu.V. Selivanov (1995)] Let \mathcal{A} be a Banach algebra. For each integer $n \ge 0$ the following properties of \mathcal{A} are equivalent:

(i) $db_w \mathcal{A} \leq n$;

Theorem 1. [Yu.V. Selivanov (1995)] Let \mathcal{A} be a Banach algebra. For each integer $n \ge 0$ the following properties of \mathcal{A} are equivalent:

(i) $db_w \mathcal{A} \leq n$;

(ii) \mathcal{A} is (n+1)-amenable, that is, $\mathcal{H}^{n+1}(\mathcal{A}, X^*) = \{0\}$ for all $X \in \mathcal{A}$ -mod- \mathcal{A} ;

Theorem 1. [Yu.V. Selivanov (1995)] Let \mathcal{A} be a Banach algebra. For each integer $n \ge 0$ the following properties of \mathcal{A} are equivalent:

(i) $db_w \mathcal{A} \leq n$;

(ii) \mathcal{A} is (n+1)-amenable, that is, $\mathcal{H}^{n+1}(\mathcal{A}, X^*) = \{0\}$ for all $X \in \mathcal{A}$ -mod- \mathcal{A} ;

(iii) the A-bimodule A_+ has a flat admissible resolution of length n in the category of A-mod-A;

Theorem 1. [Yu.V. Selivanov (1995)] Let \mathcal{A} be a Banach algebra. For each integer $n \ge 0$ the following properties of \mathcal{A} are equivalent:

(i) $db_w \mathcal{A} \leq n$;

(ii) \mathcal{A} is (n+1)-amenable, that is, $\mathcal{H}^{n+1}(\mathcal{A}, X^*) = \{0\}$ for all $X \in \mathcal{A}$ -mod- \mathcal{A} ;

(iii) the A-bimodule A_+ has a flat admissible resolution of length n in the category of A-mod-A;

(iv) if $0 \leftarrow \mathcal{A}_{+} \leftarrow \mathcal{P}_{0} \leftarrow \mathcal{P}_{1} \leftarrow \mathcal{P}_{n-1} \leftarrow \mathcal{P}_{n-1} \leftarrow 0 \qquad (0 \leftarrow \mathcal{A} \leftarrow \mathcal{P})$

is an admissible resolution of \mathcal{A}_+ in which all the modules P_i are flat in \mathcal{A} -mod- \mathcal{A} , then Y is also flat in \mathcal{A} -mod- \mathcal{A} .

It is well known that $db_w \mathcal{A} = db_w \mathcal{A}_+$.

Ideals with b.a.i and essential modules

Proposition 1. [Z.A. Lykova and M.C. White (1998)] Let \mathcal{A} be a Banach algebra and let I be a closed two-sided ideal of \mathcal{A} . Suppose that I has a b.a.i. Then,

(i) for any Banach I-bimodule Z,

 $\mathcal{H}_n(I,Z) = \mathcal{H}_n(\mathcal{A},\overline{IZI}) \text{ and } \mathcal{H}^n(I,Z^*) = \mathcal{H}^n(\mathcal{A},(\overline{IZI})^*) \text{ for all } n \ge 1.$
Ideals with b.a.i and essential modules

Proposition 1. [Z.A. Lykova and M.C. White (1998)] Let \mathcal{A} be a Banach algebra and let I be a closed two-sided ideal of \mathcal{A} . Suppose that I has a b.a.i. Then,

(i) for any Banach I-bimodule Z,

 $\mathcal{H}_n(I,Z) = \mathcal{H}_n(\mathcal{A},\overline{IZI}) \text{ and } \mathcal{H}^n(I,Z^*) = \mathcal{H}^n(\mathcal{A},(\overline{IZI})^*) \text{ for all } n \ge 1.$

(ii) for any Banach A/I-bimodule Y,

 $\mathcal{H}_n(A/I,Y) = \mathcal{H}_n(A,Y)$ and $\mathcal{H}^n(A/I,Y^*) = \mathcal{H}^n(A,Y^*)$ for all $n \ge 0$.

Ideals with b.a.i and essential modules

Proposition 1. [Z.A. Lykova and M.C. White (1998)] Let \mathcal{A} be a Banach algebra and let I be a closed two-sided ideal of \mathcal{A} . Suppose that I has a b.a.i. Then,

(i) for any Banach I-bimodule Z,

 $\mathcal{H}_n(I,Z) = \mathcal{H}_n(\mathcal{A},\overline{IZI}) \text{ and } \mathcal{H}^n(I,Z^*) = \mathcal{H}^n(\mathcal{A},(\overline{IZI})^*) \text{ for all } n \ge 1.$

(ii) for any Banach A/I-bimodule Y,

 $\mathcal{H}_n(A/I,Y) = \mathcal{H}_n(A,Y) \text{ and } \mathcal{H}^n(A/I,Y^*) = \mathcal{H}^n(A,Y^*) \text{ for all } n \ge 0.$

Remark 1. Proposition 1 shows that in the case of Banach algebras \mathcal{A} with *b.a.i.* we can restrict ourselves to the category of essential Banach modules in questions on db_w and $\mathcal{H}^n(\mathcal{A}, X^*)$.

– Typeset by $\mathsf{FoilT}_{\!E\!}X$ –

$db_w \mathcal{A} \ge \max\{db_w I, db_w \mathcal{A}/I\}$ for a closed two-sided ideal I with a b.a.i.

Proposition 2. [Z.A. Lykova and M.C. White (1998)] Let \mathcal{A} be a Banach algebra and let I be a closed two-sided ideal of \mathcal{A} . Suppose that I has a b.a.i.. Then

(i) the *n*-amenability of A implies the *n*-amenability of the two Banach algebras A/I and I;

$db_w \mathcal{A} \ge \max\{db_w I, db_w \mathcal{A}/I\}$ for a closed two-sided ideal I with a b.a.i.

Proposition 2. [Z.A. Lykova and M.C. White (1998)] Let \mathcal{A} be a Banach algebra and let I be a closed two-sided ideal of \mathcal{A} . Suppose that I has a b.a.i.. Then

(i) the *n*-amenability of A implies the *n*-amenability of the two Banach algebras A/I and I;

(ii) $db_w I \leq db_w A$ and $db_w A/I \leq db_w A$.

$db_w \mathcal{A} \widehat{\otimes} \mathcal{B}$

B.E. Johnson (1972):

If Banach algebras \mathcal{A} and \mathcal{B} are amenable then their tensor product $\mathcal{A} \otimes \mathcal{B}$ is amenable too.

$db_w \mathcal{A} \widehat{\otimes} \mathcal{B}$

B.E. Johnson (1972):

If Banach algebras \mathcal{A} and \mathcal{B} are amenable then their tensor product $\mathcal{A} \otimes \mathcal{B}$ is amenable too.

Suppose $db_w \mathcal{A} = m$ and $db_w \mathcal{B} = q$. Question: What can we say about the higher-dimensional amenability of $\mathcal{A} \otimes \mathcal{B}$?

$db_w \mathcal{A} \widehat{\otimes} \mathcal{B}$

B.E. Johnson (1972):

If Banach algebras \mathcal{A} and \mathcal{B} are amenable then their tensor product $\mathcal{A} \otimes \mathcal{B}$ is amenable too.

Suppose $db_w \mathcal{A} = m$ and $db_w \mathcal{B} = q$. Question: What can we say about the higher-dimensional amenability of $\mathcal{A} \otimes \mathcal{B}$?

In 1996 Yu. Selivanov remarked without proof that, for \mathcal{A} and \mathcal{B} with bounded approximate identities,

$$db_w \mathcal{A} \widehat{\otimes} \mathcal{B} = db_w \mathcal{A} + db_w \mathcal{B}.$$

In 2002 he gave a proof of the formula in the particular case of algebras with identities and his proof depends heavily on the existence of identities.

In this talk

– we show that the formula

 $db_w \mathcal{A} \widehat{\otimes} \mathcal{B} = db_w \mathcal{A} + db_w \mathcal{B}$

is correct for algebras ${\mathcal A}$ and ${\mathcal B}$ b.a.i..

In this talk

- we show that the formula

 $db_w \mathcal{A} \widehat{\otimes} \mathcal{B} = db_w \mathcal{A} + db_w \mathcal{B}$

is correct for algebras ${\mathcal A}$ and ${\mathcal B}$ b.a.i..

- We show further that the formula does **not** hold for algebras with no b.a.i, nor for algebras with only 1-sided b.a.i.

In this talk

- we show that the formula

 $db_w \mathcal{A} \widehat{\otimes} \mathcal{B} = db_w \mathcal{A} + db_w \mathcal{B}$

is correct for algebras ${\mathcal A}$ and ${\mathcal B}$ b.a.i..

- We show further that the formula does **not** hold for algebras with no b.a.i, nor for algebras with only 1-sided b.a.i.

- The well-known trick adjoining of an identity to the algebra does not work for the tensor product of algebras.

The homological properties of the tensor product algebras $\mathcal{A}\widehat{\otimes}\mathcal{B}$ and $\mathcal{A}_+\widehat{\otimes}\mathcal{B}_+$ are different.

Pseudo-resolutions in categories of Banach modules \mathcal{K}

Definition 1. For $X \in \mathcal{K}$, a complex

 $0 \longleftarrow X \xleftarrow{\varepsilon} Q_0 \xleftarrow{\phi_0} Q_1 \xleftarrow{\phi_1} Q_2 \longleftarrow \dots$

is called a *pseudo-resolution* of X in \mathcal{K} if it is weakly admissible,

and a flat pseudo-resolution of X in \mathcal{K} if, in addition, all the modules in \mathcal{Q} are flat in \mathcal{K} .

Flat pseudo-resolution of \mathcal{A} with b.a.i. in \mathcal{A} -mod- \mathcal{A}

We put $\beta_n(\mathcal{A}) = \mathcal{A}^{\widehat{\otimes}^{n+2}}, n \ge 0$, and let $d_n : \beta_{n+1}(\mathcal{A}) \to \beta_n(\mathcal{A})$ be given by

 $d_n(a_0\otimes\ldots\otimes a_{n+2})=$

$$\sum_{k=0}^{n+1} (-1)^k (a_0 \otimes \ldots \otimes a_k a_{k+1} \otimes \ldots \otimes a_{n+2}).$$

One can prove that the complex

$$0 \leftarrow \mathcal{A} \xleftarrow{\pi} \beta_0(\mathcal{A}) \xleftarrow{d_0} \beta_1(\mathcal{A}) \xleftarrow{d_1} \cdots \leftarrow \beta_n(\mathcal{A}) \xleftarrow{d_n} \beta_{n+1}(\mathcal{A}) \leftarrow \dots,$$

where $\pi : \beta_0(\mathcal{A}) \to \mathcal{A} : a \otimes b \mapsto ab$, is a flat pseudo-resolution of the \mathcal{A} -bimodule \mathcal{A} . We denote it by $0 \leftarrow \mathcal{A} \xleftarrow{\pi} \beta(\mathcal{A})$.

Theorem 2. [B.E. Johnson; Z.A. Lykova] Let \mathcal{A} be a Banach algebra with b.a.i.. For each integer $n \ge 0$ the following properties of \mathcal{A} are equivalent:

(i) $db_w \mathcal{A} \leq n$;

Theorem 2. [B.E. Johnson; Z.A. Lykova] Let \mathcal{A} be a Banach algebra with b.a.i.. For each integer $n \ge 0$ the following properties of \mathcal{A} are equivalent:

(i) $db_w \mathcal{A} \leq n$;

(ii) \mathcal{A} is (n+1)-amenable, that is, $\mathcal{H}^{n+1}(\mathcal{A}, X^*) = \{0\}$ for all $X \in \mathcal{A}$ -mod- \mathcal{A} ;

Theorem 2. [B.E. Johnson; Z.A. Lykova] Let \mathcal{A} be a Banach algebra with b.a.i.. For each integer $n \ge 0$ the following properties of \mathcal{A} are equivalent:

(i) $db_w \mathcal{A} \leq n$;

(ii) \mathcal{A} is (n+1)-amenable, that is, $\mathcal{H}^{n+1}(\mathcal{A}, X^*) = \{0\}$ for all $X \in \mathcal{A}$ -mod- \mathcal{A} ;

(iii) $\mathcal{H}^m(\mathcal{A}, X^*) = \{0\}$ for all $m \ge n+1$ and for all $X \in \mathcal{A}$ -essmod- \mathcal{A} ;

(iv) $\mathcal{H}_{n+1}(\mathcal{A}, X) = \{0\}$ and $\mathcal{H}_n(\mathcal{A}, X)$ is a Hausdorff space for all $X \in \mathcal{A}$ -essmod- \mathcal{A} ;

Theorem 2. [B.E. Johnson; Z.A. Lykova] Let \mathcal{A} be a Banach algebra with b.a.i.. For each integer $n \ge 0$ the following properties of \mathcal{A} are equivalent:

(i) $db_w \mathcal{A} \leq n$;

(ii) \mathcal{A} is (n+1)-amenable, that is, $\mathcal{H}^{n+1}(\mathcal{A}, X^*) = \{0\}$ for all $X \in \mathcal{A}$ -mod- \mathcal{A} ;

(iii) $\mathcal{H}^m(\mathcal{A}, X^*) = \{0\}$ for all $m \ge n+1$ and for all $X \in \mathcal{A}$ -essmod- \mathcal{A} ;

(iv) $\mathcal{H}_{n+1}(\mathcal{A}, X) = \{0\}$ and $\mathcal{H}_n(\mathcal{A}, X)$ is a Hausdorff space for all $X \in \mathcal{A}$ -essmod- \mathcal{A} ;

(v) if
$$0 \leftarrow \mathcal{A} \xleftarrow{\varepsilon} P_0 \xleftarrow{\phi_0} P_1 \xleftarrow{\phi_1} \cdots P_{n-1} \xleftarrow{\phi_{n-1}} Y \leftarrow 0$$
 $(0 \leftarrow \mathcal{A} \leftarrow \mathcal{P})$

is a pseudo-resolution of \mathcal{A} in \mathcal{A} -essmod- \mathcal{A} such that all the modules P_i are flat in \mathcal{A} -essmod- \mathcal{A} , then Y is also flat in \mathcal{A} -essmod- \mathcal{A} .

Theorem 2. [B.E. Johnson; Z.A. Lykova] Let \mathcal{A} be a Banach algebra with b.a.i.. For each integer $n \ge 0$ the following properties of \mathcal{A} are equivalent:

(i) $db_w \mathcal{A} \leq n$;

(ii) \mathcal{A} is (n+1)-amenable, that is, $\mathcal{H}^{n+1}(\mathcal{A}, X^*) = \{0\}$ for all $X \in \mathcal{A}$ -mod- \mathcal{A} ;

(iii) $\mathcal{H}^m(\mathcal{A}, X^*) = \{0\}$ for all $m \ge n+1$ and for all $X \in \mathcal{A}$ -essmod- \mathcal{A} ;

(iv) $\mathcal{H}_{n+1}(\mathcal{A}, X) = \{0\}$ and $\mathcal{H}_n(\mathcal{A}, X)$ is a Hausdorff space for all $X \in \mathcal{A}$ -essmod- \mathcal{A} ;

(v) if
$$0 \leftarrow \mathcal{A} \leftarrow \mathcal{P}_0 \leftarrow \mathcal{P}_1 \leftarrow \mathcal{P}_1 \leftarrow \mathcal{P}_{n-1} \leftarrow \mathcal{P}_{n-1} \to \mathcal{P}_{n-1} \leftarrow 0$$
 $(0 \leftarrow \mathcal{A} \leftarrow \mathcal{P})$

is a pseudo-resolution of \mathcal{A} in \mathcal{A} -essmod- \mathcal{A} such that all the modules P_i are flat in \mathcal{A} -essmod- \mathcal{A} , then Y is also flat in \mathcal{A} -essmod- \mathcal{A} .

(vi) the \mathcal{A} -bimodule \mathcal{A} has a flat pseudo-resolution of length n in the category of \mathcal{A} -essmod- \mathcal{A} .

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!X$ –

$db_w(\mathcal{A} \otimes \mathcal{B}) \geq \max\{db_w\mathcal{A}, db_w\mathcal{B}\}$

Proposition 3. [Yu.V Selivanov; Z.A. Lykova] Let \mathcal{A} and \mathcal{B} be Banach algebras with b.a.i.. Then $db_w(\mathcal{A} \otimes \mathcal{B}) \geq \max\{db_w\mathcal{A}, db_w\mathcal{B}\}.$

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!X$ –

$$db_w(\mathcal{A} \otimes \mathcal{B}) \geq \max\{db_w\mathcal{A}, db_w\mathcal{B}\}$$

Proposition 3. [Yu.V Selivanov; Z.A. Lykova] Let \mathcal{A} and \mathcal{B} be Banach algebras with b.a.i.. Then $db_w(\mathcal{A} \otimes \mathcal{B}) \geq \max\{db_w\mathcal{A}, db_w\mathcal{B}\}.$

Questions. Is it true that for all Banach algebras \mathcal{A} and \mathcal{B}

 $db_w(\mathcal{A} \otimes \mathcal{B}) \leq db_w \mathcal{A} + db_w \mathcal{B}?$

 $db_w(\mathcal{A} \otimes \mathcal{B}) \geq \max\{db_w\mathcal{A}, db_w\mathcal{B}\}?$

The tensor product algebra $\mathcal{A} \otimes \mathcal{B}$ of biflat Banach algebras \mathcal{A} and \mathcal{B} is biflat.

Proposition 4. [Z.A. Lykova] Let \mathcal{A} and \mathcal{B} be Banach algebras, let X be an essential Banach \mathcal{A} -bimodule and let Y be an essential Banach \mathcal{B} -bimodule. Suppose X is flat in \mathcal{A} -mod- \mathcal{A} and Y is flat in \mathcal{B} -mod- \mathcal{B} . Then $X \otimes Y$ is flat in $\mathcal{A} \otimes \mathcal{B}$ -mod- $\mathcal{A} \otimes \mathcal{B}$.

Theorem 3. [Z.A. Lykova] The tensor product algebra $\mathcal{A} \otimes \mathcal{B}$ of biflat Banach algebras \mathcal{A} and \mathcal{B} is biflat.

Proof. A biflat Banach algebra is essential (Helemskii). Hence, by Proposition 4, $\mathcal{A} \otimes \mathcal{B}$ is flat in $\mathcal{A} \otimes \mathcal{B}$ -mod- $\mathcal{A} \otimes \mathcal{B}$.

The tensor product $\mathcal{X} \widehat{\otimes} \mathcal{Y}$ of bounded complexes

Definition 2. Let \mathcal{X} , \mathcal{Y} be chain complexes in $\mathcal{B}an$:

$$0 \stackrel{\phi_{-1}}{\longleftarrow} X_0 \stackrel{\phi_0}{\longleftarrow} X_1 \stackrel{\phi_1}{\longleftarrow} X_2 \stackrel{\phi_2}{\longleftarrow} X_3 \longleftarrow \cdots$$

and

$$0 \stackrel{\psi_{-1}}{\longleftarrow} Y_0 \stackrel{\psi_0}{\longleftarrow} Y_1 \stackrel{\psi_1}{\longleftarrow} Y_2 \stackrel{\psi_2}{\longleftarrow} Y_3 \longleftarrow \cdots$$

The tensor product $X \otimes Y$ of bounded complexes X and Y in Ban is the chain complex

$$0 \stackrel{\delta_{-1}}{\longleftarrow} (\mathcal{X} \widehat{\otimes} \mathcal{Y})_0 \stackrel{\delta_0}{\longleftarrow} (\mathcal{X} \widehat{\otimes} \mathcal{Y})_1 \stackrel{\delta_1}{\longleftarrow} (\mathcal{X} \widehat{\otimes} \mathcal{Y})_2 \longleftarrow \cdots, \qquad (1)$$

where

$$(\mathcal{X}\widehat{\otimes}\mathcal{Y})_n = \bigoplus_{m+q=n} X_m \widehat{\otimes} Y_q$$

and

$$\delta_{n-1}(x \otimes y) = \phi_{m-1}(x) \otimes y + (-1)^m x \otimes \psi_{q-1}(y),$$

 $x \in X_m, y \in Y_q$ and m + q = n.

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!X$ –

Proposition 5. [Z.A. Lykova] Let A_1 and A_2 be Banach algebras.

Let $0 \leftarrow X \xleftarrow{\varepsilon_1} \mathcal{X}$ be a pseudo-resolution of X in \mathcal{A}_1 -essmod- \mathcal{A}_1 such that all modules in \mathcal{X} are flat in \mathcal{A}_1 -mod- \mathcal{A}_1 and

 $0 \leftarrow Y \xleftarrow{\varepsilon_2} \mathcal{Y}$ be a pseudo-resolution of Y in \mathcal{A}_2 -essmod- \mathcal{A}_2 such that all modules in \mathcal{Y} are flat in \mathcal{A}_2 -mod- \mathcal{A}_2 .

Then $0 \leftarrow X \widehat{\otimes} Y \xleftarrow{\epsilon_1 \otimes \epsilon_2} X \widehat{\otimes} \mathcal{Y}$ is a pseudo-resolution of $X \widehat{\otimes} Y$ in $\mathcal{A}_1 \widehat{\otimes} \mathcal{A}_2$ -essmod- $\mathcal{A}_1 \widehat{\otimes} \mathcal{A}_2$ such that all modules in $X \widehat{\otimes} \mathcal{Y}$ are flat in $\mathcal{A}_1 \widehat{\otimes} \mathcal{A}_2$ -mod- $\mathcal{A}_1 \widehat{\otimes} \mathcal{A}_2$.

$db_w \mathcal{A} < n$ for \mathcal{A} with b.a.i.

Recall that a continuous linear operator $T: X \to Y$ between Banach spaces X and Y is *topologically injective* if it is injective and its image is closed, that is, $T: X \to \text{Im } T$ is a topological isomorphism.

Proposition 6. [Yu. V. Selivanov; Z.A. Lykova] Let \mathcal{A} be a Banach algebra with b.a.i. and let $(0 \leftarrow \mathcal{A} \leftarrow \mathcal{P})$:

$$0 \longleftarrow \mathcal{A} \stackrel{\varepsilon}{\longleftarrow} P_0 \stackrel{\phi_0}{\longleftarrow} \cdots P_{n-1} \stackrel{\phi_{n-1}}{\longleftarrow} P_n \longleftarrow 0$$
(2)

be a flat pseudo-resolution of \mathcal{A} in \mathcal{A} -essmod- \mathcal{A} . Then

$$db_w \mathcal{A} < n \quad \iff$$

for every X in A-essmod-A, the operator

$$\phi_{n-1} \otimes_{\mathcal{A}-\mathcal{A}} 1_X : P_n \widehat{\otimes}_{\mathcal{A}-\mathcal{A}} X \to P_{n-1} \widehat{\otimes}_{\mathcal{A}-\mathcal{A}} X$$

is topologically injective.

– Typeset by Foil $\mathrm{T}_{\!E}\!\mathrm{X}$ –

Lemma 1. [Yu. V. Selivanov] Let E_0, E, F_0 and F be Banach spaces, and let $S: E_0 \to E$ and $T: F_0 \to F$ be continuous linear operators. Suppose S and T are not topologically injective. Then the continuous linear operator

 $\Delta: E_0 \widehat{\otimes} F_0 \to (E_0 \widehat{\otimes} F) \oplus (E \widehat{\otimes} F_0)$

defined by

$$\Delta(x \otimes y) = (x \otimes T(y), S(x) \otimes y) \ (x \in E_0, y \in F_0).$$

is not topologically injective.

$db_w(\mathcal{A}\widehat{\otimes}\mathcal{B})$ for Banach algebras with b.a.i.

Theorem 4. [Z.A. Lykova] Let A and B be Banach algebras with bounded approximate identities. Then

 $db_w(\mathcal{A}\widehat{\otimes}\mathcal{B}) = db_w\mathcal{A} + db_w\mathcal{B}.$

Proof. Suppose $db_w \mathcal{A} = m$ and $db_w \mathcal{B} = q$ where $0 < m, q < \infty$.

By Theorem 2, $db_w \mathcal{A} = m$ implies there is a flat pseudo-resolution $0 \leftarrow \mathcal{A} \leftarrow \mathcal{P}, \phi$ of length m in the category \mathcal{A} -essmod- \mathcal{A} . By Proposition 6, there exists $X \in \mathcal{A}$ -essmod- \mathcal{A} such that the operator

$$\phi_{m-1} \otimes_{\mathcal{A}-\mathcal{A}} 1_X : P_m \widehat{\otimes}_{\mathcal{A}-\mathcal{A}} X \to P_{m-1} \widehat{\otimes}_{\mathcal{A}-\mathcal{A}} X$$

is not topologically injective.

Similarly, $db_w \mathcal{B} = q$ implies that there is a flat pseudo-resolution $0 \leftarrow \mathcal{B} \leftarrow \mathcal{Q}$ (\mathcal{Q}, ψ) of length q in the category \mathcal{B} -essmod- \mathcal{B} and there exist $Y \in \mathcal{B}$ -essmod- \mathcal{B}

– Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ –

such that the operator

$$\psi_{q-1} \otimes_{\mathcal{B}-\mathcal{B}} 1_Y : Q_q \widehat{\otimes}_{\mathcal{B}-\mathcal{B}} Y \to Q_{q-1} \widehat{\otimes}_{\mathcal{B}-\mathcal{B}} Y$$

is not topologically injective.

By Proposition 5, $0 \leftarrow \mathcal{A} \widehat{\otimes} \mathcal{B} \stackrel{\varepsilon_1 \otimes \varepsilon_2}{\leftarrow} (\mathcal{P} \widehat{\otimes} \mathcal{Q}, \delta)$ is a flat pseudo-resolution of $\mathcal{A} \widehat{\otimes} \mathcal{B}$ in $\mathcal{A} \widehat{\otimes} \mathcal{B}$ -essmod- $\mathcal{A} \widehat{\otimes} \mathcal{B}$ of length m + q.

Take $Z = X \widehat{\otimes} Y$ in $\mathcal{A} \widehat{\otimes} \mathcal{B}$ -essmod- $\mathcal{A} \widehat{\otimes} \mathcal{B}$.

By Lemma 1, the operator

$$\delta_{m+q-1} \otimes_{\mathcal{A}\widehat{\otimes}\mathcal{B}-\mathcal{A}\widehat{\otimes}\mathcal{B}} 1_Z : (\mathcal{P}\widehat{\otimes}\mathcal{Q})_{m+q}\widehat{\otimes}_{\mathcal{A}\widehat{\otimes}\mathcal{B}-\mathcal{A}\widehat{\otimes}\mathcal{B}} Z$$

$$\to (\mathcal{P}\widehat{\otimes}\mathcal{Q})_{m+q-1}\widehat{\otimes}_{\mathcal{A}\widehat{\otimes}\mathcal{B}-\mathcal{A}\widehat{\otimes}\mathcal{B}}Z$$

is not topologically injective. Therefore, by Proposition 6, $db_w(\mathcal{A} \widehat{\otimes} \mathcal{B}) = m + q$.

Corollary 1. [Z.A. Lykova] Let \mathcal{A} be an amenable Banach algebra and \mathcal{B} be Banach algebras with b.a.i. Then

(i)

$$db_w(\mathcal{A}\widehat{\otimes}\mathcal{B}) = db_w\mathcal{B}.$$

(ii) $\mathcal{A}\widehat{\otimes}\mathcal{B}$ is *n*-amenable $\iff \mathcal{B}$ is *n*-amenable.

$db_w(\mathcal{A}\widehat{\otimes}\mathcal{B})$ for biflat \mathcal{A} and \mathcal{B}

Theorem 5. [Z.A. Lykova] Let A and B be biflat Banach algebras. Then (i)

$$db_w(\mathcal{A} \otimes \mathcal{B}) = 0$$
 and
 $db_w(\mathcal{A}_+ \widehat{\otimes} \mathcal{B}_+) = db_w \mathcal{A} + db_w \mathcal{B} = 0$

if A and B have two-sided b.a.i.; (ii)

 $db_w(\mathcal{A}\widehat{\otimes}\mathcal{B}) \leq 1$ and $db_w(\mathcal{A}_+\widehat{\otimes}\mathcal{B}_+) = db_w\mathcal{A} + db_w\mathcal{B} = 2$

if A and B have left [right], but not two-sided b.a.i.; (iii)

 $db_w(\mathcal{A}\widehat{\otimes}\mathcal{B}) \leq 2$ and $db_w(\mathcal{A}_+\widehat{\otimes}\mathcal{B}_+) = db_w\mathcal{A} + db_w\mathcal{B} = 4$

if \mathcal{A} and \mathcal{B} have neither left nor right b.a.i.

The algebra $\mathcal{K}(\ell_2\widehat{\otimes}\ell_2)$ of compact operators

Example 1. The algebra $\mathcal{K}(\ell_2 \widehat{\otimes} \ell_2)$ of compact operators on $\ell_2 \widehat{\otimes} \ell_2$ is a biflat Banach algebra with a left, but not two-sided bounded approximate identity (Gronbaek, Johnson, Willis; Selivanov). By Theorem 5, for $n \ge 1$,

 $db_w [\mathcal{K}(\ell_2 \widehat{\otimes} \ell_2)]^{\widehat{\otimes} n} \le 1$

and

 $db_w [\mathcal{K}(\ell_2 \widehat{\otimes} \ell_2)_+]^{\widehat{\otimes} n} = n.$

The tensor algebra $E \widehat{\otimes} F$ generated by the duality $(E, F, \langle \cdot, \cdot \rangle)$

Example 2. Let (E, F) be a pair of infinite-dimensional Banach spaces endowed with a nondegenerate jointly continuous bilinear form

 $\langle \cdot, \cdot \rangle : E \times F \to \mathbf{C}$

that is not identically zero. The space $\mathcal{A} = E \widehat{\otimes} F$ is a $\widehat{\otimes}$ -algebra with respect to the multiplication defined by

 $(x_1 \otimes x_2)(y_1 \otimes y_2) = \langle x_2, y_1 \rangle x_1 \otimes y_2, \ x_i \in E, \ y_i \in F.$

Then $\mathcal{A} = E \widehat{\otimes} F$ is called the tensor algebra generated by the duality $(E, F, \langle \cdot, \cdot \rangle)$.

It is known that A is biprojective, and has neither a left nor a right b.a.i. (Yu.V. Selivanov; A. Grothendieck).

In particular, if E is a Banach space with the approximation property, then the algebra $\mathcal{A} = E \widehat{\otimes} E^*$ is isomorphic to the algebra $\mathcal{N}(E)$ of nuclear operators on E.

– Typeset by Foil $\mathrm{T}_{\!E}\!\mathrm{X}$ –

By Theorem 5, for $n \ge 1$,

$$db_w [E\widehat{\otimes}F]^{\widehat{\otimes}n} \leq 2 \text{ and } db_w [(E\widehat{\otimes}F)_+]^{\widehat{\otimes}n} = 2n.$$

$$\left[\begin{array}{rrr}a&b\\0&0\end{array}\right]$$

with matrix multiplication and norm. It is known that \mathcal{B} is 2-amenable, biprojective, has a left, but not right identity (A.L.T. Paterson). By Theorem 5, for $n \ge 1$,

$$db_w[\mathcal{B}]^{\widehat{\otimes}n} = 1, \text{ and } db_w[\mathcal{B}_+]^{\widehat{\otimes}n} = n;$$

 $db_w[\mathcal{B}\widehat{\otimes}\mathcal{K}(\ell_2\widehat{\otimes}\ell_2)]^{\widehat{\otimes}n} = 1,$

and

$$db_w [\mathcal{B}_+ \widehat{\otimes} \mathcal{K}(\ell_2 \widehat{\otimes} \ell_2)_+]^{\widehat{\otimes} n} = 2n.$$

External products of Hochschild cohomology of Banach algebras with b.a.i.

Theorem 6. [Z.A. Lykova] Let \mathcal{A} and \mathcal{B} be Banach algebras with b.a.i., let X be an essential Banach \mathcal{A} -bimodule and let Y be an essential Banach \mathcal{B} -bimodule. Then for $n \geq 0$, up to topological isomorphism,

 $\mathcal{H}^n(\mathcal{A}\widehat{\otimes}\mathcal{B}, (X\widehat{\otimes}Y)^*) = H^n((\mathcal{C}_{\sim}(\mathcal{A}, X)\widehat{\otimes}\mathcal{C}_{\sim}(\mathcal{B}, Y))^*).$

Theorem 7. [Z.A. Lykova] Let \mathcal{A} and \mathcal{B} be Banach algebras with b.a.i., let X be an essential Banach \mathcal{A} -bimodule and let Y be an essential Banach \mathcal{B} -bimodule. Suppose \mathcal{A} is amenable. Then, for $n \geq 0$, up to topological isomorphism,

 $\mathcal{H}^n(\mathcal{A}\widehat{\otimes}\mathcal{B},(X\widehat{\otimes}Y)^*)=\mathcal{H}^n(\mathcal{B},(X/[X,\mathcal{A}]\widehat{\otimes}Y)^*),$

where $b \cdot (\bar{x} \otimes y) = (\bar{x} \otimes b \cdot y)$ and $(\bar{x} \otimes y) \cdot b = (\bar{x} \otimes y \cdot b)$ for $\bar{x} \in X/[X, \mathcal{A}]$, $y \in Y$ and $b \in \mathcal{B}$.

– Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ –

The simplicial cohomology of $L^1(\mathbf{R}^k_+) \widehat{\otimes} \mathcal{C}$

Let \mathcal{A} be the Banach algebra $L^1(\mathbf{R}_+)$ of complex-valued, Lebesgue measurable functions f on \mathbf{R}_+ with finite L^1 -norm and convolution multiplication.

Theorem 8. [F. Gourdeau, Z.A.L. and M.C. White; Z.A.Lykova] Let C be an amenable Banach algebra. Then

 $\mathcal{H}_n(L^1(\mathbf{R}^k_+)\widehat{\otimes} \mathcal{C}, L^1(\mathbf{R}^k_+)\widehat{\otimes} \mathcal{C})\cong \{0\} \text{ if } n>k;$

$$\mathcal{H}^n\left(L^1(\mathbf{R}^k_+)\widehat{\otimes}\,\mathcal{C},\left(L^1(\mathbf{R}^k_+)\widehat{\otimes}\,\mathcal{C}\right)^*\right)\cong\{0\}\text{ if }n>k;$$

up to topological isomorphism,

$$\mathcal{H}_n(L^1(\mathbf{R}^k_+)\widehat{\otimes}\mathcal{C}, L^1(\mathbf{R}^k_+)\widehat{\otimes}\mathcal{C})\cong \bigoplus^{\binom{k}{n}}L^1(\mathbf{R}^k_+)\widehat{\otimes}(\mathcal{C}/[\mathcal{C},\mathcal{C}]) \text{ if } n \leq k;$$

and

$$\mathcal{H}^{n}(L^{1}(\mathbf{R}^{k}_{+})\widehat{\otimes}\mathcal{C},(L^{1}(\mathbf{R}^{k}_{+})\widehat{\otimes}\mathcal{C})^{*})\cong \bigoplus^{\binom{k}{n}}\left[L^{1}(\mathbf{R}^{k}_{+})\widehat{\otimes}\left(\mathcal{C}/[\mathcal{C},\mathcal{C}]\right)\right]^{*}$$

if $n \leq k$.

– Typeset by Foil $\mathrm{T}_{\!E}\!\mathrm{X}$ –

Applications to the cyclic cohomology

Theorem 9. [Z.A. Lykova] Let \mathcal{A} be a Banach algebra. Suppose that $db_w \mathcal{A} = m$ and m = 2L is an even integer. Then,

(i) for all $\ell \geq L$, $HC_{2\ell+2}(\mathcal{A}) = HC_m(\mathcal{A})$ and $HC_{2\ell+3}(\mathcal{A}) = HC_{m+1}(\mathcal{A})$;

(ii) $HP_0(\mathcal{A}) = HC_m(\mathcal{A})$ and $HP_1(\mathcal{A}) = HC_{m+1}(\mathcal{A})$;

(iii) for all $\ell \geq L$, $HC^{2\ell+2}(\mathcal{A}) = HC^m(\mathcal{A})$ and $HC^{2\ell+3}(\mathcal{A}) = HC^{m+1}(\mathcal{A})$;

(iv) $HP^0(\mathcal{A}) = HC^m(\mathcal{A})$ and $HP^1(\mathcal{A}) = HC^{m+1}(\mathcal{A})$.

(v) $HE^0(\mathcal{A}) = HP^0(\mathcal{A}) = HC^m(\mathcal{A})$ and $HE^1(\mathcal{A}) = HP^1(\mathcal{A}) = HC^{m+1}(\mathcal{A}).$

There are similar formulae for odd m.

Theorem 10. [A. Ya. Helemskii; M. Khalkhali; Z.A. Lykova] Let \mathcal{A} be a biflat Banach algebra. Then

(i) for all
$$\ell \geq 0$$
, $HC_{2\ell}(\mathcal{A}) = \mathcal{A}/[\mathcal{A}, \mathcal{A}]$ and $HC_{2\ell+1}(\mathcal{A}) = \{0\}$;

(ii)
$$HP_0(\mathcal{A}) = \mathcal{A}/[\mathcal{A}, \mathcal{A}]$$
 and $HP_1(\mathcal{A}) = \{0\}$;

(iii) for all $\ell \geq 0$, $HC^{2\ell}(\mathcal{A}) = \mathcal{A}^{tr}$ and $HC^{2\ell+1}(\mathcal{A}) = \{0\}$;

(iv) $HE^0(\mathcal{A}) = HP^0(\mathcal{A}) = \mathcal{A}^{tr}$ and $HE^1(\mathcal{A}) = HP^1(\mathcal{A}) = \{0\}.$
Thank you

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!X$ –