Dichotomy theorems for random matrices and ideals of operators on $\left(\bigoplus_{n=1}^{\infty} \ell_1^n\right)_{c_0}$

András Zsák

Lancaster University and Peterhouse, Cambridge

(joint work with N J Laustsen, E Odell, Th Schlumprecht)

Leeds semester 2010

The problem

Set
$$X = \left(\bigoplus_{n=1}^{\infty} \ell_1^n\right)_{c_0}$$
.

The aim is to classify to closed ideals of $\mathcal{B}(X)$.

(Part of a study of the relationship between the geometry of a Banach space E on the one hand and the Banach algebra structure of $\mathcal{B}(E)$ on the other hand.)

An easy theorem

We have the following closed ideals in $\mathcal{B}(X)$:

$$\{0\} \subsetneq \mathcal{K}(X) \subsetneq \overline{\mathcal{G}}_{c_0}(X) \subsetneq \mathcal{B}(X) .$$

Moreover, if T is a non-compact operator on X, then the closed ideal generated by T contains $\overline{\mathcal{G}}_{c_0}(X)$.

It follows that any closed ideal of $\mathcal{B}(X)$ not in the above list must lie strictly between $\overline{\mathcal{G}}_{c_0}(X)$ and $\mathcal{B}(X)$.

Reduction to the finite-dimensional case

An operator

$$\mathcal{T}: \left(\bigoplus_{n=1}^{\infty} \ell_1^n
ight)_{\mathrm{c}_0}
ightarrow \left(\bigoplus_{n=1}^{\infty} \ell_1^n
ight)_{\mathrm{c}_0}$$

can be thought of as an infinite matrix $(T_{m,n})$ of operators $T_{m,n} \colon \ell_1^n \to \ell_1^m$.

Lemma: $\forall \varepsilon > 0$ there is a compact operator K with $||K|| < \varepsilon$ such that T + K has finite rows and columns.

We write $T^{(m)}$ for the m^{th} row of T:

$$\mathcal{T}^{(m)}\colon \Big(\bigoplus_{n\in R_m}\ell_1^n\Big)_{\ell_\infty}\to \ell_1^m$$

for some finite set $R_m \subset \mathbb{N}$.

Reduction to the finite-dimensional case (contd.)

We consider sequences of operators

$$T^{(m)}$$
: $\ell^m_{\infty}(\ell^m_1) \to L_1$

with sup $\|T^{(m)}\| < \infty$.

Denote by $e_{i,j} = e_{i,j}^{(m)}$ the unit vector basis of $\ell_{\infty}^{m}(\ell_{1}^{m})$.

The norm of $\sum_{i,j} a_{i,j} e_{i,j}$ is given by $\max_i \sum_j |a_{i,j}|$.

We let $T_{i,j}^{(m)} = T^{(m)}(e_{i,j})$ and identify $T^{(m)}$ with the $m \times m$ matrix $(T_{i,j}^{(m)})$.

Let $T^{(m)}$: $\ell_{\infty}^m(\ell_1^m) \to L_1$ be a uniformly bounded sequence of operators. Is the following true:

(i) either the identity operators $\mathrm{Id}_{\ell_1^k}$ uniformly factor through the $\mathcal{T}^{(m)}$,

(ii) or the $\mathcal{T}^{(m)}$ uniformly approximately factor through ℓ_{∞}^{k} ?

Dichotomy theorem I

Let X_1, X_2, \ldots be arbitrary Banach spaces.

Let $T_m: X_m \to L_1$ be a uniformly bounded sequence of operators. Then the following dichotomy holds:

(i) either the identity operators $\mathrm{Id}_{\ell_1^k}$ uniformly factor through the \mathcal{T}_m

(ii) or the T_m have uniform approximate lattice bounds.

Lattice bounds and factorization

Let $T_m: X_m \to L_1$ be a uniformly bounded sequence of operators.

- (i) If the T_m have uniform lattice bounds then they uniformly factor through ℓ_{∞}^n 's.
- (ii) Assume that for each $m \in \mathbb{N}$ we have $X_m = \ell_1^{N_m}$ for some $N_m \in \mathbb{N}$. If the T_m have uniform approximate lattice bounds, then they uniformly approximately factor through ℓ_{∞}^n 's.

Proof of Dichotomy I

Two ingredients:

Theorem (Dor): Let μ and ν be measures and $T: L_1(\nu) \to L_1(\mu)$ an isomorphic embedding with $||T|| \cdot ||T^{-1}|| = \lambda < \sqrt{2}$. Then there is a projection P of $L_1(\mu)$ onto the range of T with

$$\| extsf{P} \| \leq \left(2\lambda^{-2} - 1
ight)^{-1}$$
 .

Theorem: Let $T_m: X_m \to L_1$ be operators with $||T_m|| \leq 1$. Let us assume that $\exists \delta > 0 \ \forall n \in \mathbb{N} \ \exists m \in \mathbb{N}$ such that there exist $f_1, \ldots, f_n \in T_m(B_{X_m})$ and pairwise disjoint sets E_1, \ldots, E_n with $||f_i|_{E_i}|| \geq \delta$ for all *i*. Then the identity operators $\mathrm{Id}_{\ell_i^k}$ uniformly factor through the T_m .

An operator ideal \mathcal{J} is *surjective* if, given any operator $T: E \to F$ and a quotient map $Q: D \to E$, we have $TQ \in \mathcal{J}(D, F)$ implies $T \in \mathcal{J}(E, F)$.

The *surjective hull* of \mathcal{J} is

$$\mathcal{J}^{(\mathrm{sur})}(E,F) = \left\{ T \in \mathcal{B}(E,F) : \exists Q \colon D \twoheadrightarrow E \text{ with } TQ \in \mathcal{J}(D,F) \right\}$$

Fact: $\mathcal{J}^{(sur)}$ is a surjective operator ideal and it is the smallest such object containing $\mathcal{J}.$

We have the following closed ideals in $\mathcal{B}(X)$:

$$\{0\} \subsetneq \mathcal{K}(X) \subsetneq \overline{\mathcal{G}}_{c_0}(X) \subseteq \overline{\mathcal{G}}_{c_0}^{(\mathrm{sur})}(X) \subsetneq \mathcal{B}(X) \;.$$

Moreover, $\overline{\mathcal{G}}_{c_0}^{(sur)}(X)$ is the unique maximal ideal in $\mathcal{B}(X)$.

Dichotomy theorem II

For each $m \in \mathbb{N}$ let $T^{(m)} \colon \ell_{\infty}^{m}(\ell_{1}^{m}) \to L_{1}$ be an operator such that the entries of the corresponding random matrix $(T_{i,j}^{(m)})$ are independent, symmetric random variables with

$$\mathbb{E}\big|\sum_{i=1}^m T_{i,j_i}^{(m)}\big| \le 1$$

for all functions $j \colon \{1, \ldots, m\} \to \{1, \ldots, m\}$. Then

(i) either the identity operators $\mathrm{Id}_{\ell_1^k}$ uniformly factor through the $\mathcal{T}^{(m)}$

(ii) or the $T^{(m)}$ uniformly approximately factor through ℓ_{∞}^{k} 's.

Factorization and 2-summing norm

The 2-summing norm of an operator $U \colon E \to F$ is defined as

$$\begin{aligned} \pi_2(U) &= \sup \left\{ \left(\sum_{s=1}^k \|Uz^{(s)}\|^2 \right)^{1/2} : \ k \in \mathbb{N}, \ z^{(1)}, \dots, z^{(k)} \in E \ , \\ &\sum_{s=1}^k |\langle z^{(s)}, z^* \rangle|^2 \leq 1 \quad \forall \ z^* \in B_{E^*} \right\} \ . \end{aligned}$$

Let $T^{(m)}$: $\ell_{\infty}^{m}(\ell_{1}^{m}) \to L_{1}$ be a uniformly bounded sequence of operators. Then the following are equivalent.

(i) The $T^{(m)}$ uniformly factor through ℓ_{∞}^{k} 's

(ii) $\sup_{m} \pi_2(T^{(m)}) < \infty$.

Let $U: \ell_{\infty}^{m}(\ell_{1}^{m}) \to L_{1}$ be an operator such that the $U_{i,j}$ form a symmetric sequence of random variables. Then

$$\pi_2(U) \le \Big(\sum_{i=1}^m \max_{1 \le j \le m} \|U_{i,j}\|_{L_2}^2\Big)^{1/2}$$

The square-function inequality

If $f_1, \ldots, f_n \in L_1$ form a symmetric sequence of random variables, then

$$\frac{1}{K} \left\| \left(\sum_{i=1}^{n} |f_i|^2 \right)^{1/2} \right\|_{L_1} \le \left\| \sum_{i=1}^{n} f_i \right\|_{L_1} \le \left\| \left(\sum_{i=1}^{n} |f_i|^2 \right)^{1/2} \right\|_{L_1} \right\|_{L_1}$$

٠

Given symmetric sequences f_1, \ldots, f_n and g_1, \ldots, g_n of random variables in L_1 , if $|f_i| \le |g_i|$ for all *i*, then

$$\left\|\sum_{i=1}^{n} f_{i}\right\|_{L_{1}} \leq K \cdot \left\|\sum_{i=1}^{n} g_{i}\right\|_{L_{1}}$$

Proof of Dichotomy II

We consider two cases

(i) $\exists \varepsilon > 0 \forall C > 0 \forall n \in \mathbb{N} \exists m \in \mathbb{N}$ such that there exist pairwise disjoint functions $j^{(s)} \in \mathcal{F}_m$ (s = 1, ..., n) such that

$$\left\|\sum_{i=1}^{m} \mathcal{T}_{i,j_{i}^{(s)}}^{(m)} \cdot \mathbf{1}_{\left\{\left|\mathcal{T}_{i,j_{i}^{(s)}}^{(m)}\right| > C\right\}}\right\|_{L_{1}} \ge \varepsilon \qquad s = 1, \dots, n$$

(ii) $\forall \varepsilon > 0 \exists C > 0 \exists n \in \mathbb{N} \forall m \in \mathbb{N}$ there exist pairwise disjoint functions $j^{(s)} \in \mathcal{F}_m \ (s = 1, \dots, n)$ such that

$$\Big\|\sum_{i=1}^m T_{i,j_i}^{(m)} \cdot \mathbf{1}_{\{|T_{i,j_i}^{(m)}| > C\}}\Big\|_{L_1} < \varepsilon$$

for all $j \in \mathcal{F}_m$ that is disjoint from all the $j^{(s)}$.

A consequence of the Hoffman-Jørgensen inequality

Given $0 < p, q < \infty$, there is a constant $K_{p,q}$ such that if X_1, \ldots, X_N are independent, symmetric random variables in L_p then

$$\begin{split} \Big\| \sum_{i=1}^{N} X_i \Big\|_{L_p} & \stackrel{K_{p,q}}{\sim} \Big\| \max_{1 \le i \le N} |X_i| \Big\|_{L_p} + \Big\| \sum_{i=1}^{N} X_i \cdot \mathbf{1}_{\{|X_i| \le \delta_0\}} \Big\|_{L_q} \end{split}$$

where $\delta_0 = \inf \Big\{ t > 0 : \sum_{i=1}^{N} \mathbb{P}\big(|X_i| > t\big) \le \frac{1}{8 \cdot 3^p} \Big\}. \end{split}$