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Fej�er's Theorem

Let's recall this from classical Fourier Analysis. Identify T = [−π, π)

which has Haar measure ds
2π . For a \nice" function f on T de�ne

ck =

∫π
−π

f (s)e−iks
ds

2π
, sn(f , x ) =

n∑
k=−n

cke
ikx .

Theorem

For f ∈ C (T), the Ces�aro sums

σn(f , x ) =
1

n

n−1∑
k=0

sk (f , x )

converge uniformly to f (x ).
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Think about this in a \quantum" framework

For me, the Fourier transform is between Hilbert spaces:

F : L2(T) → ℓ2(Z); f 7→ (ck ) =
( ∫π

−π
f (s)e−iks

ds

2π

)
.

We end up with a unitary F .

Consider C (T) acting on L2(T);
Consider C ∗

r (Z), generated by the translation operators (λn)n∈Z,

acting on ℓ2(Z).
We obtain a ∗-isomorphism

F0 : C (T) → C ∗
r (Z); f 7→ F fF−1.

Indeed, F−1
0

: λn 7→ (e ins)s∈T.
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Normal functionals

For a C ∗-algebra A ⊆ B(H ), given ξ, η ∈ H , let ωξ,η ∈ A∗ be the

(normal) functional

A ∋ a 7→ (aξ|η) ∈ C.

The normal functionals on C (T) gives exactly L1(T);
Indeed, identify ωξ,η (for ξ, η ∈ L2(T)) with the function

ξη ∈ L1(T).
De�ne the Fourier Algebra A(Z) to be the collection of normal

functionals on C ∗
r (Z).

Some von Neumann algebra theory shows that A(Z) is a closed
subspace of C ∗

r (Z)∗;
Indeed, A(Z) is the predual of VN (Z) which is in standard

position when acting on ℓ2(Z).
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The Fourier algebra as a space of functions

Given ω = ωξ,η ∈ A(Z), we can identify this with a function on Z by

ω↔ (ω(n))n∈Z = (⟨λ−n ,ω⟩)n∈Z.

As C ∗
r (Z) is the span of {λn : n ∈ Z}, the values {ω(n) : n ∈ Z}

determines ω. Use of \−n" seems odd, but makes things work (and

occurs in the general quantum theory).

Recall F0 : C (T) → C ∗
r (Z). The Banach space adjoint is

F∗
0
: C ∗

r (Z)∗ → C (T)∗. Restricting this to A(Z) gives

F1 = F∗
0 : A(Z) → L1(T);ωξ,η 7→ ωF∗(ξ),F∗(η).

This is a bijection, and the inverse L1(T) → A(Z) is just the usual
Fourier transform (thought of as acting between function spaces).
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. . . and as an algebra

L1(T) is an algebra under convolution, and A(Z) is an algebra of

functions with the pointwise product.

F1 : A(Z) → L1(T) is a homomorphism.

F0 : C (T) → C ∗
r (Z) is a homomorphism.

Given any (Banach) algebra A, the dual space becomes an A-bimodule.

A(Z) acts on its dual space, and this restricts to turn C ∗
r (Z) into an

A(Z)-module. Similarly for L1(T) acting on C (T).

ω · λn = ω(−n)λn , f · F = F ⋆ �f

(
F ∈ C (T), f ∈ L1(T)
λn ∈ C ∗

r (Z),ω ∈ A(Z)

)
.

Here �f (s) = f (−s).

F0 is a module homomorphism (for the module actions

intertwined using F1).
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Back to Fej�er

For F ∈ C (T) we have

σn(F , ·) = F ⋆ Fn = �Fn · F ,

where Fn ∈ L1(T) is the Fej�er kernel; we have �Fn = Fn .

Push this through F0 to obtain ωn = F1( �Fn) with

ωn · a = F1( �Fn) · F0(F−1
0

(a)) = F0( �Fn · F−1
0

(a))
n→∞−→ F0(F−1

0
(a)) = a (a ∈ C ∗

r (Z)).

Indeed, ωn , as a function on Z, is simply the \triangle", piecewise

linear with ωn(0) = 1 and ωn(n) = ωn(−n) = 0.

We obtain a sequence of (normalised, positive de�nite)

functions in A(Z) which acts on C ∗
r (Z) as an \approximate

identity".

Generalise?
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Amenability
Of course, for any discrete (locally compact) group we can form ℓ2(G)

and then:

C ∗
r (G) and VN (G) acting on ℓ2(G);

A(G) the predual of VN (G), again identi�ed as an algebra of

functions for ω↔ (ωg)g∈G = (⟨λg−1 ,ω⟩)g∈G .
VN (G), and by restriction also C ∗

r (G), become A(G)-modules.

Theorem

The following are equivalent:

A(G) contains a net of normalised positive de�nite functions

(i.e. normal states on VN (G)) which form an approximate

identity for C ∗
r (G), or a weak∗-approximate identity for

VN (G);

A(G) contains some bounded approximate identity (bai);

G is amenable.
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Completely bounded multipliers

A key property of A(G) functions is that they \multiply" (or act on)

C ∗
r (G) and VN (G).

De�nition

A multiplier of A(G) is a function f on G such that fω ∈ A(G) for

each ω ∈ A(G).

Such an f is automatically continuous. By the Closed Graph Theorem,

the resulting map A(G) → A(G);ω 7→ fω is bounded.

Such an f acts on VN (G) and, by restriction, on C ∗
r (G).

De�nition

A multiplier f is completely bounded if the resulting map on VN (G),

say Mf , (equivalently C ∗
r (G)) is completely bounded.

Mf ⊗ id : VN (G)⊗Mn → VN (G)⊗Mn .
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Weak amenability

Of course, each ω ∈ A(G) is itself a (cb-)multiplier.

Theorem (Losert)

The following are equivalent:

the map from A(G) into the algebra of multipliers of A(G) is

bounded below;

the map from A(G) into the algebra of cb-multipliers of A(G)

is bounded below;

G is amenable.

De�nition

G is weakly amenable if there is a net (ωi ) in A(G), bounded in the

∥ · ∥cb norm, forming an approximate identity for C ∗
r (G).

E.g. (Haagerup) F2.
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The approximation property

The space of cb-multipliers, McbA(G), is a dual space (and a dual

Banach algebra).

Each f ∈ L1(G) de�nes a bounded functional on McbA(G) (by

integration of functions).

The closure of such functionals in McbA(G)∗, say QcbA(G), is a

predual for McbA(G).

De�nition (Haagerup{Kraus)

G has the approximation property (AP) when there is a net (ωi ) in

A(G) which converges to 1 weak∗ in McbA(G).

If such a net is bounded in McbA(G) then G is already weakly

amenable.
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Examples

The class of groups with the AP is closed under extensions, while the

class of weakly amenable groups is not (not even closed under

semi-direct products).

In fact, much is known now about Lie groups and lattices therein.

[La�orgue{de la Salle] SL3(Z) does not have the AP.
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Applications: �nite-rank approximations

For those familiar with the notion of nuclearity the following should

look slightly familiar.

De�nition

A C ∗-algebra A has the operator approximation property (OAP) if

there is a net of continuous �nite-rank operators (φi ) which converges

to 1A in the point-stable topology: (φi ⊗ id)(u) → u in norm, for each

u ∈ A⊗K(ℓ2).

Theorem (Haagerup{Kraus)

For a discrete group G the following are equivalent:

G has the AP;

C ∗
r (G) has the OAP.

Similar de�nitions/results hold for von Neumann algberas, and

VN (G).
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L
p variants

We can replace L2(G) by Lp(G) when de�nining the Fourier algebra

and VN (G). The operators (λs)s∈G act on Lp(G) (by left-invariance

of the Haar measure). The weak∗-linear span in B(Lp(G)) is PMp(G),

the algebra of p-pseudo measures. Its predual is Ap(G) the

Figa-Talamanca{Herz algebra.

We can also look at right-translation variants, leading to PM r
p (G). Let

the commutant of this be CVp(G), the algebra of p-convolvers. We

always have that CVp(G) ⊇ PMp(G).

Question

Is it true that CVp(G) = PMp(G)?
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L
p variants, continued

Question

Is it true that CVp(G) = PMp(G)?

Yes, if p = 2.

Theorem (Cowling; see D.{Spronk)

If G has the AP then CVp(G) = PMp(G).

The idea of the proof is that the net (ωi ) in A(G) approximating the

identity can be made to act on CVp(G) in a way which

weak∗-approximates the identity, and which maps CVp(G) into

PMp(G).
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Locally compact quantum groups
We introduce these objects by way of two examples.

For a (locally compact) group G consider L∞(G). We identify the von

Neumann algebra tensor product L∞(G)�⊗L∞(G) with L∞(G ×G).

We can then \dualise" the group product to de�ne a normal injective

∗-homomorphism by, for F ∈ L∞(G), g , h ∈ G ,

∆ : L∞(G) → L∞(G ×G); ∆(F )(g , h) = F (gh).

Product associative =⇒ ∆ is coassociative: (∆⊗ id)∆ = (id⊗∆)∆.
Let φ : L∞(G)+ → [0,∞] be the left \Haar weight"

φ(F ) =

∫
G

F (g) dg .

Then, for f ∈ L1(G)+ we have

φ
(
(f ⊗ id)∆(F )

)
=

∫
G

dh

∫
G

dg f (g)F (gh) =

∫
G

∫
G

f (g)F (gh) dh dg

=

∫
G

∫
G

f (g)F (h) dh dg = φ(F )⟨1, f ⟩.
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For the group von Neumann algebra

Alternatively, form VN (G), which is generated by the translation

operators λg . There exists a normal injective ∗-homomorphism

∆̂ : VN (G) → VN (G)�⊗VN (G) ∼= VN (G ×G); λg 7→ λg ⊗ λg .

\One can show" that there is a weight φ̂ : VN (G)+ → [0,∞] with

φ̂
(
(ω⊗ id)∆̂(x )

)
= φ(x )ω(1) (x ∈ VN (G)+,ω ∈ A(G)+).
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Locally compact quantum groups

Abstract object G with:

von Neumann algebra L∞(G);

equipped with a coproduct ∆ : L∞(G) → L∞(G)�⊗L∞(G) which is

coassociative: (∆⊗ id)∆ = (id⊗∆)∆;
which has weights φ,ψ which are left/right invariant, e.g.

φ
(
(ω⊗ id)∆(x )

)
= φ(x )ω(1) (x ∈ M+

φ,ω ∈ L1(G)+).

From this, one gets:

L1(G) becomes a Banach algebra, product induced by ∆;

GNS for φ gives L2(G) with L∞(G) in standard position;

a multiplicative unitary W , so W12W13W23 = W23W12;
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Multiplicative unitaries
Let's think more about this W . It is a unitary W on L2(G)⊗ L2(G)

which \encodes" ∆ and L∞(G).

We use leg numbering notation: on L2(G)⊗ L2(G)⊗ L2(G) we let

W12 = W ⊗ 1, so W acting on \legs 1 and 2";

W13 is analogously W acting on legs 1 and 3.

E.g. for L∞(G) for a group G , we �nd that W is the unitary on

L2(G ×G) given by

(W ξ)(g , h) = ξ(g , g−1h) (ξ ∈ L2(G ×G), g , h ∈ G).

In general, W gives us ∆ by

∆(x ) = W ∗(1⊗ x )W (x ∈ L∞(G)).

W remembers L∞(G) as

L∞(G) = {(id⊗ω)(W ) : ω ∈ L1(G)} ′′.
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Duality

λ : L1(G) → B(L2(G)); ω 7→ (ω⊗ id)(W )

is a homomorphism. The closure of its image is a C ∗-algebra C0(Ĝ).

There indeed exists Ĝ a LCQG; L∞(Ĝ) is the WOT closure.

There is φ̂ so that L2(Ĝ) = L2(G) canonically.

W ∈ L∞(G)�⊗L∞(Ĝ) and Ŵ = σ(W ∗) where σ is the swap map.

For G a locally compact group, if we set L∞(G) = L∞(G), then we

indeed �nd that L∞(Ĝ) = VN (G) and C0(Ĝ) = C ∗
r (G), with ∆̂ as

before.

Indeed, that ∆̂ exists (we only de�ned it on λg) follows from using the

formula

∆̂(x ) = Ŵ ∗(1⊗ x )Ŵ where Ŵ = σ(W ∗).
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Duality continued: Fourier algebra

Again with G = G a genuine group, the map

λ : L1(G) → C ∗
r (G) ⊆ B(L2(G)) is the usual left-regular

representation.

We also have

λ̂ : A(G) = L1(Ĝ) → C0(
̂̂G) = C0(G) = C0(G)

which agrees with our map before. This \explains" our use of g−1.

For general quantum G. . .

De�nition

We de�ne A(G) = λ̂(L1(Ĝ)) with the norm from L1(Ĝ), but thought of

as a subalgebra of C0(G).
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Centralisers and Multipliers

We can think of a multiplier of A(G) as a map T : A(G) → A(G) with

T (ω1ω2) = T (ω1)ω2, that is, a module homomorphism.

De�nition

A left centraliser of L1(Ĝ) is a right module homomorphism,

L(ω̂1 ⋆ ω̂2) = L(ω̂1) ⋆ ω̂2.

De�nition

A left multiplier of A(G) is a ∈ L∞(G) with

a λ̂(ω̂) ∈ λ̂(L1(Ĝ)) = A(G) for each ω̂ ∈ L1(Ĝ).

As λ̂ is injective, a left multiplier a induces a (unique) left centraliser

L with a λ̂(ω̂) = λ̂(L(ω̂)).

We say that L (and thus a) is completely bounded if the adjoint

L∗ : L∞(Ĝ) → L∞(Ĝ) is completely bounded.
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Centralisers are multipliers

Theorem (Junge{Neufang{Ruan; D.)

For any cb left centraliser L there exists a ∈ M (C0(G)) ⊆ L∞(G)

an associated multiplier.

We write Mcb(A(G)) for the collection of all multipliers, equipped with

the norm (operator space structure) arising as centralisers, that is,

maps on L1(Ĝ).

As in the classical situation, and with the same construction,

Mcb(A(G)) is a dual space.

De�nition (D.-Krajczok{Voigt)

G has the AP if there is a net in A(G) which converges to 1 weak∗ in

Mcb(A(G)).

(We used \left"; there is a \right" analogue; this gives the same idea.)
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Other notions of convergence
Each a ∈ Mcb(A(G)) is associated to a centraliser L : L1(Ĝ) → L1(Ĝ)

and hence to a map L∗ = Θ(a) ∈ CB(L∞(Ĝ)).

De�nition (Crann; Kraus{Ruan)

G has the (strong) AP when there is a net (ai ) in A(G) such

(Θ(ai )⊗ id)(x ) → x weak∗ for each x ∈ L∞(Ĝ)�⊗B(ℓ2) (that is, stable
point-weak∗ convergence to id).

Proposition (DKV)

AP and strong AP are equivalent.

Proof.

Only (AP) =⇒ (strong AP) needs a proof. Follows from a careful

study of Qcb(A(G)) and adapting some classical work of

Kraus{Haagerup: as sometimes happens you end up proving a little bit

more in the abstract setting of LCQGs.
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Permanence properties

Theorem (DKV)

Let G have the AP, and let H be a closed quantum subgroup of G.
Then H has the AP.

Proof.

Almost by de�nition, H ≤ G means that there is a quotient map

A(G) → A(H) (classically this is the Herz Restriction Theorem).

This map is compatible with the weak∗-topologies.
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Compact quantum groups

De�nition (Woronowicz)

A compact quantum group is (A, ∆) where A is a unital C ∗-algebra

and ∆ : A → A⊗A is a coassociative unital ∗-homomorphism, with the

cancellation conditions that

{∆(a)(b ⊗ 1) : a , b ∈ A}, {∆(a)(1⊗ b) : a , b ∈ A}

are linearly dense in A⊗A.

If A is commutative, A = C (S) for some compact space S ;

then ∆ exactly corresponds to a semigroup structure on S ,

∆(f )(s , t) = f (st) (f ∈ C (S), s , t ∈ S).

The cancellation conditions then exactly correspond to S being a

group.
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Compact case as locally compact quantum groups

(A, ∆) with

lin{∆(a)(b ⊗ 1) : a , b ∈ A} = lin{∆(a)(1⊗ b) : a , b ∈ A} = A⊗A.

It follows from these axioms that there is a KMS state h ∈ A∗, the

Haar state, which is left and right invariant:

(h ⊗ id)∆(a) = h(a)1 = (id⊗h)∆(a) (a ∈ A).

Form the GNS construction (H , π, ξ0).

Then ∆ drops to a coproduct on π(A).

∆ extends to a normal coproduct on M = π(A) ′′.

(M , ∆) is a locally compact quantum group in the previous sense,

with respect to h .

We write π(A) = C (G) and M = L∞(G) and H = L2(G).
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Discrete quantum groups

Let G be compact. The dual Ĝ is said to be discrete.

The representation theory of compact G is rather similar to that

for compact groups: all irreducibles are �nite-dimensional, there is

an analogue of Peter{Weyl, and so forth.

This is reected in

ℓ∞(Ĝ) =
∏

α∈Irr(G)

Mn(α).

where Irr(G) is set of equivalence classes of irreducible

representations of G.
Given a classical discrete group Γ we form ℓ∞(Γ) as usual.

Setting Ĝ = Γ , what is G?
L∞(G) = VN (Γ) the group von Neumann algebra.
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Free products

Theorem (DKV)

Let G1,G2 be discrete quantum groups with the AP. Then G1 ⋆G2

has the AP.

Is there a reference in the classical case?

Proof.

With G = G1 ⋆G2, by de�nition, C (Ĝ) = C (Ĝ1) ⋆C (Ĝ2). We use

operator algebraic methods to deal with this C ∗-algebraic free product,

especially results of [Ricard{Xu]. Then check that their ideas arise (or

can be made to arise) from operations on cb-multipliers which are

weak∗-continuous.

[Stop?]
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Central AP

For a discrete G we have

ℓ∞(G) ∼=
∏

α∈Irr(Ĝ)

Mn(α).

Consequently, a ∈ Z ℓ∞(G) if each component aπ is a scalar multiple of

the identity; that is, a bounded function Irr(Ĝ) → C.

De�nition

G has central AP if we can choose our approximating net (ωi ) ∈ A(G)

to be central, and have �nite support.

Can always assume �nite support on its own.

If G is unimodular, can \average" to be central (preserving

�nite-support).

Not clear in general.
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Categorical AP

(See [Arano{de Laat{Wahl, Arano{Vaes, Popa{Vaes].) We can consider

Corep(G), the rigid C ∗-tensor category of �nite dimensional unitary

corepresentations of (C (Ĝ), ∆Ĝ).

There is a notion of cb-multiplier for such a rigid C ∗-tensor category:

certain functions Irr(Ĝ) → C. This space carries a weak∗-topology, and

so a natural notion of what it means for Corep(G) to have the AP.

(Here �nite-support seems very natural.)

A key technical tool is the Drinfeld Double D(G), a quantum

group built out of G and its dual Ĝ.

Proposition (DKV)

If Corep(G) has the AP then D(G) has the AP; the converse

holding when G is unimodular.
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Categorical AP cont.
There is a bijection between Mcb(Corep(G)) and the centre of

Mcb(A(G)), which preserves the relevant weak∗-topologies, and being

�nitely-supported.

Proposition (DKV)

G has central AP if and only if Corep(G) has AP.

Corollary (DKV)

G having central AP is a monoidal invariant.

Theorem (DKV)

An \averaging over the compact subgroup" argument shows that

D(G) has the AP if and only if G has central AP.

This potentially opens up being able to study when D(G) has the AP:

interesting as quantum analogues of complex semisimple Lie groups

arise as D(G).
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