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Fejér's Theorem

Let's recall this from classical Fourier Analysis. Identify T = [−π, π)

which has Haar measure ds
2π . For a �nice� function f on T de�ne

ck =

∫π
−π

f (s)e−iks
ds

2π
, sn(f , x ) =

n∑
k=−n

cke
ikx .

Theorem

For f ∈ C (T), the Cesàro sums

σn(f , x ) =
1

n

n−1∑
k=0

sk (f , x )

converge uniformly to f (x ).
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Think about this in a �quantum� framework
For me, the Fourier transform is between Hilbert spaces:

F : L2(T) → ℓ2(Z); f 7→ (ck ) =
( ∫π

−π
f (s)e−iks

ds

2π

)
.

We end up with a unitary F .

Let C (T) be the algebra of continuous functions on T.
Then C (T) naturally acts on L2(T) by multiplication, and so

becomes a concrete C ∗-algebra.

Consider ℓ2(Z) with canonical orthonormal basis (δk )k∈Z. For each

n ∈ Z let λn be the translation operator given by

λn : δk 7→ δk+n .

λn ◦ λm = λn+m and λ∗n = λ−n , so Z ∋ n 7→ λn is a unitary group

representation.

Denote by C ∗
r (Z) the closed linear span of the λn . This is the

(reduced) group C ∗-algebra.
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Think about this in a �quantum� framework (cont.)

Have C (T) acting on L2(T), and C ∗
r (Z) acting on ℓ2(Z).

Have F : L2(T) → ℓ2(Z).

We then obtain

F0 : C (T) → C ∗
r (Z); f 7→ F fF−1.

Why does this make sense?

Calculation shows that F−1
0 : λn 7→ (e ins)s∈T;

As F0 is conjugation by unitaries, it is an isomorphism between

C ∗-algebras.

So by density and continuity it must give an isomorphism between

C (T) and C ∗
r (Z).
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Continued 1: Normal functionals

For a C ∗-algebra A ⊆ B(H ), given ξ, η ∈ H , let ωξ,η ∈ A∗ be the

(normal) functional

A ∋ a 7→ (aξ|η) ∈ C.

We can think of L1(T) as those functionals on C (T) of this form.

Indeed, given ξ, η ∈ L2(T) and f ∈ C (T),

⟨f ,ωξ,η⟩ = (f ξ|η) =

∫π
−π

f (s)ξ(s)η(s)
ds

2π
= ⟨f , ξη⟩.

So ωξ,η agrees with ξη ∈ L1(T) on C (T).
Similarly, de�ne the Fourier Algebra A(Z) to be the collection of such

normal functionals on C ∗
r (Z). (That this is a closed subspace is true,

but not obvious).
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Continued 2: Function Spaces

Given ω = ωξ,η ∈ A(Z), we can identify this with a function on Z by

ω↔ (ω(n))n∈Z = (⟨λ−n ,ω⟩)n∈Z.

As C ∗
r (Z) is the span of {λn : n ∈ Z}, the values {ω(n) : n ∈ Z}

determines ω. Use of �−n� seems odd, but makes things work (and

occurs in the general quantum theory).

Recall F0 : C (T) → C ∗
r (Z). The Banach space adjoint is

F∗
0 : C ∗

r (Z)∗ → C (T)∗. Restricting this to A(Z) gives

F1 = F∗
0 : A(Z) → L1(T);ωξ,η 7→ ωF∗(ξ),F∗(η).

This is a bijection, and the inverse L1(T) → A(Z) is just the usual
Fourier transform (thought of as acting between function spaces).
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Continued 3: Algebras

L1(T) is an algebra under convolution, and A(Z) is an algebra of

functions with the pointwise product.

F1 : A(Z) → L1(T) is a homomorphism.

F0 : C (T) → C ∗
r (Z) is a homomorphism.

Given any (Banach) algebra A, the dual space becomes an A-bimodule.

A(Z) acts on its dual space, and this restricts to turn C ∗
r (Z) into an

A(Z)-module. Similarly for L1(T) acting on C (T).

ω · λn = ω(−n)λn , f · F = F ⋆ �f

(
F ∈ C (T), f ∈ L1(T)
λn ∈ C ∗

r (Z),ω ∈ A(Z)

)
.

Here �f (s) = f (−s).

F0 is a module homomorphism.
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Back to Fejér

For F ∈ C (T) we have

σn(F , ·) = F ⋆ Fn = �Fn · F ,

where Fn ∈ L1(T) is the Fejér kernel; we have �Fn = Fn .

Push this through F0 to obtain ωn = F1( �Fn) with

ωn · a = F1( �Fn) · F0(F−1
0 (a)) = F0( �Fn · F−1

0 (a))
n→∞−→ F0(F−1

0 (a)) = a (a ∈ C ∗
r (Z)).

Indeed, ωn , as a function on Z, is simply the �triangle�, piecewise

linear with ωn(0) = 1 and ωn(n) = ωn(−n) = 0.

We obtain a sequence of (normalised, positive de�nite)

functions in A(Z) which acts on C ∗
r (Z) as an �approximate

identity�.

Generalise?
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Amenability

Let G be a discrete (locally compact) group. Form ℓ2(G), and form

the translation operators {λg : g ∈ G}, given by

λg : δs 7→ δgs (g , s ∈ G).

The norm closed linear span is C ∗
r (G), and the bicommutant is

VN (G) the group von Neumann algebra.

The predual of VN (G) is A(G), the Fourier Algebra, considered as an

algebra of functions in the same way, ω↔ (ωg)g∈G = (⟨λg−1 ,ω⟩)g∈G .

Turn C ∗
r (G) and VN (G) into A(G)-modules for the dual action.
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Amenability (cont.)

Theorem

The following are equivalent:

A(G) contains a net of normalised positive de�nite functions

(i.e. normal states on VN (G)) which form an approximate

identity for C ∗
r (G), or a weak∗-approximate identity for

VN (G);

A(G) contains some bounded approximate identity (bai);

G is amenable.

If you think of G being amenable as the existance of a Følner net (Fi )

of subsets of G, then ξi = χFi
/
√

|Fi | is a net of unit vectors in ℓ2(G),

and (ωξi ,ξi
) is a net of normalised, positive de�nite functions in A(G)

forming a bai.
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A-T-menability or the Haagerup property

Question

Can we expand the space of functions away from A(G) to obtain a

larger class of groups than those which are amenable?

Instead of using the predual of VN (G), could we use the dual of

C ∗
r (G)? No: if this has a bai then it has a unit, and G is amenable.

Could we use the dual of the full group C ∗-alegbra C ∗(G)? No: this is

always unital. But all functions in A(G) vanish at in�nity.

De�nition

G has the Haagerup Property if there is a net of normalised

positive-de�nite functions which vanish at in�nity, and converge to 1

uniformly on compacta.

E.g. Groups acting properly on (locally �nite) trees.
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Completely bounded multipliers

A key property of A(G) functions is that they �multiply� (or act on)

C ∗
r (G) and VN (G).

De�nition

A multiplier of A(G) is a function f on G such that fω ∈ A(G) for

each ω ∈ A(G).

Such an f is automatically continuous. By the Closed Graph Theorem,

the resulting map A(G) → A(G);ω 7→ fω is continuous.

Such an f acts on VN (G) and, by restriction, on C ∗
r (G).

De�nition

A multiplier f is completely bounded if the resulting map on VN (G),

say Mf , (equivalently C ∗
r (G)) is completely bounded.

Mf ⊗ id : VN (G)⊗Mn → VN (G)⊗Mn .
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Weak amenability

Of course, each ω ∈ A(G) is itself a (cb-)multiplier.

Theorem (Losert)

The following are equivalent:

G is amenable

the map from A(G) into the algebra of multipliers of A(G) is

bounded below;

the map from A(G) into the algebra of cb-multipliers of A(G)

is bounded below.

De�nition

G is weakly amenable if there is a net (ωi ) in A(G), bounded in the

∥ · ∥cb norm, forming an approximate identity for C ∗
r (G).

E.g. (Haagerup) F2.

Matthew Daws Approximation Property Mar 2023 13 / 38



The approximation property

The space of cb-multipliers, McbA(G), is a dual space (and a dual

Banach algebra).

Each f ∈ L1(G) de�nes a bounded functional on McbA(G) (by

integration of functions).

The closure of such functionals in McbA(G)∗, say QcbA(G), is a

predual for McbA(G).

De�nition

G has the approximation property (AP) when there is a net (ωi ) in

A(G) which converges to 1 weak∗ in McbA(G).

If such a net is bounded in McbA(G) then G is already weakly

amenable.

Matthew Daws Approximation Property Mar 2023 14 / 38



Examples

The class of groups with the AP is closed under extensions, while the

class of weakly amenable groups is not (not even closed under

semi-direct products).

Let Λcb(G) be the in�mum of M > 0 such that A(G) contains a

net (ωi ) converging to 1 on compacta, with ∥ωi∥cb ≤ M .

So G is weakly amenable exactly when Λcb(G) <∞.

[Cowling�Haagerup] Λcb(G1 ×G2) = Λcb(G1)Λcb(G2).

So if there is G with Λcb(G) > 1 we can take an in�nite product.

Wreath products give such examples.

This allows us to �nd examples with AP which are not weakly

amenable.

In fact, much is known now about Lie groups and lattices therein.

[La�orgue�de la Salle] SL3(Z) does not have the AP.
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Applications: �nite-rank approximations
For those familiar with the notion of nuclearity the following should

look slightly familiar.

De�nition

A C ∗-algebra A has the operator approximation property (OAP) if

there is a net of continuous �nite-rank operators (φi ) which converges

to 1A in the point-stable topology: (φi ⊗ id)(u) → u in norm, for each

u ∈ A⊗K(ℓ2).

Theorem (Haagerup�Kraus)

For a discrete group G the following are equivalent:

G has the AP;

C ∗
r (G) has the OAP.

Similar de�nitions/results hold for von Neumann algberas, and

VN (G).
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L
p variants

We can replace L2(G) by Lp(G) when de�nining the Fourier algebra

and VN (G). The operators (λs)s∈G act on Lp(G) (by left-invariance

of the Haar measure). The weak∗-linear span in B(Lp(G)) is PMp(G),

the algebra of p-pseudo measures. Its predual is Ap(G) the

Figa-Talamanca�Herz algebra.

We can also look at right-translation variants, leading to PM r
p (G). Let

the commutant of this be CVp(G), the algebra of p-convolvers. We

always have that CVp(G) ⊇ PMp(G).

Question

Is it true that CVp(G) = PMp(G)?
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L
p variants, continued

Question

Is it true that CVp(G) = PMp(G)?

Yes, if p = 2.

Theorem (Cowling; see D.�Spronk)

If G has the AP then CVp(G) = PMp(G)

The idea of the proof is that the net (ωi ) in A(G) approximating the

identity can be made to act on CVp(G) in a way which

weak∗-approximates the identity and which maps CVp(G) into

PMp(G).
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Locally compact quantum groups
We introduce these objects by way of two examples.

For a (locally compact) group G consider L∞(G). We identify the von

Neumann algebra tensor product L∞(G)	⊗L∞(G) with L∞(G ×G).

We can then �dualise� the group product to de�ne a normal injective

∗-homomorphism by, for F ∈ L∞(G), g , h ∈ G ,

∆ : L∞(G) → L∞(G ×G); ∆(F )(g , h) = F (gh).

Product associative =⇒ ∆ is coassociative: (∆⊗ id)∆ = (id⊗∆)∆.
Let φ : L∞(G)+ → [0,∞] be the left �Haar weight�

φ(F ) =

∫
G

F (g) dg .

Then, for f ∈ L1(G)+ we have

φ
(
(f ⊗ id)∆(F )

)
=

∫
G

dh

∫
G

dg f (g)F (gh) =

∫
G

∫
G

f (g)F (gh) dh dg

=

∫
G

∫
G

f (g)F (h) dh dg = φ(F )⟨1, f ⟩.
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Co-commutative case

Alternatively, form VN (G), which is generated by the translation

operators λg . There exists a normal injective ∗-homomorphism

∆̂ : VN (G) → VN (G)	⊗VN (G) ∼= VN (G ×G); λg 7→ λg ⊗ λg .

If σ : VN (G)	⊗VN (G) → VN (G)	⊗VN (G) is the tensor swap map,

then ∆̂ = σ ◦ ∆̂: this is the co-commutative condition.

Similarly, �one can show� that there is a weight φ̂ : VN (G)+ → [0,∞]

with

φ̂
(
(ω⊗ id)∆̂(x )

)
= φ(x )ω(1) (x ∈ VN (G)+,ω ∈ A(G)+).
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Locally compact quantum groups

Abstract object G with:

von Neumann algebra L∞(G);

equipped with a coproduct ∆ : L∞(G) → L∞(G)	⊗L∞(G) which is

coassociative: (∆⊗ id)∆ = (id⊗∆)∆;
which has weights φ,ψ which are left/right invariant, e.g.

φ
(
(ω⊗ id)∆(x )

)
= φ(x )ω(1) (x ∈ M+

φ,ω ∈ L1(G)+).

From this, one gets:

L1(G) becomes a Banach algebra, product induced by ∆;

GNS for φ gives L2(G) with L∞(G) in standard position;

a multiplicative unitary W , so W12W13W23 = W23W12;

Matthew Daws Approximation Property Mar 2023 21 / 38



Multiplicative unitaries
Let's think more about this W . It is a unitary W on L2(G)⊗ L2(G)

which �encodes� ∆ and L∞(G).

We use leg numbering notation: on L2(G)⊗ L2(G)⊗ L2(G) we let

W12 = W ⊗ 1, so W acting on �legs 1 and 2�;

W13 is analogously W acting on legs 1 and 3.

E.g. for L∞(G) for a group G , we �nd that W is the unitary on

L2(G ×G) given by

(W ξ)(g , h) = ξ(g , g−1h) (ξ ∈ L2(G ×G), g , h ∈ G).

In general, W gives us ∆ by

∆(x ) = W ∗(1⊗ x )W (x ∈ L∞(G)).

W remembers L∞(G) as

L∞(G) = {(id⊗ω)(W ) : ω ∈ L1(G)} ′′.
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Duality

λ : L1(G) → B(L2(G)); ω 7→ (ω⊗ id)(W )

is a homomorphism. The closure of its image is a C ∗-algebra C0(Ĝ).

There indeed exists Ĝ a LCQG; L∞(Ĝ) is the WOT closure.

There is φ̂ so that L2(Ĝ) = L2(G) canonically.

W ∈ L∞(G)	⊗L∞(Ĝ) and Ŵ = σ(W ∗) where σ is the swap map.

For G a locally compact group, if we set L∞(G) = L∞(G), then we

indeed �nd that L∞(Ĝ) = VN (G) and C0(Ĝ) = C ∗
r (G), with ∆̂ as

before.

Indeed, that ∆̂ exists (we only de�ned it on λg) follows from using the

formula

∆̂(x ) = Ŵ ∗(1⊗ x )Ŵ where Ŵ = σ(W ∗).
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Duality continued: Fourier algebra

Again with G = G a genuine group, the map

λ : L1(G) → C ∗
r (G) ⊆ B(L2(G)) is the usual left-regular

representation. We also have

λ̂ : L1(Ĝ) = A(G) → C ∗
r (Ĝ) = C0(G) = C0(G)

which agrees with our map before. This �explains� our use of g−1.

For general G. . . We de�ne A(G) = λ̂(L1(Ĝ)) with the norm from

L1(Ĝ), but thought of as a subalgebra of C0(G).

[In the talk, awkwardly ran out of time here. . . ]
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Centralisers and Multipliers

We can think of a multiplier of A(G) as a map T : A(G) → A(G) with

T (ω1ω2) = T (ω1)ω2, that is, a module homomorphism.

De�nition

A left centraliser of L1(Ĝ) is a right module homomorphism,

L(ω̂1 ⋆ ω̂2) = L(ω̂1) ⋆ ω̂2.

De�nition

A left multiplier of A(G) is a ∈ L∞(G) with

a λ̂(ω̂) ∈ λ̂(L1(Ĝ)) = A(G) for each ω̂ ∈ L1(Ĝ).

As λ̂ is injective, a left multiplier a induces a (unique) left centraliser

L with a λ̂(ω̂) = λ̂(L(ω̂)).

We say that L (and thus a) is completely bounded if the adjoint

L∗ : L∞(Ĝ) → L∞(Ĝ) is completely bounded.
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Centralisers are multipliers

Theorem (Junge�Neufang�Ruan; D.)

For any cb left centraliser L there exists a ∈ M (C0(G)) ⊆ L∞(G)

an associated multiplier.

We write Mcb(A(G)) for the collection of all multipliers, equipped with

the norm (operator space structure) arising as centralisers, that is,

maps on L1(Ĝ).

Following the classical situation, Mcb(A(G)) is a dual space: let

Qcb(A(G)) be the closure of the image of L1(G) in Mcb(A(G))∗ where

ω ∈ L1(G) is paired against a ∈ Mcb(A(G)) ⊆ L∞(G) = L1(G)∗ in the

canonical way.

De�nition (D.-Krajczok�Voigt)

G has the AP if there is a net in A(G) which converges to 1 weak∗ in

Mcb(A(G)).

(We used �left�; there is a �right� analogue; this gives the same notion.)
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Other notions of convergence
Each a ∈ Mcb(A(G)) is associated to a centraliser L : L1(Ĝ) → L1(Ĝ)

and hence to a map L∗ = Θ(a) ∈ CB(L∞(Ĝ)).

De�nition (Crann; Kraus�Ruan)

G has the (strong) AP when there is a net (ai ) in A(G) such

(Θ(ai )⊗ id)(x ) → x weak∗ for each x ∈ L∞(Ĝ)	⊗B(ℓ2) (that is, stable
point-weak∗ convergence to id).

Proposition (DKV)

AP and strong AP are equivalent.

Proof.

Only (AP) =⇒ (strong AP) needs a proof. Follows from a careful

study of Qcb(A(G)) and adapting some classical work of

Kraus�Haagerup: as sometimes happens you end up proving a little bit

more in the abstract setting of LCQGs.
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From AP to Operator Algebra APs

Proposition (Crann; DKV)

Let G have the AP. Then L∞(Ĝ) has the w∗OAP. That is, there is

a net of w∗-cts �nite-rank maps (φi ) on L∞(Ĝ) such that

φi ⊗ id → id pointwise weak∗ on L∞(Ĝ)	⊗B(ℓ2).

Proof.

We can assume we have strong AP, so there is a net (ai ) in A(G) with

Θ(ai ) → id in the stable point-weak∗ topology on L∞(Ĝ). For each i

there is ω̂i ∈ L1(Ĝ) with ai = λ̂(ω̂i ).
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From AP to Operator Algebra APs (cont.)

Proof.

Consider V̂ ∈ L∞(G) ′ 	⊗L∞(Ĝ) the right multiplicative unitary for Ĝ.
Extend each ω̂i to �ωi ∈ B(L2(G))∗, and de�ne

Ψi : B(L2(G)) ∋ x 7→ ( �ωi ⊗ id)(V̂ (x ⊗ 1)V̂ ∗) ∈ L∞(Ĝ).

This map restricts to Θ(ai ) on L∞(Ĝ).

These maps nicely approximate the identity, but are not �nite-rank.

However, B(L2(G)) has the w∗CPAP , and this provides suitable

�nite-rank maps, and then we compose to obtain the maps we

need.
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Discrete case

Proposition (Kraus�Ruan)

For discrete G, consider the following:

1 G has AP;

2 C (Ĝ) has the OAP;

3 L∞(Ĝ) has the w∗OAP

Then (1)⇒(2) and (1)⇒(3) and when G is unimodular, all are

equivalent.
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Relative w ∗
OAP

Let M be a general von Neumann algebra. Let M have the w∗OAP :

φi → id stable point-w∗.

Let φ be a weight on M with GNS space L2(φ), de�nition ideal

nφ = {x ∈ M : φ(x ∗x ) <∞},

and GNS map Λ : nφ → L2(φ). De�ne that φi has an

L2-implementation when φi (nφ) ⊆ nφ, and there is Ti ∈ B(L2(φ))
with TiΛ(x ) = Λ(φi (x )) for x ∈ nφ.

De�nition

Let N ⊆ B(L2(φ)) be a von Neumann algebra. M has the w∗OAP

relative to N when each Ti ∈ N .
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Relative w ∗
OAP and AP

Theorem (DKV)

For a discrete quantum group G the following are equivalent:

1 G has AP;

2 L∞(Ĝ) has w∗OAP relative to ℓ∞(G);

3 L∞(Ĝ) has w∗OAP relative to ℓ∞(G) ′;
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Permanence properties

Theorem (DKV)

Let G have the AP, and let H be a closed quantum subgroup of G.
Then H has the AP.

Proof.

Almost by de�nition, H ≤ G means that there is a quotient map

A(G) → A(H) (classically this is the Herz Restriction Theorem).
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Free products

Theorem (DKV)

Let G1,G2 be discrete quantum groups with the AP. Then G1 ⋆G2

has the AP.

Is there a reference in the classical case?

Proof.

With G = G1 ⋆G2, by de�nition, C (Ĝ) = C (Ĝ1) ⋆C (Ĝ2). We use

operator algebraic methods to deal with this C ∗-algebraic free product,

especially results of [Ricard�Xu]. Then check that their ideas arise (or

can be made to arise) from operations on cb-multipliers which are

weak∗-continuous.
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Double crossed product

Let G1,G2 be locally compact quantum groups. Following [Baaj�Vaes],

a matching is an injective normal ∗-homomorphism (which is

automatically a ∗-isomorphism)

m : L∞(G1)	⊗L∞(G2) → L∞(G1)	⊗L∞(G2) with

(∆1 ⊗ id)m = m23m13(∆1 ⊗ id), (id⊗∆2)m = m13m12(id⊗∆2).

From this, we can construct the double crossed product Gm with

L∞(Gm) = L∞(G1)	⊗L∞(G2), ∆m = (id⊗σm ⊗ id)(∆op1 ⊗ ∆2).

(Notice that the product is a very special case of this.)
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Quantum double: results

Proposition (DKV)

If Gm has the AP then so do G1 and G2.

Proof.

Gop
1 and G2 are closed quantum subgroups of Gm .

Theorem (DKV)

If Ĝ1 and Ĝ2 have the AP, then so does Ĝm .

Proof.

The idea is to translate the approximating nets from A(Ĝ1) and A(Ĝ2)

to A(Ĝm). At a key point, this doesn't seem to quite work, but the

issue can be side-stepped by using a construction of

[Junge�Neufang�Ruan] to extend a centraliser Θ(a) ∈ CB(L∞(Ĝ)) to

all of B(L2(G)).
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Products

Corollary

For locally compact quantum groups G1,G2 the following are

equivalent:

1 G1,G2 both have AP;

2 G1 ×G2 has AP.
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The end

We would like to know more about when Gm has (or does not have)

the AP.

Further things one could mention:

Central AP.

Links with representation categories.

Thanks for your attention!
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