Around the Approximation Property for (Quantum) Groups

Matthew Daws

UCLan

Athens Seminar, March 2023

Fejér's Theorem

Let's recall this from classical Fourier Analysis. Identify $\mathbb{T} = [-\pi, \pi)$ which has Haar measure $\frac{ds}{2\pi}$. For a "nice" function f on \mathbb{T} define

$$c_k = \int_{-\pi}^{\pi} f(s) e^{-iks} \frac{ds}{2\pi}, \qquad s_n(f, x) = \sum_{k=-n}^n c_k e^{ikx}.$$

Theorem

For $f \in C(\mathbb{T})$, the Cesàro sums

$$\sigma_n(f,x) = \frac{1}{n} \sum_{k=0}^{n-1} s_k(f,x)$$

converge uniformly to f(x).

Think about this in a "quantum" framework For me, the Fourier transform is between Hilbert spaces:

$$\mathcal{F}: L^2(\mathbb{T}) o \ell^2(\mathbb{Z}); \quad f \mapsto (c_k) = \Big(\int_{-\pi}^{\pi} f(s) e^{-iks} \; rac{ds}{2\pi}\Big).$$

We end up with a unitary \mathcal{F} .

- Let $C(\mathbb{T})$ be the algebra of continuous functions on \mathbb{T} .
- Then $C(\mathbb{T})$ naturally acts on $L^2(\mathbb{T})$ by multiplication, and so becomes a *concrete* C^* -algebra.

Consider $\ell^2(\mathbb{Z})$ with canonical orthonormal basis $(\delta_k)_{k\in\mathbb{Z}}$. For each $n\in\mathbb{Z}$ let λ_n be the *translation operator* given by

$$\lambda_n: \delta_k \mapsto \delta_{k+n}.$$

- $\lambda_n \circ \lambda_m = \lambda_{n+m}$ and $\lambda_n^* = \lambda_{-n}$, so $\mathbb{Z} \ni n \mapsto \lambda_n$ is a unitary group representation.
- Denote by $C_r^*(\mathbb{Z})$ the closed linear span of the λ_n . This is the *(reduced) group C*-algebra.*

Think about this in a "quantum" framework (cont.)

Have $C(\mathbb{T})$ acting on $L^2(\mathbb{T})$, and $C_r^*(\mathbb{Z})$ acting on $\ell^2(\mathbb{Z})$. Have $\mathcal{F}: L^2(\mathbb{T}) \to \ell^2(\mathbb{Z})$.

We then obtain

$$\mathcal{F}_{\mathsf{0}}: C(\mathbb{T}) o C^*_r(\mathbb{Z}); \quad f \mapsto \mathcal{F} f \mathcal{F}^{-1}.$$

Why does this make sense?

- Calculation shows that $\mathcal{F}_0^{-1} : \lambda_n \mapsto (e^{ins})_{s \in \mathbb{T}};$
- As \mathcal{F}_0 is conjugation by unitaries, it is an isomorphism between C^* -algebras.
- So by density and continuity it must give an isomorphism between $C(\mathbb{T})$ and $C_r^*(\mathbb{Z})$.

Continued 1: Normal functionals

For a C^{*}-algebra $A \subseteq \mathcal{B}(H)$, given $\xi, \eta \in H$, let $\omega_{\xi,\eta} \in A^*$ be the (normal) functional

$$A \ni a \mapsto (a\xi|\eta) \in \mathbb{C}.$$

We can think of $L^1(\mathbb{T})$ as those functionals on $C(\mathbb{T})$ of this form. Indeed, given $\xi, \eta \in L^2(\mathbb{T})$ and $f \in C(\mathbb{T})$,

$$\langle f, \omega_{\xi,\eta}
angle = (f\xi|\eta) = \int_{-\pi}^{\pi} f(s)\xi(s)\overline{\eta(s)} \; rac{ds}{2\pi} = \langle f, \xi\overline{\eta}
angle.$$

So $\omega_{\xi,\eta}$ agrees with $\xi\overline{\eta} \in L^1(\mathbb{T})$ on $C(\mathbb{T})$.

Similarly, define the Fourier Algebra $A(\mathbb{Z})$ to be the collection of such normal functionals on $C_r^*(\mathbb{Z})$. (That this is a *closed subspace* is true, but not obvious).

Continued 2: Function Spaces

Given $\omega = \omega_{\xi,\eta} \in A(\mathbb{Z})$, we can identify this with a function on \mathbb{Z} by

$$\omega \leftrightarrow (\omega(n))_{n \in \mathbb{Z}} = (\langle \lambda_{-n}, \omega \rangle)_{n \in \mathbb{Z}}.$$

As $C_r^*(\mathbb{Z})$ is the span of $\{\lambda_n : n \in \mathbb{Z}\}$, the values $\{\omega(n) : n \in \mathbb{Z}\}$ determines ω . Use of "-n" seems odd, but makes things work (and occurs in the general quantum theory). Recall $\mathcal{F}_0 : C(\mathbb{T}) \to C_r^*(\mathbb{Z})$. The Banach space adjoint is $\mathcal{F}_0^* : C_r^*(\mathbb{Z})^* \to C(\mathbb{T})^*$. Restricting this to $A(\mathbb{Z})$ gives

$$\mathcal{F}_1 = \mathcal{F}^*_0 : A(\mathbb{Z}) \to L^1(\mathbb{T}); \omega_{\xi,\eta} \mapsto \omega_{\mathcal{F}^*(\xi), \mathcal{F}^*(\eta)}.$$

This is a bijection, and the inverse $L^1(\mathbb{T}) \to A(\mathbb{Z})$ is just the usual Fourier transform (thought of as acting between function spaces).

Continued 3: Algebras

 $L^1(\mathbb{T})$ is an algebra under convolution, and $A(\mathbb{Z})$ is an algebra of functions with the pointwise product.

- $\mathcal{F}_1: A(\mathbb{Z}) \to L^1(\mathbb{T})$ is a homomorphism.
- $\mathcal{F}_0: C(\mathbb{T}) \to C^*_r(\mathbb{Z})$ is a homomorphism.

Given any (Banach) algebra A, the dual space becomes an A-bimodule. $A(\mathbb{Z})$ acts on its dual space, and this restricts to turn $C_r^*(\mathbb{Z})$ into an $A(\mathbb{Z})$ -module. Similarly for $L^1(\mathbb{T})$ acting on $C(\mathbb{T})$.

$$\omega\cdot\lambda_n=\omega(-n)\lambda_n,\qquad f\cdot F=F\star\check{f}\qquad igg(egin{array}{cc} F\in C(\mathbb{T}),f\in L^1(\mathbb{T})\ \lambda_n\in C^*_r(\mathbb{Z}),\omega\in A(\mathbb{Z}) \end{pmatrix}$$

Here $\check{f}(s) = f(-s)$.

• \mathcal{F}_0 is a module homomorphism.

Back to Fejér

For $F \in C(\mathbb{T})$ we have

$$\sigma_n(F,\cdot)=F\star F_n=\check{F}_n\cdot F,$$

where $F_n \in L^1(\mathbb{T})$ is the Fejér kernel; we have $\check{F}_n = F_n$. Push this through \mathcal{F}_0 to obtain $\omega_n = \mathcal{F}_1(\check{F}_n)$ with

$$egin{aligned} &\omega_n\cdot a = \mathcal{F}_1(\check{F}_n)\cdot \mathcal{F}_0(\mathcal{F}_0^{-1}(a)) = \mathcal{F}_0(\check{F}_n\cdot \mathcal{F}_0^{-1}(a)) \ &\stackrel{n o\infty}{\longrightarrow} \mathcal{F}_0(\mathcal{F}_0^{-1}(a)) = a \qquad (a\in C^*_r(\mathbb{Z})). \end{aligned}$$

Indeed, ω_n , as a function on \mathbb{Z} , is simply the "triangle", piecewise linear with $\omega_n(0) = 1$ and $\omega_n(n) = \omega_n(-n) = 0$.

We obtain a sequence of (normalised, positive definite) functions in $A(\mathbb{Z})$ which acts on $C_r^*(\mathbb{Z})$ as an "approximate identity".

Generalise?

Amenability

Let G be a discrete (locally compact) group. Form $\ell^2(G)$, and form the translation operators $\{\lambda_g : g \in G\}$, given by

$$\lambda_g:\delta_s\mapsto\delta_{gs}\qquad (g,s\in G).$$

The norm closed linear span is $C_r^*(G)$, and the bicommutant is VN(G) the group von Neumann algebra.

The predual of VN(G) is A(G), the Fourier Algebra, considered as an algebra of functions in the same way, $\omega \leftrightarrow (\omega_g)_{g \in G} = (\langle \lambda_{g^{-1}}, \omega \rangle)_{g \in G}$.

Turn $C_r^*(G)$ and VN(G) into A(G)-modules for the dual action.

Amenability (cont.)

Theorem

The following are equivalent:

- A(G) contains a net of normalised positive definite functions (i.e. normal states on VN(G)) which form an approximate identity for C^{*}_r(G), or a weak*-approximate identity for VN(G);
- A(G) contains some bounded approximate identity (bai);
- G is amenable.

If you think of G being amenable as the existance of a Følner net (F_i) of subsets of G, then $\xi_i = \chi_{F_i} / \sqrt{|F_i|}$ is a net of unit vectors in $\ell^2(G)$, and (ω_{ξ_i,ξ_i}) is a net of normalised, positive definite functions in A(G) forming a bai.

A-T-menability or the Haagerup property

Question

Can we expand the space of functions away from A(G) to obtain a larger class of groups than those which are amenable?

Instead of using the predual of VN(G), could we use the dual of $C_r^*(G)$? No: if this has a bai then it has a unit, and G is amenable. Could we use the dual of the full group C^* -alegbra $C^*(G)$? No: this is always unital. But all functions in A(G) vanish at infinity.

Definition

G has the Haagerup Property if there is a net of normalised positive-definite functions which vanish at infinity, and converge to 1 uniformly on compacta.

E.g. Groups acting properly on (locally finite) trees.

Completely bounded multipliers

A key property of A(G) functions is that they "multiply" (or act on) $C_r^*(G)$ and VN(G).

Definition

A multiplier of A(G) is a function f on G such that $f \omega \in A(G)$ for each $\omega \in A(G)$.

Such an f is automatically continuous. By the Closed Graph Theorem, the resulting map $A(G) \to A(G); \omega \mapsto f \omega$ is continuous. Such an f acts on VN(G) and, by restriction, on $C_r^*(G)$.

Definition

A multiplier f is completely bounded if the resulting map on VN(G), say M_f , (equivalently $C_r^*(G)$) is completely bounded.

 $M_f \otimes \mathrm{id} : VN(G) \otimes \mathbb{M}_n \to VN(G) \otimes \mathbb{M}_n.$

Weak amenability

Of course, each $\omega \in A(G)$ is itself a (cb-)multiplier.

Theorem (Losert)

The following are equivalent:

- G is amenable
- the map from A(G) into the algebra of multipliers of A(G) is bounded below;
- the map from A(G) into the algebra of cb-multipliers of A(G) is bounded below.

Definition

G is weakly amenable if there is a net (ω_i) in A(G), bounded in the $\|\cdot\|_{cb}$ norm, forming an approximate identity for $C_r^*(G)$.

E.g. (Haagerup) \mathbb{F}_2 .

The approximation property

The space of cb-multipliers, $M_{cb}A(G)$, is a dual space (and a dual Banach algebra).

- Each $f \in L^1(G)$ defines a bounded functional on $M_{cb}A(G)$ (by integration of functions).
- The closure of such functionals in $M_{cb}A(G)^*$, say $Q_{cb}A(G)$, is a predual for $M_{cb}A(G)$.

Definition

G has the approximation property (AP) when there is a net (ω_i) in A(G) which converges to 1 weak^{*} in $M_{cb}A(G)$.

If such a net is bounded in $M_{cb}A(G)$ then G is already weakly amenable.

Examples

The class of groups with the AP is closed under extensions, while the class of weakly amenable groups is not (not even closed under semi-direct products).

- Let $\Lambda_{cb}(G)$ be the infimum of M > 0 such that A(G) contains a net (ω_i) converging to 1 on compacta, with $\|\omega_i\|_{cb} \leq M$.
- So G is weakly amenable exactly when $\Lambda_{cb}(G) < \infty$.
- [Cowling-Haagerup] $\Lambda_{cb}(G_1 \times G_2) = \Lambda_{cb}(G_1)\Lambda_{cb}(G_2).$
- So if there is G with $\Lambda_{cb}(G) > 1$ we can take an infinite product. Wreath products give such examples.
- This allows us to find examples with AP which are not weakly amenable.
- In fact, much is known now about Lie groups and lattices therein.
- [Lafforgue-de la Salle] $SL_3(\mathbb{Z})$ does not have the AP.

15/38

Applications: finite-rank approximations

For those familiar with the notion of *nuclearity* the following should look slightly familiar.

Definition

A C^{*}-algebra A has the operator approximation property (OAP) if there is a net of continuous finite-rank operators (φ_i) which converges to 1_A in the point-stable topology: $(\varphi_i \otimes id)(u) \rightarrow u$ in norm, for each $u \in A \otimes \mathcal{K}(\ell^2)$.

Theorem (Haagerup-Kraus)

For a discrete group G the following are equivalent:

- G has the AP;
- $C_r^*(G)$ has the OAP.

Similar definitions/results hold for von Neumann algebras, and VN(G).

Matthew Daws

Approximation Property

L^p variants

We can replace $L^2(G)$ by $L^p(G)$ when definining the Fourier algebra and VN(G). The operators $(\lambda_s)_{s\in G}$ act on $L^p(G)$ (by left-invariance of the Haar measure). The weak*-linear span in $\mathcal{B}(L^p(G))$ is $PM_p(G)$, the algebra of *p*-pseudo measures. Its predual is $A_p(G)$ the Figa-Talamanca-Herz algebra.

We can also look at right-translation variants, leading to $PM_p^r(G)$. Let the commutant of this be $CV_p(G)$, the algebra of *p*-convolvers. We always have that $CV_p(G) \supseteq PM_p(G)$.

Question

Is it true that $CV_p(G) = PM_p(G)$?

L^p variants, continued

Question

Is it true that $CV_p(G) = PM_p(G)$?

Yes, if p = 2.

Theorem (Cowling; see D.-Spronk)

If G has the AP then $CV_p(G) = PM_p(G)$

The idea of the proof is that the net (ω_i) in A(G) approximating the identity can be made to act on $CV_p(G)$ in a way which weak*-approximates the identity and which maps $CV_p(G)$ into $PM_p(G)$.

Locally compact quantum groups

We introduce these objects by way of two examples.

For a (locally compact) group G consider $L^{\infty}(G)$. We identify the von Neumann algebra tensor product $L^{\infty}(G)\bar{\otimes}L^{\infty}(G)$ with $L^{\infty}(G \times G)$. We can then "dualise" the group product to define a normal injective *-homomorphism by, for $F \in L^{\infty}(G), g, h \in G$,

$$\Delta: L^{\infty}(G) \to L^{\infty}(G \times G); \qquad \Delta(F)(g,h) = F(gh).$$

Product associative $\implies \Delta$ is *coassociative*: $(\Delta \otimes id)\Delta = (id \otimes \Delta)\Delta$. Let $\varphi : L^{\infty}(G)^+ \rightarrow [0, \infty]$ be the left "Haar weight"

$$\varphi(F) = \int_G F(g) \, dg.$$

Then, for $f \in L^1(G)^+$ we have

$$egin{aligned} & arphiig((f\otimes \mathrm{id})\Delta(F)ig) = \int_G dh \, \int_G dg \, f(g)F(gh) = \int_G \int_G f(g)F(gh) \, dh \, dg \ &= \int_G \int_G f(g)F(h) \, dh \, dg = arphi(F)\langle 1,f
angle. \end{aligned}$$

Co-commutative case

Alternatively, form VN(G), which is generated by the translation operators λ_q . There exists a normal injective *-homomorphism

 $\widehat{\Delta}: VN(G) \to VN(G) \overline{\otimes} VN(G) \cong VN(G \times G); \quad \lambda_q \mapsto \lambda_q \otimes \lambda_q.$

If $\sigma: VN(G) \otimes VN(G) \to VN(G) \otimes VN(G)$ is the tensor swap map, then $\widehat{\Delta} = \sigma \circ \widehat{\Delta}$: this is the *co-commutative* condition. Similarly, "one can show" that there is a weight $\widehat{\phi}: VN(G)^+ \to [0,\infty]$ with

$$\widehat{\varphi}ig((\omega\otimes \mathrm{id})\widehat{\Delta}(x)ig)= \varphi(x)\omega(1) \qquad (x\in VN(G)^+, \omega\in A(G)^+).$$

Locally compact quantum groups

Abstract object \mathbb{G} with:

- von Neumann algebra $L^{\infty}(\mathbb{G})$;
- equipped with a coproduct $\Delta : L^{\infty}(\mathbb{G}) \to L^{\infty}(\mathbb{G}) \overline{\otimes} L^{\infty}(\mathbb{G})$ which is coassociative: $(\Delta \otimes id)\Delta = (id \otimes \Delta)\Delta;$
- which has weights φ, ψ which are left/right invariant, e.g.

$$\varphiig((\omega\otimes \mathrm{id})\Delta(x)ig)= \varphi(x)\omega(1) \qquad (x\in\mathcal{M}^+_arphi,\omega\in L^1(\mathbb{G})^+).$$

From this, one gets:

- $L^1(\mathbb{G})$ becomes a Banach algebra, product induced by Δ ;
- GNS for φ gives $L^2(\mathbb{G})$ with $L^{\infty}(\mathbb{G})$ in standard position;
- a multiplicative unitary W, so $W_{12} W_{13} W_{23} = W_{23} W_{12}$;

Multiplicative unitaries

Let's think more about this W. It is a unitary W on $L^2(\mathbb{G}) \otimes L^2(\mathbb{G})$ which "encodes" Δ and $L^{\infty}(\mathbb{G})$.

- We use leg numbering notation: on $L^2(\mathbb{G}) \otimes L^2(\mathbb{G}) \otimes L^2(\mathbb{G})$ we let $W_{12} = W \otimes 1$, so W acting on "legs 1 and 2";
- W_{13} is analogously W acting on legs 1 and 3.

E.g. for $L^\infty(G)$ for a group G, we find that W is the unitary on $L^2(G \times G)$ given by

$$(W\xi)(g,h)=\xi(g,g^{-1}h) \qquad (\xi\in L^2(G imes G),g,h\in G).$$

In general, W gives us Δ by

$$\Delta(x)=W^*(1\otimes x)\,W\qquad(x\in L^\infty(\mathbb{G})).$$

W remembers $L^{\infty}(\mathbb{G})$ as

$$L^{\infty}(\mathbb{G}) = \{ (\mathrm{id} \otimes \omega)(W) : \omega \in L^{1}(\mathbb{G}) \}''.$$

Duality

 $\lambda: L^1(\mathbb{G}) \to \mathcal{B}(L^2(\mathbb{G})); \quad \omega \mapsto (\omega \otimes \mathrm{id})(W)$

is a homomorphism. The closure of its image is a C^* -algebra $C_0(\widehat{\mathbb{G}})$.

- There indeed exists $\widehat{\mathbb{G}}$ a LCQG; $L^{\infty}(\widehat{\mathbb{G}})$ is the WOT closure.
- There is $\widehat{\varphi}$ so that $L^2(\widehat{\mathbb{G}}) = L^2(\mathbb{G})$ canonically.
- $W \in L^{\infty}(\mathbb{G})\overline{\otimes}L^{\infty}(\widehat{\mathbb{G}})$ and $\widehat{W} = \sigma(W^*)$ where σ is the swap map.

For G a locally compact group, if we set $L^{\infty}(\mathbb{G}) = L^{\infty}(G)$, then we indeed find that $L^{\infty}(\widehat{\mathbb{G}}) = VN(G)$ and $C_0(\widehat{\mathbb{G}}) = C_r^*(G)$, with $\widehat{\Delta}$ as before.

Indeed, that $\widehat{\Delta}$ exists (we only defined it on λ_g) follows from using the formula

$$\widehat{\Delta}(x) = \widehat{W}^*(1\otimes x)\,\widehat{W} \quad ext{ where } \quad \widehat{W} = \sigma(\,W^*).$$

Duality continued: Fourier algebra

Again with $\mathbb{G} = G$ a genuine group, the map $\lambda: L^1(G) \to C^*_r(G) \subseteq \mathcal{B}(L^2(G))$ is the usual left-regular representation. We also have

$$\widehat{\lambda}: L^1(\widehat{\mathbb{G}}) = A(G)
ightarrow C^*_r(\widehat{\mathbb{G}}) = C_0(\mathbb{G}) = C_0(G)$$

which agrees with our map before. This "explains" our use of g^{-1} . For general \mathbb{G}_{\ldots} We define $A(\mathbb{G}) = \widehat{\lambda}(L^1(\widehat{\mathbb{G}}))$ with the norm from $L^1(\widehat{\mathbb{G}})$, but thought of as a subalgebra of $C_0(\mathbb{G})$.

[In the talk, awkwardly ran out of time here...]

Centralisers and Multipliers

We can think of a multiplier of A(G) as a map $T: A(G) \to A(G)$ with $T(\omega_1 \omega_2) = T(\omega_1) \omega_2$, that is, a module homomorphism.

Definition

A left centraliser of $L^1(\widehat{\mathbb{G}})$ is a right module homomorphism, $L(\widehat{\omega}_1 \star \widehat{\omega}_2) = L(\widehat{\omega}_1) \star \widehat{\omega}_2.$

Definition

A left multiplier of $A(\mathbb{G})$ is $a \in L^{\infty}(\mathbb{G})$ with $a\widehat{\lambda}(\widehat{\omega}) \in \widehat{\lambda}(L^1(\widehat{\mathbb{G}})) = A(\mathbb{G})$ for each $\widehat{\omega} \in L^1(\widehat{\mathbb{G}})$.

As $\widehat{\lambda}$ is injective, a left multiplier *a* induces a (unique) left centraliser L with $a\widehat{\lambda}(\widehat{\omega}) = \widehat{\lambda}(L(\widehat{\omega}))$.

We say that L (and thus a) is completely bounded if the adjoint $L^*: L^{\infty}(\widehat{\mathbb{G}}) \to L^{\infty}(\widehat{\mathbb{G}})$ is completely bounded.

Centralisers are multipliers

Theorem (Junge-Neufang-Ruan; D.)

For any cb left centraliser L there exists $a \in M(C_0(\mathbb{G})) \subseteq L^{\infty}(\mathbb{G})$ an associated multiplier.

We write $M_{cb}(A(\mathbb{G}))$ for the collection of all multipliers, equipped with the norm (operator space structure) arising as centralisers, that is, maps on $L^1(\widehat{\mathbb{G}})$. Following the classical situation, $M_{cb}(A(\mathbb{G}))$ is a dual space: let

 $Q_{cb}(A(\mathbb{G}))$ be the closure of the image of $L^1(\mathbb{G})$ in $M_{cb}(A(\mathbb{G}))^*$ where $\omega \in L^1(\mathbb{G})$ is paired against $a \in M_{cb}(A(\mathbb{G})) \subseteq L^{\infty}(\mathbb{G}) = L^1(\mathbb{G})^*$ in the canonical way.

Definition (D.-Krajczok-Voigt)

 \mathbb{G} has the AP if there is a net in $A(\mathbb{G})$ which converges to 1 weak^{*} in $M_{cb}(A(\mathbb{G}))$.

(We used "left"; there is a "right" analogue; this gives the same notion.)

Other notions of convergence

Each $a \in M_{cb}(A(\mathbb{G}))$ is associated to a centraliser $L: L^1(\widehat{\mathbb{G}}) \to L^1(\widehat{\mathbb{G}})$ and hence to a map $L^* = \Theta(a) \in \mathcal{CB}(L^\infty(\widehat{\mathbb{G}})).$

Definition (Crann; Kraus-Ruan)

 \mathbb{G} has the (strong) AP when there is a net (a_i) in $A(\mathbb{G})$ such $(\Theta(a_i) \otimes \mathrm{id})(x) \to x$ weak^{*} for each $x \in L^{\infty}(\widehat{\mathbb{G}}) \overline{\otimes} \mathcal{B}(\ell^2)$ (that is, stable point-weak^{*} convergence to id).

Proposition (DKV)

AP and strong AP are equivalent.

Proof.

Only (AP) \implies (strong AP) needs a proof. Follows from a careful study of $Q_{cb}(A(\mathbb{G}))$ and adapting some classical work of Kraus-Haagerup: as sometimes happens you end up proving a little bit more in the abstract setting of LCQGs.

From AP to Operator Algebra APs

Proposition (Crann; DKV)

Let \mathbb{G} have the AP. Then $L^{\infty}(\widehat{\mathbb{G}})$ has the w^*OAP . That is, there is a net of w^* -cts finite-rank maps (φ_i) on $L^{\infty}(\widehat{\mathbb{G}})$ such that $\varphi_i \otimes \mathrm{id} \to \mathrm{id}$ pointwise weak* on $L^{\infty}(\widehat{\mathbb{G}}) \overline{\otimes} \mathcal{B}(\ell^2)$.

Proof.

We can assume we have strong AP, so there is a net (a_i) in $A(\mathbb{G})$ with $\Theta(a_i) \to \mathrm{id}$ in the stable point-weak^{*} topology on $L^{\infty}(\widehat{\mathbb{G}})$. For each i there is $\widehat{\omega}_i \in L^1(\widehat{\mathbb{G}})$ with $a_i = \widehat{\lambda}(\widehat{\omega}_i)$.

From AP to Operator Algebra APs (cont.)

Proof.

Consider $\widehat{V} \in L^{\infty}(\mathbb{G})' \overline{\otimes} L^{\infty}(\widehat{\mathbb{G}})$ the right multiplicative unitary for $\widehat{\mathbb{G}}$. Extend each $\widehat{\omega}_i$ to $\widetilde{\omega}_i \in \mathcal{B}(L^2(\mathbb{G}))_*$, and define

 $\Psi_i:\mathcal{B}(L^2(\mathbb{G}))\ni x\mapsto (\tilde{\omega}_i\otimes \mathrm{id})(\,\widehat{V}(x\otimes 1)\,\widehat{V}^*)\in L^\infty(\widehat{\mathbb{G}}).$

This map restricts to $\Theta(a_i)$ on $L^{\infty}(\widehat{\mathbb{G}})$.

These maps nicely approximate the identity, but are not finite-rank. However, $\mathcal{B}(L^2(\mathbb{G}))$ has the w^*CPAP , and this provides suitable finite-rank maps, and then we compose to obtain the maps we need.

Discrete case

Proposition (Kraus-Ruan)

For discrete \mathbb{G} , consider the following:

- G has AP;
- **2** $C(\widehat{\mathbb{G}})$ has the OAP;
- 3 $L^{\infty}(\widehat{\mathbb{G}})$ has the w^*OAP

Then $(1)\Rightarrow(2)$ and $(1)\Rightarrow(3)$ and when \mathbb{G} is unimodular, all are equivalent.

Relative w^*OAP

Let M be a general von Neumann algebra. Let M have the w^*OAP : $\varphi_i \rightarrow \text{id stable point-} w^*$.

Let φ be a weight on M with GNS space $L^2(\varphi)$, definition ideal

$$\mathfrak{n}_{arphi}=\{x\in M: arphi(x^*x)<\infty\},$$

and GNS map $\Lambda : \mathfrak{n}_{\varphi} \to L^{2}(\varphi)$. Define that φ_{i} has an L^{2} -implementation when $\varphi_{i}(\mathfrak{n}_{\varphi}) \subseteq \mathfrak{n}_{\varphi}$, and there is $T_{i} \in \mathcal{B}(L^{2}(\varphi))$ with $T_{i}\Lambda(x) = \Lambda(\varphi_{i}(x))$ for $x \in \mathfrak{n}_{\varphi}$.

Definition

Let $N \subseteq \mathcal{B}(L^2(\varphi))$ be a von Neumann algebra. *M* has the w^*OAP relative to *N* when each $T_i \in N$.

Relative w^*OAP and AP

Theorem (DKV)

For a discrete quantum group $\mathbb G$ the following are equivalent:

Permanence properties

Theorem (DKV)

Let \mathbb{G} have the AP, and let \mathbb{H} be a closed quantum subgroup of \mathbb{G} . Then \mathbb{H} has the AP.

Proof.

Almost by definition, $\mathbb{H} \leq \mathbb{G}$ means that there is a quotient map $A(\mathbb{G}) \to A(\mathbb{H})$ (classically this is the Herz Restriction Theorem).

Free products

Theorem (DKV)

Let $\mathbb{G}_1, \mathbb{G}_2$ be discrete quantum groups with the AP. Then $\mathbb{G}_1 \star \mathbb{G}_2$ has the AP.

Is there a reference in the classical case?

Proof.

With $\mathbb{G} = \mathbb{G}_1 \star \mathbb{G}_2$, by definition, $C(\widehat{\mathbb{G}}) = C(\widehat{\mathbb{G}}_1) \star C(\widehat{\mathbb{G}}_2)$. We use operator algebraic methods to deal with this C^* -algebraic free product, especially results of [Ricard-Xu]. Then check that their ideas arise (or can be made to arise) from operations on cb-multipliers which are weak*-continuous.

Double crossed product

Let $\mathbb{G}_1, \mathbb{G}_2$ be locally compact quantum groups. Following [Baaj-Vaes], a matching is an injective normal *-homomorphism (which is automatically a *-isomorphism) $m: L^{\infty}(\mathbb{G}_1) \bar{\otimes} L^{\infty}(\mathbb{G}_2) \to L^{\infty}(\mathbb{G}_1) \bar{\otimes} L^{\infty}(\mathbb{G}_2)$ with

$$(\Delta_1 \otimes \mathrm{id})m = m_{23}m_{13}(\Delta_1 \otimes \mathrm{id}), \qquad (\mathrm{id} \otimes \Delta_2)m = m_{13}m_{12}(\mathrm{id} \otimes \Delta_2).$$

From this, we can construct the double crossed product \mathbb{G}_m with

$$L^{\infty}(\mathbb{G}_m) = L^{\infty}(\mathbb{G}_1) \overline{\otimes} L^{\infty}(\mathbb{G}_2), \quad \Delta_m = (\mathrm{id} \otimes \sigma m \otimes \mathrm{id}) (\Delta_1^{\mathrm{op}} \otimes \Delta_2).$$

(Notice that the product is a very special case of this.)

Quantum double: results

Proposition (DKV)

If \mathbb{G}_m has the AP then so do \mathbb{G}_1 and \mathbb{G}_2 .

Proof.

 \mathbb{G}_1^{op} and \mathbb{G}_2 are closed quantum subgroups of \mathbb{G}_m .

Theorem (DKV)

If
$$\widehat{\mathbb{G}}_1$$
 and $\widehat{\mathbb{G}}_2$ have the AP, then so does $\widehat{\mathbb{G}}_m.$

Proof.

The idea is to translate the approximating nets from $A(\widehat{\mathbb{G}}_1)$ and $A(\widehat{\mathbb{G}}_2)$ to $A(\widehat{\mathbb{G}}_m)$. At a key point, this doesn't seem to quite work, but the issue can be side-stepped by using a construction of [Junge-Neufang-Ruan] to extend a centraliser $\Theta(a) \in \mathcal{CB}(L^{\infty}(\widehat{\mathbb{G}}))$ to all of $\mathcal{B}(L^2(\mathbb{G}))$.

Products

Corollary

For locally compact quantum groups $\mathbb{G}_1, \mathbb{G}_2$ the following are equivalent:

- **1** $\mathbb{G}_1, \mathbb{G}_2$ both have AP;
- **2** $\mathbb{G}_1 \times \mathbb{G}_2$ has AP.

The end

We would like to know more about when \mathbb{G}_m has (or does not have) the AP.

Further things one could mention:

- Central AP.
- Links with representation categories.

Thanks for your attention!