Types of L^1 Banach and operator algebras

Matthew Daws

Lancaster

Banach Algebras and Operator Algebras 2024 Waterloo, Canada

Asymptotic sequence algebras

Question

How might we convert "approximate" relations into exact relations?

Given a Banach algebra A, we can consider two sequence algebras:

 $\ell^{\infty}(A) = \{ all bounded sequences in A with pointwise operations \}$

and the ideal $c_0(A)$.

The quotient $A_{\infty} = \ell^{\infty}(A)/c_0(A)$ is the "asymptotic sequence algebra". The quotient norm is the same as

$$\|a\| = \limsup_{n \to \infty} \|a_n\|$$
 $(a = (a_n) \in \ell^{\infty}(A)).$

In particular, the "constant sequence map" $\iota \colon A \to A_\infty$ is an isometry.

Simple application

Proposition

Let A be separable. The following are equivalet:

- **(**) there is a non-zero $x \in A_{\infty}$ with xa = ax for each $a \in A$;
- ② for each finite F ⊆ A and $\epsilon > 0$, there is $x \in A$ with ||x|| = 1and $||xa - ax|| < \epsilon$ for $a \in F$.

Notice the "metric condition" in (2).

We can also form E_{∞} for a Banach space E. If H is a Hilbert space, then H_{∞} has no obvious inner-product; indeed, E_{∞} always contains a copy of ℓ^{∞}/c_0 .

Ultrafilters

Recall that a *filter* \mathcal{F} on a set I is a collection of subsets of I such that: $\emptyset \notin \mathcal{F}$; if $U \in \mathcal{F}$ and $U \subseteq V$, then $V \in \mathcal{F}$; if $U, V \in \mathcal{F}$ then $U \cap V \in \mathcal{F}$. Think: "subsets of \mathcal{F} are large".

Filters are partially ordered by inclusion, and a maximal filter is an *ultrafilter*. Examples are the *principal ultrafilters*,

$$\mathfrak{U}_i = \{ U \subseteq I : i \in U \} \quad (i \in I).$$

Zorn's lemma shows that non-principal ultrafilters exists: take a maximal refinement of the *Fréchet filter*

$$\mathfrak{F}_0 = \{ U \subseteq I : |I \setminus U| < \infty \}.$$

Result

A filter \mathfrak{F} is an ultrafilter if and only if, for any $U \subseteq I$, either $U \in \mathfrak{F}$ or $I \setminus U \in \mathfrak{F}$.

Ultrafilters converge

Proposition

Let \mathcal{U} be an ultrafilter on \mathbb{N} , and (x_n) a bounded sequence in \mathbb{C} (or \mathbb{R}). There is a unique $x \in \mathbb{C}$ with, for each $\epsilon > 0$,

$$ig\{n:|x-x_n|$$

Write $\lim_{n\to\mathcal{U}} x_n = x$.

We have the usual rules for limits:

$$\lim_{n o \mathcal{U}} \lambda x_n = \lambda \lim_{n o \mathcal{U}} x_n, \quad \lim_{n o \mathcal{U}} x_n + y_n = \lim_{n o \mathcal{U}} x_n + \lim_{n o \mathcal{U}} y_n.$$

Think: an ultrafilter is a selection method, which chooses which subsequence we converge down.

Ultraproducts and powers

Given a family of Banach spaces $(E_i)_{i \in I}$ and a (non-principal) ultrafilter \mathcal{U} on I, the collection

$$N_{\mathcal{U}} = \{(x_i) \in \ell^{\infty}(E_i) : \lim_{i \to \mathcal{U}} \|x_i\| = 0\}$$

is a closed subspace of $\ell^{\infty}(E_i)$.

- When (A_i) is a family of Banach algebras, this is a closed ideal.
- Denote $(E_i)_{\mathcal{U}}$ the quotient $\ell^{\infty}(E_i)/N_{\mathcal{U}}$, the *ultraproduct*. The norm satisfies

$$||(x_i)|| = ||(x_i) + N_{\mathcal{U}}|| = \lim_{i \to \mathcal{U}} ||x_i||.$$

• So $(A_i)_{\mathcal{U}}$ is a Banach algebra, and a C^* -algebra, if each A_i is. When $E_i = E$ for each i, we write $(E)_{\mathcal{U}}$, the *ultrapower*.

Matthew Daws

L¹ Banach algebras

Ultraproducts and powers cont.

This construction preserves lots of structure; for example, given a family of Hilbert spaces (H_i) , we can define

$$((x_i)|(y_i)) = \lim_{i \to \mathcal{U}} (x_i|y_i),$$

and obtain an inner-product on $(H_i)_{\mathcal{U}}$ compatible with the norm.

- Ultraproducts of L^p spaces are again L^p spaces;
- Ultraproducts of C(K) spaces are commutative C^* -algebras, so again C(K) spaces.

Unital algebras

This is joint work with Bence Horváth. Fix a Banach algebra A.

Question

When is $(A)_{\mathcal{U}}$, or Asy(A), unital?

- If A is unital, under the diagonal embedding A → Asy(A), the unit becomes a unit for Asy(A).
- Conversely, let $e \in Asy(A)$ be a unit for Asy(A). This has a representative $(e_n) \in \ell^{\infty}(A)$, which satisfies

$$\lim_{n} \|e_{n}a_{n} - a_{n}\| = 0, \quad \lim_{n} \|a_{n}e_{n} - a_{n}\| = 0 \qquad ((a_{n}) \in \ell^{\infty}(A)).$$

• By picking (a_n) suitably, this shows that, for example,

$$\lim_n \sup\{\|e_n a - a\|: a \in A, \|a\| \leq 1\} = 0.$$

Unital algebras cont.

 $\lim_n\sup\{\|e_na-a\|,\|ae_n-a\|:a\in A,\|a\|\leqslant 1\}=0.$

- Extract a subsequence (e_n) with $||e_n a a||, ||ae_n a|| \leq \frac{1}{n} ||a||$ for $a \in A$.
- We can also arrange that e.g. $\|e_n\| \leqslant 2\|(e_n)\|_{\mathsf{Asy}} = K$ say.
- Thus $||e_n e_m|| \leq ||e_n e_n e_m|| + ||e_n e_m e_m|| \leq K(\frac{1}{m} + \frac{1}{n}).$
- So (e_n) is Cauchy in A, so converges in A, say to e. Clearly e is a unit.

The argument for an ultrapower is similar, just with more bookkeeping.

Ring-theoretic infiniteness

Definition

 $p \in A$ is an *idempotent* if $p^2 = p$. Two idempotents p, q are *equivalent*, written $p \sim q$, if there are $a, b \in A$ with p = ab and q = ba.

[If $q \sim r$, say q = cd, r = dc, then $p = p^2 = abab = aqb = (ac)(db)$ and $(db)(ac) = dqc = dcdc = r^2 = r$ so $p \sim r$.]

In e.g. \mathbb{M}_n , idempotents are equivalent if and only if they have the same rank.

Definition

Let A be a unital algebra. A is Dedekind finite if $p \sim 1$ implies p = 1.

That is, if $a, b \in A$ with ab = 1 then also ba = 1 (as then p = ba has $p^2 = baba = b1a = p$ so $p \sim 1$). [Might mention C^* -algebras?]

For asymptotic sequence algebras

Theorem

Let A be a unital Banach algebra. If A is Dedekind-finite then so is Asy(A).

Proof.

Let $p^2 = p \sim 1$ in Asy(A). We need to show that p = 1.

- Let (x_n) ∈ l[∞](A) be a representative of p. Of course, (x_n) will not be an idempotent in general. A Functional Calculus argument shows that we can find a different representative (p_n) with p²_n = p_n for each n.
- That $p \sim 1$ means there are $a = (a_n)$ and $b = (b_n)$ with $(a_n b_n p_n) \in c_0(A)$ and $(b_n a_n 1) \in c_0(A)$.
- So eventually $u_n = b_n a_n$ is invertible. With $q_n = a_n u_n^{-1} b_n$ we find $q_n^2 = q_n$ and $q_n \sim b_n a_n u_n^{-1} = 1$ so hypothesis implies $q_n = 1$.

For asymptotic sequence algebras cont.

Proof continued.

$$(a_nb_n-p_n)\in c_0(A)$$
 $(b_na_n-1)\in c_0(A).$

We established that with $u_n = b_n a_n$ we have $q_n = a_n u_n^{-1} b_n = 1$ eventually.

For large n, now compute:

$$egin{aligned} \|1-p_n\| &= \|q_n-p_n\| \leqslant \|a_nu_n^{-1}b_n-a_nb_n\|+\|a_nb_n-p_n\| \ &\leqslant \|a_n\|\|u_n^{-1}-1\|\|b_n\|+\|a_nb_n-p_n\|, \end{aligned}$$

which is small for large n. Thus $(1-p_n) \in c_0(A)$ so p = 1 in Asy(A).

This also holds for $Asy(A_n)$ for a sequence (A_n) of Dedekind-finite algebras.

The converse?

Question

If Asy(A) is Dedekind-finite, is A Dedekind-finite?

Motivated by either:

- Some intuition from working with examples, or
- metric model theory considerations,

it is natural to consider a *metric* reformulation.

Definition

Say that A is Dedekind-infinite if it is not Dedekind-finite. Define

$$C_{\mathrm{DI}}(A) = \inf \{ \|a\| \|b\| : a, b \in A, ab = 1, ba \neq 1 \}.$$

Set $C_{\text{DI}}(A) = \infty$ if A is Dedekind-finite.

With metric control

Proposition

Let (A_n) be a sequence of unital Banach algebras with $C_{DI}(A_n) \leq K$ for all n. Then $Asy((A_n))$ is Dedekind-infinite.

Proposition

Let
$$(A_n)$$
 be such that $C_{DI}(A_n) \to \infty$. Then $\mathsf{Asy}(A_n)$ is Dedekind-finite.

Proof.

Much the same idea as before, starting with $a, b \in Asy(A_n)$ with ab = 1, we lift to representatives in $\ell^{\infty}(A_n)$, say $a = (a_n)$ and $b = (b_n)$, and adjust so that $a_n b_n = 1$ for n large enough. As $||a_n|| ||b_n||$ bounded, eventually $||a_n|| ||b_n|| < C_{DI}(A_n)$, and so $a_n b_n = 1 \implies b_n a_n = 1$. Conclude ba = 1. Counter-example for Banach algebras

Question

If A is a Dedekind-infinite Banach algebra, is it true that $C_{\text{DI}}(A) \leq K$ for some absolute constant K?

True for C^* -algebras.

For Banach Algebras: Of course not!

Our counter-example will be a *weighted-semigroup* algebra.

Let C be the bicyclic semigroup, so C has generators α, β with $\alpha\beta = 1$ and no other relations.

So C is all reduced words which are of the form $\beta^n \alpha^m$ with $n, m \in \mathbb{Z}_{\geq 0}$. Exercise to the reader to work out the multiplication.

Weights

Definition

A weight on a semigroup is $\omega: S \to (0,\infty)$ with $\omega(st) \leqslant \omega(s)\omega(t)$.

The weighted semigroup algebra is $\ell^1(S, \omega)$, which is those $a \in \ell^1(S)$ with $||a||_{\omega} = \sum_s |a_s|\omega(s) < \infty$. The condition on the weight ensures that $\ell^1(S, \omega)$ is an algebra under convolution:

$$\delta_s \star \delta_t = \delta_{st}, \qquad a \star b = \Big(\sum_{\{t,r:tr=s\}} a_t b_r\Big)_{s\in S}$$

Proposition

Let C be the bicyclic semigroup Suppose $\omega(1) = 1, \omega(s) \ge n$ otherwise. Then $C_{DI}(\ell^1(C, \omega)) \ge (n/86)^{1/3}$.

So, no, there is no absolute constant!

Matthew Daws

Renormings

The definitions of $Asy(A_n)$ and $(A_n)_{\mathcal{U}}$ are very "metric".

Example

If we allow a "unital" Banach algebra to have a unit which is not a unit vector, then it is easily possible to have a sequence of unital Banach algebras (A_n) such that $Asy(A_n)$ is not unital.

$$C_{\mathrm{DI}}(A) = \inf \{ \|a\| \|b\| : a, b \in A, ab = 1, ba \neq 1 \}.$$

Question

If A is Dedekind infinite, can we renorm A so that $C_{\text{DI}}(A) = 1$, or perhaps less than some absolute constant?

Proper infiniteness

Definition

A (Banach) algebra is properly infinite when there are idempotents $p \sim 1$ and $q \sim 1$ which are orthogonal, pq = qp = 0.

- Using ideas of Friis and Rørdam, one can show that commuting idempotents p, q ∈ Asy(A_n) can be lifted to commuting idempotents P, Q ∈ l[∞](A_n).
- Using this, one can show that if Asy(A_n) is properly infinite, then A_n is properly infinite, for n sufficiently large.

For the converse, we proceed in a rather similar way to before; define

$$C_{\mathrm{PI}}(A) = \inf \left\{ \|a\| \|b\| \|c\| \|d\| : ab = 1 = cd, ad = 0 = cb
ight\}.$$

Theorem

 $\operatorname{\mathsf{Asy}}(A_n)$ is properly infinite if and only if $\limsup_{n \to \infty} C_{\operatorname{PI}}(A_n) < \infty$.

(Counter-)example

Again, $C_{PI}(A)$ can be arbitrarily large for a properly infinite A.

- We now have two idempotents, so we want two copies of the bicylic semigroup...
- The Cuntz semigroup is

$$Cu_2 = ig\langle s_1, s_2, t_1, t_2 \ ig| \ t_1 s_1 = 1 = t_2 s_2, t_1 s_2 = t_2 s_1 = \diamond ig
angle,$$

where \diamond is a "semigroup zero".

Directly forming the semigroup algebra $\ell^1(Cu_2)$ seems wrong, as it is more natural to identify the semigroup zero and the algebra zero.

- Note that $\mathbb{C}\delta_{\diamond}$ is a (closed, two-sided) ideal in $\ell^1(Cu_2)$, so...
- We can form $\ell^1(Cu_2)/\mathbb{C}\delta_\diamond$ as an algebra,
- Which as a space is isometric with $\ell^1(Cu_2 \setminus \{\diamond\})$.
- So really we have $\ell^1(Cu_2 \setminus \{\diamond\})$ with the obvious product.

(Counter-)example continued

Proposition

Let ω be a weight on Cu_2 with (for example) $\omega(s) \ge n$ for each $s \ne 1$. Then $C_{PI}(A) \ge (n/86)^{1/3}$.

Again, by choosing ω_n suitably, with $A_n = \ell^1(Cu_2 \setminus \{\diamond\}, \omega_n)$, we produce a sequence of properly infinite algebras with $C_{\mathrm{PI}}(A_n) \to \infty$, so $\operatorname{Asy}(A_n)$ is not properly-infinite.

Question

Same renorming question for $C_{\rm PI}$.

All the same results hold for ultraproducts.

Pure infiniteness

For C^* -algebras, being "purely infinite" is related again to projections, and hereditary subalgebras. For general algebras, there is a different definition (equivalent for C^* -algebras).

Definition (Ara, Goodearl, Pardo)

A unital algebra is *purely infinite* if it is not a division algebra, and for each $a \neq 0$ there are b, c with bac = 1.

Clearly, a purely infinite algebra is simple, so we consider now only ultraproducts.

A metric condition

For $a \neq 0$ define

$$C_{\mathrm{pi}}^{A}(a) = \inf \{ \|b\| \|c\| : bac = 1 \}.$$

This is homogeneous, and so we can consider only ||a|| = 1.

Proposition

Let $A \neq \mathbb{C}$ and \mathcal{U} be countably incomplete. Then $(A)_{\mathcal{U}}$ is purely infinite if and only if sup $\{C_{pi}^{A}(a) : \|a\| = 1\} < \infty$.

Proposition

Suppose that U is countably incomplete, and $(A)_{U}$ is simple. When $\psi: A \to B$ is a non-zero bounded homomorphism to a Banach algebra B, we have that ψ is bounded below.

E.g. $A = \mathcal{B}(\ell^p) / \mathcal{K}(\ell^p)$ has $(A)_{\mathcal{U}}$ purely infinite.

Towards a counter-example

We seek an example A which is purely infinite, but with $(A)_{\mathcal{U}}$ not purely infinite. Some analogue of the Cuntz algebra is perhaps a good guess!

$$Cu_2 = ig\langle s_1, s_2, t_1, t_2 \ ig| \ t_1 s_1 = 1 = t_2 s_2, t_1 s_2 = t_2 s_1 = \diamond ig
angle,$$

- We start with $\ell^1(Cu_2 \setminus \{\diamond\}) = \ell^1(Cu_2)/\mathbb{C}\delta_\diamond$.
- We now impose the condition

$$\delta_{s_1t_1}+\delta_{s_2t_2}=1.$$

Do this by defining I to be the closed ideal generated by the element $\delta_{s_1t_1} + \delta_{s_2t_2} - 1$ and considering the quotient algebra $A = \ell^1(Cu_2 \setminus \{\diamond\})/I$.

 The purely algebra version of this construction is the Leavitt algebra L₂, so you can consider A as an "l¹-completion of L₂".

Combinatorics

As ℓ^1 algebras are rather "combinatorial", we can show:

PropositionLet $a \in \ell^1(Cu_2 \setminus \{\diamond\})$. TFAE:**a** $\in I$;**a** some combinatorial condition on the coefficients of a;**a** there are not $b, c \in \ell^1(Cu_2 \setminus \{\diamond\})$ with bac = 1.As such, I is the unique maximal ideal in $\ell^1(Cu_2 \setminus \{\diamond\})$.

Corollary

The quotient algebra A is purely infinite.

Representations

The following construction was studied by C. Phillips. For $1 \leq p < \infty$, consider $\ell^p(\mathbb{N})$ and define operators

$$egin{aligned} S_1(\xi) &= (\xi_1, 0, \xi_2, 0, \xi_3, 0, \cdots), \quad S_2(\xi) &= (0, \xi_1, 0, \xi_2, 0, \xi_3, \cdots), \ T_1(\xi) &= (\xi_1, \xi_3, \xi_5, \cdots), \quad T_2(\xi) &= (\xi_2, \xi_4, \xi_6, \cdots). \end{aligned}$$

These are contractions, with the relations

$$T_1S_1 = T_2S_2 = I, \quad T_2S_1 = T_1S_2 = 0, \quad S_1T_1 + S_2T_2 = I.$$

By universality, there is a contractive homomorphism

$$A o \mathcal{B}(\ell^p); \quad \delta_{s_i} + I \mapsto S_i, \ \delta_{t_i} + I \mapsto T_i.$$

In particular, A is non-trivial!

Putting it all together

Theorem

The representation $A \to \mathbb{B}(\ell^p)$ is injective, but not bounded below. As such, A does not have purely infinite ultrapowers.

Proof.

We estimate the norms of certain elements of A, compare these to their images in $\mathcal{B}(\ell^p)$, and conclude that the homomorphism cannot be bounded below. As A is purely infinite, it is simple, so the homomorphism must be injective. If $(A)_{\mathcal{U}}$ were purely infinite, it would be simple, and so any homomorphism would be bounded below, contraction.

To compute norms in A, we study the dual space

$$A^* = I^{\perp} = \{f \in \ell^{\infty}(\mathit{Cu}_2 \setminus \{\diamond\}) : f(x) = 0 \ (x \in I)\}.$$

Again, this can be done in a combinatorial manner.

Closing remarks

- It seems surprising to me that $A = \ell^1(Cu_2 \setminus \{\diamond\})/I$ hasn't been studied before.
- $\ell^1(Cu_2 \setminus \{\diamond\})$ was studied by Dales, Laustsen, Read.
- "Quotients of l^1 -semigroup algebras" seem like a natural class of algebra to look at.
- Cu₂ is an inverse semigroup, and many of our combinatorial techniques have clear analogues for any inverse semigroup. (We could indeed have been more explicit about this!)

Phillips' algebras \mathcal{O}_2^p are the closure of the image of A in $\mathcal{B}(\ell^p)$. The natural map $A \to \mathcal{O}_2^1$ is not an isomorphism; looking at bounded traces shows that there can be no isomorphism between A and \mathcal{O}_2^p for any p.

Question If A amenable?

Closing remarks 2

Recently, [Bardadyn, Kwaśniewski and McKee] have looked at Banach space analogues of this notion of "tight" representation (from Exel's theory for Groupoid C^* -algebras) of Cu_2 on a Banach space. Given any $i = (i_1, \dots, i_n) \in \{1, 2\}^n$, we have an idempotent

$$e_i=s_{i_1}s_{i_2}\cdots s_{i_n}t_{i_n}\cdots t_{i_2}t_{i_1}.$$

Their algebra B is "maximal", subject to requiring that the span of the e_i is isomorphic to $\ell_{2^n}^{\infty}$, for each n.

Proposition

The natural map $A \rightarrow B$ is not bounded below.

What is the algebra B?