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Graphs

A graph consists of a (�nite) set of vertices V and a collection of edges

E ⊆ V ×V .

V = {A,B ,C } say, and E =

{(A,B), (B ,C ), (C ,B), (C ,A)}.

A graph is undirected if (x , y) ∈ E ⇔ (y , x ) ∈ E . We allow self-loops,

so (x , x ) ∈ E .

Notice that a graph G = (V ,E) is exactly a relation on the set V . An

undirected graph gives a symmetric relation; having a loop on each

vertex gives a re�exive relation.

Matthew Daws Quantum Graphs April 2022 2 / 30



Channels

A channel sends an input message (element of a �nite set A) to an

output message (element of a �nite set B) perhaps with noise so that

there is a probability that a ∈ A is mapped to di�erent b ∈ B .

Input �o� might be sent to �o� or �0� or �a�.

p(b|a) = probability that b is received given that a was sent

De�ne a (simple, undirected) graph structure on A by

(a1, a2) an edge when p(b|a1)p(b|a2) > 0 for some b.

This is the confusability graph of the channel.

If we want to communicate with zero error then we seek a maximal

independent set in A.
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Quantum Mechanics

A state is a unit vector |ψ⟩ in a (�nite dim) Hilbert space H .

More generally, a density is a positive, trace one operator

ρ ∈ B(H ).

A rank-one density is always of the form |ψ⟩⟨ψ| for some state ψ.

(Use Trace duality, so ω ∈ B(H )∗ is associated uniquely to

A ∈ B(H ) with ω(T ) = tr(AT ). Then densities are exactly the

states on B(H ). Here we �overload� the term �state�!)

A (quantum) channel is a trace-preserving, completely positive

(CPTP) map B(HA) → B(HB ):

positive and trace-preserving so it maps densities to densities;

completely positive so you can tensor with another system and

still have positivity.
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Stinespring and Kraus

The Stinespring Representation Theorem tells us that any CP map

E : B(HA) → B(HB ) has the form

E(x ) = V ∗π(x )V (x ∈ B(HA)),

where V : HB → K , and π : B(HA) → B(K ) is a ∗-representation.
Any such π is of the form π(x ) = x ⊗ 1 where K ∼= HA ⊗K ′.

Take an o.n. basis (ei ) for K
′ so V (ξ) =

∑
i K

∗
i (ξ)⊗ ei for some

operators Ki : HA → HB .

We arrive at the Kraus form:

E(x ) =
∑
i

KixK
∗
i (x ∈ B(HA)).

Trace-preserving when
∑

i K
∗
i Ki = 1.
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Quantum zero-error

We turn B(H ) into a Hilbert space using the trace: (T |S) = tr(T ∗S).

A sensible notion of when densities ρ, σ are distinguishable is when

they are orthogonal.

Let E(x ) =
∑

i KixK
∗
i be a quantum channel. We wish to consider

when E(ρ) ⊥ E(σ). As E is positive, this is equivalent to

E(|ψ⟩⟨ψ|) ⊥ E(|ϕ⟩⟨ϕ|) (ψ ∈ Im ρ,ϕ ∈ Imσ).

Equivalently

0 = tr
(
E(|ψ⟩⟨ψ|)E(|ϕ⟩⟨ϕ|)

)
=

∑
i ,j

tr
(
Ki |ψ⟩⟨ψ|K ∗

i Kj |ϕ⟩⟨ϕ|K ∗
j

)
=

∑
i ,j

|⟨ψ|K ∗
i Kj |ϕ⟩|2

which is equivalent to ⟨ψ|K ∗
i Kj |ϕ⟩ = 0 for each i , j .
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To operator systems

So ψ,ϕ are distinguishable after E when

⟨ψ|T |ϕ⟩ = 0 for each T ∈ lin{K ∗
i Kj }.

Set S = lin{K ∗
i Kj } which has properties:

S is a linear subspace;

T ∈ S if and only if T ∗ ∈ S;
1 ∈ S (as

∑
i K

∗
i Ki = 1 as E is CPTP).

That is, S is an operator system, which depends only on E and not

the choice of (Ki ).

Theorem (Duan)

For any operator system S ⊆ B(HA) there is some quantum

channel E : B(HA) → B(HB ) giving rise to S.
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In the classical case

Given a classical channel from A to B with probabilities p(b|a), de�ne

Kraus operators

Kab = p(b|a)1/2|b⟩⟨a | : HA → HB .

Here (⟨a |) is the canonical basis of HA = ℓ2(A) ∼= C|A|.∑
ab

Kab |c⟩⟨c|K ∗
ab =

∑
ab

p(b|a)|b⟩⟨a |c⟩⟨c|a⟩⟨b| =
∑
b

p(b|c)|b⟩⟨b|.

So the pure state |c⟩⟨c| is mapped to the combination of pure states

which can be received, given that message c is sent.

S = lin{K ∗
abKcd } = lin{p(b|a)1/2p(d |c)1/2|a⟩⟨b|d⟩⟨c|}

= lin{|a⟩⟨c| : a ∼ c}

Thus S is directly linked to the confusability graph of the channel.
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Quantum relations

Simultaneously, and motivated more by �noncommutative geometry�:

De�nition (Weaver)

Let M ⊆ B(H ) be a von Neumann algebra. A quantum relation on M

is a weak∗-closed subspace S ⊆ B(H ) with M ′SM ′ ⊆ S . We say that

the relation is:

1 re�exive if M ′ ⊆ S ;

2 symmetric if S∗ = S where S∗ = {x ∗ : x ∈ S };

3 transitive if S2 ⊆ S where S2 = lin
w∗

{xy : x , y ∈ S }.

When M = ℓ∞(X ) ⊆ B(ℓ2(X )) there is a bijection between the usual

meaning of �relation� on X and quantum relations on M , given by

S = lin
w∗

{ex ,y : x ∼ y}.
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Quantum graphs

As a graph on a (�nite) vertex set V is simply a relation, and as:

undirected graphs corresponds to symmetric relations;

a re�exive relation corresponds to having a �loop� at every vertex.

De�nition (Weaver)

A quantum graph on a von Neumann algebra M ⊆ B(H ) is a re�exive,

symmetric quantum relation. That is, a unital, self-adjoint,

weak∗-closed subspace S ⊆ B(H ), which is an M ′-bimodule

(M ′SM ′ ⊆ S).

If M = B(H ) with H �nite-dimensional, then as M ′ = C, a quantum

graph is just an operator system: that is, exactly what we had before!

[Duan, Severini, Winter; Stahlke]
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Adjacency matrices

Given a graph G = (V ,E) consider the {0, 1}-valued matrix A with

Ai ,j =

{
1 : (i , j ) ∈ E ,

0 : otherwise,

the adjacency matrix of G .

A is idempotent for the Schur product;

G is undirected if and only if A is self-adjoint;

A has 1s down the diagonal when G has a loop at every vertex.

We can think of A as an operator on ℓ2(V ). This is the GNS space for

the C ∗-algebra ℓ∞(V ) for the state induced by the uniform measure.

Matthew Daws Quantum Graphs April 2022 11 / 30



General C ∗-algebras

Let B be a �nite-dimensional C ∗-algebra, and let φ be a faithful state

on B , with GNS space L2(B). Thus B bijects with L2(B) as a vector

space, and so we get:

The multiplication on B induces a map

m : L2(B)⊗ L2(B) → L2(B);

The unit in B induces a map η : C → L2(B).

We get an analogue of the Schur product:

x • y = m(x ⊗ y)m∗ (x , y ∈ B(L2(B))).
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Quantum adjacency matrix

De�nition (Many authors)

A quantum adjacency matrix is a self-adjoint A ∈ B(L2(B)) with:

m(A⊗A)m∗ = A (so Schur product idempotent);

(1⊗ η∗m)(1⊗A⊗ 1)(m∗η⊗ 1) = A;

m(A⊗ 1)m∗ = id (a �loop at every vertex�);

The middle axiom is a little mysterious: it roughly corresponds to

�undirected�.

I want to sketch why this de�nition is equivalent to the previous notion

of a �quantum graph�.
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Subspaces to projections
Fix a �nite-dimensional C ∗-algebra (von Neumann algebra) M . A

�quantum graph� is either:

A subspace of B(H ) (where M ⊆ B(H )) with some properties; or

An operator on L2(M ) with some properties.

How do we move between these?

S ⊆ B(H ) is a bimodule over M ′. As H is �nite-dimensional, B(H ) is

a Hilbert space for

(x |y) = tr(x ∗y).

Then M ⊗M op is represented on B(H ) via

π : M ⊗M op → B(B(H )); π(x ⊗ y) : T 7→ xTy .

The commutant of π(M ⊗M op) is naturally M ′ ⊗ (M ′)op.

An M ′-bimodule of B(H ) corresponds to an

M ′ ⊗ (M ′)op-invariant subspace of the Hilbert space B(H );

Which corresponds to a projection in M ⊗M op.
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Operators to algebras

So how can we relate:

Operators A ∈ B(L2(M ));

Projections in M ⊗M op?

[Musto, Reutter, Verdon]
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Operators to algebras 2

Recall the GNS construction for a tracial state ψ on M :

Λ : M → L2(M ); (Λ(x )|Λ(y)) = ψ(x ∗y).

As L2(M ) is �nite-dimensional, every operator on L2(M ) is a linear

combination of rank-one operators of the form

θΛ(a),Λ(b) : ξ 7→ (Λ(a)|ξ)Λ(b) (ξ ∈ L2(M )).

De�ne a bijection

Ψ : B(L2(M )) → M ⊗M op; θΛ(a),Λ(b) = b ⊗ a∗,

and extend by linearity!
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Operators to algebras 3

Ψ : B(L2(M )) → M ⊗M op; θΛ(a),Λ(b) = b ⊗ a∗,

Ψ is a homomorphism for the �Schur product�

A1 •A2 = m(A1 ⊗A2)m
∗;

A 7→ (1⊗ η∗m)(1⊗A⊗ 1)(m∗η⊗ 1) corresponds to the

anti-homomorphism σ : a ⊗ b 7→ b ⊗ a ;

A 7→ A∗ corresponds to e 7→ σ(e)∗.

Conclude: A quantum adjacency matrix corresponds to a projection e

with σ(e) = e . But: There is no clean one-to-one correspondence

between the axioms.
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KMS States

Any faithful state ψ is KMS: there is an automorphism σ ′ of M with

ψ(ab) = ψ(bσ ′(a)) (a , b ∈ M ).

Indeed, there is Q ∈ M positive and invertible with

ψ(a) = tr(Qa) σ ′(a) = QaQ−1.

Theorem (D.)

Twisting our bijection Ψ using σ ′ allows us to establish a bijection

between:

Quantum adjacency operators A ∈ B(L2(M ));

projections e ∈ M ⊗M op with e = σ(e) and (σ ′ ⊗ σ ′)(e) = e;

self-adjoint M ′-bimodules S ⊆ B(H ) with QSQ−1 = S.

So this is more restrictive than the tracial case.
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Towards homomorphisms: Pushforwards
skip? Let M ,N be �nite-dimensional von Neumann algebras, and

again let θ : M → N be a UCP map (Notice I have changed convention!)

with Kraus form

θ(x ) =

n∑
i=1

b∗i xbi .

Letting M ⊆ B(HM ),N ⊆ B(HN ) and given S ⊆ B(HN ) a quantum

graph/relation over N , de�ne

−→
S = lin{bixb

∗
j : x ∈ S } ⊆ B(HM ),

the �pushforward�. [Weaver]

Notice that
−→
S need not be unital, but it is always self-adjoint.

Proposition (D.)

The pushforward
−→
S is a quantum relation over M. That is,

−→
S is

automatically an M ′-bimodule.
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The classical case

Given classical graphs G = (VG ,EG) and H = (VH ,EH ), a function

f : VG → VH de�nes a ∗-homomorphism (so certainly a UCP map)

θ : C (VH ) → C (VG); a 7→ a ◦ f (a ∈ C (VH )).

Let G induce SG ⊆ B(ℓ2(VG)), that is,

SG = lin{eu ,v : (u , v) ∈ EG }

the span of matrix units supported on the edges. Then

−→
SG = lin{ef (u),f (v) : (u , v) ∈ EG }

and so
−→
SG ⊆ SH exactly when f is a graph homomorphism.
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Homomorphisms

[Stahkle] de�nes θ : M → N to be a homomorphism between S1 and

S2 when
−→
S2 ⊆ S1. [Weaver] calls this a CP-morphism.

Theorem (Stahkle)

Let θ : C (VH ) → C (VG) be a UCP map giving a homomorphism G

to H (that is, with
−→
SG ⊆ SH ). Then there is some map

f : VG → VH which is a (classical) graph homomorphism.

In general θ need not be directly related to f .

However, often we just care about the existence of a

homomorphism.

E.g. a k -colouring of G corresponds to some homomorphism

G → Kk , the complete graph.

Matthew Daws Quantum Graphs April 2022 21 / 30



Isomorphisms

We return to a �nite-dimensional von Neumann algebra M equipped

with a faithful state ψ, and a quantum adjacency matrix A, an

operator on L2(M ) = L2(M , ψ).

An isomorphism of A is a ∗-automorphism θ of M which preserves

the state ψ, and which commutes with A. This means either:

Think of A as a map on M , so simply A ◦ θ = θ ◦A; or
θ preserves ψ, so induces a unitary operator

θ̂ : L2(M ) → L2(M ); Λ(a) 7→ Λ(θ(a)).

Then require that θ̂A = Aθ̂.
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Isomorphisms of operator bimodules

What can we say about an M ′-bimodule S ⊆ B(H )?

Not every automorphism of M lifts to B(H );

Seems we get dependence on H here.

Does all work if H = L2(M ): then we can de�ne an automorphism of

S to be a ∗-automorphism of B(H ) which restricts to a ψ-persevering

automorphism of M , and which restricts to a bijection on S .

In the classical case of a graph (VG ,EG), with M = C (VG) and

A = AG and S = SG on L2(M ) = ℓ2(VG), we obtain the usual

meaning of a graph isomorphism: a permutation of VG which doesn't

change EG .
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Quantum group (co)actions
An (right) action of a (�nite/compact) group G on a space/set X is a

map

X ×G → X .

So we get a ∗-homomorphism

α : C (X ) → C (X )⊗C (G),

Consider (C (G), ∆) as a compact quantum group.

(id⊗∆)α = (α⊗ id)α corresponds to x · st = (x · s) · t ;
lin{α(b)(1⊗ a) : a ∈ C (G), b ∈ C (X )} is dense in C (X )⊗C (G)

corresponds to x · e = x .

De�nition (Podle±)

A (right) coaction of a compact quantum group (A, ∆) on a C ∗-algebra

B is a unital ∗-homomorphism α : B → B ⊗A with these two

conditions.
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Coactions on ℓ∞
n

Fix a compact quantum group (A, ∆).

The algebra ℓ∞n is spanned by projections (ei )
n
i=1.

So α : ℓ∞n → ℓ∞n ⊗A is determined by (uij ) in A with

α(ei ) =

n∑
j=1

ej ⊗ uji .

α is a ∗-homomorphism ⇔ each uji a projection and

ujiujk = δikuji ;

α is unital ⇔ ∑
i uji = 1;

α satis�es the coaction equation ⇔ ∆(uji ) =
∑

k ujk ⊗ uki ;

α satis�es the Podle± density condition ⇔ ∑
i uji = 1.

General Theory =⇒ ∑
j uji = 1. So (uij ) is a magic unitary.
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(Co)actions on (classical) graphs
Recall that a permutation θ gives an automorphism of a graph G when

PθAG = AGPθ.

Here AG is the adjacency matrix of G , which we can think of as also a

linear map ℓ∞n → ℓ∞n .

So Aut(G) acts in a way which preserves AG :

α : ℓ∞n → ℓ∞n ⊗C (Aut(G)); αAG = (AG ⊗ id)α.

De�nition (Banica)

The quantum automorphism group of G is the maximal compact

quantum group QAut(G) with a coaction satisfying

α : ℓ∞n → ℓ∞n ⊗QAut(G); αAG = (AG ⊗ id)α.

Equivalently, the underlying magic unitary U = (uij ) has to commute

with the adjacency matrix AG . This allows us to construct QAut(G)

as a quotient of S+
n .
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Unitary implementations

Given a coaction α : ℓ∞(V ) → ℓ∞(V )⊗A of (A, ∆) on ℓ∞(V ), we saw

before that α gives rise to a magic unitary u = (uij )i ,j∈V ,

α(ei ) =
∑
j∈V

ej ⊗ uji (i ∈ V ).

This magic unitary �implements� the coaction α in a very simple way:

Lemma

Let ℓ∞(V ) ⊆ B(ℓ2(V )). Then

α(x ) = u(x ⊗ 1)u∗ (x ∈ ℓ∞(V )).
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Coactions on operator bimodules

α(x ) = u(x ⊗ 1)u∗ (x ∈ ℓ∞(V ) ⊆ B(ℓ2(V ))).

It hence make sense. . .

De�nition

α is a coaction on S ⊆ B(ℓ2(V )) exactly when u(x ⊗ 1)u∗ ∈ S ⊗A for

each x ∈ S.

One can check (non-trivially) that we then get the following.

Theorem (Ei�er)

If a graph G is associated to the ℓ∞(V )-operator bimodule S, then
a coaction of (A, ∆) on ℓ∞(V ) gives a coaction on G if and only if

it gives a coaction on S.
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Coactions on quantum adjacency operators-

There is now a clear de�nition:

De�nition (Brannan, Chirvasitu, Ei�er, Harris, Paulsen, Su,

Wasilewski)

Let AG be a quantum adjacency operator on (B , ψ). We say that

(A, ∆) coacts on AG when α : B → B ⊗A is a coaction, which

preserves ψ, and with (AG ⊗ id)α = αAG .

Here we regard AG as a linear map on B .

That α preserves ψ allows us to de�ne a unitary

U ∈ B(L2(B))⊗A which implements α, as α(x ) = U (x ⊗ 1)U ∗.

[Indeed, one way to prove Wang's theorem is to start with such a

U and impose certain conditions on it (compare Compact

Quantum Matrix Groups).]

Then, equivalently, we require that U and AG ⊗ 1 commute.
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Coactions on operator bimodules
A coaction α which preserves ψ gives a unitary U (which is a

corepresentation) and it is then easy to see that

αU : B(L2(B)) → B(L2(B))⊗A; x 7→ U (x ⊗ 1)U ∗

is a coaction (which extends α).

Might this leave S ⊆ B(L2(M )) invariant if and only if U commutes

with AG?

No, as the �trivial quantum graph� is S = B ′, which should always

be invariant, but αU leaves B invariant, not B ′.

Instead, we can use the modular conjugation J and antipode to

form a �commutant� coaction α ′
U ; or equivalently, look at αU but

work with

S ′ := {JTJ : T ∈ S}.

Theorem (D.)

α leaves AG invariant if and only if αU leaves S ′ invariant.
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