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Graphs

A graph consists of a (finite) set of vertices V' and a collection of edges
ECV xV.

Vv = {A,B,C} say, and E =
{(4,B),(B,C),(C,B),(C, A}

A graph is undirected if (z,y) € B & (y,z) € E. We allow self-loops,
so (z,z) € E.

Notice that a graph G = (V, E) is exactly a relation on the set V. An
undirected graph gives a symmetric relation; having a loop on each
vertex gives a reflexive relation.
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Channels

A channel sends an input message (element of a finite set A) to an
output message (element of a finite set B) perhaps with noise so that
there is a probability that a € A is mapped to different b € B.

@ Input “o” might be sent to “o0” or “0” or “a”.

p(bla) = probability that b is received given that a was sent
Define a (simple, undirected) graph structure on A by

(a1, ap) an edge when p(blai)p(blaz) > 0 for some b.

This is the confusability graph of the channel.
If we want to communicate with zero error then we seek a maximal
independent set in A.
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Quantum Mechanics

@ A stateis a unit vector p) in a (finite dim) Hilbert space H.
o More generally, a density is a positive, trace one operator
p € B(H).
@ A rank-one density is always of the form [\p) (| for some state 1.

o (Use Trace duality, so w € B(H)* is associated uniquely to
A € B(H) with w(T) =tr(AT). Then densities are exactly the
states on B(H). Here we “overload” the term “state”!)

A (quantum) channel is a trace-preserving, completely positive
(CPTP) map B(H4) — B(Hp):

@ positive and trace-preserving so it maps densities to densities;

o completely positive so you can tensor with another system and
still have positivity.
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Stinespring and Kraus

The Stinespring Representation Theorem tells us that any CP map
&£ :B(H4) — B(Hg) has the form

Elz)=V'n(z)V  (z € B(Ha)),

where V : Hg — K, and 7t: B(H,) — B(K) is a *-representation.
@ Any such 7t is of the form 7(z) =z ® 1 where K = Hy; ® K'.

o Take an o.n. basis (e;) for K’ so V(&) =) , Kf(&) ® e; for some
operators K; : Hy — Hp.

We arrive at the Kraus form:
Ez)=) KizK; (z € B(Hja)).
i
Trace-preserving when ) , KK; = 1.
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Quantum zero-error

We turn B(H) into a Hilbert space using the trace: (T'|S) = tr(7T*S).

A sensible notion of when densities p, o are distinguishable is when
they are orthogonal.

Let £(z) =}, K;zK be a quantum channel. We wish to consider
when £(p) L £(0). As £ is positive, this is equivalent to

E(P)WN) L E(P) (D) (b €lmp,d € Imo).
Equivalently

0 = tr (E(W)WDE(ID) () Ztr Kihb) (W K Kjld) (bl K)
:Z|<¢|Ki*Kj|d>>|2

which is equivalent to (\|K ;" K;|$p) = 0 for each 1,7.
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To operator systems
So 1, ¢ are distinguishable after £ when
(V|T|p) =0 foreach T € lin{K; K;}.

Set S =lin{K; K;} which has properties:
@ S is a linear subspace;
o T e Sifand only if T* € S
eleS(as) KK, =1as € is CPTP).
That is, S is an operator system, which depends only on £ and not
the choice of (Xj;).
Theorem (Duan)

For any operator system S C B(H,) there is some quantum
channel € : B(Hy) — B(Hp) gwving rise to S.
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In the classical case

Given a classical channel from A to B with probabilities p(b|a), define
Kraus operators

Ka = p(bla)Y?|b)(al : Hy — Hp.

Here ((a|) is the canonical basis of Hy = (2(A) = cll,

Y Kale)(clKy =Y plbla)lb)(alc)(cla)(b] = Zp (blc)[b)(
ab

ab

So the pure state |c)(c| is mapped to the combination of pure states
which can be received, given that message c is sent.

S = lin{K}, K q} = lin{p(bla)*?p(d|c)*?|a)(bld)(cl}
= lin{la){(c|: a ~ c}

Thus S is directly linked to the confusability graph of the channel.
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Quantum relations

Simultaneously, and motivated more by “noncommutative geometry”:

Definition (Weaver)

Let M C B(H) be a von Neumann algebra. A quantum relation on M
is a weak*-closed subspace S C B(H) with M'SM’ C S. We say that
the relation is:

Q refleziveif M' C S,
Q symmetricif S* =S where S* ={z*:z € S};
Q transitive if $2 C S where §2 =lin" {zy:z,y € S).

When M = (®°(X) C B(€?(X)) there is a bijection between the usual
meaning of “relation” on X and quantum relations on M, given by

S =Tn" {esy: 2~ y}
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Quantum graphs

As a graph on a (finite) vertex set V is simply a relation, and as:
o undirected graphs corresponds to symmetric relations;

o a reflexive relation corresponds to having a “loop” at every vertex.

Definition (Weaver)

A guantum graph on a von Neumann algebra M C B(H) is a reflexive,
symmetric quantum relation. That is, a unital, self-adjoint,
weak*-closed subspace S C B(H), which is an M ’-bimodule
(M'SM'C S).

If M = B(H) with H finite-dimensional, then as M’ = C, a quantum
graph is just an operator system: that is, exactly what we had before!
[Duan, Severini, Winter; Stahlke]
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Adjacency matrices

Given a graph G = (V, E) consider the {0, 1}-valued matrix A with

_{1 : (4,9) € B,

i = .
0 :otherwise,

the adjacency matriz of G.
o A is idempotent for the Schur product;
o G is undirected if and only if A is self-adjoint;
@ A has 1s down the diagonal when G has a loop at every vertex.

We can think of A as an operator on ¢?( V). This is the GNS space for
the C*-algebra (*°( V') for the state induced by the uniform measure.

Matthew Daws Quantum Graphs April 2022 11 /30



General C*-algebras

Let B be a finite-dimensional C*-algebra, and let ¢ be a faithful state

on B, with GNS space L?(B). Thus B bijects with L?(B) as a vector
space, and so we get:

o The multiplication on B induces a map
m: L?(B) ® L?(B) — L?(B);

@ The unit in B induces a map 1 : C — L?(B).
We get an analogue of the Schur product:

zey=m(zoy)m*  (z,y € B(L*(B))).
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Quantum adjacency matrix

Definition (Many authors)

A quantum adjacency matriz is a self-adjoint A € B(L?(B)) with:
o m(A® A)m* = A (so Schur product idempotent);
o (1aN'M)(1® AR 1)(MM®1L)=4;

o m(A®1l)m* =id (a “loop at every vertex”);

The middle axiom is a little mysterious: it roughly corresponds to
“undirected”.

I want to sketch why this definition is equivalent to the previous notion
of a “quantum graph”.
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Subspaces to projections
Fix a finite-dimensional C*-algebra (von Neumann algebra) M. A
“gquantum graph” is either:
@ A subspace of B(H) (where M C B(H)) with some properties; or
e An operator on L?(M) with some properties.
How do we move between these?
S C B(H) is a bimodule over M’'. As H is finite-dimensional, B(H) is
a Hilbert space for
(zly) = tr(z*y).
Then M ® M°P is represented on B(H) via

Mo M® - BB(H), nleoy): T zTy.

@ The commutant of 7t(M ® M°P) is naturally M’ ® (M')°P.
@ An M'-bimodule of B(H) corresponds to an
M’ ® (M')°P-invariant subspace of the Hilbert space B(H );
@ Which corresponds to a projection in M & M°P.
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Operators to algebras

So how can we relate:
e Operators A € B(L?*(M));
o Projections in M ® M°P?

O O
1 o 1)
= = =
@, O

[Musto, Reutter, Verdon]
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Operators to algebras 2

Recall the GNS construction for a tracial state { on M:
A:M — (M), (Alz)A(y)) = b(z*y).

As L?(M) is finite-dimensional, every operator on L?(M) is a linear
combination of rank-one operators of the form

Oa(a) ) & (A(a)IE)A(D) (& € LA (M)).

Define a bijection
WB(Lz(M)) — M @ M°P, e/\(a))/\(b) =b®a",

and extend by linearity!

Matthew Daws Quantum Graphs April 2022 16 / 30



Operators to algebras 3

WB(LZ(M)) —)M@MOP; e/\(a),/\(b) :b®a*,

@ VY is a homomorphism for the “Schur product”
Are Ay =m(A; ® A2)m™;

e A (1en*m)(1® A®1)(m*n® 1) corresponds to the
anti-homomorphism 0: a ® b — b ® a;

e A+ A* corresponds to e — o(e)*.

Conclude: A quantum adjacency matrix corresponds to a projection e
with o(e) = e. BuT: There is no clean one-to-one correspondence
between the axioms.
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KMS States

Any faithful state { is KMS: there is an automorphism o’ of M with
Y(ad) =¥(bo’(a))  (a,be M).

Indeed, there is @ € M positive and invertible with
P(a) =tr(Qa)  o'(a) = QaQ .

Theorem (D.)

Twisting our bijection ¥ using o’ allows us to establish a bijection
between:

® Quantum adjacency operators A € B(L?(M));
@ projections e € M ® M°P with e = o(e) and (¢’ ® 0')(e) = e;
o self-adjoint M'-bimodules S C B(H) with QSQ ' =S.

So this is more restrictive than the tracial case.
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Towards homomorphisms: Pushforwards

Let M, N be finite-dimensional von Neumann algebras, and
again let 6 : M — N be a UCP map (Notice I have changed convention!)
with Kraus form

0(z) = i blzb;.
i=1

Letting M C B(Hy ), N C B(Hy) and given S C B(Hy) a quantum
graph/relation over N, define

? = lin{b,zb; : ¢ € S} C B(Hy),

the “pushforward”. [Weaver|
Notice that ? need not be unital, but it is always self-adjoint.

Proposition (D.)

The pushforward ? 1S a quantum relation over M. That is, ? 18
automatically an M'-bimodule.
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The classical case
Given classical graphs G = (Vg, Eg) and H = (Vy, Eg), a function
f: Vg — Vg defines a *-homomorphism (so certainly a UCP map)
0:C(Vyg) = C(Vg); a—aof (ac C(Vg)).
Let G induce Sg C B({?(Vg)), that is,
Sq =lin{ey, : (u,v) € Eg}
the span of matrix units supported on the edges. Then
§Z = lin{ef(y) f(v) : (4, v) € Bg}

_>
and so Sg C Sy exactly when f is a graph homomorphism.
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Homomorphisms

[Stahkle] ieﬂnes 0: M — N to be a homomorphism between S; and
Sy when S2 C §;. [Weaver]| calls this a CP-morphism.
Theorem (Stahkle)

Let 0:C(Vy) — C(Vg) be a UCP map giwing a homomorphism G
to H (that s, with Sg C Sy ). Then there is some map
f: Ve — Vg which is a (classical) graph homomorphism.

@ In general 0 need not be directly related to f.

o However, often we just care about the existence of a
homomorphism.

o E.g. a k-colouring of G corresponds to some homomorphism
G — K, the complete graph.
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Isomorphisms

We return to a finite-dimensional von Neumann algebra M equipped

with a faithful state 1\, and a quantum adjacency matrix A, an
operator on L?(M) = L?(M ).

An 1somorphism of A is a *-automorphism 0 of M which preserves
the state {, and which commutes with A. This means either:

@ Think of A as a map on M, so simply Ao0 =00 A; or

@ 0O preserves 1\, so induces a unitary operator

D >

CLA(M) - L2(M); Ala) — A(B(a)).

Then require that 0A = Ab.
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Isomorphisms of operator bimodules

What can we say about an M’-bimodule S C B(H)?
@ Not every automorphism of M lifts to B(H);

@ Seems we get dependence on H here.

Does all work if H = L?(M): then we can define an automorphism of
S to be a x-automorphism of B(H) which restricts to a \-persevering
automorphism of M, and which restricts to a bijection on S.

In the classical case of a graph (Vg, Eg), with M = C(Vs) and
A=Agand S = Sgon L?(M) =(?(Vg), we obtain the usual
meaning of a graph isomorphism: a permutation of Vs which doesn’t
change Eg.
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Quantum group (co)actions

An (right) action of a (finite/compact) group G on a space/set X is a
map
XxG—X.

So we get a x-homomorphism
x:C(X)—- C(X)® C(G),

Counsider (C(G),A) as a compact quantum group.
o (i[d®A)x = (¢ ®id)x corresponds to z - st = (z - 3) - ¢;
o lin{la(b)(1®a):a€ C(G),be C(X)}isdensein C(X)® C(G)
corresponds to z - e = .
Definition (Podles)

A (right) coaction of a compact quantum group (A, A) on a C*-algebra
B is a unital *-homomorphism «: B — B ® A with these two
conditions.
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Coactions on £°

Fix a compact quantum group (4, A).
o The algebra (5° is spanned by projections (e;)7 ;.
@ So a: € — (° ® A is determined by (u;;) in A with

n
;) = E €; @ Uy.
7=1

@ « is a *-homomorphism & each uj; a projection and
Ujs Uk = Ot Ui

oo is unital & ) ,u; =1,

o satisfies the coaction equation & A(uy;) = ) 4 up ® u;
o satisfies the Podle$ density condition & ) , uj; = 1.

o General Theory — Zj u; = 1. So (uy) is a magic unitary.
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(Co)actions on (classical) graphs

Recall that a permutation 0 gives an automorphism of a graph G when
PyAg = AgPy.

Here A is the adjacency matrix of G, which we can think of as also a

linear map £5° — {5°.

So Aut(G) acts in a way which preserves Ag:

a0’ =R C(Aut(G)); adg =(Ag®@id)a.

Definition (Banica)

The quantum automorphism group of G is the maximal compact
quantum group QAut(G) with a coaction satisfying

a0’ =000 ®QAut(G); adg = (Ag®id)a.

Equivalently, the underlying magic unitary U = (u;;) has to commute
with the adjacency matrix As. This allows us to construct QAut(G)
as a quotient of S,F.
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Unitary implementations

Given a coaction o : {*®(V) -5 {*®(V)® A of (A, A) on £°(V), we saw
before that o gives rise to a magic unitary u = (u;;);jecv,

ale)=) e@uz (i€ V).
JEV
This magic unitary “implements” the coaction « in a very simple way:

Lemma
Let {°(V) C B(3(V)). Then
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Coactions on operator bimodules

alz) =u(lz®1)u* (z € L°(V) QB(ZZ(V))).
It hence make sense. ..

Definition

o is a coaction on S C B(€?(V)) exactly when u(z ® 1)u* € S® A for
each ¢ € S.

One can check (non-trivially) that we then get the following.

Theorem (Eifler)

If a graph G 1s associated to the {*°(V)-operator bimodule S, then
a coaction of (A,A) on {*°(V) giwves a coaction on G if and only if
1t gwes a coaction on S.
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Coactions on quantum adjacency operators-

There is now a clear definition:

Definition (Brannan, Chirvasitu, Eifler, Harris, Paulsen, Su,
Wasilewski)

Let Ag be a quantum adjacency operator on (B,1{). We say that
(A,A) coacts on Ag when o: B — B ® A is a coaction, which
preserves 1, and with (Ag ®id)ac = A .

o Here we regard As as a linear map on B.
@ That « preserves 1 allows us to define a unitary
U € B(L?*(B)) ® A which implements «, as «(z) = U(z ® 1)U*.

@ [Indeed, one way to prove Wang’s theorem is to start with such a
U and impose certain conditions on it (compare Compact
Quantum Matrix Groups).]

@ Then, equivalently, we require that U and Ag ® 1 commute.
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Coactions on operator bimodules
A coaction « which preserves \ gives a unitary U (which is a
corepresentation) and it is then easy to see that

oy B(L*(B)) - B(L*(B))® A; z+— U(z®1)U*

is a coaction (which extends o).
Might this leave S C B(L?(M)) invariant if and only if U commutes
with Ag?
@ No, as the “trivial quantum graph” is S = B’, which should always
be invariant, but oy leaves B invariant, not B’.
o Instead, we can use the modular conjugation J and antipode to
form a “commutant” coaction «j;; or equivalently, look at oy but

work with
S :={JTJ:T eS8
Theorem (D.)
« leaves Ag invariant if and only if xy leaves S’ invariant. J
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