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The plan

This talk will be about a number of inter-linked topics:
1 Locally compact quantum groups.
2 The approximation property which is a (big) weakening of the

notion of amenability.
3 An averaging procedure when we have a compact quantum

subgroup.
4 How this all works for Drinfeld doubles.
5 Culminating in a link between approximation properties for

Drinfeld doubles and central approximation properties for discrete
quantum groups.
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Locally compact quantum groups
Abstract object G with:

von Neumann algebra L∞(G);

equipped with a coproduct ∆ : L∞(G) → L∞(G)⊗L∞(G) which is
coassociative: (∆⊗ id)∆ = (id⊗∆)∆;

which has weights φ,ψ which are left/right invariant, e.g.

φ
(
(ω⊗ id)∆(x )

)
= φ(x )ω(1) (x ∈ M+

φ,ω ∈ L1(G)+).

From this, one gets:

L1(G) becomes a Banach algebra, product induced by ∆;

GNS for φ gives L2(G) with L∞(G) in standard position;

a multiplicative unitary W , so W12W13W23 = W23W12;

∆(x ) = W ∗(1 ⊗ x )W and C0(G) is the closure of
{(id⊗ω)(W ) : ω ∈ B(L2(G))∗}; L∞(G) is the weak∗-closure.
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Duality

λ : L1(G) → B(L2(G)); ω 7→ (ω⊗ id)(W )

is a homomorphism. The closure of its image is a C ∗-algebra C0(Ĝ).

There indeed exists Ĝ a LCQG; L∞(Ĝ) is the weak∗-closure.

There is φ̂ so that L2(Ĝ) = L2(G) canonically.

W ∈ L∞(G)⊗L∞(Ĝ) and Ŵ = σ(W ∗) where σ is the swap map.

For G a locally compact group, set L∞(G) = L∞(G) and

∆(F )(s , t) = F (st) (F ∈ L∞(G), s , t ∈ G),

and φ,ψ the left/right Haar integrals.
Then we find that L∞(Ĝ) = VN (G) and C0(Ĝ) = C ∗

r (G), and

∆̂ : λs 7→ λs ⊗ λs ,

where λs ∈ VN (G) is the left translation operator by s ∈ G .
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The Fourier algebra

Classicaly, the Fourier algebra, A(G), is the (non-closed) subalgebra
of C0(G) formed by coefficients of the left-regular representation. In
the quantum group framework, consider

λ̂ : L1(Ĝ) = VN (G)∗ → C0(
̂̂G) = C0(G).

The image, equipped with the norm from L1(Ĝ), is exactly A(G).

Definition

We define A(G) = λ̂(L1(Ĝ)) with the norm from L1(Ĝ), but thought of
as a subalgebra of C0(G).
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Amenability
Theorem (Leptin)
G is amenable if and only if A(G) has a bounded approximate
identity.

There is a notion of amenability for G involving an invariant mean
which seems a priori weaker, so we define away the issue.

Theorem (Bédos–Tuset)
The following are equivalent and define what it means for G to be
strongly amenable:

1 Ĝ is co-amenable, meaning that C0(Ĝ) has a bounded counit;
2 A(G) ∼= L1(Ĝ) has a bai;
3 A(G) ∼= L1(Ĝ) has a bai consisting of states;
4 C0(Ĝ) = C u

0 (Ĝ) (the universal and reduced C ∗-algebraic
quantum groups agree).
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Weakening amenability
To weaken the property of A(G) having a bounded approximate
identity, we embed A(G) in a larger algebra of (completely bounded)
multipliers: functions which multiply elements of A(G) into itself.

Definition
An element a ∈ L∞(G) is a left multiplier of A(G) when
aA(G) ⊆ A(G).

So a multiplier induces a map L : L1(Ĝ) → L1(Ĝ) which satisfies

a λ̂(ω̂) = λ̂(L(ω̂)) (ω̂ ∈ L1(Ĝ)).

Thus L(ω̂1 ⋆ ω̂2) = L(ω̂1) ⋆ ω̂2, meaning L is a left centraliser.

Definition
a is completely bounded if the Banach space adjoint of the associated
L is cb as a map L∞(Ĝ) → L∞(Ĝ).
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Multipliers

Theorem (Junge–Neufang–Ruan)

Let L : L1(Ĝ) → L1(Ĝ) be a completely bounded left centraliser.
Then there is a ∈ L∞(G) a multiplier which is associated to L.

The resulting space McbA(G) is a Banach algebra for the completely
bounded norm. It contains A(G), but the resulting map
A(G) → McbA(G) may not be bounded below.

Definition
G is weakly amenable if A(G) has an approximate identity bounded
for the cb-multiplier norm.
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Weak∗-topologies

As McbA(G) ⊆ L∞(G), any L1(G) functional induces a functional on
McbA(G).

Definition
Let QcbA(G) be the closure of such functionals in the dual space
McbA(G)∗.

Then it turns out that QcbA(G)∗ is canonically equal to McbA(G), and
so we have a weak∗-topology on McbA(G).

Definition (D.–Krajczok–Voigt)
G has the approximation property when the weak∗-closure of A(G) in
McbA(G) contains the identity multiplier.

Previously, a priori stronger (but actually equivalent) definitions due
to [Crann], [Kraus–Ruan].
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The approximation property

We studied this concept (due to Haagerup–Kraus classically).

Theorem (D.–Krajczok–Voigt)
The AP passes to quantum subgroups. Stable under direct limits
and free-products of discrete quantum groups.

Free-product argument makes essential use of [Ricard–Xu] work.
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Compact and discrete case

Definition
G is compact when C0(G) is unital; we write C (G).L

is discrete when
L̂

is compact.

Recall that compact quantum groups have a representation theory
closely paralleling that for classical compact groups: Irr(

L̂
) is the set of

equivalence classes of irreducible (finite-dimensional) corepresentations
of (C (

L̂
), ∆).

By duality, this implies a structure for discrete quantum groups:

c0(
L
) =

⊕
α∈Irr(

L̂
)

Mdim(α), ℓ∞(
L
) =

∏
α∈Irr(

L̂
)

Mdim(α).

Notice that the centres of these algebras can be identified with
c0(Irr(

L̂
)) and ℓ∞(Irr(

L̂
)) respectively.
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Central multipliers
In many examples, it turns out that one constructs multipliers on
discrete quantum groups which are central (in Zℓ∞(

L
)).

Definition

Two compact quantum groups
L̂

1 and
L̂

2 are monoidally equivalent if
the monoidal C ∗-tensor categories Rep(

L̂
1) and Rep(

L̂
2) are

isomorphic.

[Freslon], using constructions from [Bichon–De Rijdt–Vaes], showed
that central cb multipliers can be transferred between monoidally
equivalent discrete quantum groups.
More recently, [Arano–de Laat–Wahl], [Arano–Vaes], [Popa–Vaes] and
[Ghosh–Jones] have defined and studied a notion of cb multiplier for
abstract rigid monoidal C ∗-tensor categories, and shown that this
notion agrees with that of central multipliers of

L
, when applied to

Rep(
L̂
).
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Drinfeld doubles

A useful tool here is that of the Drinfeld Double of a quantum group G.

Definition
D(G) is the locally compact quantum group with
L∞(D(G)) = L∞(G)⊗̄L∞(Ĝ) and

∆D(G)(x ) = (id⊗χ ◦ ad(W )⊗ id)(∆⊗ ∆̂).

Here χ : L∞(G)⊗̄L∞(Ĝ) → L∞(Ĝ)⊗̄L∞(G) is the tensor swap map, and
ad(W )(x ) = WxW ∗; recall that W ∈ L∞(G)⊗̄L∞(Ĝ).

Much as the crossed-product classifies covariant actions, the
Drinfeld double is related to Yetter–Drinfeld coactions.

I get some intuition by thinking about bradings: D̂(G) is
generated by copies of G and Ĝ which commute non-trivially.
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Central multipliers and doubles
We now consider D(

L
) = ℓ∞(

L
)⊗̄L∞(

L̂
).

Remember we have Mcb(Rep(
L̂
)), a space of cb-multipliers on the rigid

monoidal C ∗-tensor category Rep(
L̂
). The definition is complicated,

but any such multiplier is determined uniquely by a bounded family of
scalars (aα)α∈Irr(

L̂
)
. Indeed, a 7→ (aα) ∈ Zℓ∞(

L
) is the bijection

Mcb(Rep(
L̂
)) → ZMcb(A(

L
)).

Proposition (D.–Krajczok–Voigt)

The category multipliers Mcb(Rep(
L̂
)) is a dual space. The maps

Mcb(Rep(
L̂
)) → ZMcb(

L
); a 7→ (aα)

and
ZMcb(

L
) → Mcb(A(D(

L
))); a 7→ a ⊗ 1,

are weak∗-weak∗-continuous isomorphisms.
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Approximation property

Definition

Rep(
L̂
) has the AP when the identity multiplier is in the weak∗-closure

of the finitely-supported multipliers in Mcb(Rep(
L̂
)).

Definition
L

has the AP when the identity multiplier is in the weak∗-closure of
the finitely-supported multipliers in Mcb(A(

L
)).

Corollary (D.–Krajczok–Voigt)
L

has the central AP if and only if Rep(
L̂
) has the AP. This

condition implies that D(
L
) has the AP; and if

L
is unimodular,

the converse holds.

Notice “finite-support” not “centre of the Fourier algebra”.
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Averaging
We are motivated by some classical proofs about (non)AP for Lie
groups:

if one has a compact subgroup, then averaging functions (with
respect to the Haar probability measure) maps: Fourier algebra
elements to Fourier algebra elements; and multipliers to
multipliers.
The same is true for quantum groups!

Definition

We have that
L̂
⩽ G when there is a surjective Hopf ∗-homomorphism

π : C u
0 (G) → C u(

L̂
).

This implies a formally stronger property (an analogue of the Herz
restriction theorem):

∃ π̂ : ℓ∞(
L
) ↪→ L∞(Ĝ).
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Averaging cont.

To avoid technicalities, suppose we actually have

π : C0(G) → C (
L̂
).

With h ∈ L1(
L
) the Haar state, we can consider hπ ∈ C0(G)∗. Define

Ξ : C0(G) → C0(G); x 7→ (hπ⊗ id⊗hπ)∆2(x ).

This is a conditional expectation of C0(G) onto the subalgebra

C0(
L̂
\G/

L̂
) =

{
x ∈ C0(G) : (π⊗ id)∆(x ) = 1⊗x , (id⊗π)∆(x ) = x ⊗1

}
.

This extends to a normal map on L∞(G).

It restricts to A(G) and McbA(G), continuous in the natural
norms.
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For the Drinfeld double

We have

π : D(
L
) = ℓ∞(

L
)⊗̄L∞(

L̂
) → L∞(

L̂
); π = ϵ⊗ id,

where ϵ ∈ ℓ1(
L
) is the counit.

So we can average, and hence consider L∞(
L̂
\D(

L
)/
L̂
) and so

forth.

This space of invariants is exactly equal to Zℓ∞(
L
)⊗ 1.

Similarly C0(
L̂
\D(

L
)/
L̂
) = Zc0(

L
)⊗ 1.

Similarly Mcb(A(
L̂
\D(

L
)/
L̂
)) = ZMcb(A(

L
))⊗ 1.
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Application

Theorem (D.–Krajczok–Voigt)
L

has the central AP if and only if D(
L
) has the AP. The same is

true for strong amenability and weak amenability (and the
Haagerup property).

This is still using “finite support” to define the central APs.

When
L

is unimodular, there is another “averaging” procedure
(given by a Haar-state-invariant conditional expectation). This
shows that you can define the central APs using the centre of the
Fourier algebra, not finitely supported central elements.

(But of course, in the unimodular case, you can always just
average things to be central anyway!)
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What’s the invariant Fourier algebra?

We have
Mcb(A(

L̂
\D(

L
)/
L̂
)) = ZMcb(A(

L
))⊗ 1

and so forth; but not for the Fourier algebra, only

A(
L̂
\D(

L
)/
L̂
) ⊆ ZA(

L
)⊗ 1.

Theorem (D.–Krajczok–Voigt)
We have equality in the above if and only if Zc00(

L
) is dense in

ZA(
L
).

Corollary
When

L
is unimodular, we have equality.
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A counter-example

Using some calculations of [DeCommer–Freslon–Yamashita] we obtain:

Theorem (D.–Krajczok–Voigt)

With
L
= ŜUq(2) we have that A(

L̂
\D(

L
)/
L̂
) ̸= A(

L
)⊗ 1. So

Zc00(
L
) is not dense in ZA(

L
).

One is meant to finish with a question: Could the equality
A(

L̂
\D(

L
)/
L̂
) = ZA(

L
)⊗ 1 characterise that

L
is unimodular?
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