Approximation properties and averaging for Drinfeld Doubles

Matthew Daws

Lancaster University

Besançon, December 2023

Matthew Daws

AP and averaging

December 2023

The plan

This talk will be about a number of inter-linked topics:

- Locally compact quantum groups.
- The approximation property which is a (big) weakening of the notion of amenability.
- An *averaging procedure* when we have a compact quantum subgroup.
- How this all works for Drinfeld doubles.
- Oulminating in a link between approximation properties for Drinfeld doubles and central approximation properties for discrete quantum groups.

Locally compact quantum groups

Abstract object \mathbb{G} with:

- von Neumann algebra $L^{\infty}(\mathbb{G})$;
- equipped with a coproduct Δ: L[∞](G) → L[∞](G) ⊗L[∞](G) which is coassociative: (Δ ⊗ id)Δ = (id ⊗Δ)Δ;
- which has weights ϕ, ψ which are left/right invariant, e.g.

$$egin{aligned} & egin{aligned} & \phiig((oldsymbol{\omega}\otimes\mathsf{id})\Delta(x)ig)=\phi(x)\omega(1) & (x\in\mathfrak{M}^+_arphi,oldsymbol{\omega}\in L^1(\mathbb{G})^+). \end{aligned}$$

From this, one gets:

- $L^1(\mathbb{G})$ becomes a Banach algebra, product induced by Δ ;
- GNS for φ gives $L^2(\mathbb{G})$ with $L^{\infty}(\mathbb{G})$ in standard position;
- a multiplicative unitary W, so $W_{12}W_{13}W_{23} = W_{23}W_{12}$;
- $\Delta(x) = W^*(1 \otimes x) W$ and $C_0(\mathbb{G})$ is the closure of $\{(id \otimes \omega)(W) : \omega \in \mathcal{B}(L^2(\mathbb{G}))_*\}; L^{\infty}(\mathbb{G})$ is the weak*-closure.

Duality

$$\lambda: L^1(\mathbb{G}) \to \mathcal{B}(L^2(\mathbb{G})); \quad \omega \mapsto (\omega \otimes \mathsf{id})(W)$$

is a homomorphism. The closure of its image is a C^* -algebra $C_0(\widehat{\mathbb{G}})$.

- There indeed exists $\widehat{\mathbb{G}}$ a LCQG; $L^{\infty}(\widehat{\mathbb{G}})$ is the weak*-closure.
- There is $\widehat{\varphi}$ so that $L^2(\widehat{\mathbb{G}}) = L^2(\mathbb{G})$ canonically.
- $W \in L^{\infty}(\mathbb{G})\overline{\otimes}L^{\infty}(\widehat{\mathbb{G}})$ and $\widehat{W} = \sigma(W^*)$ where σ is the swap map.

For G a locally compact group, set $L^\infty(\mathbb{G}) = L^\infty(G)$ and

$$\Delta(F)(s,t)=F(st) \qquad (F\in L^\infty(G),s,t\in G),$$

and φ, ψ the left/right Haar integrals. Then we find that $L^{\infty}(\widehat{\mathbb{G}}) = VN(G)$ and $C_0(\widehat{\mathbb{G}}) = C_r^*(G)$, and

$$\widehat{\Delta}: \lambda_s \mapsto \lambda_s \otimes \lambda_s,$$

where $\lambda_s \in VN(G)$ is the left translation operator by $s \in G$.

The Fourier algebra

Classicaly, the Fourier algebra, A(G), is the (non-closed) subalgebra of $C_0(G)$ formed by coefficients of the left-regular representation. In the quantum group framework, consider

$$\widehat{\lambda}: L^1(\widehat{G}) = VN(G)_* o C_0(\widehat{\widehat{G}}) = C_0(G).$$

The image, equipped with the norm from $L^1(\widehat{G})$, is exactly A(G).

Definition

We define $A(\mathbb{G}) = \widehat{\lambda}(L^1(\widehat{\mathbb{G}}))$ with the norm from $L^1(\widehat{\mathbb{G}})$, but thought of as a subalgebra of $C_0(\mathbb{G})$.

Amenability

Theorem (Leptin)

G is amenable if and only if A(G) has a bounded approximate identity.

There is a notion of amenability for \mathbb{G} involving an invariant mean which seems a priori weaker, so we define away the issue.

Theorem (Bédos-Tuset)

The following are equivalent and define what it means for $\mathbb G$ to be strongly amenable:

- $\textcircled{0}\ \widehat{\mathbb{G}}$ is co-amenable, meaning that $C_0(\widehat{\mathbb{G}})$ has a bounded counit;
- 2 $A(\mathbb{G}) \cong L^1(\widehat{\mathbb{G}})$ has a bai;
- $A(\mathbb{G}) \cong L^1(\widehat{\mathbb{G}})$ has a bai consisting of states;
- $C_0(\widehat{\mathbb{G}}) = C_0^u(\widehat{\mathbb{G}})$ (the universal and reduced C^{*}-algebraic quantum groups agree).

Weakening amenability

To weaken the property of A(G) having a bounded approximate identity, we embed A(G) in a larger algebra of (completely bounded) *multipliers*: functions which multiply elements of A(G) into itself.

Definition

An element $a \in L^{\infty}(\mathbb{G})$ is a *left multiplier* of $A(\mathbb{G})$ when $aA(\mathbb{G}) \subseteq A(\mathbb{G})$.

So a multiplier induces a map $L: L^1(\widehat{\mathbb{G}}) \to L^1(\widehat{\mathbb{G}})$ which satisfies

$$a\widehat{\lambda}(\widehat{\omega}) = \widehat{\lambda}(L(\widehat{\omega})) \quad (\widehat{\omega} \in L^1(\widehat{\mathbb{G}})).$$

Thus $L(\widehat{\omega}_1 \star \widehat{\omega}_2) = L(\widehat{\omega}_1) \star \widehat{\omega}_2$, meaning L is a left centraliser.

Definition

a is completely bounded if the Banach space adjoint of the associated L is cb as a map $L^{\infty}(\widehat{\mathbb{G}}) \to L^{\infty}(\widehat{\mathbb{G}})$.

Multipliers

Theorem (Junge–Neufang–Ruan)

Let $L: L^1(\widehat{\mathbb{G}}) \to L^1(\widehat{\mathbb{G}})$ be a completely bounded left centraliser. Then there is $a \in L^{\infty}(\mathbb{G})$ a multiplier which is associated to L.

The resulting space $M_{cb}A(\mathbb{G})$ is a Banach algebra for the completely bounded norm. It contains $A(\mathbb{G})$, but the resulting map $A(\mathbb{G}) \to M_{cb}A(\mathbb{G})$ may not be bounded below.

Definition

 \mathbb{G} is weakly amenable if $A(\mathbb{G})$ has an approximate identity bounded for the cb-multiplier norm.

Weak*-topologies

As $M_{cb}A(\mathbb{G}) \subseteq L^{\infty}(\mathbb{G})$, any $L^1(\mathbb{G})$ functional induces a functional on $M_{cb}A(\mathbb{G})$.

Definition

Let $Q_{cb}A(\mathbb{G})$ be the closure of such functionals in the dual space $M_{cb}A(\mathbb{G})^*$.

Then it turns out that $Q_{cb}A(\mathbb{G})^*$ is canonically equal to $M_{cb}A(\mathbb{G})$, and so we have a weak*-topology on $M_{cb}A(\mathbb{G})$.

Definition (D.-Krajczok-Voigt)

 \mathbb{G} has the approximation property when the weak*-closure of $A(\mathbb{G})$ in $M_{cb}A(\mathbb{G})$ contains the identity multiplier.

Previously, a priori stronger (but actually equivalent) definitions due to [Crann], [Kraus-Ruan].

9/21

The approximation property

We studied this concept (due to Haagerup-Kraus classically).

Theorem (D.-Krajczok-Voigt)

The AP passes to quantum subgroups. Stable under direct limits and free-products of discrete quantum groups.

Free-product argument makes essential use of [Ricard-Xu] work.

Compact and discrete case

Definition

```
\mathbb{G} is compact when C_0(\mathbb{G}) is unital; we write C(\mathbb{G}).
\mathbb{\Gamma} is discrete when \widehat{\mathbb{\Gamma}} is compact.
```

Recall that compact quantum groups have a representation theory closely paralleling that for classical compact groups: $Irr(\widehat{\Gamma})$ is the set of equivalence classes of irreducible (finite-dimensional) corepresentations of $(C(\widehat{\Gamma}), \Delta)$.

By duality, this implies a structure for discrete quantum groups:

$$c_0(\mathbb{\Gamma}) = \bigoplus_{\alpha \in Irr(\widehat{\mathbb{\Gamma}})} \mathbb{M}_{dim(\alpha)}, \quad \ell^{\infty}(\mathbb{\Gamma}) = \prod_{\alpha \in Irr(\widehat{\mathbb{\Gamma}})} \mathbb{M}_{dim(\alpha)}.$$

Notice that the centres of these algebras can be identified with $c_0(\operatorname{Irr}(\widehat{\Gamma}))$ and $\ell^{\infty}(\operatorname{Irr}(\widehat{\Gamma}))$ respectively.

Central multipliers

In many examples, it turns out that one constructs multipliers on discrete quantum groups which are *central* (in $\mathcal{I}\ell^{\infty}(\mathbb{T})$).

Definition

Two compact quantum groups $\widehat{\Gamma}_1$ and $\widehat{\Gamma}_2$ are *monoidally equivalent* if the monoidal C^* -tensor categories $\operatorname{Rep}(\widehat{\Gamma}_1)$ and $\operatorname{Rep}(\widehat{\Gamma}_2)$ are isomorphic.

[Freslon], using constructions from [Bichon-De Rijdt-Vaes], showed that central cb multipliers can be transferred between monoidally equivalent discrete quantum groups.

More recently, [Arano-de Laat-Wahl], [Arano-Vaes], [Popa-Vaes] and [Ghosh-Jones] have defined and studied a notion of cb multiplier for abstract rigid monoidal C^* -tensor categories, and shown that this notion agrees with that of central multipliers of \mathbb{T} , when applied to $\operatorname{Rep}(\widehat{\mathbb{T}})$.

Drinfeld doubles

A useful tool here is that of the Drinfeld Double of a quantum group \mathbb{G} .

Definition

 $D(\mathbb{G})$ is the locally compact quantum group with $L^{\infty}(D(\mathbb{G})) = L^{\infty}(\mathbb{G}) \overline{\otimes} L^{\infty}(\widehat{\mathbb{G}})$ and

 $\Delta_{D(\mathbb{G})}(\boldsymbol{x}) = (\mathsf{id} \otimes \chi \circ \mathsf{ad}(W) \otimes \mathsf{id})(\Delta \otimes \widehat{\Delta}).$

Here $\chi: L^{\infty}(\mathbb{G})\bar{\otimes}L^{\infty}(\widehat{\mathbb{G}}) \to L^{\infty}(\widehat{\mathbb{G}})\bar{\otimes}L^{\infty}(\mathbb{G})$ is the tensor swap map, and $\operatorname{ad}(W)(x) = WxW^*$; recall that $W \in L^{\infty}(\mathbb{G})\bar{\otimes}L^{\infty}(\widehat{\mathbb{G}})$.

- Much as the crossed-product classifies covariant actions, the Drinfeld double is related to Yetter-Drinfeld coactions.
- I get some intuition by thinking about *bradings*: $\widehat{D}(\mathbb{G})$ is generated by copies of \mathbb{G} and $\widehat{\mathbb{G}}$ which commute non-trivially.

Central multipliers and doubles

We now consider $D(\Gamma) = \ell^{\infty}(\Gamma) \bar{\otimes} L^{\infty}(\widehat{\Gamma})$.

Remember we have $M_{cb}(\operatorname{Rep}(\widehat{\Gamma}))$, a space of cb-multipliers on the rigid monoidal C^* -tensor category $\operatorname{Rep}(\widehat{\Gamma})$. The definition is complicated, but any such multiplier is determined uniquely by a bounded family of scalars $(a_{\alpha})_{\alpha \in \operatorname{Irr}(\widehat{\Gamma})}$. Indeed, $a \mapsto (a_{\alpha}) \in \mathbb{Z}\ell^{\infty}(\Gamma)$ is the bijection $M_{cb}(\operatorname{Rep}(\widehat{\Gamma})) \to \mathbb{Z}M_{cb}(A(\Gamma)).$

Proposition (D.-Krajczok-Voigt)

The category multipliers $M_{cb}(\operatorname{Rep}(\widehat{\Gamma}))$ is a dual space. The maps

$$M_{cb}(\mathsf{Rep}(\widehat{\Gamma})) \to \mathcal{Z}M_{cb}(\Gamma); \quad a \mapsto (a_{\alpha})$$

and

$$\mathcal{Z}M_{cb}(\mathbb{\Gamma}) \to M_{cb}(A(D(\mathbb{\Gamma}))); \quad a \mapsto a \otimes 1,$$

are weak*-weak*-continuous isomorphisms.

Matthew Daws

AP and averaging

Approximation property

Definition

 $\operatorname{Rep}(\widehat{\Gamma})$ has the AP when the identity multiplier is in the weak*-closure of the finitely-supported multipliers in $M_{cb}(\operatorname{Rep}(\widehat{\Gamma}))$.

Definition

 Γ has the AP when the identity multiplier is in the weak*-closure of the finitely-supported multipliers in $M_{cb}(A(\Gamma))$.

Corollary (D.-Krajczok-Voigt)

 Γ has the central AP if and only if $\operatorname{Rep}(\widehat{\Gamma})$ has the AP. This condition implies that $D(\Gamma)$ has the AP; and if Γ is unimodular, the converse holds.

Notice "finite-support" not "centre of the Fourier algebra".

Averaging

We are motivated by some classical proofs about (non)AP for Lie groups:

- if one has a compact subgroup, then averaging functions (with respect to the Haar probability measure) maps: Fourier algebra elements to Fourier algebra elements; and multipliers to multipliers.
- The same is true for quantum groups!

Definition

We have that $\widehat{\Gamma} \leqslant \mathbb{G}$ when there is a surjective Hopf *-homomorphism

$$\pi\colon C^u_0(\mathbb{G})\to C^u(\widehat{\mathbb{\Gamma}}).$$

This implies a formally stronger property (an analogue of the Herz restriction theorem):

$$\exists \ \widehat{\pi} \colon \ell^{\infty}(\mathbb{\Gamma}) \hookrightarrow L^{\infty}(\widehat{\mathbb{G}}).$$

Averaging cont.

To avoid technicalities, suppose we actually have

 $\pi: C_0(\mathbb{G}) \to C(\widehat{\Gamma}).$

With $h \in L^1(\mathbb{T})$ the Haar state, we can consider $h\pi \in C_0(\mathbb{G})^*$. Define

 $\Xi : C_0(\mathbb{G}) \to C_0(\mathbb{G}); \quad x \mapsto (h\pi \otimes \operatorname{id} \otimes h\pi) \Delta^2(x).$

This is a conditional expectation of $C_0(\mathbb{G})$ onto the subalgebra

$$C_0(\widehat{\Gamma} \setminus \mathbb{G} / \widehat{\Gamma}) = \big\{ x \in C_0(\mathbb{G}) : (\pi \otimes \mathsf{id}) \Delta(x) = 1 \otimes x, \; (\mathsf{id} \otimes \pi) \Delta(x) = x \otimes 1 \big\}.$$

- This extends to a normal map on $L^{\infty}(\mathbb{G})$.
- It restricts to $A(\mathbb{G})$ and $M_{cb}A(\mathbb{G})$, continuous in the natural norms.

For the Drinfeld double

We have

$$\pi: D(\Gamma) = \ell^{\infty}(\Gamma) \bar{\otimes} L^{\infty}(\widehat{\Gamma}) \to L^{\infty}(\widehat{\Gamma}); \quad \pi = \epsilon \otimes \operatorname{id},$$

where $\epsilon \in \ell^1(\Gamma)$ is the counit.

- So we can average, and hence consider $L^{\infty}(\widehat{\Gamma} \setminus D(\Gamma) / \widehat{\Gamma})$ and so forth.
- This space of invariants is exactly equal to $\mathcal{Z}\ell^{\infty}(\mathbb{\Gamma})\otimes 1$.
- Similarly $C_0(\widehat{\Gamma} \setminus D(\Gamma) / \widehat{\Gamma}) = \mathfrak{Z}c_0(\Gamma) \otimes 1.$
- Similarly $M_{cb}(A(\widehat{\Gamma} \setminus D(\Gamma) / \widehat{\Gamma})) = \mathbb{Z}M_{cb}(A(\Gamma)) \otimes 1.$

Application

Theorem (D.-Krajczok-Voigt)

 Γ has the central AP if and only if $D(\Gamma)$ has the AP. The same is true for strong amenability and weak amenability (and the Haagerup property).

- This is still using "finite support" to define the central APs.
- (But of course, in the unimodular case, you can always just average things to be central anyway!)

What's the invariant Fourier algebra?

We have

$$M_{cb}(A(\widehat{\mathbb{\Gamma}} \setminus D(\mathbb{\Gamma})/\widehat{\mathbb{\Gamma}})) = \mathbb{Z}M_{cb}(A(\mathbb{\Gamma})) \otimes 1$$

and so forth; but not for the Fourier algebra, only

$$A(\widehat{\Gamma} \setminus D(\Gamma) / \widehat{\Gamma}) \subseteq \mathbb{Z}A(\Gamma) \otimes \mathbb{1}.$$

Theorem (D.-Krajczok-Voigt)

We have equality in the above if and only if $\mathcal{Z}c_{00}(\mathbb{T})$ is dense in $\mathcal{Z}A(\mathbb{T})$.

Corollary

When $\[Gamma]$ is unimodular, we have equality.

Using some calculations of [DeCommer-Freslon-Yamashita] we obtain:

Theorem (D.-Krajczok-Voigt) With $\Gamma = \widehat{SU_q(2)}$ we have that $A(\widehat{\Gamma} \setminus D(\Gamma)/\widehat{\Gamma}) \neq A(\Gamma) \otimes 1$. So $\mathcal{Z}c_{00}(\Gamma)$ is not dense in $\mathcal{Z}A(\Gamma)$.

One is meant to finish with a question: Could the equality $A(\widehat{\Gamma} \setminus D(\Gamma) / \widehat{\Gamma}) = \mathbb{Z}A(\Gamma) \otimes 1$ characterise that Γ is unimodular?