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The plan

This talk will be about a number of inter-linked topics:
© Locally compact quantum groups.

© The approzimation property which is a (big) weakening of the
notion of amenability.

@ An averaging procedure when we have a compact quantum
subgroup.

@ How this all works for Drinfeld doubles.

@ Culminating in a link between approximation properties for

Drinfeld doubles and central approximation properties for discrete
quantum groups.
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Locally compact quantum groups

Abstract object G with:
@ von Neumann algebra L*®(G);

@ equipped with a coproduct A: L®(G) — L*®(G)®L*(G) which is
coassociative: (A ® id)A = (id RA)A;

e which has weights ¢,1{ which are left/right invariant, e.g.
¢ ((w®id)A(z)) = e(z)w(1) (z € MY, w e LHG)™).

From this, one gets:
o L'(G) becomes a Banach algebra, product induced by A;
@ GNS for ¢ gives L?(G) with L*®(G) in standard position;
@ a multiplicative unitary W, so Wiy Wiz Waz = Wos Wia;

o Alz) = W*(1®z)W and Cy(G) is the closure of
{(i[dRw)(W):w e B(L*(G)),); L®(G) is the weak*-closure.
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Duality

A LHG) = B(LA(G)); w = (weid)(W)
is a homomorphism. The closure of its image is a C*-algebra Cy(G).
o There indeed exists G a LCQG; Loo(@) is the weak*-closure.
o There is ¢ so that L2(G) = L?(G) canonically.
e W e LOO(G)@LOO(@) and W = o( W*) where o is the swap map.
For G a locally compact group, set L*°(G) = L*°(G) and

A(F)(s,t) = F(st) (F e L™(G),s, t € G),

and @, the left/right Haar integrals.
Then we find that L*°(G) = VN(G) and Cy(G) = C}(G), and

A A = As @ As,

where A; € VN (G) is the left translation operator by s € G.
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The Fourier algebra

Classicaly, the Fourier algebra, A(G), is the (non-closed) subalgebra
of Cy(@G) formed by coefficients of the left-regular representation. In
the quantum group framework, consider

~
~

A:LYG) = VN(G)s — Co(G) = Co(G).

The image, equipped with the norm from Ll(aY ), is exactly A(G).
Definition

We define A(G) = A(L}(G)) with the norm from L!(G), but thought of
as a subalgebra of Cy(G).
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Amenability
Theorem (Leptin)

G 1is amenable if and only if A(G) has a bounded approximate
identity.

There is a notion of amenability for G involving an invariant mean
which seems a priori weaker, so we define away the issue.
Theorem (Bédos—Tuset)

The following are equivalent and define what it means for G to be
strongly amenable:

O G is co-amenable, meaning that Co(@) has a bounded counit;
Q A(G) = L}(G) has a bai;
Q AG) = Ll(@) has a bai consisting of states;

o C’o(@) = cgt(@) (the universal and reduced C*-algebraic
quantum groups agree).

V.
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Weakening amenability

To weaken the property of A(G) having a bounded approximate
identity, we embed A(G) in a larger algebra of (completely bounded)
multipliers: functions which multiply elements of A(G) into itself.

Definition

An element a € L®(G) is a left multiplier of A(G) when
aA(G) C A(G).

So a multiplier induces a map L: Ll(@) — Ll(@) which satisfies

@) = AL®)) (D € LYG)).

Thus L(W; « Wy) = L(®1) * Wy, meaning L is a left centraliser.

Definition

a is completely bounded if the Banach space adjoint of the associated

~ ~

L is cb as a map L>®(G) — L*°(G).
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Multipliers

Theorem (Junge-Neufang-Ruan)

Let L: I}(G) — L'(G) be a completely bounded left centraliser.
Then there 1s a € L*(G) a multiplier which 1s associated to L.

The resulting space M., A(G) is a Banach algebra for the completely
bounded norm. It contains A(G), but the resulting map
A(G) - M, A(G) may not be bounded below.

Definition

G is weakly amenable if A(G) has an approximate identity bounded
for the cb-multiplier norm.
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Weak*-topologies
As M, A(G) C L*®(G), any L*(G) functional induces a functional on
M, A(G).

Definition

Let Q. A(G) be the closure of such functionals in the dual space
MHA(G)*.

Then it turns out that Q. A(G)* is canonically equal to M., A(G), and
so we have a weak*-topology on M., A(G).
Definition (D.-Krajczok—Voigt)

G has the approrimation property when the weak*-closure of A(G) in
M., A(G) contains the identity multiplier.

Previously, a priori stronger (but actually equivalent) definitions due
to [Crann], [Kraus—Ruan].
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The approximation property

We studied this concept (due to Haagerup—Kraus classically).
Theorem (D.—Krajczok—Voigt)

The AP passes to quantum subgroups. Stable under direct limits
and free-products of discrete quantum groups.

Free-product argument makes essential use of [Ricard—Xu| work.
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Compact and discrete case

Definition
G is compact when Cy(G) is unital; we write C(G).
I" is discrete when I is compact.

Recall that compact quantum groups have a representation theory
closely paralleling that for classical compact groups: Irr(H/:‘) is the set of
equivalence classes of irreducible (finite-dimensional) corepresentations
of (C (), A).

By duality, this implies a structure for discrete quantum groups:

o= P Momw), M= ][] Miimia-

o€Elrr(IY) o€lrr ()

Notice that the centres of these algebras can be identified with

~ ~

co(lrr(I)) and £%°(lrr(I")) respectively.
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Central multipliers

In many examples, it turns out that one constructs multipliers on
discrete quantum groups which are central (in Z£*(I")).

Definition

Two compact quantum groups ]f‘l and I[A"z are monotdally equivalent if
the monoidal C*-tensor categories Rep(I';) and Rep(I'y) are
isomorphic.

[Freslon], using constructions from [Bichon-De Rijdt—Vaes], showed
that central cb multipliers can be transferred between monoidally
equivalent discrete quantum groups.

More recently, [Arano—de Laat—Wahl], [Arano—Vaes]|, [Popa—Vaes] and
[Ghosh—Jones| have defined and studied a notion of cb multiplier for
abstract rigid monoidal C*-tensor categories, and shown that this
notioAn agrees with that of central multipliers of I', when applied to
Rep(I).
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Drinfeld doubles

A useful tool here is that of the Drinfeld Double of a quantum group G.
Definition
D(G) is the locally compact quantum group with
L®(D(G)) = L*®(G)®L*®(G) and
Apg)(z) = (id@x 0 ad( W) ®id)(A ® A).

Here x: L®(G)&L®(G) — L®(G)®L®(G) is the tensor swap map, and
ad(W)(z) = WzW*; recall that W € L®(G)RL>®(G).

V.

@ Much as the crossed-product classifies covariant actions, the
Drinfeld double is related to Yetter—Drinfeld coactions.

—

o I get some intuition by thinking about bradings: D(G) is
generated by copies of G and G which commute non-trivially.
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Central multipliers and doubles
We now consider D(T") = ¢*°(I")&L>®(T).

~

Remember we have M., (Rep(I")), a space of cb-multipliers on the rigid
monoidal C*-tensor category Rep(I"). The definition is complicated,
but any such multiplier is determined uniquely by a bounded family of
scalars (a“)aelrr(f‘)' Indeed, a +— (ay) € ZL°(I") is the bijection
Mes(Rep(T)) = 2Mes(A(T)).

Proposition (D.—Krajczok—Voigt)
The category multipliers Mcb(Rep(f‘)) 1s a dual space. The maps
Mes(Rep(T)) = ZMep(T); @ = (aq)
and
ZMp(T') = Mp(A(DT))); aw a®l,

are weak*-weak™ -continuous tsomorphisms.

4
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Approximation property

Definition

Rep(f‘) has the AP when the identity multiplier is in the weak*-closure

~

of the finitely-supported multipliers in M, (Rep(T)).

V.

Definition

I" has the AP when the identity multiplier is in the weak*-closure of
the finitely-supported multipliers in M, (A(T")).

Corollary (D.—Krajczok—Voigt)

" has the central AP if and only if Rep(I") has the AP. This
condition implies that D(T") has the AP; and if " is unimodular,
the converse holds.

Notice “finite-support” not “centre of the Fourier algebra”.
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Averaging
We are motivated by some classical proofs about (non)AP for Lie
groups:
o if one has a compact subgroup, then averaging functions (with
respect to the Haar probability measure) maps: Fourier algebra

elements to Fourier algebra elements; and multipliers to
multipliers.

@ The same is true for quantum groups!
Definition

We have that T < G when there is a surjective Hopf *-homomorphism

m: CE(G) —» C¥(ID).

This implies a formally stronger property (an analogue of the Herz
restriction theorem):

3 7 () — L®(G).
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Averaging cont.

To avoid technicalities, suppose we actually have
m: Co(G) — C(I).
With A € L}(I") the Haar state, we can consider A € Co(G)*. Define
2 G(G) = Co(G); z— (hn®id@hm)A%(z).
This is a conditional expectation of Cy(G) onto the subalgebra

Co(T\G/T) = {z € Cy(G) : (n®id)A(z) = 1®z, (demA(z) =z®1}.

@ This extends to a normal map on L>®(G).

o It restricts to A(G) and M., A(G), continuous in the natural
norms.
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For the Drinfeld double

We have
7: D(T) = (®()RL®([) —» L®([); m=e®id,

where e € (}(I") is the counit.

@ So we can average, and hence consider L°°(]I/:‘\D(]I“) /I/[\") and so
forth.

@ This space of invariants is exactly equal to Z{*°(I") ® 1.
e Similarly Co(I\D(I")/T) = 2Zco(T") ® 1.
e Similarly M. (A(I\D(T")/T)) = ZM(A()) ® 1.
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Application

Theorem (D.—Krajczok—Voigt)

I" has the central AP if and only if D(I") has the AP. The same is
true for strong amenability and weak amenability (and the
Haagerup property).

o This is still using “finite support” to define the central APs.

@ When I'' is unimodular, there is another “averaging” procedure
(given by a Haar-state-invariant conditional expectation). This
shows that you can define the central APs using the centre of the
Fourier algebra, not finitely supported central elements.

@ (But of course, in the unimodular case, you can always just
average things to be central anyway!)
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What’s the invariant Fourier algebra?

We have R R
Mep(A(T\D(T")/T)) = ZM(A(T)) @ 1

and so forth; but not for the Fourier algebra, only
A(M\D(I")/T) C ZA(I) ® 1.

Theorem (D.—Krajczok—Voigt)

We have equality in the above if and only if Zcoo(I") 2s dense in
ZA().

Corollary

When I 1s unimodular, we have equality.
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A counter-example

Using some calculations of [DeCommer—Freslon—Yamashita] we obtain:
Theorem (D.—Krajczok—Voigt)

With T' = SU,(2) we have that A(T\D(I")/T') # A(T) ® 1. So
Zcgo(IM) 2s not dense in ZA(ID).

One is meant to finish with a question: Could the equality
A(IM\D(T")/T) = ZA(T") ® 1 characterise that I" is unimodular?
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