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Consider the bilateral shift S on `1(Z),

S(x)(n) = x(n− 1) (x ∈ `1(Z), n ∈ Z).

This is obviously weak∗-continuous with respect to
the predual c0(Z). Can it ever be weak∗-continuous
for another predual?

One class of isometric preduals for `1(Z) arise in the following

way. Let K be a countable, locally compact Hausdorff space,

and consider the Banach space C0(K). Then the dual is C0(K)′,

which may be identified with the space of regular measures on

K, M(K). As K is countable and every measure is countably

additive, we see that M(K) = `1(K). By choosing some bijection

between K and Z, we have get an isometric isomorphism between

the dual of C0(K) and `1(Z). However, a few moment’s thought

reveals that if S is weak∗-continuous, then something odd is

happening to the accumulation points in K. It hence seems

unlikely that S will be weak∗-continuous: indeed, we shall show

later that S is only weak∗-continuous when K is discrete

If S is weak∗-continuous, then so is every operator in
the algebra generated by S; it follows that the convo-
lution product on the Banach algebra `1(Z) becomes
separately weak∗-continuous.
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Runde defined such algebras to be dual Banach alge-
bras: they are somehow a generalisation of von Neu-
mann algebras.

The author has shown that dual Banach algebras are precisely

the algebras which arise as weak∗-closed subalgebras of B(E), for

reflexive Banach spaces E. Here B(E) is the algebra of operators

on E, which is a dual Banach algebra with respect to the predual

E⊗̂E′, the projective tensor product of E with E′. See “Dual

Banach algebras: representations and injectivity”, Studia Math.

178 (2007).

Big question: Does varying the predual alter the prop-
erties of the algebra? Indeed, can we vary the predual?

Of course, my interest is in the question: what are the algebraic

preduals of `1(Z)? However, it is nice to introduce the problem

is a very concrete way, as it shows how basic the question really

is.

Of course, it is well-known that von Neumann algebras
have unique preduals. This is best stated as follows: if
M is a von Neumann algebra, E is a Banach space and
φ : M→ E′ is an isometry, then φ is weak∗-continuous.



Pe lczyński showed that `∞(N) and L∞[0, 1] are isomor-
phic, so we really do need the condition “isometric”.

Theorem (D.). Let M be a commutative von Neu-
mann algebra, let A be a dual Banach algebra, and
let φ : M → A be an algebra isomorphism. Then φ is
weak∗-continuous.

See the previously mentioned Studia paper. Here, of course,

an algebra isomorphism is a Banach space isomorphism which

is also an algebra homomorphism. So the “uniqueness of pred-

ual” property still holds if we ignore the involution, and consider

merely bounded maps instead of isometric maps.

Theorem (D. & White). This holds for general von
Neumann algebras M.

This follows easily, as, in a sense, the weak∗-topology on a von

Neumann algebra is determined by its abelian subalgebras. Then

observe that a maximal abelian subalgebra must be weak∗-closed

regardless of the predual.

We have a few other general statements about al-
gebras with unique preduals. Of interest here is that
for some semigroups, the semigroup algebra `1(S) can
have a unique predual. This holds when S = N with
the operation max, for example.

If E is a predual for a dual Banach algebra A, then we
have the canonical map

E ↪→ E′′ = A′,
and Runde showed that E must be a submodule of
A′.
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By fixing E as a subspace of A′, we have the useful property
that if F ⊆ A′ is another predual, then E and F give the same
weak∗-topology if and only if E = F as subsets of A′.

Furthermore, if E is any closed submodule of A′, then E is a

predual if and only if E separates the points of A, and every

functional on E is implemented by a member of A. This is

useful in calculations.

Back to `1(Z): notice that the dual `∞(Z) is a C∗-
algebra, and the usual predual c0(Z) is a C∗-algebra.
So let us ask an easier question: if a predual E ⊆ `∞(Z)
is a C∗-algebra, is E = c0(Z)?



Theorem (D. & White). If E ⊆ `∞(Z) is a predual for
`1(Z) such that E is a C∗-algebra, then E = c0(Z).

Proof: We have E = C0(Ω), where Ω ⊆ E′ = `1(Z) is
the character space of E.

We can check that each member of Ω must be a point
mass in Z, and so we get a map Ω → Z.

As E is a predual, we can show that this map is a
bijection.

So Ω becomes a group, but maybe not a discrete
group. As E is a submodule, we can show that the
group product on Ω is at least separately continuous.

Choi’s trick: As Ω is locally compact, Hausdorff and
countable, we can write it as the countable union of
closed singletons. So Baire Category implies that for
some n0 ∈ Z, {n0} is open. As the product is contin-
uous, this shows that actually {n} is open for all n;
that is, Ω is discrete.

This is due to Yemon Choi. I mean “trick” to mean a nice,

but unexpected, argument. It’s nice to use the Baire Category

theorem is such a setting!

Actually, we show that the above holds for any dis-
crete group G in the place of Z. Everything works
up to showing that Ω becomes a group such that the
product is separately continuous. Then Ellis’s The-
orem tells us that actually Ω is a topological group,
as Ω is locally compact. An argument using the Haar
measure then yields that Ω is discrete.
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The Haar measure is not in general in M(Ω), but we can restrict

the measure to a compact set. Then as M(Ω) = C0(Ω)′ =

E′ = `1(G), we have that the Haar measure, restricted to a

compact set, is discrete. By left invariance, it follows that the

Haar measure is a multiple of the counting measure, and so Ω is

discrete.



It is well known that `1(G), as an algebra, does not
determine G: for example, `1(C4) and `1(C2 × C2) are
isomorphic.

Not, of course, isometrically. Infact, the isometric isomorphism

class of L1(G) is an invariant of the group G. This is Wendel’s

Theorem (or a corollary thereof).

To better encode the group structure, we consider the
following coassociative product:

Γ : `1(G) → `1(G×G), δg 7→ δ(g,g).

This of course is one of the central ideas behind quantum group

theory, in all its variations. It is more common to have the

coassociative product on C0(G) or L∞(G), but in some sense both

are dual to each other. See “Operator space tensor products

and Hopf convolution algebras” by Effros and Ruan, J. Operator

Theory, for a much more comprehensive study of such ideas.

It thus seems natural to insist further that this map
is weak∗-continuous.

If E is a predual for `1(G), then there is some com-
pletion of the tensor product E⊗E which is a predual
for `1(G×G). It hence makes sense to ask for a map

Γ∗ : E⊗̌E → E, with Γ′∗ = Γ.

The tensor product to use is infact the injective tensor product,

a fact hinted at by the notation used here.

A simple calculation shows that this exists if and only
if E is a subalgebra of `∞(G).

Theorem (D. & White). Let E be a predual for `1(G)
which is an algebra. Then E = c0(G).
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Proof: We proceed as before, using the Gelfand Trans-
form to get a contractive homomorphism E → C0(Ω).
It is possible to easily extract that this must be an
isometry onto its range.

We then have to use the Principle of Local Reflexiv-
ity. This tells us that E′′ = `∞(G) is “locally” like E,
in some technical sense. After a fair amount of work,
one can again show that every character on E is ac-
tually a point mass in `1(G). The rest of the proof
follows as in the C∗-case.

This gives some evidence that the “correct” way to think of `1(G)

as a dual Banach algebra is with this coassociative product.



The situation for semigroups is more complicated.
`1(N) has a unique predual which is an algebra, but
we have not been able to perform the calculation for
`1(S2), for example. S2 is the free semigroup on 2 genera-

tors. However, `1(N, max) has a unique predual in full
generality.

This seems a little odd, as we generally tend to think of semi-

groups algebras has having a lot less structure than group al-

gebras, and so we would expect it would be easier to find new

preduals.

The “dual” objects to algebras `1(G), for a discrete
group G, are algebras A(H), for a compact groups
H. Here A(H) is the Fourier algebra as defined by
Eymard. When H is abelian, A(H) = `1(Ĥ), and so
the above applies.

For general compact H, we have that A(H) is the
dual of group C∗-algebra C∗(H), and the dual of A(H)
is the group von Neumann algebra V N(G). When
E ⊆ V N(G) is an algebra, we can attempt to analyse
E in terms of its spectrum, which is the space of
primitive ideals, with the Hull-Kernel topology. This
is a rather weak topology, which for example fails in
general to be Hausdorff.

That said, C∗(H) is a very simple C∗-algebra; the irre-
ducible representations of H are all finite-dimensional;
the tensor product of representations (which corre-
sponds to the product in A(H)) are well understood
in terms of the character theory of H.
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Theorem (D. & White). Let E ⊆ V N(H) be a pre-
dual for A(H) such that E is a C∗-algebra, and the
spectrum of E is Hausdorff. Then E = C∗(H).

We hope to be able to prove that the spectrum of E is automat-

ically Hausdorff. A key tool here is the Duans-Hoffman theorem,

relating to continuous functions on the spectrum of E to the

centre of the multiplier algebra of E.



In general, `1(Z) does not have a unique predual which
makes the bilateral shift weak∗-continuous. We have
the following, for example.

Theorem (D., Haydon, Schlumprecht & White). Let
J ⊆ Z be a sufficiently lacunary set, and let a ∈ `1(Z)
be a vector such that ‖a‖ < 1. Then there is a predual
E for `1(Z) such that δn → a weak∗, as n tends through
the set J.

Of course, δn → 0 weak∗ for the usual predual c0(Z).

For example, J = {2n : n ∈ N} or J = {±n! : n ∈ N}
will both suffice.

For the later choice, the involution on `1(Z) is also
weak∗-continuous, while it is not weak∗-continuous for
the first choice of J.

It should not surprise us that the involution on a general Banach

∗-algebra need have little connection to the algebra product.

Curiously, it appears that all the preduals we can cur-
rently construct are, purely as Banach spaces, isomor-
phic to c0.

It would, however, probably be a foolhardy conjecture that every

predual E of `1(Z) which makes the product weak∗-continuous is

such that E ∼= c0.
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