An introduction to (quantum) symmetries of (quantum) graphs

Matthew Daws

UCLan

BAMC, Glasgow, April 2021

Non-commutative topology

I am under obligation to provide this table:

	Spaces	Algebras
-	Locally compact Hausdorff space	Commutative C*-algebra
	Compact	Unital
	(Proper) continuous map	st-Homomorphism
	Cartesian Product	Tensor product

Remember that this relationship is contravariant.

How might we deal with (Compact) groups?

As the product $G \times G \to G$ and the inverse $G \to G$ and the identity $* \to G$ are continuous maps, we could specify a commutative G^* also by A and A becomes maps A.

 C^* -algebra A, and *-homomorphisms

$$A o A \otimes A, \qquad A o A, \qquad A o \mathbb{C},$$

satisfying appropriate axioms.

What are groups?

Definition

A group is a set G with an associative product $G \times G \to G$ such that:

- There is $e \in G$ with eg = ge = g for each $g \in G$;
- For each $g \in G$ there are $h, k \in G$ with gh = kg = e.

So really the identity and inverse are "properties" of the semigroup G, not "structure".

It turns out that we get a (much) more interesting theory if we similarly focus on the product, and think about an extra property.

Compact Quantum groups

Definition (Woronowicz)

A compact quantum group is a unital C^* -algebra A together with a unital *-homomorphism, the coproduct, $\Delta: A \to A \otimes A$ such that:

$$\{(a\otimes 1)\Delta(b):a,b\in A\},\quad \{(1\otimes a)\Delta(b):a,b\in A\}$$

both have dense linear span in $A \otimes A$.

Theorem

Let (A, Δ) be a compact quantum group with A commutative.

There is a compact group G with A = C(G) and

$$\Delta: C(G) \rightarrow C(G) \otimes C(G) = C(G \times G)$$
 given by

$$\Delta(f)(s,t) = f(st) \qquad (f \in C(G), s,t \in G).$$

Discrete group examples

Let Γ be a discrete group, and form $C_r^*(\Gamma)$ as a concrete C^* -algebra of operators on $\ell^2(\Gamma)$ generated by the translation operators λ_s for $s \in \Gamma$. There is a *-homomorphism

$$\Delta: C_r^*(\Gamma) \to C_r^*(\Gamma) \otimes C_r^*(\Gamma); \quad \lambda_s \mapsto \lambda_s \otimes \lambda_s.$$

Easy to check the density conditions; so $(C_r^*(\Gamma), \Delta)$ is a compact quantum group.

The map representing the unit "should be"

$$\epsilon: C_r^*(\Gamma) \to \mathbb{C}; \quad \lambda_s \mapsto 1.$$

This is only bounded if Γ is amenable.

More generally, we need to look at $C^*(\Gamma)$.

Lots of structure

Let (A, Δ) be a compact quantum group. Then A admits a "Haar state", a state $h: A \to \mathbb{C}$ which is invariant:

$$(h \otimes \mathrm{id})\Delta(a) = (\mathrm{id} \otimes h)\Delta(a) = h(a)1 \qquad (a \in A).$$

The analogue of a (unitary, finite-dimensional) group representation is a corepresentation, a unitary matrix $u=(u_{ij})\in M_n(A)$ with

$$\Delta(u_{ij}) = \sum_{k=1}^n u_{ik} \otimes u_{kj} \qquad (1 \leq i,j \leq n).$$

(Idea: this links Δ with the "dual of matrix multiplication".) Then corepresentations split into irreducible factors, and we have an entire analogue of Peter-Weyl theory, for example.

Further examples

A magic unitary is a matrix $u=(u_{ij})\in M_n(A)$ (for some unital C^* -algebra A) such that:

- ullet each u_{ij} is a projection: $u_{ij}=u_{ij}^2=u_{ij}^*;$
- ullet each row and column sums to 1, so $\sum_k u_{kj} = \sum_k u_{ik} = 1$.

These imply in a given row or column, all the projections are mutually orthogonal.

Such a matrix is unitary, as e.g.

$$\sum_k (u^*)_{ik} u_{kj} = \sum_k u_{ki}^* u_{kj} = \sum_k u_{ki} u_{kj} = \delta_{ij} \sum_k u_{ki} = \delta_{ij} 1.$$

Let S_n^+ be the universal unital C^* -algebra generated by a universal magic unitary $(u_{ij})_{i,j=1}^n$.

I am deliberately confusing the algebra and the "quantum group".

"Universal" C^* -algebras

"Let S_n^+ be the universal unital C^* -algebra generated by a universal magic unitary $(u_{ij})_{i,j=1}^n$."

- We could take all possible (up to some cardinality) C^* -algebras A with a magic unitary $u=(u_{ij})\in M_n(A)$ such that the entries u_{ij} generate A. Then take the direct sum.
- Or consider the *-algebra with generators (u_{ij}) and relations, and take the enveloping C^* -algebra.
- Notice that $||u_{ij}|| = 1$ always!
- These constructions are the same.
- Not clear to me what S_n^+ actually is!

Abelianisation

$$u_{ij} = u_{ij}^2 = u_{ij}^*, \quad \sum_k u_{ik} = \sum_k u_{kj} = 1.$$

Let $\phi: S_n^+ \to \mathbb{C}$ be a character. Then:

• $\phi(e) \in \{0,1\}$ for any projection e; and $\phi(1) = 1$;

So the scalar matrix $(\phi(u_{ij}))$ is 0, 1-valued, and each row and column sums to 1.

• So $(\phi(u_{ij}))$ is a permutation matrix!

So as ϕ varies, we see that we obtain $C(S_n)$, which is hence the abelianisation of S_n^+ .

- $C(S_n)$ is hence what you get if we also require each generator u_{ij} to commute.
- S_n^+ is a *liberation* of S_n .

As a quantum group

The elements $v_{ij}:=\sum_{k=1}^n u_{ik}\otimes u_{kj}\in S_n^+\otimes S_n^+$ are also projections, which satisfy the row/column relations. So by universality, there is a *-homomorphism

$$\Delta: S_n^+ o S_n^+ \otimes S_n^+; \quad u_{ij} \mapsto \sum_{k=1}^n u_{ik} \otimes u_{kj}.$$

- Easy to see that Δ is coassociative.
- As the matrix (u_{ij}) is unitary and each u_{ij} is self-adjoint, one can check that the density conditions hold. [Though this is a bit of work.]

So (S_n^+, Δ) is a compact quantum group: the "quantum symmetry group."

But what is it "symmetries" of?

Quantum group (co)actions

An (right) action of a group G on a space/set X is a map

$$X \times G \rightarrow X$$
.

So we get

$$\alpha:C(X)\to C(X)\otimes C(G),$$

- $(id \otimes \Delta)\alpha = (\alpha \otimes id)\alpha$ corresponds to $x \cdot st = (x \cdot s) \cdot t$;
- $lin\{\alpha(b)(1 \otimes a) : a \in C(G), b \in C(X)\}$ is dense in $C(X) \otimes C(G)$ corresponds to $x \cdot e = x$.

Definition (Podles)

A (right) coaction of a compact quantum group (A, Δ) on a C^* -algebra B is a unital *-homomorphism $\alpha: B \to B \otimes A$ with these two conditions.

Coactions on \mathbb{C}^n

Fix a compact quantum group (A, Δ) .

- The algebra \mathbb{C}^n is spanned by projections $(e_i)_{i=1}^n$.
- So $\alpha:\mathbb{C}^n \to \mathbb{C}^n \otimes A$ is determined by (u_{ii}) in A with

$$\alpha(e_i) = \sum_{j=1}^n e_j \otimes u_{ji}.$$

- α is a *-homomorphism \Leftrightarrow each u_{ji} a projection and $u_{ji}u_{jk}=\delta_{ik}u_{ji};$
- α is unital $\Leftrightarrow \sum_i u_{ii} = 1$;
- α satisfies the coaction equation $\Leftrightarrow \Delta(u_{ji}) = \sum_k u_{jk} \otimes u_{ki}$;
- α satisfies the Podleś density condition $\Leftrightarrow \sum_i u_{ji} = 1$.
- ullet General Theory $\Longrightarrow \sum_{i} u_{ji} = 1$. So (u_{ij}) is a magic unitary.

Quantum symmetry group of the space of n points

For $\mathbb{C}^n = C(\{1, 2, \cdots, n\}),$

$$lpha(e_i) = \sum_{j=1}^n e_j \otimes u_{ji},$$

with $u = (u_{ij})$ a magic unitary.

• So there is a quantum group morphism $S_n^+ \to A$.

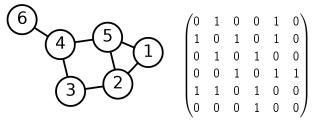
Theorem (Wang)

 S_n^+ is the "largest" compact quantum group which acts on \mathbb{C}^n is a "non-degenerate" way.

We think of S_n^+ as the "quantum symmetry group" of $\{1, 2, \dots, n\}$.

More structure: graphs

Consider a (simple, undirected) graph G on vertex set $V = \{1, 2, \cdots, n\}$. The adjacency matrix is $A = A_G$ a 0, 1-valued matrix with $A_{ij} = 1$ if and only if there is an edge between vertices i and j.



So A is symmetric, and if we do not allow loops, then A has 0 on the diagonal.

Automorphisms of graphs

What is a "symmetry" of a graph?

- A permutation of the underlying vertex set;
- which preserves the proper of vertices being neighbours, or not.

Let $T:\mathbb{C}^n o \mathbb{C}^n$ be the linear map induced by the adjacency matrix. So

$$T(e_i) = \sum_j A_{ji}e_j = \sum_{i\sim j} e_j,$$

where $i \sim j$ when i is adjacent to j.

ullet Thus an automorphism of a graph is a permutation $\sigma \in S_n$ with

$$TU_{\sigma}(e_i) = U_{\sigma}T(e_i) \qquad (1 \leq i \leq n),$$

where $U_{\sigma}: e_i \mapsto e_{\sigma(i)}$.

(Co)actions on graphs

$$TU_{\sigma} = U_{\sigma}T$$

• So Aut(G) acts in a way which preserves T:

$$\alpha: \mathbb{C}^n \to \mathbb{C}^n \otimes C(\operatorname{Aut}(G)); \quad \alpha T = (T \otimes \operatorname{id})\alpha.$$

Definition (Banica)

The quantum automorphism group of G is the maximal compact quantum group QAut(G) with a coaction satisfying

$$\alpha: \mathbb{C}^n \to \mathbb{C}^n \otimes \operatorname{QAut}(G); \quad \alpha T = (T \otimes \operatorname{id})\alpha.$$

Equivalently, the underlying magic unitary $U=(u_{ij})$ has to commute with the adjacency matrix A.

Some examples

- When $n \leq 3$ we have that $S_n^+ = C(S_n)$.
- For $n \geq 4$ we know that S_n^+ is infinite-dimensional:

$$egin{pmatrix} p & 1-p & 0 & 0 \ 1-p & p & 0 & 0 \ 0 & 0 & q & 1-q \ 0 & 0 & 1-q & 1 \end{pmatrix}$$

- S_4^+ is nuclear; S_n^+ is non-nuclear for $n \geq 5$ [Banica]
- Let $C(S_n^+)$ be the image of S_n^+ acting on the GNS space for the Haar state. Then $C(S_n^+)$ is simple with unique trace, when $n \geq 8$. [Brannan]

Graph Laplacian?

For graphs, the structure of G matters, except when G is the complete graph.

But why look at the adjacency matrix?

Consider

$$A_{ij}^2 = \sum_k A_{ik} A_{kj} = \big| \{k: i \sim k, j \sim k\} \big|.$$

- In particular, A_{ii}^2 is the degree of i. Some work then shows that if $\deg(i) \neq \deg(j)$ then $u_{ij} = 0$ [Fulton].
- Thus if D is the degree matrix, $D = \operatorname{diag}(\operatorname{deg}(i))$, then Du = uD.
- So also Lu = uL where L = D A is the graph Laplacian.

Graph Laplacian: converse

Suppose u is a magic unitary with Lu = uL. Then

$$(\mathit{uL})_{\mathit{ij}} = \deg(\mathit{j})\mathit{u}_{\mathit{ij}} - \sum_{\mathit{k}\sim\mathit{j}} \mathit{u}_{\mathit{ik}}, \quad (\mathit{L}\mathit{u})_{\mathit{ij}} = \deg(\mathit{i})\mathit{u}_{\mathit{ij}} - \sum_{\mathit{i}\sim\mathit{k}} \mathit{u}_{\mathit{kj}}.$$

These agree, so multiply by u_{ij} to get

$$\deg(j)u_{ij}-\sum_{k\sim j}u_{ij}u_{ik}=\deg(i)u_{ij}-\sum_{k\sim i}u_{ij}u_{kj}.$$

As $u_{ij}\,u_{ik}=\delta_{j\,,k}\,u_{ij}$ and $u_{ij}\,u_{kj}=\delta_{\,ik}\,u_{ij}$, we see

- If $i \sim j$ (so $j \sim i$) then $(\deg(j) 1)u_{ij} = (\deg(i) 1)u_{ij}$;
- Otherwise $\deg(j)u_{ij} = \deg(i)u_{ij}$;
- ullet In either case, $\deg(i)
 eq \deg(j) \implies u_{ij} = 0.$
- So Du = uD and hence Au = uA as L = D A.

[With thanks to Simon Schmidt.]

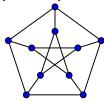
Examples continued

Question

What other matrices / operators associated to G would give the same definition of QAut(G)?

We say that a graph has quantum symmetry if $Aut(G) \neq QAut(G)$.

- By now, we have many examples.
- For example, the Petersen graph has no quantum symmetry [Schmidt].



[CC-BY-SA, Leshabirukov, Wikipedia]

The next talk will say more!