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Non-commutative topology

I am under obligation to provide this table:

Spaces Algebras
Locally compact Hausdorff space | Commutative C*-algebra
Compact Unital
(Proper) continuous map x~-Homomorphism
Cartesian Product Tensor product

Remember that this relationship is contravariant.

How might we deal with (Compact) groups?

As the product G x G — G and the inverse G — G and the identity
*+ — G are continuous maps, we could specify a commutative
C*-algebra A, and x-homomorphisms

A— AR A, A— A A—C,

satisfying appropriate axioms.

Matthew Daws (UCLan) Quantum graphs BAMC, Glasgow, April 2021 2/2



What are groups?

Definition
A group is a set G with an associative product G x G — G such that:

@ There is e € G with eg = ge = g for each g € G;
o For each g € G there are h, k € G with gh = kg = e.

So really the identity and inverse are “properties” of the semigroup G,
not “structure”.

It turns out that we get a (much) more interesting theory if we
similarly focus on the product, and think about an extra property.
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Compact Quantum groups

Definition (Woronowicz)

A compact quantum group is a unital C*-algebra A together with a
unital x-homomorphism, the coproduct, A: A — A ® A such that:

{(a ®1)A(b) :a,b e A}, {(1®a)A(b):a,bec A}

both have dense linear span in A ® A.

Theorem

Let (A,A) be a compact quantum group with A commutative.
There is a compact group G with A = C(G) and
A:C(G)— C(G)® C(G)=C(G x G) gwen by

A(f)(s,t) = f(st) (f € C(G),s,t € G).
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Discrete group examples

Let " be a discrete group, and form C;(T") as a concrete C*-algebra of
operators on {?(I") generated by the translation operators A, for s € T
There is a x-homomorphism

A:CHT) = CHT) @ CET); A As @ As.

Easy to check the density conditions; so (C}(I'),A) is a compact
quantum group.
The map representing the unit “should be”

€:Cr(IMN —=C; Ag— 1.

This is only bounded if I is amenable.
More generally, we need to look at C*(I').
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Lots of structure

Let (A,A) be a compact quantum group. Then A admits a “Haar
state”, a state A : A — C which is invariant:

(h®id)A(a) = (id®h)A(a) = h(a)l (acA).

The analogue of a (unitary, finite-dimensional) group representation is
a corepresentation, a unitary matrix u = (uy;) € My (A) with

n
Alug) =) up®uy  (1<4,7<n).
)

(Idea: this links A with the “dual of matrix multiplication”.)
Then corepresentations split into irreducible factors, and we have an
entire analogue of Peter—Weyl theory, for example.
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Further examples

A magic unitary is a matrix u = (u;;) € M,(A) (for some unital
C*-algebra A) such that:

o each u; is a projection: uy; = ul = u’;

@ each row and column sums to 1,50 ) , ugj = ) , U = 1.

These imply in a given row or column, all the projections are mutually
orthogonal.

Such a matrix is unitary, as e.g.

*
E (u")nury; = E Up; Uy = Z Ui Ukj = Oy Z Up; = 0451,
% P P

k

Let S, be the universal unital C*-algebra generated by a universal
magic unitary (ulj)i,jzl'
[I am deliberately confusing the algebra and the “quantum group” ]

7/2



“Universal” C*-algebras

“Let ;" be the universal unital C*-algebra generated by a universal
magic unitary (uz’j)?,j:r"

@ We could take all possible (up to some cardinality) C*-algebras A
with a magic unitary u = (u;;) € M,(A) such that the entries u;
generate A. Then take the direct sum.

@ Or consider the x-algebra with generators (u;;) and relations, and
take the enveloping C*-algebra.

o Notice that |uy|| =1 always!

@ These constructions are the same.

@ Not clear to me what S, actually is!
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Abelianisation

L g2 g% L — -
Uy = U = Uy, E Uik = E Uy = 1.
k k

Let ¢ : S;7 — C be a character. Then:
o ¢(e) €{0,1} for any projection e; and ¢(1) = 1;

So the scalar matrix ($p(uy;)) is 0, 1-valued, and each row and column
sums to 1.

@ So (¢(uy)) is a permutation matrix!

So as ¢ varies, we see that we obtain C(S,,), which is hence the
abelianisation of S,F.

@ C(Sn) is hence what you get if we also require each generator wu;;
to commute.

e S, is a liberation of S,.
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As a quantum group

The elements v;; ==Y ;_; ui ® ug; € S ® S, are also projections,
which satisfy the row/column relations. So by universality, there is a
x-homomorphism

n
A:S;—)S;@S:; Usj D—)ZUik@Ukj.
k=1
o Easy to see that A is coassociative.

o As the matrix (u;) is unitary and each wu;; is self-adjoint, one can
check that the density conditions hold. [Though this is a bit of work ]

So (S;F,A) is a compact quantum group: the “quantum symmetry
group.”

But what is it “symmetries” of?
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Quantum group (co)actions

An (right) action of a group G on a space/set X is a map
X xG—X.

So we get
x:C(X)—- C(X)® C(G),

o (Id®A)x = (o ®id)x corresponds to z - st = (z - 5) - ¢;
o linfx(b)(1®a):a e C(G),be C(X)}isdensein C(X)® C(G)
corresponds to z - e = .

Definition (Podles)

A (right) coaction of a compact quantum group (A, A) on a C*-algebra
B is a unital x-homomorphism «: B — B ® A with these two
conditions.
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Coactions on C™

Fix a compact quantum group (4, A).
o The algebra C™ is spanned by projections (e;)7 ;.
@ So x:C" — C" ® A is determined by (u;;) in A with

n
= E €; @ Uy.
J=1

@ « is a *-homomorphism < each wuj; a projection and
Uji U = O Uy
o xisunital & ) , u; =1,
o « satisfies the coaction equation & A(uj;) =) ; Ujp © Uks;
o « satisfies the Podle$ density condition & ) ,u; = 1.
o General Theory — Zj u; = 1. So (uy) is a magic unitary.
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Quantum symmetry group of the space of n points
For C" = C({L,2,---,n}),

n
ale) =) e @
=1

with u = (u;;) a magic unitary.
@ So there is a quantum group morphism S, — A.

Theorem (Wang)

S is the “largest” compact quantum group which acts on C" is a
“non-degenerate” way.

We think of S, as the “quantum symmetry group” of {1,2,--- ,n}.
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More structure: graphs

Consider a (simple, undirected) graph G on vertex set

V ={1,2,--- ,n}. The adjacency matricis A = Ag a 0, 1-valued
matrix with A;; = 1 if and only if there is an edge between vertices 1
and j.

@ 010010
ee 101010
‘o 01 0100
001011

OO IR EEE
000100

So A is symmetric, and if we do not allow loops, then A has 0 on the
diagonal.
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Automorphisms of graphs

What is a “symmetry” of a graph?
o A permutation of the underlying vertex set;

o which preserves the proper of vertices being neighbours, or not.

Let T : C™ — C™ be the linear map induced by the adjacency matrix.

So
Tl(e) =) A=) ¢,
j i~
where 7 ~ 7 when ¢ is adjacent to 7.

@ Thus an automorphism of a graph is a permutation o € S,, with

TUs(e;) = UsT(e;) (1<i<n),

where Uy : e; — eg(;)-
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(Co)actions on graphs

7"1’]’0~ - U()*T
@ So Aut(G) acts in a way which preserves T
a:C" - C"® C(Aut(@)); oT = (T ®id)a.

Definition (Banica)

The quantum automorphism group of G is the maximal compact
quantum group QAut(G) with a coaction satisfying

x:C" - C"® QAut(G); oT = (T ®id)a.

Equivalently, the underlying magic unitary U = (u;;) has to commute
with the adjacency matrix A.
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Some examples

e When n < 3 we have that S, = C(S,).

e For n > 4 we know that S, is infinite-dimensional:

D 1—0p 0 0
1—0p P 0 0

0 0 q 1—gq

0 0 1—gq 1

e S, is nuclear; S, is non-nuclear for n > 5 [Banica]

o Let C(S; ) be the image of S, acting on the GNS space for the
Haar state. Then C(S,) is simple with unique trace, when n > 8.
[Brannan]
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Graph Laplacian?

For graphs, the structure of G matters, except when G is the complete
graph.

But why look at the adjacency matrizx?

Consider
A?J = ZAikAkj = Hk} 1 ~kyg~ k}‘
k

o In particular, A2 is the degree of 1. Some work then shows that if
deg(z) # deg(s) then u;; = 0 [Fulton].

o Thus if D is the degree matriz, D = diag(deg(z)), then Du = uD.
@ So also Lu = uL where L = D — A is the graph Laplacian.
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Graph Laplacian: converse

Suppose u is a magic unitary with Lu = L. Then

(uL)y; = deg(7)uy; — Z Uik, (Lu)y; = deg(e)uy; — Z Ugj -
k~7 i~k

These agree, so multiply by u; to get

deg(s)uy — ) uyus = deg(d)uy — ) Uy,
k~j k~3
As Ujug = 05 kU and U ur = O Uy, WE See
@ If 2 ~7 (soj~1) then (deg(y) — 1)uy = (deg(z) — 1)uy;
o Otherwise deg(7)u;; = deg(¢)uy;;
o In either case, deg(z) # deg(yj) — wu;; =0.
@ So Du = uD and hence Au =uA as L=D — A.
[With thanks to Simon Schmidt.]
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Examples continued

Question

What other matrices / operators associated to G would give the same
definition of QAut(G)?

We say that a graph has quantum symmetry if Aut(G) # QAut(G).

o By now, we have many examples.

o For example, the Petersen graph has no quantum symmetry
[Schmidt].

[CC-BY-SA, Leshabirukov, Wikipedia]

@ The next talk will say more!
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