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Bohr compactification

The Bohr compactification of a topological (semi)group G is a
compact group bG such that:

I there is a continuous (but not necessarily injective) group
homomorphism G→ bG which has dense range;

I given any compact group H and a continuous
homomorphism φ : G→ H, there exists a continuous
homomorphism φ̂ : bG→ H such that
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Almost periodic compactifications

Let G be a topological (semi)group and consider the
commutative C∗-algebra C(G).

I We define AP(G) to be the collection of f ∈ C(G) such that
{fs : s ∈ G} is relatively compact in C(G), where

fs : G→ C, fs(t) = f (ts) (t ∈ G).

We call such functions almost periodic.
I Then AP(G) is a unital C∗-subalgebra of C(S), say with

spectrum GAP. Then G can be identified with a dense
subspace of GAP.
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Almost periodic compactifications (cont.)

I We can extend the multiplication of G to GAP, turning GAP

into a topological semigroup.
I GAP shares the same universality property as bG, in the

category of topological semigroups.
I In the special case when G is a group, GAP = bG.
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Locally compact groups

Now let G be a locally compact group, and consider the
convolution algebra L1(G).

I L1(G) acts on its dual L∞(G) by, for f ∈ L∞(G),

〈a · f ,b〉 = 〈f ,ba〉, 〈f · a,b〉 = 〈f ,ab〉 (a,b ∈ L1(G)).

I We say that f ∈ L∞(G) is almost periodic if the map

L1(G)→ L∞(G), a 7→ a · f

is a compact operator.
I Using the bounded approximate identity in L1(G), it is not

hard to verify that f ∈ L∞(G) is almost periodic if and only
if f ∈ C(G) and f ∈ AP(G).
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Banach algebras

Of course, this definition of almost periodic makes sense on
any Banach algebra A, leading to a subspace AP(A) of A′, the
dual of A.

I One can show that AP(A) is a closed submodule of A′.
I The product on A extends to a product on AP(A)′ such

that the product on AP(A)′ is jointly weak∗-continuous on
bounded sets.

(See the work of Lau and others).
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Group von Neumann algebras

Again let G be a locally compact group, and consider the
left-regular representation of G on L2(G),

λ : G→ B(L2(G)), λ(s)(f ) : t 7→ f (s−1t),

for s, t ∈ G, f ∈ L2(G).

I Let VN(G) be the group von Neumann algebra, which is
generated by {λ(s) : s ∈ G}.

I We have the coassociative product

∆ : VN(G)→ VN(G)⊗VN(G) = VN(G ×G),

∆(λ(s)) = λ(s)⊗ λ(s) (s ∈ G).
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Fourier algebras

I This is induced by the unitary operator

W : L2(G ×G)→ L2(G ×G), Wf (s, t) = f (s, st).

Then ∆(T ) = W ∗(T ⊗ I)W .
I A(G), the Fourier algebra, is the predual of VN(G). For

each a ∈ A(G), there exists x , y ∈ L2(G) such that

〈T ,a〉 = (Tx |y) (T ∈ VN(G)).

I We identify A(G) with a subspace of C0(G),

a(s) = (λ(s)x |y) =

∫
G

x(s−1t)y(t) dt (s ∈ G).
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Fourier algebras and almost periodicity

I As ∆ is weak∗-continuous, it drops to a (completely)
contractive, associative product on A(G).

I This turns A(G) into a (completely contractive) Banach
algebra, which is a subalgebra of C0(G).

I When G is abelian, we get A(G) = L1(Ĝ).

So we can apply the definition of almost periodic to A(G),
leading to what we denote by AP(Ĝ).
In generality, we can say remarkably little about AP(Ĝ).
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Special cases

Let C∗δ (G) be the C∗-algebra in VN(G) generated by
{λ(s) : s ∈ G}.

I If G is abelian, then AP(Ĝ) = C∗δ (G).
I This makes sense: the “dual” idea to a compactification is

a “discretisation”.
I If G is amenable, and discrete, the also AP(Ĝ) = C∗δ (G).

(Dunkl, Ramirez, Granirer).
I In general, we don’t even know if AP(Ĝ) need be a

sub-C∗-algebra of VN(G).
I Chou studied when AP(Ĝ) = C∗δ (G). When this occurs, we

say that G has the dual Bohr approximation property.
I There exist compact groups G such that AP(Ĝ) 6= C∗δ (G).

(Chou, Rindler).
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sub-C∗-algebra of VN(G).
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I This makes sense: the “dual” idea to a compactification is

a “discretisation”.
I If G is amenable, and discrete, the also AP(Ĝ) = C∗δ (G).
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Quantum compactifications

Can we be sure that C∗δ (G) is “correct”?

I A compact quantum group is a unital C∗-algebra A with a
coassociative product ∆ : A → A⊗min A, together with
certain density conditions. (Woronowicz)

I Sołtan, by using finite dimensional (co)representations,
defined a Quantum bohr compactification.

I Starting with a unital C∗-algebra A with a coassociative
product, Sołtan’s methods produces a compact quantum
group which has the same universal property as the
classical Bohr compactification.

I If G is a topological group and we start with C(G), then
Sołtan’s approach yields C(bG), as we expect.
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For the Fourier Algebra

I We start with the reduced group C∗-algebra C∗λ(G).
I The left-regular representation extends to a contractive

algebra homomorphism λ : L1(G)→ B(L2(G)). Then
C∗λ(G) is the closure of λ(L1(G)).

I We apply Sołtan’s method to C∗λ(G).
I This yields a C∗-algebra inside the multiplier algebra of

C∗λ(G).
I We can embed this into VN(G), and we find that we get

exactly C∗δ (G).
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Approximation properties

I Recall that L∞(G), as a Banach space, has the
approximation property.

I In particular, any operator L1(G)→ L∞(G) is compact if
and only if it can be norm approximated by finite-rank
operators.

I It is known that a von Neumann algebra has the
approximation property if and only if it is nuclear, which is if
and only if it is sub-homogeneous. It follows that VN(G)
has the approximation property only when G is abelian by
finite.

I So may “compact” is the wrong idea to use.
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A first attempt
Instead, let us consider maps A(G)→ VN(G) which are “close
to” finite rank, in some sense.

I Actually, we are interested in the maps

RT : A(G)→ VN(G); a 7→ a · T ,

for T ∈ VN(G).
I Our original definition was

AP(Ĝ) = {T ∈ VN(G) : RT is compact}.

I Instead, consider the collection of T ∈ VN(G) such that
RT can be norm-approximated by maps of the form RS, for
S ∈ VN(G) with RS finite-rank.

I Chou essentially showed that, in this case, we get C∗δ (G).
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Module maps

Notice that actually the map

RT : A(G)→ VN(G); a 7→ a · T ,

is an A(G)-module map.

I Now consider the collection of T ∈ VN(G) such that RT
can be norm-approximated by finite rank A(G)-module
maps A(G)→ VN(G).

I Without some sort of bounded approximate identity, we
don’t know that module maps have the special form RS.

I However, Chou’s ideas can be modified to show that we
still do recover C∗δ (G).

Both these ideas replace “compact” with some strong form of
“approximable”.
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Operator spaces

As we hinted at before, A(G) has a canonical operator space
structure as the predual of VN(G).

I So perhaps we should consider “approximable” to mean
“can be approximated, in the completely bounded norm, by
finite-rank maps”.

I Indeed, if we consider the collection of T ∈ VN(G) such
that RT can be approximated, in the cb-norm, by arbitrary
finite-rank maps A(G)→ VN(G), then...

I we get exactly C∗δ (G).

Of course, for L1(G), this notion of “approximable” is nothing
but “compact”.
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Proof for the discrete case

We identify the space of finite-rank operators A(G)→ VN(G)
with VN(G)⊗ VN(G). The tensor τ =

∑n
j=1 Tj ⊗ Sj induces the

operator

τ(a) =
n∑

j=1

〈Tj ,a〉Sj (a ∈ A(G)).

The completion we want is then simply the operator space
injective tensor product

VN(G)⊗̌VN(G) = VN(G)⊗min VN(G).
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Continued (1)

When G is discrete, let (δg)g∈G denote the standard
orthonormal basis for `2(G).
We have the norm-decreasing injection

VN(G)→ `2(G), T 7→ T (δeG ) = (tg),

where I write eG for the unit of G.
We recover T as the operator induced by convolution by (tg).
This follows, as VN(G) commutes with the right-regular
representation.
So we identify VN(G) with the subspace of `2(G) consisting
precisely of those vectors t = (tg) ∈ `2(G) such that

`2(G)→ `2(G), δh 7→
∑

g

tgδgh

extends to a bounded operator on `2(G).
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Continued (2)

Notice that for G discrete, C∗δ (G) = C∗λ(G), which is the closure
of `1(G) ⊆ `2(G) in VN(G).
Define a map θ : `2(G)→ `2(G ×G) by

θ(δg) = δg,g (g ∈ G).

Define a bilinear map ? : VN(G)× VN(G)→ VN(G) by

T ? S = θ∗(T ⊗ S)θ.

We check that
λ(s) ? λ(t) = δs,tλ(s),

so ? does map into VN(G) by normality.
We check that

θ∗∆(T )θ = θ∗W ∗(T ⊗ I)Wθ = T (T ∈ VN(G)).
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Continued (3)
Finally, we check that(
(T ?S)(δeG )|δg

)
=
(
(T ⊗S)(δeG,eG )|δg,g

)
(T (δeG )|δg)(S(δeG )|δg).

So once we identify VN(G) with a subspace of `2(G), the
operation ? corresponds to the pointwise product. By the
Cauchy-Schwarz inequality, `2(G) · `2(G) ⊆ `1(G), and so
VN(G) ? VN(G) ⊆ C∗δ (G).
For T ∈ VN(G),

RT (a) = a · T = (a⊗ I)∆(T ),

and so RT is “approximable” means that
∆(T ) ∈ VN(G)⊗̌VN(G).
So in this case

T = θ∗∆(T )θ ∈ θ∗(VN(G)⊗̌VN(G))θ ⊆ C∗δ (G).
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