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The Bohr compactification of a topological (semi)group G is a
compact group bG such that:

» there is a continuous (but not necessarily injective) group
homomorphism G — bG which has dense range;

» given any compact group H and a continuous
homomorphism ¢ : G — H, there exists a continuous
homomorphism ¢ : bG — H such that

G—">H

e

bG
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Let G be a topological (semi)group and consider the
commutative C*-algebra C(G).

» We define AP(G) to be the collection of f € C(G) such that
{fs : s € G} is relatively compact in C(G), where

f,:G—C, f(t)=fts) (te Q)

We call such functions almost periodic.

» Then AP(G) is a unital C*-subalgebra of C(S), say with
spectrum GAP. Then G can be identified with a dense
subspace of GP.
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Almost periodic compactifications (cont.)

» We can extend the multiplication of G to GA?, turning GA?
into a topological semigroup.

» GAP shares the same universality property as bG, in the
category of topological semigroups.

» In the special case when G is a group, G*F = bG.
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Locally compact groups

Now let G be a locally compact group, and consider the
convolution algebra L'(G).

» L'(G) acts on its dual L>(G) by, for f € L=(G),

(a-f,b) = (f,ba), (f-a,b)=(f,ab) (abeL'(G)).

» We say that f € L>°(G) is almost periodic if the map
L'(G)— L~(G), a—a-f

is a compact operator.

» Using the bounded approximate identity in L'(G), it is not
hard to verify that f € L>°(G) is almost periodic if and only
if fe C(G)and f € AP(G).
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Of course, this definition of almost periodic makes sense on
any Banach algebra A, leading to a subspace AP(A) of A’, the
dual of A.

» One can show that AP(A) is a closed submodule of A'.

» The product on A extends to a product on AP(.A)’ such
that the product on AP(.A)’ is jointly weak*-continuous on
bounded sets.

(See the work of Lau and others).
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Group von Neumann algebras

Again let G be a locally compact group, and consider the
left-regular representation of G on L2(G),

A G— B(L3(G)), XS)(f):t— f(s7'0),

fors,t € G, f € L?(G).

» Let VN(G) be the group von Neumann algebra, which is
generated by {\(s) : s € G}.

» We have the coassociative product

A VN(G) — VN(G)®VN(G) = VN(G x G),
A(X(S)) = A(s) ® A(8) (s € G).
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Fourier algebras

» This is induced by the unitary operator
W:L3(Gx G)— L3(Gx G), Wr(s,t)=If(s,st).

Then A(T) = WX(T e W.
» A(G), the Fourier algebra, is the predual of VN(G). For
each a € A(G), there exists x, y € L?(G) such that

(T,a) = (Txly) (T € VN(G)).
» We identify A(G) with a subspace of Cy(G),

a(s) = (\(s)x[y) = /G x(s' Oy dt (se G).
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Fourier algebras and almost periodicity

» As A is weak*-continuous, it drops to a (completely)
contractive, associative product on A(G).

» This turns A(G) into a (completely contractive) Banach
algebra, which is a subalgebra of Cy(G).

» When G is abelian, we get A(G) = L'(G).

So we can apply the definition of almost periodic to A(G),

A

leading to what we denote by AP(G). A
In generality, we can say remarkably little about AP(G).
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Special cases

Let C;(G) be the C*-algebra in VN(G) generated by
{\(s) : s e G}.
> If Gis abelian, then AP(G) = C:(G).

» This makes sense: the “dual” idea to a compactification is
a “discretisation”.

» If G is amenable, and discrete, the also AP(G) = C;(G).
(Dunkl, Ramirez, Granirer).

» In general, we don’t even know if AP(G) need be a
sub-C*-algebra of VN(G).

A

» Chou studied when AP(G) = C;(G). When this occurs, we
say that G has the dual Bohr approximation property.

A

» There exist compact groups G such that AP(G) # C;(G).
(Chou, Rindler).
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Quantum compactifications

Can we be sure that C;(G) is “correct”?

» A compact quantum group is a unital C*-algebra A with a
coassociative product A : A — A ®min A, together with
certain density conditions. (Woronowicz)

» Softan, by using finite dimensional (co)representations,
defined a Quantum bohr compactification.

» Starting with a unital C*-algebra A with a coassociative
product, Sottan’s methods produces a compact quantum
group which has the same universal property as the
classical Bohr compactification.

» If G is a topological group and we start with C(G), then
Sottan’s approach yields C(bG), as we expect.
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For the Fourier Algebra

» We start with the reduced group C*-algebra C5(G).

» The left-regular representation extends to a contractive
algebra homomorphism X : L'(G) — B(L2(G)). Then
C;(G) is the closure of A(L'(G)).

» We apply Sottan’s method to C;(G).

» This yields a C*-algebra inside the multiplier algebra of
C3(G).

» We can embed this into VN(G), and we find that we get
exactly C;(G).
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» Recall that L>°(G), as a Banach space, has the
approximation property.

» In particular, any operator L'(G) — L*°(G) is compact if
and only if it can be norm approximated by finite-rank
operators.

» It is known that a von Neumann algebra has the
approximation property if and only if it is nuclear, which is if
and only if it is sub-homogeneous. It follows that VN(G)
has the approximation property only when G is abelian by
finite.

» So may “compact” is the wrong idea to use.
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A first attempt

Instead, let us consider maps A(G) — VN(G) which are “close
to” finite rank, in some sense.

» Actually, we are interested in the maps
Rt :A(G) — VN(G), a—a-T,

for T € VN(G).
» Our original definition was

AP(G) = {T € VN(G) : Rt is compact}.

» Instead, consider the collection of T € VN(G) such that
Rt can be norm-approximated by maps of the form R g, for
S € VN(G) with R finite-rank.

» Chou essentially showed that, in this case, we get C;(G).
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Module maps

Notice that actually the map
R7:AG) — VN(G), a—a-T,

is an A(G)-module map.

» Now consider the collection of T € VN(G) such that Rt
can be norm-approximated by finite rank A(G)-module
maps A(G) — VN(G).

» Without some sort of bounded approximate identity, we
don’t know that module maps have the special form Rg.

» However, Chou’s ideas can be modified to show that we
still do recover C;(G).

Both these ideas replace “compact” with some strong form of
“approximable”.
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Operator spaces

As we hinted at before, A(G) has a canonical operator space
structure as the predual of VN(G).

» So perhaps we should consider “approximable” to mean
“can be approximated, in the completely bounded norm, by
finite-rank maps”.

» Indeed, if we consider the collection of T € VN(G) such
that Rt can be approximated, in the cb-norm, by arbitrary
finite-rank maps A(G) — VIN(G), then...

» we get exactly Cj(G).

Of course, for L'(G), this notion of “approximable” is nothing
but “compact”.
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Proof for the discrete case

We identify the space of finite-rank operators A(G) — VN(G)
with VN(G) @ VN(G). The tensor 7 = 37, T; @ S; induces the

operator
n

(@) =) (T,a§ (acAG)).
j=1
The completion we want is then simply the operator space
injective tensor product

VN(G)®VN(G) = VN(G) @min VN(G).
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When G is discrete, let (d4)gcc denote the standard
orthonormal basis for /2(G).
We have the norm-decreasing injection

VN(G) — ¢3(G), T T(des) = (1),

where | write eg for the unit of G.

We recover T as the operator induced by convolution by (i).
This follows, as VN(G) commutes with the right-regular
representation.

So we identify VN(G) with the subspace of ¢2(G) consisting
precisely of those vectors t = (1) € ¢2(G) such that

(B(G) = (3(G), Oh+— > lgdgn
g

extends to a bounded operator on /2(G).
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We check that
A(8) * A(t) = 05 tA(8),

so = does map into VN(G) by normality.
We check that

AT =W (T hWo=T (T € VN(G)).
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Continued (3)

Finally, we check that

((T*8)(de6)1dg) = ((T @ S)(deg,e6)199.9) (T (3e6)109)(S(Je)|dg)-

So once we identify VN(G) with a subspace of ¢2(G), the
operation x corresponds to the pointwise product. By the

Cauchy-Schwarz inequality, /2(G) - 2(G) C ¢'(G), and so
VN(G) » VN(G) C C;(G).

For T € VN(G),

Rr(@=a-T=(ax)A(T),
and so R is “approximable” means that
A(T) € VN(G)®VN(G).

So in this case

T = 0*"A(T) € 60" (VN(G)S VN(G))d C CL(G).



