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Locally compact groups

Let G be a locally compact group; then G has a Haar measure:
a left-invariant Radon measure on G.
It is often interesting just to consider a discrete group G. Then
the Haar measure is just the counting measure.
If G is a compact group, we normalise the Haar measure to be
a probability measure.
The Haar measure on R is just the Lebesgue measure.
Let L1(G) be the usual space of integrable functions, with
respect to Haar measure. We turn L1(G) into a Banach algebra
with the convolution product.
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von Neumann considerations

L1(G) is the predual of the commutative von Neumann algebra
L∞(G). Here we treat L∞(G) as an algebra acting on L2(G).
Define a unitary W : L2(G ×G)→ L2(G ×G) by

WF (s, t) = F (s, s−1t) (F ∈ L2(G ×G), s, t ∈ G).

Then we define ∆ : L∞(G)→ L∞(G)⊗L∞(G) = L∞(G ×G) by

∆(f )(s, t) = f (st) (f ∈ L∞(G), s, t ∈ G).

Notice that

∆(f ) = W ∗(id⊗f )W (f ∈ L∞(G)).
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C∗-algebras

L1(G) has a natural involution: for a discrete group, it is just the
map sending s 7→ s−1. However, L1(G) is not a C∗-algebra.
L1(G) acts on L2(G) by convolution on the left; the closure of
L1(G) in B(L2(G)) is C∗r (G), the reduced group C∗-algebra.
Alternatively, we can give L1(G) the maximal C∗-algebra norm,
leading to C∗(G), the group C∗-algebra.
Recall that C∗r (G) = C∗(G) if and only if G is amenable.
Question: Find a non-amenable group G such that C∗r (G) and
C∗(G) are not the only C∗-completions of L1(G).
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Hopf von Neumann algebras
Let VN(G) be the weak-operator topology closure of L1(G) in
B(L2(G)), the group von Neumann algebra.
Let λ : G→ B(L2(G)) be the left-regular representation

(λ(s)f )(t) = f (s−1t) (f ∈ L2(G), s, t ∈ G).

Then VN(G) is generated by {λ(s) : s ∈ G}.
Define a unitary W : L2(G ×G)→ L2(G ×G) by

WF (s, t) = F (ts, t) (F ∈ L2(G ×G), s, t ∈ G).

Then we define ∆ : VN(G)→ VN(G)⊗VN(G) = VN(G ×G) by

∆λ(s) = λ(s)⊗ λ(s) (s ∈ G).

It is not clear that ∆ is well-defined; however, we can
alternatively define

∆(x) = W ∗(id⊗x)W (x ∈ VN(G)).
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The Fourier algebra

Let A(G) be the predual of VN(G), the Fourier algebra of G.
As ∆ : VN(G)→ VN(G)⊗VN(G) is normal, it has a pre-adjoint,
a completely-contractive map ∆∗ : A(G)⊗̂A(G)→ A(G). We
can check that this gives an associative product on A(G).
If G is an abelian group, then we have the Pontryagin dual Ĝ,
and the Fourier transform L1(G)→ C0(Ĝ). The image of L1(G)
is A(Ĝ).
For example, let G = Z, so Ĝ = T. Hence

L1(Z) ∼= A(T),L∞(G) ∼= VN(T), c0(Z) ∼= C∗r (T),

L1(T) ∼= A(Z),L∞(T) ∼= VN(Z),C(T) ∼= C∗r (Z).
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For example, let G = Z, so Ĝ = T. Hence
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L1(Z) ∼= A(T),L∞(G) ∼= VN(T), c0(Z) ∼= C∗r (T),

L1(T) ∼= A(Z),L∞(T) ∼= VN(Z),C(T) ∼= C∗r (Z).



The Fourier algebra

Let A(G) be the predual of VN(G), the Fourier algebra of G.
As ∆ : VN(G)→ VN(G)⊗VN(G) is normal, it has a pre-adjoint,
a completely-contractive map ∆∗ : A(G)⊗̂A(G)→ A(G). We
can check that this gives an associative product on A(G).
If G is an abelian group, then we have the Pontryagin dual Ĝ,
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Hopf-von Neumann algebras

Informally, we think of A(G) as being the L1-algebra of the dual
group of G, even when this strictly doesn’t make sense.
A Hopf-von Neumann algebraM is a von Neumann algebra
equipped with a co-associative ∗-homomorphism
∆ :M→M⊗M; that is

(∆⊗ id)∆ = (id⊗∆)∆.

A locally compact quantum group is a Hopf-von Neumann
algebra equipped with further structure (a replacement for the
Haar measure). In this setting, one can formulate an abstract
duality theory: a Hopf-von Neumann algebra M̂, such that

ˆ̂M =M.
Alternatively, one can study unitaries W which are
“manageable” and “multiplicative”.
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Alternatively, one can study unitaries W which are
“manageable” and “multiplicative”.



Compact quantum groups

There is a C∗-algebra counterpart to the von Neumann flavour
of this theory. This is much more technical, except in the
“compact” case.
A compact quantum group is a unital C∗-algebra A with a
co-associative product ∆ : A → A⊗min A, such that the sets
(A⊗ 1)∆(A) and (1⊗A)∆(A) are linearly dense in A⊗A.
For example, let G be a compact space, and let A = C(G). A
∗-homomorphism ∆ : C(G)→ C(G ×G) is equivalent to a
continuous map G ×G→ G; ∆ is co-associative if and only if
this product is associative.
A bit of group theory, combined with Stone-Weierstrass, shows
that G is a group if and only if the density conditions hold.
Similarly, one can show that when G is a discrete group, C∗r (G)
and C∗(G) are compact quantum groups.
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Bohr compactifications

Let G be a topological group. The Bohr compactification of G is
a compact group bG:

I there is a continuous homomorphism ι : G→ bG with
dense range;

I for all compact groups H,

G
φ //

ι

��

H

bG
∃ φ̃

>>||||||||

In contrast to, say, the Stone-Cech Compactification, ι need not
be injective. In fact, there exist groups G such that bG = {1}.
(The Lorentz group, for example).
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Existance

To show that bG exists, we can simply take the collection of all
compact groups H which contain a dense, homomorphic image
of G, and then “glue” them together in some sense.
We understand the representation theory of compact groups
very well: every irreducible representation is finite-dimensional,
and may be assumed to be on a Hilbert space.
So in practise, we can restrict to looking at images of G under
homomorphic maps into finite dimensional unitary groups.
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A more concrete approach

Consider the C∗-algebra Cb(G). Let ap(G) be the collection of
those f ∈ Cb(G) such that the family of left translates of f forms
a relatively compact subset of Cb(G).
We can show that ap(G) is a unital C∗-subalgebra of Cb(G). So
ap(G) has character space Gap, hence ap(G) ∼= C(Gap).
Clearly G maps into Gap; we can extend the group product from
G to Gap, turning Gap into a semigroup.
The topology on Gap is such that this semigroup product is
jointly continuous. It follows that we can also extend the inverse
operation from G to Gap turning Gap into a compact group.
We have that Gap = bG.
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Sołtan’s Quantum approach

A quantum semigroup is a C∗-algebra A equipped with a
co-associative morphism ∆ : A → A⊗A.
Example: Let S be a topological semigroup, let A = C0(S),
and define ∆ : A → Cb(S × S) by

∆(f )(s, t) = f (st) (f ∈ C0(S), s, t ∈ S).

There are notions of unitary representation and so forth for
quantum groups. In particular, the representation theory of
compact quantum groups parallels that for compact groups.
Using the abstract “gluing” idea, Sołtan found that for any
quantum semigroup S = (A,∆), one can find a compact
quantum group bS which satisfies the expected universal
property.
Sołtan could not find a more intrinsic characterisation.
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Example calculation
Let G be a locally compact group, and consider G = C∗r (G).
This has a co-associative product, but this is a little hard to
describe.
Then bG is always a unital C∗-subalgebra of the multiplier
algebra of C∗r (G). We can regard this as the subalgebra

{x ∈ VN(G) : xy , yx ∈ C∗r (G) (y ∈ C∗r (G))}.

Then bG = C∗ρ(G), which is the C∗-algebra generated by
λ(G) = {λ(s) : s ∈ G} in VN(G). Recall that VN(G) is the von
Neumann algebra generated by λ(G).
Let Gd be the group G with the discrete topology. If Gd is
amenable, then as C∗(Gd ) = C∗r (Gd ), it follows that
C∗ρ(G) ∼= C∗r (Gd ).
In general, it seems that C∗ρ(G) could be the C∗-completion of
`1(Gd ) in some norm such that C∗ρ(G) is not C∗(Gd ) or C∗r (Gd ).
G = SO(3)??
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λ(G) = {λ(s) : s ∈ G} in VN(G). Recall that VN(G) is the von
Neumann algebra generated by λ(G).
Let Gd be the group G with the discrete topology. If Gd is
amenable, then as C∗(Gd ) = C∗r (Gd ), it follows that
C∗ρ(G) ∼= C∗r (Gd ).
In general, it seems that C∗ρ(G) could be the C∗-completion of
`1(Gd ) in some norm such that C∗ρ(G) is not C∗(Gd ) or C∗r (Gd ).
G = SO(3)??



More about the Fourier algebra

The setting: G is a locally compact group; λ : G→ B(L2(G)) is
the left-regular representation; VN(G) is the group von
Neumann algebra generated by λ(G); A(G) is the predual,
turned into an algebra by the co-assocative product ∆.
A(G) is a regular commutative Banach algebra, which has
character space G. More explicitly, given a ∈ A(G), we regard a
as an element in C0(G) by

a(s) = 〈λ(s),a〉 (a ∈ A(G), s ∈ G).

Of course, A(G) is not closed in C0(G).
I prefer to think of A(G) as a quantum group.
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Almost periodic elements in Banach algebras

Let A be a Banach algebra. We turn A∗ into a left A-module by

〈a · µ,b〉 = 〈µ,ba〉 (µ ∈ A∗,a,b ∈ A).

We define ap(A) to be the collection of µ ∈ A∗ such that the
map

A → A∗; a 7→ a · µ

is compact.
Example: Let G be a locally compact group, and let A = L1(G),
so that A∗ = L∞(G) ⊇ Cb(G). Then ap(A) = ap(G).
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For the Fourier algebra

We define ap(Ĝ) = ap(A(G)).
Then ap(Ĝ) behaves vaguely like ap(G).
It is not known if ap(Ĝ) is always a C∗-algebra, however.
Work of Chou and Rindler shows that there exists compact
groups G such that ap(Ĝ) 6= C∗ρ(G).

However, if ap(Ĝ) is to be regarded as a “compactification” of
A(G), then Sołtan’s work suggests that we should arrive at
C∗ρ(G).
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A way forward: approximation!

The Banach space L∞(G) has the approximation property; in
particular, for f ∈ L∞(G), the map

L1(G)→ L∞(G); a 7→ a · f (a ∈ L1(G))

is compact if and only if it can be norm approximated by
finite-rank maps; is it approximable.
In contrast, if VN(G) has the approximation property, then G is
abelian-by-finite.
So it is possible that, for some x ∈ VN(G), the map

A(G)→ VN(G); a 7→ a · x (a ∈ A(G))

could be compact, but not normed approximated by finite-rank
maps.
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The other ingredient: operator spaces

An operator space E is a subspace of B(H); this induces a
norm on Mn(E), by

Mn(E) ⊆Mn(B(H)) = B(H ⊕ · · · ⊕ H).

A map φ : E → F between two operator spaces is completely
bounded if the map φn : Mn(E)→Mn(F ),

φn : (aij)
n
i,j=1 7→

(
φ(aij)

)n
i,j=1,

is uniformly bounded in n.
All the usual constructions work.
In particular, VN(G) carries a natural operator space structure,
and so A(G), as the predual of VN(G), also has a natural
operator space structure.
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Putting it together

So maybe “compact” is the wrong condition for A(G).
Instead, we ask for “completely bounded approximable”. That
is, operators which can be approximated by finite-rank maps, in
the completely bounded norm.
Then everything works! That is, C∗ρ(G) is the collection of
x ∈ VN(G) such that the map

A(G)→ VN(G); a 7→ a · x (a ∈ A(G))

can be approximated by finite-rank maps, in the completely
bounded norm.
Does this work more generally? For locally compact quantum
groups?
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