Perspectives on Noncommutative Graphs

Matthew Daws

UCLan

Seoul National University, 19th April 2023

Matthew Daws

Quantum Graphs

Graphs

A graph consists of a (finite) set of vertices V and a collection of edges $E \subseteq V \times V$.

$$V = \{A, B, C\}$$
 say, and $E = \{(A, B), (B, C), (C, B), (C, A)\}.$

A graph is undirected if $(x, y) \in E \Leftrightarrow (y, x) \in E$. We allow self-loops, so $(x, x) \in E$.

Notice that a graph G = (V, E) is exactly a *relation* on the set V. An undirected graph gives a symmetric relation; having a loop on each vertex gives a reflexive relation.

Channels

A channel sends an input message (element of a finite set A) to an output message (element of a finite set B) perhaps with *noise* so that there is a probability that $a \in A$ is mapped to different $b \in B$.

• Input "o" might be sent to "o" or "0" or "a".

p(b|a) = probability that b is received given that a was sent Define a (simple, undirected) graph structure on A by

 (a_1, a_2) an edge when $p(b|a_1)p(b|a_2) > 0$ for some b.

This is the *confusability graph* of the channel. If we want to communicate with *zero error* then we seek a maximal *independent set* in A.

Quantum Mechanics

- A state is a unit vector $|\psi\rangle$ in a (finite dim) Hilbert space H.
- More generally, a *density* is a positive, trace-one operator $\rho \in \mathcal{B}(H)$.
- A rank-one density is always of the form $|\psi\rangle\langle\psi|$ for some state ψ .
- (Use Trace duality, so $\omega \in \mathcal{B}(H)^*$ is associated uniquely to $A \in \mathcal{B}(H)$ with $\omega(T) = \operatorname{tr}(AT)$. Then densities are exactly the *states* on $\mathcal{B}(H)$. Here we "overload" the term "state"!)
- A (quantum) channel is a trace-preserving, completely positive (CPTP) map $\mathcal{B}(H_A) \to \mathcal{B}(H_B)$:
 - positive and trace-preserving so it maps densities to densities;
 - completely positive so you can tensor with another system and still have positivity.

Stinespring and Kraus

The Stinespring Representation Theorem tells us that any CP map $\mathcal{E}: \mathcal{B}(H_A) \to \mathcal{B}(H_B)$ has the form

$$\mathcal{E}(\pmb{x}) = V^* \pi(\pmb{x}) V \qquad (\pmb{x} \in \mathcal{B}(H_A)),$$

where $V: H_B \to K$, and $\pi: \mathcal{B}(H_A) \to \mathcal{B}(K)$ is a *-representation.

- Any such π is of the form $\pi(x) = x \otimes 1$ where $K \cong H_A \otimes K'$.
- Take an o.n. basis (e_i) for K', so $V(\xi) = \sum_i K_i^*(\xi) \otimes e_i$ for some operators $K_i : H_A \to H_B$.

We arrive at the Kraus form:

$${\mathcal E}(x) = \sum_i \, K_i x K_i^* \qquad (x \in {\mathcal B}(H_A)).$$

Trace-preserving when $\sum_{i} K_{i}^{*} K_{i} = 1$.

Quantum zero-error

We turn $\mathcal{B}(H)$ into a Hilbert space using the trace: $(T|S) = \operatorname{tr}(T^*S)$. We say that we can *distinguish* densities when they are orthogonal. Let $\mathcal{E}(x) = \sum_i K_i x K_i^*$ be a quantum channel. We ask when we can distinguish $\mathcal{E}(\rho)$ and $\mathcal{E}(\sigma)$, i.e. when $\mathcal{E}(\rho) \perp \mathcal{E}(\sigma)$. As \mathcal{E} is positive, this is equivalent to

 $\mathcal{E}(|\psi\rangle\langle\psi|)\perp\mathcal{E}(|\varphi\rangle\langle\varphi|)\qquad(\psi\in\operatorname{Im}\rho,\;\varphi\in\operatorname{Im}\sigma).$

Thus

$$egin{aligned} 0 &= ext{tr} \left(\mathcal{E}(|\psi
angle\langle\psi|) \mathcal{E}(|\phi
angle\langle\phi|)
ight) = \sum_{i,j} ext{tr} \left(K_i |\psi
angle\langle\psi| K_i^* K_j |\phi
angle\langle\phi| K_j^*
ight) \ &= \sum_{i,j} |\langle\psi| K_i^* K_j |\phi
angle|^2 \end{aligned}$$

which is equivalent to $\langle \psi | K_i^* K_j | \phi \rangle = 0$ for each i, j.

To operator systems

So ψ, φ are distinguishable after applying ${\mathcal E}$ when

 $\langle \psi | T | \phi
angle = 0$ for each $T \in \lim\{K_i^* K_i\}$.

Set $S = \lim\{K_i^*K_j\}$ which has properties:

- S is a linear subspace;
- $T\in \mathcal{S}$ if and only if $T^*\in \mathcal{S}$;
- $1 \in S$ (as $\sum_{i} K_{i}^{*}K_{i} = 1$ as \mathcal{E} is CPTP).

That is, S is an *operator system*, which depends only on \mathcal{E} and not the choice of (K_i) .

Theorem (Duan)

For any operator system $S \subseteq \mathcal{B}(H_A)$ there is some quantum channel $\mathcal{E} : \mathcal{B}(H_A) \to \mathcal{B}(H_B)$ giving rise to S.

In the classical case

Given a classical channel from A to B with probabilities p(b|a), define Kraus operators

$$K_{ab}=p(b|a)^{1/2}|b
angle\langle a|:H_A
ightarrow H_B.$$

Here $(\langle a |)$ is the canonical basis of $H_A = \ell^2(A) \cong \mathbb{C}^{|A|}$.

$$\sum_{ab} K_{ab} |c
angle \langle c|K^*_{ab} = \sum_{ab} p(b|a) |b
angle \langle a|c
angle \langle c|a
angle \langle b| = \sum_{b} p(b|c) |b
angle \langle b|.$$

So the pure state $|c\rangle\langle c|$ is mapped to the combination of pure states which can be received, given that message c is sent.

$$\mathcal{S} = \lim\{K_{ab}^* K_{cd}\} = \lim\{p(b|a)^{1/2} p(d|c)^{1/2} |a\rangle \langle b|d\rangle \langle c|\}$$

= $\inf\{|a\rangle \langle c|: a \sim c\}$

Thus S is directly linked to the confusability graph of the channel.

Quantum relations

Simultaneously, and motivated more by "noncommutative geometry", Weaver studied:

Definition

Let $M \subseteq \mathcal{B}(H)$ be a von Neumann algebra. A quantum relation on M is a weak*-closed subspace $S \subseteq \mathcal{B}(H)$ with $M'SM' \subseteq S$. We define the relation to be:

) reflexive when
$$M' \subseteq S$$
;

② symmetric when $S^*=S$ where $S^*=\{x^*:x\in S\};$

 \circ transitive when $S^2 \subseteq S$, where $S^2 = \overline{\lim}^{w^*} \{xy : x, y \in S\}$.

When $M = \ell^{\infty}(X) \subseteq \mathcal{B}(\ell^2(X))$ there is a bijection between the usual meaning of "relation" on X and quantum relations on M, given by

$$S = \overline{\lim}^{w^*} \{e_{x,y} : x \sim y\}.$$

Quantum graphs

As a graph on a (finite) vertex set V is simply a relation, and

- undirected graph corresponds to a symmetric relation;
- a reflexive relation corresponds to having a "loop" at every vertex.

Definition (Weaver)

A quantum graph on a von Neumann algebra $M \subseteq \mathcal{B}(H)$ is a reflexive, symmetric quantum relation. That is, a unital, self-adjoint, weak*-closed subspace $S \subseteq \mathcal{B}(H)$, which is an M'-bimodule $(M'SM' \subseteq S)$.

If $M = \mathcal{B}(H)$ with H finite-dimensional, then as $M' = \mathbb{C}$, a quantum graph is just an operator system: that is, exactly what we had before! [Duan, Severini, Winter; Stahlke]

Adjacency matrices

Given a graph G = (V, E) consider the $\{0, 1\}$ -valued matrix A with

$$A_{i,j} = egin{cases} 1 & :(i,j)\in E, \ 0 & : ext{otherwise}, \end{cases}$$

the adjacency matrix of G.

- A is idempotent for the Schur product;
- G is undirected if and only if A is self-adjoint;
- A has 1s down the diagonal when G has a loop at every vertex.

We can think of A as an operator on $\ell^2(V)$. This is the GNS space for the C^* -algebra $\ell^{\infty}(V)$ for the state induced by the uniform measure.

General C^* -algebras

Let B be a finite-dimensional C^* -algebra, and let φ be a faithful state on B, with GNS space $L^2(B)$. Thus B bijects with $L^2(B)$ as a vector space, and so we get:

- The multiplication on B induces a map $m: L^2(B)\otimes L^2(B) o L^2(B);$
- The unit in B induces a map $\eta : \mathbb{C} \to L^2(B)$.

We get an analogue of the Schur product:

$$x ullet y = m(x \otimes y)m^* \qquad ig(x,y \in \mathcal{B}(L^2(B))ig).$$

Quantum adjacency matrix

Definition (Many authors)

A quantum adjacency matrix is a self-adjoint $A \in \mathcal{B}(L^2(B))$ with:

• $m(A \otimes A)m^* = A$ (so Schur product idempotent);

•
$$(1\otimes \eta^*m)(1\otimes A\otimes 1)(m^*\eta\otimes 1)=A;$$

•
$$m(A \otimes 1)m^* = \mathrm{id}$$
 (a "loop at every vertex");

The middle axiom is a little mysterious: it roughly corresponds to "undirected".

I want to sketch why this definition is equivalent to the previous notion of a "quantum graph".

Subspaces to projections

Fix a finite-dimensional C^* -algebra (von Neumann algebra) M. A "quantum graph" is either:

- A subspace of $\mathcal{B}(H)$ (where $M \subseteq \mathcal{B}(H)$) with some properties; or
- An operator on $L^2(M)$ with some properties.

How do we move between these?

 $S \subseteq \mathcal{B}(H)$ is a bimodule over M'. As H is finite-dimensional, $\mathcal{B}(H)$ is a Hilbert space for

$$(x|y) = \operatorname{tr}(x^*y).$$

Then $M \otimes M^{op}$ is represented on $\mathcal{B}(H)$ via

 $\pi: M \otimes M^{\mathrm{op}} \to \mathcal{B}(\mathcal{B}(H)); \quad \pi(x \otimes y): T \mapsto xTy.$

- The commutant of $\pi(M \otimes M^{op})$ is naturally $M' \otimes (M')^{op}$.
- So an M'-bimodule of $\mathcal{B}(H)$ corresponds to an $M' \otimes (M')^{\text{op}}$ -invariant subspace of the Hilbert space $\mathcal{B}(H)$;
- Which corresponds to a *projection* in $M \otimes M^{\text{op}}$.

Matthew Daws

Quantum Graphs

Operators to algebras

So how can we relate:

- Operators $A \in \mathcal{B}(L^2(M))$ with
- Projections in $M \otimes M^{op}$?

[Musto, Reutter, Verdon]

Operators to algebras 2

Recall the GNS construction for a *tracial* state ψ on M:

$$\Lambda: M o L^2(M); \quad (\Lambda(x)|\Lambda(y)) = \psi(x^*y).$$

As $L^2(M)$ is finite-dimensional, every operator on $L^2(M)$ is a linear combination of rank-one operators, and each rank-one operator is of the form

$$heta_{\Lambda(a),\Lambda(b)}: \xi\mapsto (\Lambda(a)|\xi)\Lambda(b) \qquad (\xi\in L^2(M)).$$

Define a bijection

$$\Psi: \mathcal{B}(L^2(M)) o M \otimes M^{\operatorname{op}}; \quad heta_{\Lambda(a),\Lambda(b)} = b \otimes a^*,$$

and extend by linearity!

Operators to algebras 3

$$\Psi: \mathcal{B}(L^2(M)) \to M \otimes M^{\operatorname{op}}; \quad heta_{\Lambda(a),\Lambda(b)} = b \otimes a^*,$$

- Ψ is a homomorphism for the "Schur product" $A_1 \bullet A_2 = m(A_1 \otimes A_2)m^*;$
- $A \mapsto (1 \otimes \eta^* m)(1 \otimes A \otimes 1)(m^* \eta \otimes 1)$ corresponds to the anti-homomorphism $\sigma : a \otimes b \mapsto b \otimes a$;
- $A \mapsto A^*$ corresponds to $e \mapsto \sigma(e)^*$.

Conclude: A quantum adjacency matrix corresponds to a projection e with $\sigma(e) = e$. But: There is no clean one-to-one correspondence between the axioms.

Non-tracial case

If the functional ψ on M is not tracial, then this correspondence fails. However:

Theorem (D.)

There is a bijection between:

- "Schur idempotent", self-adjoint operators A on $L^2(M)$;
- $e \in M \otimes M^{\operatorname{op}}$ with $e^2 = e$ and $e = \sigma(e)^*$;
- self-adjoint M'-bimodules $S \subseteq \mathcal{B}(H)$ such that there is another self-adjoint M'-bimodule S_0 with $S \oplus S_0 = \mathcal{B}(H)$

KMS States

Any faithful state ψ is KMS: there is an automorphism σ' of M with

$$\psi(ab) = \psi(b\sigma'(a)) \qquad (a, b \in M).$$

Indeed, there is $Q \in M$ positive and invertible with

$$\psi(a)=\operatorname{tr}(Qa)$$
 and then $\sigma'(a)=QaQ^{-1}.$

Theorem (D.)

Twisting our bijection Ψ using σ' allows us to establish a bijection between:

• Quantum adjacency operators $A \in \mathcal{B}(L^2(M));$

• projections $e \in M \otimes M^{op}$ with $e = \sigma(e)$ and $(\sigma' \otimes \sigma')(e) = e$;

• self-adjoint M'-bimodules $S \subseteq \mathcal{B}(H)$ with $QSQ^{-1} = S$.

So this is more restrictive than the tracial case.

Matthew Daws

Pullbacks

Let $\theta: M \to N$ be a normal CP map between von Neumann algebras $M \subseteq \mathcal{B}(H_M)$ and $N \subseteq \mathcal{B}(H_N)$. The Stinespring dilation takes a special form as θ is normal:

• there is a Hilbert space K and $U: H_N \to H_M \otimes K$;

•
$$heta(x) = U^*(x \otimes 1) U$$
 for $x \in M \subseteq \mathcal{B}(H_M);$

• there is a normal *-homomorphism $\rho:N' \to H_M \otimes K$ with $Ux' = \rho(x') U$ for $x' \in N'$.

Given $S \subseteq \mathcal{B}(H_M)$ a Quantum (Graph/Relation) over M, define

$$\overleftarrow{S} = ext{weak}^* ext{-closure}\{U^*xU: x \in S \overline{\otimes} \mathcal{B}(K)\}.$$

Use of ρ shows that \overleftarrow{S} is a Quantum (Graph/Relation) over N, the "pullback".

Pullbacks: Kraus forms

When M, N are finite-dimensional, $\theta: M \to N$ has a Kraus form

$$\Theta(x) = \sum_{i=1}^n b_i^* x b_i.$$

(Notice I have swapped to considering UCP maps, not TPCP maps.) Then [Weaver] for $S_1 \subseteq \mathcal{B}(H_M)$

$$\overleftarrow{S_1} = ext{lin} \{ b_i^* x b_j : x \in S_1 \}.$$

Pushforwards

Given $S_2 \subseteq \mathcal{B}(H_N)$ a quantum relation over N, also

$$\overrightarrow{S_2}= \lim\{b_{\,i}xb_j^*: x\in S_2\}$$

is a quantum relation over M, the "pushforward". Given classical graphs $G = (V_G, E_G)$ and $H = (V_H, E_H)$, a function $f: V_G \rightarrow V_H$ defines a *-homomorphism (so certainly a UCP map)

$$heta: C(V_H)
ightarrow C(V_G); \quad a \mapsto a \circ f \quad (a \in C(V_H)).$$

Let G induce $S_G \subseteq \mathcal{B}(\ell^2(V_G))$, that is,

$$S_G = \lim\{e_{u,v}: (u,v) \in E_G\}$$

the span of matrix units supported on the edges. Then

$$\overrightarrow{S_G} = \lim\{e_{f(u),f(v)}: (u,v) \in E_G\}$$

and so $\overrightarrow{S_G} \subseteq S_H$ exactly when f is a graph homomorphism.

Homomorphisms

[Stahkle] defines $\theta: M \to N$ to be a homomorphism between S_1 and S_2 when $\overrightarrow{S_2} \subseteq S_1$. [Weaver] calls this a *CP*-morphism.

Theorem (Stahkle)

Let G, H be (classical) graphs. Let $\theta : C(V_H) \to C(V_G)$ be a UCP map giving a homomorphism G to H (that is, with $\overrightarrow{S_G} \subseteq S_H$). Then there is some map $f : V_G \to V_H$ which is a (classical) homomorphism.

- In general θ need not be directly related to f.
- However, often we just care about the *existence* of a homomorphism.
- E.g. a k-colouring of G corresponds to some homomorphism $G \to K_k$, the complete graph. [I got confused in the talk, but this is correct!]

Further developments

The pushforward

$$\overrightarrow{S} = ext{lin}\{b_{\,i}xb_{j}^{*}: x \in S\}$$

doesn't make sense in the infinite-dimensional setting. [The definition exists, but it seems hard to prove anything.]

• What is a good notion of *homomorphism* in infinite dimensions? Here we have worked exclusively with the operator bimodule picture of Quantum Graphs.

- Can we say something useful about homomorphisms and "adjacency matrices"?
- Already this seems problematic in the commutative case.

[Stop?]

Isomorphisms

Homomorphisms / CP-morphisms in this sense give a category. Playing around with *multiplicative domains* for CP maps shows that the isomorphisms are exactly the *-isomorphisms $\theta: M \to N$ which intertwine the Quantum Graphs.

- With $M \subseteq \mathcal{B}(L^2(M))$, any *-automorphism $\theta: M \to M$ is implemented: there is a unitary $u \in \mathcal{B}(L^2(M))$ with $\theta(x) = uxu^*$.
- Then θ is an *automorphism* of the quantum graph S exactly when $uSu^* = S$.

What about an automorphism of the associated adjacency matrix A?

- A acts on $L^2(M, \psi)$, say for some (tracial) ψ .
- It is hence natural to restrict to those θ which preserve ψ (automatic if ψ a trace).

Acting on $L^2(M)$

Have $\theta: M \to M$ a *-automorphism.

Let $\Lambda: M \to L^2(M)$ be the GNS map. If θ preserves ψ then

$$heta_0: \Lambda(x)\mapsto \Lambda(heta(x)) \qquad (x\in M)$$

is an isometry (and so a unitary). (Indeed, θ_0 then implements θ .) Then θ is an automorphism of our Quantum Graph if and only if

$$A\theta_0 = \theta_0 A$$
 on $L^2(M)$.

[Stop?]

Quantum Automorphisms

[We now shift gears...]

Let (A, Δ) be a compact quantum group. A *coaction* on M (still finite-dimensional) is a *-homomorphism

 $\alpha: M \to M \otimes A; \quad (\alpha \otimes \mathrm{id})\alpha = (\mathrm{id} \otimes \Delta)\alpha,$

and satisfying the density condition $lin\{(1 \otimes a)\alpha(x) : x \in M, a \in A\}$ dense in $M \otimes A$.

If we let M act on $L^2(M)$, then α has a unitary implementation, a unitary corepresentation $U \in \mathcal{B}(L^2(M)) \otimes A$ with

$$lpha(x) = U(x \otimes 1) U^* \qquad (x \in M).$$

We say that α coacts on the adjacency matrix A_G when

$$U(A_G\otimes 1)=(A_G\otimes 1)U.$$

Quantum Automorphisms of Operator Bimodules

 $U(A_G \otimes 1) = (A_G \otimes 1) U.$

- Same as the single automorphism case, $uA_G = A_G u$;
- Which corresponds to $uSu^* = S$

So might conjecture that we want $S \subseteq \mathcal{B}(L^2(M))$ and ask for $U(S \otimes 1) U^* = S \otimes 1$.

For various reasons, this doesn't work. For example, the "trivial quantum graph" is not preserved!

Instead, you need to twist by the *modular automorphism group*, or equivalently, look at a coaction of the *opposite quantum group*. Not clear to me exactly why this is...