Noncommutative Graphs

Matthew Daws

UCLan

Lancaster, November 2021

Matthew Daws

Quantum Graphs

Lancaster, Nov 2021 1 / 22

Channels

A channel sends an input message (element of a finite set A) to an output message (element of a finite set B) perhaps with *noise* so that there is a probability that $a \in A$ is mapped to different $b \in B$.

• Input "o" might be sent to "o" or "0" or "a".

p(b|a) = probability that b is received given that a was sent Define a (simple, undirected) graph structure on A by

 (a_1, a_2) an edge when $p(b|a_1)p(b|a_2) > 0$ for some b.

This is the *confusability graph* of the channel. If we want to communicate with *zero error* then we seek a maximal *independent set* in A.

Quantum Mechanics

- A state is a unit vector $|\psi\rangle$ in a (finite dim) Hilbert space H.
- More generally, a *density* is a positive, trace one operator $\rho \in \mathcal{B}(H)$.
- A rank-one density is always of the form $|\psi\rangle\langle\psi|$ for some state ψ .
- (Use Trace duality, so $\omega \in \mathcal{B}(H)^*$ is associated uniquely to $A \in \mathcal{B}(H)$ with $\omega(T) = \operatorname{tr}(AT)$. Then densities are exactly the *states* on $\mathcal{B}(H)$.)
- A (quantum) channel is a trace-preserving, completely positive (CPTP) map $\mathcal{B}(H_A) \to \mathcal{B}(H_B)$:
 - positive and trace-preserving so it maps densities to densities;
 - completely positive so you can tensor with another system and still have positivity.

Stinespring and Kraus

The Stinespring Representation Theorem tells us that any CP map $\mathcal{E}: \mathcal{B}(H_A) o \mathcal{B}(H_B)$ has the form

$$\mathcal{E}(\pmb{x}) = V^* \pi(\pmb{x}) V \qquad (\pmb{x} \in \mathcal{B}(H_A)),$$

where $V: H_B \to K$, and $\pi: \mathcal{B}(H_A) \to \mathcal{B}(K)$ is a *-representation.

- Any such π is of the form $\pi(x) = x \otimes 1$ where $K \cong H_A \otimes K'$.
- Take an o.n. basis (e_i) for K' so $V(\xi) = \sum_i K_i^*(\xi) \otimes e_i$ for some operators $K_i : H_A \to H_B$.

We arrive at the Kraus form:

$${\mathcal E}(x) = \sum_i \, K_i x K_i^* \qquad (x \in {\mathcal B}(H_A)).$$

Trace-preserving when $\sum_{i} K_{i}^{*} K_{i} = 1$.

Quantum zero-error

We turn $\mathcal{B}(H)$ into a Hilbert space using the trace: $(T|S) = tr(T^*S)$, so densities ρ, σ are *orthogonal* when

$$0=\text{tr}(\rho\sigma)=\text{tr}(\sigma^{1/2}\rho^{1/2}\sigma^{1/2}\sigma^{1/2})\quad\Leftrightarrow\quad\rho^{1/2}\sigma^{1/2}=0.$$

Let $\mathcal{E}(x) = \sum_{i} K_{i} x K_{i}^{*}$ be a quantum channel. We can distinguish densities exactly when $\mathcal{E}(\rho) \perp \mathcal{E}(\sigma)$. As \mathcal{E} is positive, this is equivalent to

$$\mathcal{E}(|\psi\rangle\langle\psi|)\perp\mathcal{E}(|\varphi\rangle\langle\varphi|)\qquad(\psi\in\operatorname{Im}\rho,\varphi\in\operatorname{Im}\sigma).$$

Thus

$$egin{aligned} \mathsf{0} = ext{tr} \left(\mathcal{E}(|\psi
angle\langle\psi|)\mathcal{E}(|\phi
angle\langle\phi|)
ight) &= \sum_{i,j} ext{tr} \left(K_i |\psi
angle\langle\psi|K_i^*K_j|\phi
angle\langle\phi|K_j^*
ight) \ &= \sum_{i,j} |\langle\psi|K_i^*K_j|\phi
angle|^2 \end{aligned}$$

is equivalent to $\langle \psi | K_i^* K_j | \phi \rangle = 0$ for each i, j.

To operator systems

So ψ, φ are distinguishable when

 $\langle \psi | T | \phi
angle = 0$ for each $T \in \lim\{K_i^* K_j\}$.

Set $S = \lim\{K_i^*K_i\}$ which has properties:

- S is a linear subspace;
- $T\in \mathcal{S}$ if and only if $T^*\in \mathcal{S}$;

•
$$1 \in S$$
 (as $\sum_i K_i^* K_i = 1$ as \mathcal{E} is CPTP).

That is, S is an *operator system*, which depends only on \mathcal{E} and not the choice of (K_i) .

Theorem (Duan)

For any operator system $S \subseteq \mathcal{B}(H_A)$ there is some quantum channel $\mathcal{E} : \mathcal{B}(H_A) \to \mathcal{B}(H_B)$ giving rise to S.

In the classical case

Given a classical channel from A to B with probabilities p(b|a), define Kraus operators

$$K_{ab}=p(b|a)^{1/2}|b
angle\langle a|:H_A
ightarrow H_B.$$

Here $(\langle a |)$ is the canonical basis of $H_A = \ell^2(A) \cong \mathbb{C}^{|A|}$.

$$\sum_{ab} K_{ab} |c
angle \langle c|K^*_{ab} = \sum_{ab} p(b|a) |b
angle \langle a|c
angle \langle c|a
angle \langle b| = \sum_{b} p(b|c) |b
angle \langle b|.$$

So the pure state $|c\rangle\langle c|$ is mapped to the combination of pure states which can be received, given that message c is sent.

$$\mathcal{S} = \lim\{K_{ab}^* K_{cd}\} = \lim\{p(b|a)^{1/2} p(d|c)^{1/2} |a\rangle \langle b|d\rangle \langle c|\}$$

= $\inf\{|a\rangle \langle c|: a \sim c\}$

Thus S is directly linked to the confusability graph of the channel.

Quantum relations

Simultaneously, and motivated more by "noncommutative geometry", Weaver studied:

Definition

Let $M \subseteq \mathcal{B}(H)$ be a von Neumann algebra. A quantum relation on M is a weak*-closed subspace $S \subseteq \mathcal{B}(H)$ with $M'SM' \subseteq S$. The relation is:

When $M = \ell^{\infty}(X) \subseteq \mathcal{B}(\ell^2(X))$ there is a bijection between the usual meaning of "relation" on X and quantum relations on M, given by

$$S = \overline{\lim}^{w^*} \{e_{x,y} : x \sim y\}.$$

Quantum graphs

As a graph on a (finite) vertex set V is simply a relation, and

- undirected graph corresponds to a symmetric relation;
- a reflexive relation corresponds to having a "loop" at every vertex.

Definition (Weaver)

A quantum graph on a von Neumann algebra $M \subseteq \mathcal{B}(H)$ is a reflexive, symmetric quantum relation. That is, a unital, self-adjoint, weak*-closed subspace $S \subseteq \mathcal{B}(H)$, which is an M'-bimodule $(M'SM' \subseteq S)$.

If $M = \mathcal{B}(H)$ with H finite-dimensional, then as $M' = \mathbb{C}$, a quantum graph is just an operator system: that is, exactly what we had before! [Duan, Severini, Winter; Stahlke]

Adjacency matrices

Given a graph G = (V, E) consider the $\{0, 1\}$ -valued matrix A with

$$A_{i,j} = egin{cases} 1 & :(i,j)\in E, \ 0 & : ext{otherwise}, \end{cases}$$

the adjacency matrix of G.

- A is idempotent for the Schur product;
- G is undirected if and only if A is self-adjoint;
- A has 1s down the diagonal when G has a loop at every vertex.

We can think of A as an operator on $\ell^2(V)$. This is the GNS space for the C^* -algebra $\ell^{\infty}(V)$ for the state induced by the uniform measure.

General C^* -algebras

Let B be a finite-dimensional C^* -algebra, and let φ be a faithful state on B, with GNS space $L^2(B)$. Thus B bijects with $L^2(B)$ as a vector space, and so we get:

- The multiplication on B induces a map $m: L^2(B)\otimes L^2(B) o L^2(B);$
- The unit in B induces a map $\eta : \mathbb{C} \to L^2(B)$.

We get an analogue of the Schur product:

$$x ullet y = m(x \otimes y)m^* \qquad (x,y \in \mathcal{B}(L^2(B))).$$

Quantum adjacency matrix

Definition (Many authors)

A quantum adjacency matrix is a self-adjoint $A \in \mathcal{B}(L^2(B))$ with:

• $m(A \otimes A)m^* = A$ (so Schur product idempotent);

•
$$(1\otimes \eta^*m)(1\otimes A\otimes 1)(m^*\eta\otimes 1)=A;$$

•
$$m(A \otimes 1)m^* = \mathrm{id}$$
 (a "loop at every vertex");

The middle axiom is a little mysterious: it roughly corresponds to "undirected".

I want to sketch why this definition is equivalent to the previous notion of a "quantum graph".

Subspaces to projections

Fix a finite-dimensional C^* -algebra (von Neumann algebra) M. A "quantum graph" is either:

- A subspace of $\mathcal{B}(H)$ (where $M \subseteq \mathcal{B}(H)$) with some properties; or
- An operator on $L^2(M)$ with some properties.

How do we move between these?

 $S \subseteq \mathcal{B}(H)$ is a bimodule over M'. As H is finite-dimensional, $\mathcal{B}(H)$ is a Hilbert space for

 $(x|y) = \operatorname{tr}(x^*y).$

Then $M \otimes M^{op}$ is represented on $\mathcal{B}(H)$ via

 $\pi: M \otimes M^{\mathrm{op}} \to \mathcal{B}(\mathcal{B}(H)); \quad \pi(x \otimes y): T \mapsto xTy.$

- The commutant of $\pi(M \otimes M^{op})$ is naturally $M' \otimes (M')^{op}$.
- So an M'-bimodule of $\mathcal{B}(H)$ corresponds to an $M' \otimes (M')^{\text{op}}$ -invariant subspace of the Hilbert space $\mathcal{B}(H)$;
- Which corresponds to a *projection* in $M \otimes M^{op}$.

Matthew Daws

Operators to algebras

So how can we relate:

- Operators $A \in \mathcal{B}(L^2(M));$
- Projections in $M \otimes M^{op}$?

[Musto, Reutter, Verdon]

Operators to algebras 2

Recall the GNS construction for a *tracial* state ψ on M:

$$\Lambda: M o L^2(M); \quad (\Lambda(x)|\Lambda(y)) = \psi(x^*y).$$

As $L^2(M)$ is finite-dimensional, every operator on $L^2(M)$ is a linear combination of rank-one operators of the form

$$heta_{\Lambda(a),\Lambda(b)}: \xi\mapsto (\Lambda(a)|\xi)\Lambda(b) \qquad (\xi\in L^2(M)).$$

Define a bijection

$$\Psi: \mathcal{B}(L^2(M)) \to M \otimes M^{\operatorname{op}}; \quad \theta_{\Lambda(a),\Lambda(b)} = b \otimes a^*,$$

and extend by linearity!

Operators to algebras 3

$$\Psi: \mathcal{B}(L^2(M)) \to M \otimes M^{\operatorname{op}}; \quad heta_{\Lambda(a),\Lambda(b)} = b \otimes a^*,$$

- Ψ is a homomorphism for the "Schur product" $A_1 \bullet A_2 = m(A_1 \otimes A_2)m^*;$
- $A \mapsto (1 \otimes \eta^* m)(1 \otimes A \otimes 1)(m^* \eta \otimes 1)$ corresponds to the anti-homomorphism $\sigma : a \otimes b \mapsto b \otimes a$;
- $A \mapsto A^*$ corresponds to $e \mapsto \sigma(e)^*$.

Conclude: A quantum adjacency matrix corresponds to a projection e with $\sigma(e) = e$. But: There is no clean one-to-one correspondence between the axioms.

Non-tracial case

If the functional ψ on M is not tracial, then this correspondence fails. However:

Theorem (D.)

There is a bijection between:

- "Schur idempotent", self-adjoint operators A on $L^2(M)$;
- $e \in M \otimes M^{\operatorname{op}}$ with $e^2 = e$ and $e = \sigma(e)^*$;
- self-adjoint M'-bimodules $S \subseteq \mathcal{B}(H)$ such that there is another self-adjoint M'-bimodule S_0 with $S \oplus S_0 = \mathcal{B}(H)$

KMS States

Any faithful state ψ is KMS: there is an automorphism σ' of M with

$$\psi(ab) = \psi(b\sigma'(a)) \qquad (a, b \in M).$$

Indeed, there is $Q \in M$ positive and invertible with

$$\psi(a) = \operatorname{tr}(Qa) \qquad \sigma'(a) = QaQ^{-1}.$$

Theorem (D.)

Twisting our bijection Ψ using σ' allows us to establish a bijection between:

• Quantum adjacency operators $A \in \mathcal{B}(L^2(M));$

• projections $e \in M \otimes M^{op}$ with $e = \sigma(e)$ and $(\sigma' \otimes \sigma')(e) = e$;

• self-adjoint M'-bimodules $S \subseteq \mathcal{B}(H)$ with $QSQ^{-1} = S$.

So this is more restrictive than the tracial case.

Matthew Daws

Further developments

- This whole business about "a loop at every vertex" can be handled naturally.
- There is an asymmetry in the axiom

 $(1 \otimes \eta^* m)(1 \otimes A \otimes 1)(m^* \eta \otimes 1) = A$ or?? $(\eta^* m \otimes 1)(1 \otimes A \otimes 1)(1 \otimes m^* \eta) = A$

But these are actually equivalent.

- There are various notions of "homomorphism" or "pushforward / pullback" along a CP map. To a greater or lesser extent, these interact with the different "pictures".
- People have studied things like "colourings" of quantum graphs.
 E.g. a graph can be k-coloured if there is a homomorphism
 G → K_k. So just let G be quantum.

Isomorphisms

An isomorphism of a quantum adjacency operator $A \in \mathcal{B}(L^2(M))$ is an automorphism θ of M which preserves the state ψ , and which commutes with A. This means:

- Think of A as a map on M, so simply $A \circ \theta = \theta \circ A$; or
- θ preserves ψ , so induces a unitary operator

 $\widehat{ heta}: L^2(M) \to L^2(M); \quad \Lambda(a) \mapsto \Lambda(heta(a)).$

Then require that $\hat{\theta}A\hat{\theta}^* = A$.

What can we say about an M'-bimodule $S \subseteq \mathcal{B}(H)$?

- Not every automorphism of M lifts to $\mathcal{B}(H)$;
- Seems we get dependence on H here;

Does all work if $H = L^2(M)$: then an automorphism of S is an isomorphism of $\mathcal{B}(H)$, which restricts to a ψ -persevering aut of M, and which restricts to a bijection on S.

Quantum Isomorphisms

(Extremely briefly...) A quantum isomorphism is a coaction of a compact quantum group (A, Δ) on M, say $\alpha : M \to M \otimes A$ which commutes with the quantum adjacency operator A_G :

$$\alpha A_G = (A_G \otimes \mathrm{id})\alpha.$$

Here A_G is thought of as a linear map on M.

Any such coaction is associated to a unitary (co)representation $U \in \mathcal{B}(L^2(M)) \otimes A$, because we assume that α leaves ψ invariant. (Copy the construction of the fundamental unitary from the coproduct.) Then equivalently $(A_G \otimes 1)U = U(A_G \otimes 1)$.

Lots of previous interest in quantum isomorphisms of classical graphs. Also an equivalent definition from [Musto, Reutter, Verdon] using 2-categories. Quantum Isomorphisms of operator bimodules From the coaction α form the corep $U \in \mathcal{B}(L^2(M)) \otimes A$. Then there is a coaction of (A, Δ) on $\mathcal{B}(L^2(M))$:

 $lpha_U: T\mapsto U(\,T\otimes 1)\,U^* \qquad (\,T\in \mathcal{B}(L^2(M\,))).$

Might this leave $S \subseteq \mathcal{B}(L^2(M))$ invariant if and only if U commutes with A_G ?

- No, as the "trivial quantum graph" is S = M', which should always be invariant, but α_U leaves M invariant, not M'.
- Instead, we can use the modular conjugation and antipode to form a "commutant" coaction α'_U ; or equivalently, look at α_U but work with

$$S':=\{JTJ:\,T\in S\}.$$

Theorem (D.)

 α leaves A_G invariant if and only if α_U leaves S' invariant.