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Channels

A channel sends an input message (element of a �nite set A) to an

output message (element of a �nite set B) perhaps with noise so that

there is a probability that a ∈ A is mapped to di�erent b ∈ B .

Input \o" might be sent to \o" or \0" or \a".

p(b|a) = probability that b is received given that a was sent

De�ne a (simple, undirected) graph structure on A by

(a1, a2) an edge when p(b|a1)p(b|a2) > 0 for some b.

This is the confusability graph of the channel.

If we want to communicate with zero error then we seek a maximal

independent set in A.
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Quantum Mechanics

A state is a unit vector |ψ⟩ in a (�nite dim) Hilbert space H .

More generally, a density is a positive, trace one operator

ρ ∈ B(H ).

A rank-one density is always of the form |ψ⟩⟨ψ| for some state ψ.

(Use Trace duality, so ω ∈ B(H )∗ is associated uniquely to

A ∈ B(H ) with ω(T ) = tr(AT ). Then densities are exactly the

states on B(H ).)

A (quantum) channel is a trace-preserving, completely positive

(CPTP) map B(HA) → B(HB ):

positive and trace-preserving so it maps densities to densities;

completely positive so you can tensor with another system and

still have positivity.
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Stinespring and Kraus

The Stinespring Representation Theorem tells us that any CP map

E : B(HA) → B(HB ) has the form

E(x ) = V ∗π(x )V (x ∈ B(HA)),

where V : HB → K , and π : B(HA) → B(K ) is a ∗-representation.
Any such π is of the form π(x ) = x ⊗ 1 where K ∼= HA ⊗K ′.

Take an o.n. basis (ei ) for K
′ so V (ξ) =

∑
i K

∗
i (ξ)⊗ ei for some

operators Ki : HA → HB .

We arrive at the Kraus form:

E(x ) =
∑
i

KixK
∗
i (x ∈ B(HA)).

Trace-preserving when
∑

i K
∗
i Ki = 1.
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Quantum zero-error

We turn B(H ) into a Hilbert space using the trace: (T |S) = tr(T ∗S),

so densities ρ, σ are orthogonal when

0 = tr(ρσ) = tr(σ1/2ρ1/2ρ1/2σ1/2) ⇔ ρ1/2σ1/2 = 0.

Let E(x ) =
∑

i KixK
∗
i be a quantum channel. We can distinguish

densities exactly when E(ρ) ⊥ E(σ). As E is positive, this is equivalent

to

E(|ψ⟩⟨ψ|) ⊥ E(|ϕ⟩⟨ϕ|) (ψ ∈ Im ρ,ϕ ∈ Imσ).

Thus

0 = tr
(
E(|ψ⟩⟨ψ|)E(|ϕ⟩⟨ϕ|)

)
=

∑
i ,j

tr
(
Ki |ψ⟩⟨ψ|K ∗

i Kj |ϕ⟩⟨ϕ|K ∗
j

)
=

∑
i ,j

|⟨ψ|K ∗
i Kj |ϕ⟩|2

is equivalent to ⟨ψ|K ∗
i Kj |ϕ⟩ = 0 for each i , j .
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To operator systems

So ψ,ϕ are distinguishable when

⟨ψ|T |ϕ⟩ = 0 for each T ∈ lin{K ∗
i Kj }.

Set S = lin{K ∗
i Kj } which has properties:

S is a linear subspace;

T ∈ S if and only if T ∗ ∈ S;
1 ∈ S (as

∑
i K

∗
i Ki = 1 as E is CPTP).

That is, S is an operator system, which depends only on E and not

the choice of (Ki ).

Theorem (Duan)

For any operator system S ⊆ B(HA) there is some quantum

channel E : B(HA) → B(HB ) giving rise to S.
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In the classical case

Given a classical channel from A to B with probabilities p(b|a), de�ne

Kraus operators

Kab = p(b|a)1/2|b⟩⟨a | : HA → HB .

Here (⟨a |) is the canonical basis of HA = ℓ2(A) ∼= C|A|.∑
ab

Kab |c⟩⟨c|K ∗
ab =

∑
ab

p(b|a)|b⟩⟨a |c⟩⟨c|a⟩⟨b| =
∑
b

p(b|c)|b⟩⟨b|.

So the pure state |c⟩⟨c| is mapped to the combination of pure states

which can be received, given that message c is sent.

S = lin{K ∗
abKcd } = lin{p(b|a)1/2p(d |c)1/2|a⟩⟨b|d⟩⟨c|}

= lin{|a⟩⟨c| : a ∼ c}

Thus S is directly linked to the confusability graph of the channel.
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Quantum relations

Simultaneously, and motivated more by \noncommutative geometry",

Weaver studied:

De�nition

Let M ⊆ B(H ) be a von Neumann algebra. A quantum relation on M

is a weak∗-closed subspace S ⊆ B(H ) with M ′SM ′ ⊆ S . The relation

is:

1 reexive if M ′ ⊆ S ;

2 symmetric if S∗ = S where S∗ = {x ∗ : x ∈ S };

3 transitive if S2 ⊆ S where S2 = lin
w∗

{xy : x , y ∈ S }.

When M = ℓ∞(X ) ⊆ B(ℓ2(X )) there is a bijection between the usual

meaning of \relation" on X and quantum relations on M , given by

S = lin
w∗

{ex ,y : x ∼ y}.
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Quantum graphs

As a graph on a (�nite) vertex set V is simply a relation, and

undirected graph corresponds to a symmetric relation;

a reexive relation corresponds to having a \loop" at every vertex.

De�nition (Weaver)

A quantum graph on a von Neumann algebra M ⊆ B(H ) is a reexive,

symmetric quantum relation. That is, a unital, self-adjoint,

weak∗-closed subspace S ⊆ B(H ), which is an M ′-bimodule

(M ′SM ′ ⊆ S).

If M = B(H ) with H �nite-dimensional, then as M ′ = C, a quantum

graph is just an operator system: that is, exactly what we had before!

[Duan, Severini, Winter; Stahlke]
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Adjacency matrices

Given a graph G = (V ,E) consider the {0, 1}-valued matrix A with

Ai ,j =

{
1 : (i , j ) ∈ E ,

0 : otherwise,

the adjacency matrix of G .

A is idempotent for the Schur product;

G is undirected if and only if A is self-adjoint;

A has 1s down the diagonal when G has a loop at every vertex.

We can think of A as an operator on ℓ2(V ). This is the GNS space for

the C ∗-algebra ℓ∞(V ) for the state induced by the uniform measure.
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General C ∗-algebras

Let B be a �nite-dimensional C ∗-algebra, and let φ be a faithful state

on B , with GNS space L2(B). Thus B bijects with L2(B) as a vector

space, and so we get:

The multiplication on B induces a map

m : L2(B)⊗ L2(B) → L2(B);

The unit in B induces a map η : C → L2(B).

We get an analogue of the Schur product:

x • y = m(x ⊗ y)m∗ (x , y ∈ B(L2(B))).
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Quantum adjacency matrix

De�nition (Many authors)

A quantum adjacency matrix is a self-adjoint A ∈ B(L2(B)) with:

m(A⊗A)m∗ = A (so Schur product idempotent);

(1⊗ η∗m)(1⊗A⊗ 1)(m∗η⊗ 1) = A;

m(A⊗ 1)m∗ = id (a \loop at every vertex");

The middle axiom is a little mysterious: it roughly corresponds to

\undirected".

I want to sketch why this de�nition is equivalent to the previous

notion of a \quantum graph".
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Subspaces to projections
Fix a �nite-dimensional C ∗-algebra (von Neumann algebra) M . A

\quantum graph" is either:

A subspace of B(H ) (where M ⊆ B(H )) with some properties; or

An operator on L2(M ) with some properties.

How do we move between these?

S ⊆ B(H ) is a bimodule over M ′. As H is �nite-dimensional, B(H ) is

a Hilbert space for

(x |y) = tr(x ∗y).

Then M ⊗M op is represented on B(H ) via

π : M ⊗M op → B(B(H )); π(x ⊗ y) : T 7→ xTy .

The commutant of π(M ⊗M op) is naturally M ′ ⊗ (M ′)op.

So an M ′-bimodule of B(H ) corresponds to an

M ′ ⊗ (M ′)op-invariant subspace of the Hilbert space B(H );

Which corresponds to a projection in M ⊗M op.
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Operators to algebras

So how can we relate:

Operators A ∈ B(L2(M ));

Projections in M ⊗M op?

[Musto, Reutter, Verdon]
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Operators to algebras 2

Recall the GNS construction for a tracial state ψ on M :

Λ : M → L2(M ); (Λ(x )|Λ(y)) = ψ(x ∗y).

As L2(M ) is �nite-dimensional, every operator on L2(M ) is a linear

combination of rank-one operators of the form

θΛ(a),Λ(b) : ξ 7→ (Λ(a)|ξ)Λ(b) (ξ ∈ L2(M )).

De�ne a bijection

Ψ : B(L2(M )) → M ⊗M op; θΛ(a),Λ(b) = b ⊗ a∗,

and extend by linearity!
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Operators to algebras 3

Ψ : B(L2(M )) → M ⊗M op; θΛ(a),Λ(b) = b ⊗ a∗,

Ψ is a homomorphism for the \Schur product"

A1 •A2 = m(A1 ⊗A2)m
∗;

A 7→ (1⊗ η∗m)(1⊗A⊗ 1)(m∗η⊗ 1) corresponds to the

anti-homomorphism σ : a ⊗ b 7→ b ⊗ a ;

A 7→ A∗ corresponds to e 7→ σ(e)∗.

Conclude: A quantum adjacency matrix corresponds to a projection e

with σ(e) = e . But: There is no clean one-to-one correspondence

between the axioms.
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Non-tracial case

If the functional ψ on M is not tracial, then this correspondence fails.

However:

Theorem (D.)

There is a bijection between:

\Schur idempotent", self-adjoint operators A on L2(M );

e ∈ M ⊗M op with e2 = e and e = σ(e)∗;

self-adjoint M ′-bimodules S ⊆ B(H ) such that there is another

self-adjoint M ′-bimodule S0 with S ⊕ S0 = B(H )
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KMS States

Any faithful state ψ is KMS: there is an automorphism σ ′ of M with

ψ(ab) = ψ(bσ ′(a)) (a , b ∈ M ).

Indeed, there is Q ∈ M positive and invertible with

ψ(a) = tr(Qa) σ ′(a) = QaQ−1.

Theorem (D.)

Twisting our bijection Ψ using σ ′ allows us to establish a bijection

between:

Quantum adjacency operators A ∈ B(L2(M ));

projections e ∈ M ⊗M op with e = σ(e) and (σ ′ ⊗ σ ′)(e) = e;

self-adjoint M ′-bimodules S ⊆ B(H ) with QSQ−1 = S.

So this is more restrictive than the tracial case.
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Further developments

This whole business about \a loop at every vertex" can be

handled naturally.

There is an asymmetry in the axiom

(1⊗ η∗m)(1⊗A⊗ 1)(m∗η⊗ 1) = A

or?? (η∗m ⊗ 1)(1⊗A⊗ 1)(1⊗m∗η) = A

But these are actually equivalent.

There are various notions of \homomorphism" or \pushforward /

pullback" along a CP map. To a greater or lesser extent, these

interact with the di�erent \pictures".

People have studied things like \colourings" of quantum graphs.

E.g. a graph can be k -coloured if there is a homomorphism

G → Kk . So just let G be quantum.
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Isomorphisms

An isomorphism of a quantum adjacency operator A ∈ B(L2(M )) is

an automorphism θ of M which preserves the state ψ, and which

commutes with A. This means:

Think of A as a map on M , so simply A ◦ θ = θ ◦A; or
θ preserves ψ, so induces a unitary operator

θ̂ : L2(M ) → L2(M ); Λ(a) 7→ Λ(θ(a)).

Then require that θ̂Aθ̂∗ = A.

What can we say about an M ′-bimodule S ⊆ B(H )?

Not every automorphism of M lifts to B(H );

Seems we get dependence on H here;

Does all work if H = L2(M ): then an automorphism of S is an

isomorphism of B(H ), which restricts to a ψ-persevering aut of M , and

which restricts to a bijection on S .
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Quantum Isomorphisms

(Extremely briey. . . ) A quantum isomorphism is a coaction of a

compact quantum group (A, ∆) on M , say α : M → M ⊗A which

commutes with the quantum adjacency operator AG :

αAG = (AG ⊗ id)α.

Here AG is thought of as a linear map on M .

Any such coaction is associated to a unitary (co)representation

U ∈ B(L2(M ))⊗A, because we assume that α leaves ψ invariant.

(Copy the construction of the fundamental unitary from the coproduct.) Then

equivalently (AG ⊗ 1)U = U (AG ⊗ 1).

Lots of previous interest in quantum isomorphisms of classical graphs.

Also an equivalent de�nition from [Musto, Reutter, Verdon] using

2-categories.
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Quantum Isomorphisms of operator bimodules
From the coaction α form the corep U ∈ B(L2(M ))⊗A. Then there is

a coaction of (A, ∆) on B(L2(M )):

αU : T 7→ U (T ⊗ 1)U ∗ (T ∈ B(L2(M ))).

Might this leave S ⊆ B(L2(M )) invariant if and only if U commutes

with AG?

No, as the \trivial quantum graph" is S = M ′, which should

always be invariant, but αU leaves M invariant, not M ′.

Instead, we can use the modular conjugation and antipode to

form a \commutant" coaction α ′
U ; or equivalently, look at αU but

work with

S ′ := {JTJ : T ∈ S }.

Theorem (D.)

α leaves AG invariant if and only if αU leaves S ′ invariant.
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