Noncommutative Graphs

Matthew Daws

UCLan
Lancaster, November 2021

Channels

A channel sends an input message (element of a finite set A) to an output message (element of a finite set B) perhaps with noise so that there is a probability that $a \in A$ is mapped to different $b \in B$.

- Input "o" might be sent to "o" or "0" or " a ".
$p(b \mid a)=$ probability that b is received given that a was sent
Define a (simple, undirected) graph structure on A by

$$
\left(a_{1}, a_{2}\right) \text { an edge when } p\left(b \mid a_{1}\right) p\left(b \mid a_{2}\right)>0 \text { for some } b
$$

This is the confusability graph of the channel. If we want to communicate with zero error then we seek a maximal independent set in A.

Quantum Mechanics

- A state is a unit vector $|\psi\rangle$ in a (finite dim) Hilbert space H.
- More generally, a density is a positive, trace one operator $\rho \in \mathcal{B}(H)$.
- A rank-one density is always of the form $|\psi\rangle\langle\psi|$ for some state ψ.
- (Use Trace duality, so $\omega \in \mathcal{B}(H)^{*}$ is associated uniquely to $A \in \mathcal{B}(H)$ with $\omega(T)=\operatorname{tr}(A T)$. Then densities are exactly the states on $\mathcal{B}(H)$.)
A (quantum) channel is a trace-preserving, completely positive (CPTP) map $\mathcal{B}\left(H_{A}\right) \rightarrow \mathcal{B}\left(H_{B}\right):$
- positive and trace-preserving so it maps densities to densities;
- completely positive so you can tensor with another system and still have positivity.

Stinespring and Kraus

The Stinespring Representation Theorem tells us that any CP map $\mathcal{E}: \mathcal{B}\left(H_{A}\right) \rightarrow \mathcal{B}\left(H_{B}\right)$ has the form

$$
\mathcal{E}(x)=V^{*} \pi(x) V \quad\left(x \in \mathcal{B}\left(H_{A}\right)\right)
$$

where $V: H_{B} \rightarrow K$, and $\pi: \mathcal{B}\left(H_{A}\right) \rightarrow \mathcal{B}(K)$ is a $*$-representation.

- Any such π is of the form $\pi(x)=x \otimes 1$ where $K \cong H_{A} \otimes K^{\prime}$.
- Take an o.n. basis $\left(e_{i}\right)$ for K^{\prime} so $V(\xi)=\sum_{i} K_{i}^{*}(\xi) \otimes e_{i}$ for some operators $K_{i}: H_{A} \rightarrow H_{B}$.
We arrive at the Kraus form:

$$
\mathcal{E}(x)=\sum_{i} K_{i} x K_{i}^{*} \quad\left(x \in \mathcal{B}\left(H_{A}\right)\right)
$$

Trace-preserving when $\sum_{i} K_{i}^{*} K_{i}=1$.

Quantum zero-error

We turn $\mathcal{B}(H)$ into a Hilbert space using the trace: $(T \mid S)=\operatorname{tr}\left(T^{*} S\right)$, so densities ρ, σ are orthogonal when

$$
0=\operatorname{tr}(\rho \sigma)=\operatorname{tr}\left(\sigma^{1 / 2} \rho^{1 / 2} \rho^{1 / 2} \sigma^{1 / 2}\right) \quad \Leftrightarrow \quad \rho^{1 / 2} \sigma^{1 / 2}=0
$$

Let $\mathcal{E}(x)=\sum_{i} K_{i} x K_{i}^{*}$ be a quantum channel. We can distinguish densities exactly when $\mathcal{E}(\rho) \perp \mathcal{E}(\sigma)$. As \mathcal{E} is positive, this is equivalent to

$$
\mathcal{E}(|\psi\rangle\langle\psi|) \perp \mathcal{E}(|\phi\rangle\langle\phi|) \quad(\psi \in \operatorname{Im} \rho, \phi \in \operatorname{Im} \sigma)
$$

Thus

$$
\begin{aligned}
0=\operatorname{tr}(\mathcal{E}(|\psi\rangle\langle\psi|) \mathcal{E}(|\phi\rangle\langle\phi|)) & =\sum_{i, j} \operatorname{tr}\left(K_{i}|\psi\rangle\langle\psi| K_{i}^{*} K_{j}|\phi\rangle\langle\phi| K_{j}^{*}\right) \\
& \left.=\sum_{i, j}\left|\langle\psi| K_{i}^{*} K_{j}\right| \phi\right\rangle\left.\right|^{2}
\end{aligned}
$$

is equivalent to $\langle\psi| K_{i}^{*} K_{j}|\phi\rangle=0$ for each i, j.

To operator systems

So ψ, ϕ are distinguishable when

$$
\langle\psi| T|\phi\rangle=0 \quad \text { for each } \quad T \in \operatorname{lin}\left\{K_{i}^{*} K_{j}\right\} .
$$

Set $\mathcal{S}=\operatorname{lin}\left\{K_{i}^{*} K_{j}\right\}$ which has properties:

- \mathcal{S} is a linear subspace;
- $T \in \mathcal{S}$ if and only if $T^{*} \in \mathcal{S}$;
- $1 \in \mathcal{S}$ (as $\sum_{i} K_{i}^{*} K_{i}=1$ as \mathcal{E} is CPTP).

That is, \mathcal{S} is an operator system, which depends only on \mathcal{E} and not the choice of $\left(K_{i}\right)$.

Theorem (Duan)

For any operator system $\mathcal{S} \subseteq \mathcal{B}\left(H_{A}\right)$ there is some quantum channel $\mathcal{E}: \mathcal{B}\left(H_{A}\right) \rightarrow \mathcal{B}\left(H_{B}\right)$ giving rise to \mathcal{S}.

In the classical case

Given a classical channel from A to B with probabilities $p(b \mid a)$, define Kraus operators

$$
K_{a b}=p(b \mid a)^{1 / 2}|b\rangle\langle a|: H_{A} \rightarrow H_{B}
$$

Here $(\langle a|)$ is the canonical basis of $H_{A}=\ell^{2}(A) \cong \mathbb{C}^{|A|}$.

$$
\sum_{a b} K_{a b}|c\rangle\langle c| K_{a b}^{*}=\sum_{a b} p(b \mid a)|b\rangle\langle a \mid c\rangle\langle c \mid a\rangle\langle b|=\sum_{b} p(b \mid c)|b\rangle\langle b|
$$

So the pure state $|c\rangle\langle c|$ is mapped to the combination of pure states which can be received, given that message c is sent.

$$
\begin{aligned}
\mathcal{S} & =\operatorname{lin}\left\{K_{a b}^{*} K_{c d}\right\}=\operatorname{lin}\left\{p(b \mid a)^{1 / 2} p(d \mid c)^{1 / 2}|a\rangle\langle b \mid d\rangle\langle c|\right\} \\
& =\operatorname{lin}\{|a\rangle\langle c|: a \sim c\}
\end{aligned}
$$

Thus \mathcal{S} is directly linked to the confusability graph of the channel.

Quantum relations

Simultaneously, and motivated more by "noncommutative geometry", Weaver studied:

Definition

Let $M \subseteq \mathcal{B}(H)$ be a von Neumann algebra. A quantum relation on M is a weak*-closed subspace $S \subseteq \mathcal{B}(H)$ with $M^{\prime} S M^{\prime} \subseteq S$. The relation is:
(1) reflexive if $M^{\prime} \subseteq S$;
(2) symmetric if $S^{*}=S$ where $S^{*}=\left\{x^{*}: x \in S\right\}$;
(3) transitive if $S^{2} \subseteq S$ where $S^{2}=\varlimsup^{w^{*}}\{x y: x, y \in S\}$.

When $M=\ell^{\infty}(X) \subseteq \mathcal{B}\left(\ell^{2}(X)\right)$ there is a bijection between the usual meaning of "relation" on X and quantum relations on M, given by

$$
S=\overline{\operatorname{lin}}^{w^{*}}\left\{e_{x, y}: x \sim y\right\} .
$$

Quantum graphs

As a graph on a (finite) vertex set V is simply a relation, and

- undirected graph corresponds to a symmetric relation;
- a reflexive relation corresponds to having a "loop" at every vertex.

Definition (Weaver)

A quantum graph on a von Neumann algebra $M \subseteq \mathcal{B}(H)$ is a reflexive, symmetric quantum relation. That is, a unital, self-adjoint, weak*-closed subspace $S \subseteq \mathcal{B}(H)$, which is an M^{\prime}-bimodule $\left(M^{\prime} S M^{\prime} \subseteq S\right)$.

If $M=\mathcal{B}(H)$ with H finite-dimensional, then as $M^{\prime}=\mathbb{C}$, a quantum graph is just an operator system: that is, exactly what we had before!
[Duan, Severini, Winter; Stahlke]

Adjacency matrices

Given a graph $G=(V, E)$ consider the $\{0,1\}$-valued matrix A with

$$
A_{i, j}= \begin{cases}1 & :(i, j) \in E \\ 0 & : \text { otherwise }\end{cases}
$$

the adjacency matrix of G.

- A is idempotent for the Schur product;
- G is undirected if and only if A is self-adjoint;
- A has 1 s down the diagonal when G has a loop at every vertex. We can think of A as an operator on $\ell^{2}(V)$. This is the GNS space for the C^{*}-algebra $\ell^{\infty}(V)$ for the state induced by the uniform measure.

General C^{*}-algebras

Let B be a finite-dimensional C^{*}-algebra, and let φ be a faithful state on B, with GNS space $L^{2}(B)$. Thus B bijects with $L^{2}(B)$ as a vector space, and so we get:

- The multiplication on B induces a map

$$
m: L^{2}(B) \otimes L^{2}(B) \rightarrow L^{2}(B)
$$

- The unit in B induces a map $\eta: \mathbb{C} \rightarrow L^{2}(B)$.

We get an analogue of the Schur product:

$$
x \bullet y=m(x \otimes y) m^{*} \quad\left(x, y \in \mathcal{B}\left(L^{2}(B)\right)\right)
$$

Quantum adjacency matrix

Definition (Many authors)

A quantum adjacency matrix is a self-adjoint $A \in \mathcal{B}\left(L^{2}(B)\right)$ with:

- $m(A \otimes A) m^{*}=A$ (so Schur product idempotent);
- $\left(1 \otimes \eta^{*} m\right)(1 \otimes A \otimes 1)\left(m^{*} \eta \otimes 1\right)=A$;
- $m(A \otimes 1) m^{*}=\mathrm{id}(\mathrm{a}$ "loop at every vertex");

The middle axiom is a little mysterious: it roughly corresponds to "undirected".

I want to sketch why this definition is equivalent to the previous notion of a "quantum graph".

Subspaces to projections

Fix a finite-dimensional C^{*}-algebra (von Neumann algebra) M. A "quantum graph" is either:

- A subspace of $\mathcal{B}(H)$ (where $M \subseteq \mathcal{B}(H)$) with some properties; or
- An operator on $L^{2}(M)$ with some properties.

How do we move between these?
$S \subseteq \mathcal{B}(H)$ is a bimodule over M^{\prime}. As H is finite-dimensional, $\mathcal{B}(H)$ is
a Hilbert space for

$$
(x \mid y)=\operatorname{tr}\left(x^{*} y\right)
$$

Then $M \otimes M^{\mathrm{op}}$ is represented on $\mathcal{B}(H)$ via

$$
\pi: M \otimes M^{\circ p} \rightarrow \mathcal{B}(\mathcal{B}(H)) ; \quad \pi(x \otimes y): T \mapsto x T y
$$

- The commutant of $\pi\left(M \otimes M^{\circ \mathrm{p}}\right)$ is naturally $M^{\prime} \otimes\left(M^{\prime}\right)^{\mathrm{op}}$.
- So an M^{\prime}-bimodule of $\mathcal{B}(H)$ corresponds to an $M^{\prime} \otimes\left(M^{\prime}\right)^{\circ \mathrm{p}}$-invariant subspace of the Hilbert space $\mathcal{B}(H)$;
- Which corresponds to a projection in $M \otimes M^{\circ p}$.

Operators to algebras

So how can we relate:

- Operators $A \in \mathcal{B}\left(L^{2}(M)\right)$;
- Projections in $M \otimes M^{\circ p}$?

[Musto, Reutter, Verdon]

Operators to algebras 2

Recall the GNS construction for a tracial state ψ on M :

$$
\Lambda: M \rightarrow L^{2}(M) ; \quad(\Lambda(x) \mid \Lambda(y))=\psi\left(x^{*} y\right)
$$

As $L^{2}(M)$ is finite-dimensional, every operator on $L^{2}(M)$ is a linear combination of rank-one operators of the form

$$
\theta_{\Lambda(a), \Lambda(b)}: \xi \mapsto(\Lambda(a) \mid \xi) \wedge(b) \quad\left(\xi \in L^{2}(M)\right)
$$

Define a bijection

$$
\Psi: \mathcal{B}\left(L^{2}(M)\right) \rightarrow M \otimes M^{\mathrm{op}} ; \quad \theta_{\Lambda(a), \wedge(b)}=b \otimes a^{*}
$$

and extend by linearity!

Operators to algebras 3

$$
\Psi: \mathcal{B}\left(L^{2}(M)\right) \rightarrow M \otimes M^{\mathrm{op}} ; \quad \theta_{\Lambda(a), \wedge(b)}=b \otimes a^{*}
$$

- Ψ is a homomorphism for the "Schur product" $A_{1} \bullet A_{2}=m\left(A_{1} \otimes A_{2}\right) m^{*} ;$
- $A \mapsto\left(1 \otimes \eta^{*} m\right)(1 \otimes A \otimes 1)\left(m^{*} \eta \otimes 1\right)$ corresponds to the anti-homomorphism $\sigma: a \otimes b \mapsto b \otimes a$;
- $A \mapsto A^{*}$ corresponds to $e \mapsto \sigma(e)^{*}$.

Conclude: A quantum adjacency matrix corresponds to a projection e with $\sigma(e)=e$. Вut: There is no clean one-to-one correspondence between the axioms.

Non-tracial case

If the functional ψ on M is not tracial, then this correspondence fails. However:

Theorem (D.)

There is a bijection between:

- "Schur idempotent", self-adjoint operators A on $L^{2}(M)$;
- $e \in M \otimes M^{\circ p}$ with $e^{2}=e$ and $e=\sigma(e)^{*}$;
- self-adjoint M^{\prime}-bimodules $S \subseteq \mathcal{B}(H)$ such that there is another self-adjoint M^{\prime}-bimodule S_{0} with $S \oplus S_{0}=\mathcal{B}(H)$

KMS States

Any faithful state ψ is KMS: there is an automorphism σ^{\prime} of M with

$$
\psi(a b)=\psi\left(b \sigma^{\prime}(a)\right) \quad(a, b \in M)
$$

Indeed, there is $Q \in M$ positive and invertible with

$$
\psi(a)=\operatorname{tr}(Q a) \quad \sigma^{\prime}(a)=Q a Q^{-1}
$$

Theorem (D.)

Twisting our bijection Ψ using σ^{\prime} allows us to establish a bijection between:

- Quantum adjacency operators $A \in \mathcal{B}\left(L^{2}(M)\right)$;
- projections $e \in M \otimes M^{\mathrm{op}}$ with $e=\sigma(e)$ and $\left(\sigma^{\prime} \otimes \sigma^{\prime}\right)(e)=e$;
- self-adjoint M^{\prime}-bimodules $S \subseteq \mathcal{B}(H)$ with $Q S Q^{-1}=S$.

So this is more restrictive than the tracial case.

Further developments

- This whole business about "a loop at every vertex" can be handled naturally.
- There is an asymmetry in the axiom

$$
\begin{aligned}
& \left(1 \otimes \eta^{*} m\right)(1 \otimes A \otimes 1)\left(m^{*} \eta \otimes 1\right)
\end{aligned}=A
$$

But these are actually equivalent.

- There are various notions of "homomorphism" or "pushforward / pullback" along a CP map. To a greater or lesser extent, these interact with the different "pictures".
- People have studied things like "colourings" of quantum graphs. E.g. a graph can be k-coloured if there is a homomorphism $G \rightarrow K_{k}$. So just let G be quantum.

Isomorphisms

An isomorphism of a quantum adjacency operator $A \in \mathcal{B}\left(L^{2}(M)\right)$ is an automorphism θ of M which preserves the state ψ, and which commutes with A. This means:

- Think of A as a map on M, so simply $A \circ \theta=\theta \circ A$; or
- θ preserves ψ, so induces a unitary operator

$$
\hat{\theta}: L^{2}(M) \rightarrow L^{2}(M) ; \quad \Lambda(a) \mapsto \Lambda(\theta(a))
$$

Then require that $\hat{\theta} A \widehat{\theta}^{*}=A$.
What can we say about an M^{\prime}-bimodule $S \subseteq \mathcal{B}(H)$?

- Not every automorphism of M lifts to $\mathcal{B}(H)$;
- Seems we get dependence on H here;

Does all work if $H=L^{2}(M)$: then an automorphism of S is an isomorphism of $\mathcal{B}(H)$, which restricts to a ψ-persevering aut of M, and which restricts to a bijection on S.

Quantum Isomorphisms

(Extremely briefly...) A quantum isomorphism is a coaction of a compact quantum group (A, Δ) on M, say $\alpha: M \rightarrow M \otimes A$ which commutes with the quantum adjacency operator A_{G} :

$$
\alpha A_{G}=\left(A_{G} \otimes \mathrm{id}\right) \alpha
$$

Here A_{G} is thought of as a linear map on M. Any such coaction is associated to a unitary (co)representation $U \in \mathcal{B}\left(L^{2}(M)\right) \otimes A$, because we assume that α leaves ψ invariant. (Copy the construction of the fundamental unitary from the coproduct.) Then equivalently $\left(A_{G} \otimes 1\right) U=U\left(A_{G} \otimes 1\right)$.
Lots of previous interest in quantum isomorphisms of classical graphs. Also an equivalent definition from [Musto, Reutter, Verdon] using 2-categories.

Quantum Isomorphisms of operator bimodules

From the coaction α form the corep $U \in \mathcal{B}\left(L^{2}(M)\right) \otimes A$. Then there is a coaction of (A, Δ) on $\mathcal{B}\left(L^{2}(M)\right)$:

$$
\alpha_{U}: T \mapsto U(T \otimes 1) U^{*} \quad\left(T \in \mathcal{B}\left(L^{2}(M)\right)\right)
$$

Might this leave $S \subseteq \mathcal{B}\left(L^{2}(M)\right)$ invariant if and only if U commutes with A_{G} ?

- No, as the "trivial quantum graph" is $S=M^{\prime}$, which should always be invariant, but α_{U} leaves M invariant, not M^{\prime}.
- Instead, we can use the modular conjugation and antipode to form a "commutant" coaction α_{U}^{\prime}; or equivalently, look at α_{U} but work with

$$
S^{\prime}:=\{J T J: T \in S\}
$$

Theorem (D.)
α leaves A_{G} invariant if and only if α_{U} leaves S^{\prime} invariant.

