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Graphs

A graph consists of a (finite) set of vertices V and a collection of
edges E CV x V.

Vv = {A/B,C} say, and E =
{(4,B),(B,C),(C,B),(C,A)}.

A graph is undirected if (z,y) € E & (y,z) € E. We allow self-loops,
so (z,z) € E.

Notice that a graph G = (V, E) is exactly a relation on the set V. An
undirected graph gives a symmetric relation; having a loop on each
vertex gives a reflexive relation.
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Adjacency matrices

A standard way to associate an “algebraic” object to a graph
G = (V, E) is the adjacency matriz. Let V ={1,2,--- ,n} and define

p 1 :(s,7) € E,
y = .
0 :otherwise.

o A is idempotent for the Schur product;
o G is undirected if and only if A is self-adjoint;

o A has 1s down the diagonal corresponds to G having a loop at
every vertex.

We can think of A as an operator on ¢?( V). This is the GNS space for
the C*-algebra {*°( V') for the state induced by the uniform measure.
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Operator subspaces

Let G =(V, E) be a graph, again with V ={1,2,---,n}, and consider
the subspace of matrices S spanned by the matrix units

{eij : (7').7) € E}

o S is an operator bimodule over {*°( V). That is,
zeS,a,bel>®(V) = azxbeS;

o Any bimodule over £°( V) must be spanned by matrix units, and
so come from some graph.

o @ is undirected if and only if S is self-adjoint;
@ G has a loop at every vertex if and only if 1 € S.

Recall that a self-adjoint, unital subspace of operators is an operator
system.
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Automorphisms

An automorphism of a graph G = (V, E) is a bijection 0: V — V
which satisfies that (z,7) € B = (0(2),0(7)) € E. (V is finite!)
Set V ={1,---,n} for ease, so the adjacency matrix A is in M.

Lemma

Let Py € M,, be permutation matriz associated with a bijection 0.
Then 0 1s an automorphism of G if and only of PgA = AP,.
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Compact Quantum groups

Definition (Woronowicz)

A compact quantum group is a unital C*-algebra A together with a
unital x-homomorphism, the coproduct, A: A — A ® A, which is
coassociative, (A ® id)A = (id ®A)A, and such that:

{(a ®1)A(b):a,b e A}, {(1®a)A(b):a,be A}

both have dense linear span in A ® A.

Theorem

Let (A, A) be a compact quantum group with A commutative.
There is a compact group G with A = C(G) and
A:C(G)— C(G)® C(G)=C(G x G) gwen by

A(f)(s,t) = f(st) (f € C(G),s,t € G).
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Quantum group (co)actions
An (right) action of a group G on a space/set X is a map

XxG— X.

So we get a x-homomorphism

a: C(X) = C(X)® C(G),

o ([d®A)x = (e ®id)x corresponds to z - st = (z - s) - £;

o lin{x(b)(1®a):a € C(G),be C(X)}isdensein C(X)® C(G)
corresponds to z - e = z.

Definition (Podles)

A (right) coaction of a compact quantum group (A4, A) on a C*-algebra
B is a unital *-homomorphism o« : B — B ® A with these two
conditions.
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Coactions on £°
Fix a compact quantum group (4, A).
o The algebra {5° is spanned by projections (e;)? ;.
@ So x: {5 — {° ® A is determined by (u;;) in A with

n
;) = E €; @ Uy.
J=1

@ « is a *-homomorphism < each wuj; a projection and
Uji U = O Uy
o is unital & ) ,u; =1,

o satisfies the coaction equation & A(u;) = ) 4 ujp @ ug;

o satisfies the Podle§ density condition & ) , uj; = 1.

o General Theory — Zj u; = 1. So (uy) is a magic unitary.
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Quantum symmetry group of the space of n points
For (77 = C({1,2,---,n}),

n
ofe;) = Z e ® Uji,
=1

with u = (u;;) a magic unitary.
Theorem (Wang)

Let S, be the “universal” C*-algebra generated by a magic

unitary. Then S, is the “largest” compact quantum group which
acts on C" s a “non-degenerate” way.

We think of S, as the “quantum symmetry group” of {1,2,--- ,n}.
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(Co)actions on graphs
Recall that a permutation 0 gives an automorphism of G when
PyAg = AgPy.
Here A is the adjacency matrix of G, which we can think of as also a
linear map {5° — £5°.
So Aut(G) acts in a way which preserves Ag:

a0’ =R C(Au(G)); adg =(Ag®id)a.

Definition (Banica)

The quantum automorphism group of G is the maximal compact
quantum group QAut(G) with a coaction satisfying

a0’ =000 @ QAut(G); adg = (Ag®id)a.

Equivalently, the underlying magic unitary U = (u;;) has to commute
with the adjacency matrix Ag. This allows us to construct QAut(G)
as a quotient of S,
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Examples

We say that a graph has quantum symmetry if Aut(G) # QAut(G).
@ By now, we have many examples.

o For example, the Petersen graph has no quantum symmetry
[Schmidt].

[CC-BY-SA, Leshabirukov, Wikipedia]

@ Recently, [Roberson, Schmidt] have constructed G with
Aut(G) # QAut(G) and yet QAut(G) is finite.
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(Co)actions on operator bimodules

What is an “automorphism” of S C B({?(V))?
@ Start with a bijection 6 : V' — V, hence giving Py € B({?(V)).
e Then get an action on B(£3(V)) as 0:2— PozPy (as Py = Pgl).
o When is S left invariant: PSPy = S7

Poe; Py = eg(q) 0(j)

So PgSP; = S exactly when (¢,7) € E & (0(2),0(5)) € E, that is 0 is
an automorphism of G.

How to phrase this in terms of coactions?
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Unitary implementations

Given a coaction o : {*®°(V) =5 {*®(V)® A of (A,A) on {*(V), we saw
before that o gives rise to a magic unitary u = (u;;);jev,

ale)=) eg@u; (i€ V)
JEV

Lemma
Let {>°(V) C B({?(V)). Then
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Coactions on operator bimodules

a(z) =u(lz®1)u* (z € L°(V) gB(F(V))).
It hence make sense. ..

Definition

o is a coaction on S C B(¢?(V)) exactly when u(z ® 1)u* € S® A for
each z € S.

One can check (non-trivially) that we then get the following.

Theorem (Eifler)

If a graph G 1s associated to the {*°(V)-operator bimodule S, then
a coaction of (A,A) on {*°(V) gwes a coaction on G if and only if
1t gies a coaction on S.
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Non-commutative graphs

Both approaches to graphs can be adapted to a general,
finite-dimensional C*-algebra B, replacing {*° (V).

o For adjacency matrices, we need a Hilbert space to act on...

o Fix a faithful state 1 on B and let L?(B) = L?(B,\{) be the GNS
space. (We will mostly assume 1 is a trace.)

o As B is finite-dimensional, B and L?(B) are linearly isomorphic.

Let m : B ® B — B be the multiplication map, so we get
m* : L?(B) — L?(B) ® L?(B). An analogue of the Schur Product is

A; e Ay =m(A; ® Ay)m” (A1, A € B(L*(B))).

(For B = {*®({L,--- ,n}) this gives the Schur Product on M, = B((2).)
@ As B is unital, we also obtain the “unit map” n:C — L?(B).
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Quantum adjacency matrix

Definition (Many authors)

A gquantum adjacency matriz is a self-adjoint Ag € B(L?(B)) with:
o m(Ag® Ag)m* = Ag (so Schur product idempotent);
o (1®n*m)(1® Ag®1)(m™M®1) = Ag;

o m(Ag®1)m* =1id (a “loop at every vertex”);

The middle axiom is a little mysterious: it roughly corresponds to

“undirected”.
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Quantum relations

Motivated by “noncommutative geometry”, Weaver studied:

Definition (Weaver)

Let M C B(H) be a von Neumann algebra. A quantum relation on M
is a weak*-closed subspace S C B(H) with M'SM’ C S. The relation
is:

Q refleziveif M' C S;
Q symmetric if S* =S where S* ={z* : z € S};
Q transitive if S? C S where S? =lin" {zy: z,y € S).

When M = (®°(X) C B({?(X)) there is a bijection between the usual
meaning of “relation” on X and quantum relations on M, given by

S=Tn" {egy: 2~y
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Quantum graphs

Definition (Weaver)

A gquantum graph on a von Neumann algebra M C B(H) is a reflexive,
symmetric quantum relation. That is, a unital, self-adjoint,
weak*-closed subspace S C B(H), which is an M’-bimodule

(M'SM’' CS).

o This definition depends upon H, but in fact is really independent
of the choice.

o When M = B is finite-dimensional, we could (and will!) let
H = L?(B), as before.

o If M = B(H) with H finite-dimensional, then as M’ = C, and so a
quantum graph is just an operator system.

o Independently, this was defined and studied by [Duan, Severini,
Winter; Stahlke] and others in relation to quantum channels.
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Equivalent?
These notions seem different: an operator A, and a subspace S. They
are in fact equivalent: let us see why.

S C B(H) is a bimodule over B’. As H is finite-dimensional, B(H) is a
Hilbert space for

(zly) = tr(z"y).
Then B ® B°P is represented on B(H) via

n:B® B® - B(B(H));, nlzxy): T— zTy.

@ The commutant of 7t(B ® B°P) is naturally B’ ® (B’)°P.
@ So an B’-bimodule of B(H) corresponds to an
B’ ® (B')°P-invariant subspace of the Hilbert space B(H);

@ Which corresponds to a projection in B ® B°P.
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Operators to algebras

Recall the GNS construction for a traczal state { on B:
A:B— I*(B);, (Alz)lAly)) =b(z*y).

As L?(B) is finite-dimensional, every operator on L?(B) is a linear
combination of rank-one operators of the form

Oa(a)A() 1 & (A(a)IE)A(D) (£ € L*(B)).
Define a bijection
\PB(L2(B)) — B@BOP; 9,\(@)),\(5) :b®a*,

and extend by linearity!
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Operators to algebras cont.

W:B(L%B)) — B ® B°P; 6/\(01)’/\(1,) :b®a*,

@ YV is a homomorphism for the “Schur product”
A1 e Ay =m(A; ® Ay)m™;
e A~ (1™ m)(1® A®1)(m*n ® 1) corresponds to the
anti-homomorphism c: a ® b — b ® a;
o A+— A* corresponds to e — o(e)*.
Conclude: A quantum adjacency matrix corresponds to a projection
e € B® B°P with o(e) = e. BuT: There is no clean one-to-one
correspondence between the axioms.
(This result is due to [Musto, Reutter, Verdon| but the proof here is
mine; one can also work with non-tracial states.)
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Coactions on C*-algebras

A coaction of (A,A) on B is, as before,
x:B—-B®A4, ({doA)a=(ax®id)x,

and satisfying the Podle$ density condition.
Theorem (Wang)

There 18 no mazximal compact quantum group coacting on B.

If U 1s a faithful state on B, there 1s a mazimal compact quantum
group coacting on B and preserving b: (b ®id)a(z) =U(z)l for

z € B. Write QAut(B,V) for this.
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Coactions on quantum adjacency matrices

There is now a clear definition:
Definition (Brannan et al.)

Let A be a quantum adjacency matrix on (B,{). We say that (A4, A)

coacts on Ay when o: B — B ® A is a coaction, which preserves 1,
and with (Ag ®id)ax = A g.

o Here we regard A as a linear map on B.

@ That « preserves 1 allows us to define a unitary
U € B(L?*(B)) ® A which implements «, as «(z) = U(z ® 1)U*.
Indeed, one way to prove Wang's theorem is to start with such a

U and impose certain conditions on it (compare Compact
Quantum Matrix Groups).

@ Then, equivalently, we require that U and A5 ® 1 commute.
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Coactions on operator bimodules
A coaction « which preserves \ gives a unitary U (which is a
corepresentation) and it is then easy to see that

oy B(L2(B)) - B(L*(B))® A;z — Uz @ 1) U*

is a coaction (which extends o).
Might this leave S C B(L?(M)) invariant if and only if U commutes
with Ag?
@ No, as the “trivial quantum graph” is S = B’, which should
always be invariant, but oy leaves B invariant, not B’.
o Instead, we can use the modular conjugation J and antipode to
form a “commutant” coaction «;; or equivalently, look at «y but

work with
S :={JTJ:T e S
Theorem (D.)
« leaves Ag wnvariant if and only if ay leaves S’ invariant. J
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