Quantum automorphisms of quantum graphs

Matthew Daws

UCLan

Lancaster / Besançon, November 2021

Graphs

A graph consists of a (finite) set of vertices V and a collection of edges $E \subseteq V \times V$.

$$
\begin{aligned}
& V=\{A, B, C\} \text { say, and } E= \\
& \{(A, B),(B, C),(C, B),(C, A)\} .
\end{aligned}
$$

A graph is undirected if $(x, y) \in E \Leftrightarrow(y, x) \in E$. We allow self-loops, so $(x, x) \in E$.
Notice that a graph $G=(V, E)$ is exactly a relation on the set V. An undirected graph gives a symmetric relation; having a loop on each vertex gives a reflexive relation.

Adjacency matrices

A standard way to associate an "algebraic" object to a graph $G=(V, E)$ is the adjacency matrix. Let $V=\{1,2, \cdots, n\}$ and define

$$
A_{i j}= \begin{cases}1 & :(i, j) \in E \\ 0 & : \text { otherwise }\end{cases}
$$

- A is idempotent for the Schur product;
- G is undirected if and only if A is self-adjoint;
- A has 1 s down the diagonal corresponds to G having a loop at every vertex.
We can think of A as an operator on $\ell^{2}(V)$. This is the GNS space for the C^{*}-algebra $\ell^{\infty}(V)$ for the state induced by the uniform measure.

Operator subspaces

Let $G=(V, E)$ be a graph, again with $V=\{1,2, \cdots, n\}$, and consider the subspace of matrices \mathcal{S} spanned by the matrix units

$$
\left\{e_{i j}:(i, j) \in E\right\}
$$

- \mathcal{S} is an operator bimodule over $\ell^{\infty}(V)$. That is, $x \in \mathcal{S}, a, b \in \ell^{\infty}(V) \Longrightarrow a x b \in \mathcal{S}$;
- Any bimodule over $\ell^{\infty}(V)$ must be spanned by matrix units, and so come from some graph.
- G is undirected if and only if \mathcal{S} is self-adjoint;
- G has a loop at every vertex if and only if $1 \in \mathcal{S}$.

Recall that a self-adjoint, unital subspace of operators is an operator system.

Automorphisms

An automorphism of a graph $G=(V, E)$ is a bijection $\theta: V \rightarrow V$ which satisfies that $(i, j) \in E \Longrightarrow(\theta(i), \theta(j)) \in E$. (V is finite!) Set $V=\{1, \cdots, n\}$ for ease, so the adjacency matrix A is in \mathbb{M}_{n}.

Lemma

Let $P_{\theta} \in \mathbb{M}_{n}$ be permutation matrix associated with a bijection θ. Then θ is an automorphism of G if and only if $P_{\theta} A=A P_{\theta}$.

Compact Quantum groups

Definition (Woronowicz)

A compact quantum group is a unital C^{*}-algebra A together with a unital $*$-homomorphism, the coproduct, $\Delta: A \rightarrow A \otimes A$, which is coassociative, $(\Delta \otimes \mathrm{id}) \Delta=(\mathrm{id} \otimes \Delta) \Delta$, and such that:

$$
\{(a \otimes 1) \Delta(b): a, b \in A\}, \quad\{(1 \otimes a) \Delta(b): a, b \in A\}
$$

both have dense linear span in $A \otimes A$.

Theorem

Let (A, Δ) be a compact quantum group with A commutative. There is a compact group G with $A=C(G)$ and $\Delta: C(G) \rightarrow C(G) \otimes C(G)=C(G \times G)$ given by

$$
\Delta(f)(s, t)=f(s t) \quad(f \in C(G), s, t \in G)
$$

Quantum group (co)actions

An (right) action of a group G on a space/set X is a map

$$
X \times G \rightarrow X
$$

So we get a $*$-homomorphism

$$
\alpha: C(X) \rightarrow C(X) \otimes C(G)
$$

- $(\mathrm{id} \otimes \Delta) \alpha=(\alpha \otimes \mathrm{id}) \alpha$ corresponds to $x \cdot s t=(x \cdot s) \cdot t$;
- $\operatorname{lin}\{\alpha(b)(1 \otimes a): a \in C(G), b \in C(X)\}$ is dense in $C(X) \otimes C(G)$ corresponds to $x \cdot e=x$.

Definition (Podleś)

A (right) coaction of a compact quantum group (A, Δ) on a C^{*}-algebra B is a unital $*$-homomorphism $\alpha: B \rightarrow B \otimes A$ with these two conditions.

Coactions on ℓ_{n}^{∞}

Fix a compact quantum group (A, Δ).

- The algebra ℓ_{n}^{∞} is spanned by projections $\left(e_{i}\right)_{i=1}^{n}$.
- So $\alpha: \ell_{n}^{\infty} \rightarrow \ell_{n}^{\infty} \otimes A$ is determined by $\left(u_{i j}\right)$ in A with

$$
\alpha\left(e_{i}\right)=\sum_{j=1}^{n} e_{j} \otimes u_{j i}
$$

- α is a $*$-homomorphism \Leftrightarrow each $u_{j i}$ a projection and $u_{j i} u_{j k}=\delta_{i k} u_{j i}$;
- α is unital $\Leftrightarrow \sum_{i} u_{j i}=1$;
- α satisfies the coaction equation $\Leftrightarrow \Delta\left(u_{j i}\right)=\sum_{k} u_{j k} \otimes u_{k i}$;
- α satisfies the Podleś density condition $\Leftrightarrow \sum_{i} u_{j i}=1$.
- General Theory $\Longrightarrow \sum_{j} u_{j i}=1$. So $\left(u_{i j}\right)$ is a magic unitary.

Quantum symmetry group of the space of n points

For $\ell_{n}^{\infty}=C(\{1,2, \cdots, n\})$,

$$
\alpha\left(e_{i}\right)=\sum_{j=1}^{n} e_{j} \otimes u_{j i}
$$

with $u=\left(u_{i j}\right)$ a magic unitary.

Theorem (Wang)

Let S_{n}^{+}be the "universal" C^{*}-algebra generated by a magic unitary. Then S_{n}^{+}is the "largest" compact quantum group which acts on \mathbb{C}^{n} is a "non-degenerate" way.

We think of S_{n}^{+}as the "quantum symmetry group" of $\{1,2, \cdots, n\}$.

(Co)actions on graphs

Recall that a permutation θ gives an automorphism of G when

$$
P_{\theta} A_{G}=A_{G} P_{\theta}
$$

Here A_{G} is the adjacency matrix of G, which we can think of as also a linear map $\ell_{n}^{\infty} \rightarrow \ell_{n}^{\infty}$.
So $\operatorname{Aut}(G)$ acts in a way which preserves A_{G} :

$$
\alpha: \ell_{n}^{\infty} \rightarrow \ell_{n}^{\infty} \otimes C(\operatorname{Aut}(G)) ; \quad \alpha A_{G}=\left(A_{G} \otimes \mathrm{id}\right) \alpha
$$

Definition (Banica)

The quantum automorphism group of G is the maximal compact quantum group QAut(G) with a coaction satisfying

$$
\alpha: \ell_{n}^{\infty} \rightarrow \ell_{n}^{\infty} \otimes \operatorname{QAut}(G) ; \quad \alpha A_{G}=\left(A_{G} \otimes \mathrm{id}\right) \alpha
$$

Equivalently, the underlying magic unitary $U=\left(u_{i j}\right)$ has to commute with the adjacency matrix A_{G}. This allows us to construct QAut (G) as a quotient of S_{n}^{+}.

Examples

We say that a graph has quantum symmetry if $\operatorname{Aut}(G) \neq \operatorname{QAut}(G)$.

- By now, we have many examples.
- For example, the Petersen graph has no quantum symmetry [Schmidt].

[CC-BY-SA, Leshabirukov, Wikipedia]
- Recently, [Roberson, Schmidt] have constructed G with $\operatorname{Aut}(G) \neq \operatorname{QAut}(G)$ and yet $\operatorname{QAut}(G)$ is finite.

(Co)actions on operator bimodules

What is an "automorphism" of $\mathcal{S} \subseteq \mathcal{B}\left(\ell^{2}(V)\right)$?

- Start with a bijection $\theta: V \rightarrow V$, hence giving $P_{\theta} \in \mathcal{B}\left(\ell^{2}(V)\right)$.
- Then get an action on $\mathcal{B}\left(\ell^{2}(V)\right)$ as $\hat{\theta}: x \mapsto P_{\theta} x P_{\theta}^{*}$ (as $P_{\theta}^{*}=P_{\theta}^{-1}$).
- When is \mathcal{S} left invariant: $P_{\theta} \mathcal{S} P_{\theta}^{*}=\mathcal{S}$?

$$
P_{\theta} e_{i j} P_{\theta}^{*}=e_{\theta(i), \theta(j)}
$$

So $P_{\theta} \mathcal{S} P_{\theta}^{*}=\mathcal{S}$ exactly when $(i, j) \in E \Leftrightarrow(\theta(i), \theta(j)) \in E$, that is θ is an automorphism of G.

How to phrase this in terms of coactions?

Unitary implementations

Given a coaction $\alpha: \ell^{\infty}(V) \rightarrow \ell^{\infty}(V) \otimes A$ of (A, Δ) on $\ell^{\infty}(V)$, we saw before that α gives rise to a magic unitary $u=\left(u_{i j}\right)_{i, j \in V}$,

$$
\alpha\left(e_{i}\right)=\sum_{j \in V} e_{j} \otimes u_{j i} \quad(i \in V)
$$

Lemma

Let $\ell^{\infty}(V) \subseteq \mathcal{B}\left(\ell^{2}(V)\right)$. Then

$$
\alpha(x)=u(x \otimes 1) u^{*} \quad\left(x \in \ell^{\infty}(V)\right) .
$$

Coactions on operator bimodules

$$
\alpha(x)=u(x \otimes 1) u^{*} \quad\left(x \in \ell^{\infty}(V) \subseteq \mathcal{B}\left(\ell^{2}(V)\right)\right)
$$

It hence make sense...

Definition

α is a coaction on $\mathcal{S} \subseteq \mathcal{B}\left(\ell^{2}(V)\right)$ exactly when $u(x \otimes 1) u^{*} \in \mathcal{S} \otimes A$ for each $x \in \mathcal{S}$.

One can check (non-trivially) that we then get the following.

Theorem (Eifler)

If a graph G is associated to the $l^{\infty}(V)$-operator bimodule \mathcal{S}, then a coaction of (A, Δ) on $\ell^{\infty}(V)$ gives a coaction on G if and only if it gives a coaction on \mathcal{S}.

Non-commutative graphs

Both approaches to graphs can be adapted to a general, finite-dimensional C^{*}-algebra B, replacing $\ell^{\infty}(V)$.

- For adjacency matrices, we need a Hilbert space to act on...
- Fix a faithful state ψ on B and let $L^{2}(B)=L^{2}(B, \psi)$ be the GNS space. (We will mostly assume ψ is a trace.)
- As B is finite-dimensional, B and $L^{2}(B)$ are linearly isomorphic.

Let $m: B \otimes B \rightarrow B$ be the multiplication map, so we get $m^{*}: L^{2}(B) \rightarrow L^{2}(B) \otimes L^{2}(B)$. An analogue of the Schur Product is

$$
A_{1} \bullet A_{2}=m\left(A_{1} \otimes A_{2}\right) m^{*} \quad\left(A_{1}, A_{2} \in \mathcal{B}\left(L^{2}(B)\right)\right)
$$

(For $B=\ell^{\infty}(\{1, \cdots, n\})$ this gives the Schur Product on $\mathbb{M}_{n} \cong \mathcal{B}\left(\ell_{n}^{2}\right)$.)

- As B is unital, we also obtain the "unit map" $\eta: \mathbb{C} \rightarrow L^{2}(B)$.

Quantum adjacency matrix

Definition (Many authors)

A quantum adjacency matrix is a self-adjoint $A_{G} \in \mathcal{B}\left(L^{2}(B)\right)$ with:

- $m\left(A_{G} \otimes A_{G}\right) m^{*}=A_{G}$ (so Schur product idempotent);
- $\left(1 \otimes \eta^{*} m\right)\left(1 \otimes A_{G} \otimes 1\right)\left(m^{*} \eta \otimes 1\right)=A_{G} ;$
- $m\left(A_{G} \otimes 1\right) m^{*}=\mathrm{id}$ (a "loop at every vertex");

The middle axiom is a little mysterious: it roughly corresponds to "undirected".

Quantum relations

Motivated by "noncommutative geometry", Weaver studied:

Definition (Weaver)

Let $M \subseteq \mathcal{B}(H)$ be a von Neumann algebra. A quantum relation on M is a weak*-closed subspace $\mathcal{S} \subseteq \mathcal{B}(H)$ with $M^{\prime} \mathcal{S} M^{\prime} \subseteq \mathcal{S}$. The relation is:
(1) reflexive if $M^{\prime} \subseteq \mathcal{S}$;
(2) symmetric if $\mathcal{S}^{*}=\mathcal{S}$ where $\mathcal{S}^{*}=\left\{x^{*}: x \in \mathcal{S}\right\}$;
(3) transitive if $\mathcal{S}^{2} \subseteq \mathcal{S}$ where $\mathcal{S}^{2}=\varlimsup^{w^{*}}\{x y: x, y \in \mathcal{S}\}$.

When $M=\ell^{\infty}(X) \subseteq \mathcal{B}\left(\ell^{2}(X)\right)$ there is a bijection between the usual meaning of "relation" on X and quantum relations on M, given by

$$
\mathcal{S}=\overline{\operatorname{lin}}^{w^{*}}\left\{e_{x, y}: x \sim y\right\} .
$$

Quantum graphs

Definition (Weaver)

A quantum graph on a von Neumann algebra $M \subseteq \mathcal{B}(H)$ is a reflexive, symmetric quantum relation. That is, a unital, self-adjoint, weak*-closed subspace $\mathcal{S} \subseteq \mathcal{B}(H)$, which is an M^{\prime}-bimodule $\left(M^{\prime} \mathcal{S} M^{\prime} \subseteq S\right)$.

- This definition depends upon H, but in fact is really independent of the choice.
- When $M=B$ is finite-dimensional, we could (and will!) let $H=L^{2}(B)$, as before.
- If $M=\mathcal{B}(H)$ with H finite-dimensional, then as $M^{\prime}=\mathbb{C}$, and so a quantum graph is just an operator system.
- Independently, this was defined and studied by [Duan, Severini, Winter; Stahlke] and others in relation to quantum channels.

Equivalent?

These notions seem different: an operator A_{G}, and a subspace \mathcal{S}. They are in fact equivalent: let us see why.
$\mathcal{S} \subseteq \mathcal{B}(H)$ is a bimodule over B^{\prime}. As H is finite-dimensional, $\mathcal{B}(H)$ is a Hilbert space for

$$
(x \mid y)=\operatorname{tr}\left(x^{*} y\right)
$$

Then $B \otimes B^{\circ \mathrm{p}}$ is represented on $\mathcal{B}(H)$ via

$$
\pi: B \otimes B^{\circ p} \rightarrow \mathcal{B}(\mathcal{B}(H)) ; \quad \pi(x \otimes y): T \mapsto x T y
$$

- The commutant of $\pi\left(B \otimes B^{\mathrm{op}}\right)$ is naturally $B^{\prime} \otimes\left(B^{\prime}\right)^{\mathrm{op}}$.
- So an B^{\prime}-bimodule of $\mathcal{B}(H)$ corresponds to an $B^{\prime} \otimes\left(B^{\prime}\right)^{\text {op }}$-invariant subspace of the Hilbert space $\mathcal{B}(H)$;
- Which corresponds to a projection in $B \otimes B^{\circ p}$.

Operators to algebras

Recall the GNS construction for a tracial state ψ on B :

$$
\Lambda: B \rightarrow L^{2}(B) ; \quad(\Lambda(x) \mid \Lambda(y))=\psi\left(x^{*} y\right)
$$

As $L^{2}(B)$ is finite-dimensional, every operator on $L^{2}(B)$ is a linear combination of rank-one operators of the form

$$
\theta_{\Lambda(a), \Lambda(b)}: \xi \mapsto(\Lambda(a) \mid \xi) \wedge(b) \quad\left(\xi \in L^{2}(B)\right)
$$

Define a bijection

$$
\Psi: \mathcal{B}\left(L^{2}(B)\right) \rightarrow B \otimes B^{\mathrm{op}} ; \quad \theta_{\Lambda(a), \Lambda(b)}=b \otimes a^{*}
$$

and extend by linearity!

Operators to algebras cont.

$$
\Psi: \mathcal{B}\left(L^{2}(B)\right) \rightarrow B \otimes B^{\mathrm{op}} ; \quad \theta_{\Lambda(a), \Lambda(b)}=b \otimes a^{*}
$$

- Ψ is a homomorphism for the "Schur product" $A_{1} \bullet A_{2}=m\left(A_{1} \otimes A_{2}\right) m^{*} ;$
- $A \mapsto\left(1 \otimes \eta^{*} m\right)(1 \otimes A \otimes 1)\left(m^{*} \eta \otimes 1\right)$ corresponds to the anti-homomorphism $\sigma: a \otimes b \mapsto b \otimes a$;
- $A \mapsto A^{*}$ corresponds to $e \mapsto \sigma(e)^{*}$.

Conclude: A quantum adjacency matrix corresponds to a projection $e \in B \otimes B^{\text {op }}$ with $\sigma(e)=e$. But: There is no clean one-to-one correspondence between the axioms.
(This result is due to [Musto, Reutter, Verdon] but the proof here is mine; one can also work with non-tracial states.)

Coactions on C^{*}-algebras

A coaction of (A, Δ) on B is, as before,

$$
\alpha: B \rightarrow B \otimes A ; \quad(\operatorname{id} \otimes \Delta) \alpha=(\alpha \otimes \mathrm{id}) \alpha
$$

and satisfying the Podles density condition.

Theorem (Wang)

There is no maximal compact quantum group coacting on B. If ψ is a faithful state on B, there is a maximal compact quantum group coacting on B and preserving $\psi:(\psi \otimes \mathrm{id}) \alpha(x)=\psi(x) 1$ for $x \in B$. Write QAut (B, ψ) for this.

Coactions on quantum adjacency matrices

There is now a clear definition:

Definition (Brannan et al.)

Let A_{G} be a quantum adjacency matrix on (B, ψ). We say that (A, Δ) coacts on A_{G} when $\alpha: B \rightarrow B \otimes A$ is a coaction, which preserves ψ, and with $\left(A_{G} \otimes \mathrm{id}\right) \alpha=\alpha A_{G}$.

- Here we regard A_{G} as a linear map on B.
- That α preserves ψ allows us to define a unitary $U \in \mathcal{B}\left(L^{2}(B)\right) \otimes A$ which implements α, as $\alpha(x)=U(x \otimes 1) U^{*}$. Indeed, one way to prove Wang's theorem is to start with such a U and impose certain conditions on it (compare Compact Quantum Matrix Groups).
- Then, equivalently, we require that U and $A_{G} \otimes 1$ commute.

Coactions on operator bimodules

A coaction α which preserves ψ gives a unitary U (which is a corepresentation) and it is then easy to see that

$$
\alpha_{U}: \mathcal{B}\left(L^{2}(B)\right) \rightarrow \mathcal{B}\left(L^{2}(B)\right) \otimes A ; x \mapsto U(x \otimes 1) U^{*}
$$

is a coaction (which extends α).
Might this leave $\mathcal{S} \subseteq \mathcal{B}\left(L^{2}(M)\right)$ invariant if and only if U commutes with A_{G} ?

- No, as the "trivial quantum graph" is $\mathcal{S}=B^{\prime}$, which should always be invariant, but α_{U} leaves B invariant, not B^{\prime}.
- Instead, we can use the modular conjugation J and antipode to form a "commutant" coaction α_{U}^{\prime}; or equivalently, look at α_{U} but work with

$$
\mathcal{S}^{\prime}:=\{J T J: T \in \mathcal{S}\} .
$$

Theorem (D.)

α leaves A_{G} invariant if and only if α_{U} leaves \mathcal{S}^{\prime} invariant.

