# Quantum automorphisms of quantum graphs

Matthew Daws

UCLan

#### Lancaster / Besançon, November 2021

# Graphs

A graph consists of a (finite) set of vertices V and a collection of edges  $E \subseteq V \times V$ .



$$V = \{A, B, C\}$$
 say, and  $E = \{(A, B), (B, C), (C, B), (C, A)\}.$ 

A graph is undirected if  $(x, y) \in E \Leftrightarrow (y, x) \in E$ . We allow self-loops, so  $(x, x) \in E$ .

Notice that a graph G = (V, E) is exactly a *relation* on the set V. An undirected graph gives a symmetric relation; having a loop on each vertex gives a reflexive relation.

## Adjacency matrices

A standard way to associate an "algebraic" object to a graph G = (V, E) is the *adjacency matrix*. Let  $V = \{1, 2, \dots, n\}$  and define

$$A_{ij} = egin{cases} 1 & :(i,j) \in E, \ 0 & : ext{ otherwise.} \end{cases}$$

- A is idempotent for the Schur product;
- G is undirected if and only if A is self-adjoint;
- A has 1s down the diagonal corresponds to G having a loop at every vertex.

We can think of A as an operator on  $\ell^2(V)$ . This is the GNS space for the  $C^*$ -algebra  $\ell^{\infty}(V)$  for the state induced by the uniform measure.

### **Operator subspaces**

Let G = (V, E) be a graph, again with  $V = \{1, 2, \dots, n\}$ , and consider the subspace of matrices S spanned by the matrix units

 $\{e_{ij}:(i,j)\in E\}.$ 

- S is an operator bimodule over  $\ell^{\infty}(V)$ . That is,  $x \in S, a, b \in \ell^{\infty}(V) \implies axb \in S;$
- Any bimodule over ℓ<sup>∞</sup>(V) must be spanned by matrix units, and so come from some graph.
- G is undirected if and only if S is self-adjoint;
- G has a loop at every vertex if and only if  $1 \in \mathcal{S}$ .

Recall that a self-adjoint, unital subspace of operators is an *operator* system.

## Automorphisms

An automorphism of a graph G = (V, E) is a bijection  $\theta: V \to V$ which satisfies that  $(i, j) \in E \implies (\theta(i), \theta(j)) \in E$ . (V is finite!) Set  $V = \{1, \dots, n\}$  for ease, so the adjacency matrix A is in  $\mathbb{M}_n$ .

#### Lemma

Let  $P_{\theta} \in \mathbb{M}_n$  be permutation matrix associated with a bijection  $\theta$ . Then  $\theta$  is an automorphism of G if and only if  $P_{\theta}A = AP_{\theta}$ .

# Compact Quantum groups

#### Definition (Woronowicz)

A compact quantum group is a unital  $C^*$ -algebra A together with a unital \*-homomorphism, the coproduct,  $\Delta : A \to A \otimes A$ , which is coassociative,  $(\Delta \otimes id)\Delta = (id \otimes \Delta)\Delta$ , and such that:

 $\{(a\otimes 1)\Delta(b):a,b\in A\}, \ \ \{(1\otimes a)\Delta(b):a,b\in A\}$ 

both have dense linear span in  $A \otimes A$ .

#### Theorem

Let  $(A, \Delta)$  be a compact quantum group with A commutative. There is a compact group G with A = C(G) and  $\Delta: C(G) \rightarrow C(G) \otimes C(G) = C(G \times G)$  given by

 $\Delta(f)(s,t)=f(st)\qquad (f\in C(G),s,t\in G).$ 

# Quantum group (co)actions

An (right) action of a group G on a space/set X is a map

$$X \times G \to X.$$

So we get a \*-homomorphism

$$lpha: C(X) 
ightarrow C(X) \otimes C(G),$$

- $(\mathrm{id}\otimes\Delta)\alpha = (\alpha\otimes\mathrm{id})\alpha$  corresponds to  $x\cdot st = (x\cdot s)\cdot t$ ;
- $lin\{\alpha(b)(1 \otimes a) : a \in C(G), b \in C(X)\}$  is dense in  $C(X) \otimes C(G)$  corresponds to  $x \cdot e = x$ .

#### Definition (Podles)

A (right) coaction of a compact quantum group  $(A, \Delta)$  on a  $C^*$ -algebra B is a unital \*-homomorphism  $\alpha: B \to B \otimes A$  with these two conditions.

# Coactions on $\ell_n^{\infty}$

Fix a compact quantum group  $(A, \Delta)$ .

- The algebra  $\ell_n^{\infty}$  is spanned by projections  $(e_i)_{i=1}^n$ .
- So  $lpha:\ell_n^\infty o \ell_n^\infty\otimes A$  is determined by  $(u_{ij})$  in A with

$$lpha(\mathit{e}_i) = \sum_{j=1}^n \mathit{e}_j \otimes \mathit{u}_{ji}.$$

- lpha is a \*-homomorphism  $\Leftrightarrow$  each  $u_{ji}$  a projection and  $u_{ji}u_{jk}=\delta_{ik}u_{ji};$
- $\alpha$  is unital  $\Leftrightarrow \sum_{i} u_{ji} = 1;$
- $\alpha$  satisfies the coaction equation  $\Leftrightarrow \Delta(u_{ji}) = \sum_k u_{jk} \otimes u_{ki};$
- $\alpha$  satisfies the Podleś density condition  $\Leftrightarrow \sum_i u_{ji} = 1$ .
- General Theory  $\implies \sum_j u_{ji} = 1$ . So  $(u_{ij})$  is a magic unitary.

Quantum symmetry group of the space of n points

For 
$$\ell_n^{\infty} = C(\{1, 2, \cdots, n\}),$$

$$lpha(\mathit{e}_i) = \sum_{j=1}^n \mathit{e}_j \otimes \mathit{u}_{ji},$$

with  $u = (u_{ij})$  a magic unitary.

#### Theorem (Wang)

Let  $S_n^+$  be the "universal"  $C^*$ -algebra generated by a magic unitary. Then  $S_n^+$  is the "largest" compact quantum group which acts on  $\mathbb{C}^n$  is a "non-degenerate" way.

We think of  $S_n^+$  as the "quantum symmetry group" of  $\{1, 2, \dots, n\}$ .

# (Co)actions on graphs

Recall that a permutation  $\theta$  gives an automorphism of G when

$$P_{\theta}A_G = A_G P_{\theta}.$$

Here  $A_G$  is the adjacency matrix of G, which we can think of as also a linear map  $\ell_n^{\infty} \to \ell_n^{\infty}$ .

So Aut(G) acts in a way which preserves  $A_G$ :

$$\alpha: \ell_n^{\infty} \to \ell_n^{\infty} \otimes C(\operatorname{Aut}(G)); \quad \alpha A_G = (A_G \otimes \operatorname{id}) \alpha.$$

#### Definition (Banica)

The quantum automorphism group of G is the maximal compact quantum group QAut(G) with a coaction satisfying

$$\alpha: \ell_n^{\infty} \to \ell_n^{\infty} \otimes \operatorname{QAut}(G); \quad \alpha A_G = (A_G \otimes \operatorname{id})\alpha.$$

Equivalently, the underlying magic unitary  $U = (u_{ij})$  has to commute with the adjacency matrix  $A_G$ . This allows us to construct QAut(G)as a quotient of  $S_n^+$ .

Matthew Daws

### Examples

We say that a graph has quantum symmetry if  $Aut(G) \neq QAut(G)$ .

- By now, we have many examples.
- For example, the Petersen graph has no quantum symmetry [Schmidt].



[CC-BY-SA, Leshabirukov, Wikipedia]

• Recently, [Roberson, Schmidt] have constructed G with  $Aut(G) \neq QAut(G)$  and yet QAut(G) is finite.

# (Co)actions on operator bimodules

What is an "automorphism" of  $S \subseteq \mathcal{B}(\ell^2(V))$ ?

- Start with a bijection  $\theta: V \to V$ , hence giving  $P_{\theta} \in \mathcal{B}(\ell^2(V))$ .
- Then get an action on  $\mathcal{B}(\ell^2(V))$  as  $\hat{\theta}: x \mapsto P_{\theta}xP_{\theta}^*$  (as  $P_{\theta}^* = P_{\theta}^{-1}$ ).
- When is S left invariant:  $P_{\theta}SP_{\theta}^* = S$ ?

$$P_{\theta} e_{ij} P_{\theta}^* = e_{\theta(i), \theta(j)}$$

So  $P_{\theta}SP_{\theta}^* = S$  exactly when  $(i, j) \in E \Leftrightarrow (\theta(i), \theta(j)) \in E$ , that is  $\theta$  is an automorphism of G.

How to phrase this in terms of coactions?

## Unitary implementations

Given a coaction  $\alpha: \ell^{\infty}(V) \to \ell^{\infty}(V) \otimes A$  of  $(A, \Delta)$  on  $\ell^{\infty}(V)$ , we saw before that  $\alpha$  gives rise to a magic unitary  $u = (u_{ij})_{i,j \in V}$ ,

$$lpha(e_i) = \sum_{j \in V} e_j \otimes u_{ji} \qquad (i \in V).$$

#### Lemma

Let  $\ell^{\infty}(V) \subseteq \mathcal{B}(\ell^2(V)).$  Then

$$lpha(x)=u(x\otimes 1)u^* \qquad (x\in \ell^\infty(V)).$$

# Coactions on operator bimodules

 $lpha(x)=u(x\otimes 1)u^* \qquad (x\in \ell^\infty(V)\subseteq \mathcal{B}(\ell^2(V))).$ 

It hence make sense...

#### Definition

 $\alpha$  is a coaction on  $S \subseteq \mathcal{B}(\ell^2(V))$  exactly when  $u(x \otimes 1)u^* \in S \otimes A$  for each  $x \in S$ .

One can check (non-trivially) that we then get the following.

#### Theorem (Eifler)

If a graph G is associated to the  $\ell^{\infty}(V)$ -operator bimodule S, then a coaction of  $(A, \Delta)$  on  $\ell^{\infty}(V)$  gives a coaction on G if and only if it gives a coaction on S.

### Non-commutative graphs

Both approaches to graphs can be adapted to a general, finite-dimensional  $C^*$ -algebra B, replacing  $\ell^{\infty}(V)$ .

- For adjacency matrices, we need a Hilbert space to act on...
- Fix a faithful state ψ on B and let L<sup>2</sup>(B) = L<sup>2</sup>(B, ψ) be the GNS space. (We will mostly assume ψ is a trace.)
- As B is finite-dimensional, B and  $L^2(B)$  are linearly isomorphic.

Let  $m: B \otimes B \to B$  be the multiplication map, so we get  $m^*: L^2(B) \to L^2(B) \otimes L^2(B)$ . An analogue of the Schur Product is

$$A_1 ullet A_2 = m(A_1 \otimes A_2)m^* \qquad (A_1,A_2 \in \mathcal{B}(L^2(B))).$$

(For  $B = \ell^{\infty}(\{1, \dots, n\})$  this gives the Schur Product on  $\mathbb{M}_n \cong \mathcal{B}(\ell_n^2)$ .) • As B is unital, we also obtain the "unit map"  $\eta : \mathbb{C} \to L^2(B)$ .

# Quantum adjacency matrix

#### Definition (Many authors)

A quantum adjacency matrix is a self-adjoint  $A_G \in \mathcal{B}(L^2(B))$  with:

•  $m(A_G \otimes A_G)m^* = A_G$  (so Schur product idempotent);

• 
$$(1 \otimes \eta^* m)(1 \otimes A_G \otimes 1)(m^* \eta \otimes 1) = A_G;$$

•  $m(A_G \otimes 1)m^* = \text{id}$  (a "loop at every vertex");

The middle axiom is a little mysterious: it roughly corresponds to "undirected".

### Quantum relations

Motivated by "noncommutative geometry", Weaver studied:

#### Definition (Weaver)

Let  $M \subseteq \mathcal{B}(H)$  be a von Neumann algebra. A quantum relation on M is a weak\*-closed subspace  $S \subseteq \mathcal{B}(H)$  with  $M'SM' \subseteq S$ . The relation is:

$$\textcircled{ } \quad \textbf{ reflexive if } M^{\,\prime} \subseteq \mathcal{S};$$

② symmetric if 
$$\mathcal{S}^* = \mathcal{S}$$
 where  $\mathcal{S}^* = \{x^* : x \in \mathcal{S}\};$ 

 $\circ$  transitive if  $S^2 \subseteq S$  where  $S^2 = \overline{\lim}^{w^*} \{xy : x, y \in S\}.$ 

When  $M = \ell^{\infty}(X) \subseteq \mathcal{B}(\ell^2(X))$  there is a bijection between the usual meaning of "relation" on X and quantum relations on M, given by

$$\mathcal{S} = \overline{\lim}^{w^*} \{ e_{x,y} : x \sim y \}.$$

# Quantum graphs

#### Definition (Weaver)

A quantum graph on a von Neumann algebra  $M \subseteq \mathcal{B}(H)$  is a reflexive, symmetric quantum relation. That is, a unital, self-adjoint, weak\*-closed subspace  $S \subseteq \mathcal{B}(H)$ , which is an M'-bimodule  $(M'SM' \subseteq S)$ .

- This definition depends upon H, but in fact is really independent of the choice.
- When M = B is finite-dimensional, we could (and will!) let  $H = L^2(B)$ , as before.
- If  $M = \mathcal{B}(H)$  with H finite-dimensional, then as  $M' = \mathbb{C}$ , and so a quantum graph is just an operator system.
- Independently, this was defined and studied by [Duan, Severini, Winter; Stahlke] and others in relation to quantum channels.

## Equivalent?

These notions seem different: an operator  $A_G$ , and a subspace S. They are in fact equivalent: let us see why.

 $S \subseteq B(H)$  is a bimodule over B'. As H is finite-dimensional, B(H) is a Hilbert space for

$$(x|y) = \operatorname{tr}(x^*y).$$

Then  $B\otimes B^{\operatorname{op}}$  is represented on  $\mathcal{B}(H)$  via

$$\pi: B \otimes B^{\operatorname{op}} \to \mathcal{B}(\mathcal{B}(H)); \quad \pi(x \otimes y): T \mapsto xTy.$$

- The commutant of  $\pi(B \otimes B^{op})$  is naturally  $B' \otimes (B')^{op}$ .
- So an B'-bimodule of  $\mathcal{B}(H)$  corresponds to an  $B' \otimes (B')^{\mathrm{op}}$ -invariant subspace of the Hilbert space  $\mathcal{B}(H)$ ;
- Which corresponds to a *projection* in  $B \otimes B^{op}$ .

### Operators to algebras

Recall the GNS construction for a *tracial* state  $\psi$  on *B*:

$$\Lambda: B \to L^2(B); \quad (\Lambda(x)|\Lambda(y)) = \psi(x^*y).$$

As  $L^2(B)$  is finite-dimensional, every operator on  $L^2(B)$  is a linear combination of rank-one operators of the form

$$heta_{\Lambda(a),\Lambda(b)}: \xi \mapsto (\Lambda(a)|\xi)\Lambda(b) \qquad (\xi \in L^2(B)).$$

Define a bijection

$$\Psi: \mathcal{B}(L^2(B)) \to B \otimes B^{\mathrm{op}}; \quad \theta_{\Lambda(a),\Lambda(b)} = b \otimes a^*,$$

and extend by linearity!

Operators to algebras cont.

 $\Psi: \mathcal{B}(L^2(B)) \to B \otimes B^{\mathrm{op}}; \quad \theta_{\Lambda(a),\Lambda(b)} = b \otimes a^*,$ 

- $\Psi$  is a homomorphism for the "Schur product"  $A_1 \bullet A_2 = m(A_1 \otimes A_2)m^*;$
- $A \mapsto (1 \otimes \eta^* m)(1 \otimes A \otimes 1)(m^* \eta \otimes 1)$  corresponds to the anti-homomorphism  $\sigma : a \otimes b \mapsto b \otimes a$ ;
- $A \mapsto A^*$  corresponds to  $e \mapsto \sigma(e)^*$ .

Conclude: A quantum adjacency matrix corresponds to a projection  $e \in B \otimes B^{\text{op}}$  with  $\sigma(e) = e$ . BUT: There is no clean one-to-one correspondence between the axioms.

(This result is due to [Musto, Reutter, Verdon] but the proof here is mine; one can also work with non-tracial states.)

## Coactions on $C^*$ -algebras

A coaction of  $(A, \Delta)$  on B is, as before,

 $\alpha: B \to B \otimes A; \quad (\mathrm{id} \otimes \Delta)\alpha = (\alpha \otimes \mathrm{id})\alpha,$ 

and satisfying the Podleś density condition.

### Theorem (Wang)

There is no maximal compact quantum group coacting on B. If  $\psi$  is a faithful state on B, there is a maximal compact quantum group coacting on B and preserving  $\psi$ :  $(\psi \otimes id)\alpha(x) = \psi(x)1$  for  $x \in B$ . Write QAut $(B, \psi)$  for this.

## Coactions on quantum adjacency matrices

There is now a clear definition:

#### Definition (Brannan et al.)

Let  $A_G$  be a quantum adjacency matrix on  $(B, \psi)$ . We say that  $(A, \Delta)$  coacts on  $A_G$  when  $\alpha : B \to B \otimes A$  is a coaction, which preserves  $\psi$ , and with  $(A_G \otimes id)\alpha = \alpha A_G$ .

- Here we regard  $A_G$  as a linear map on B.
- That  $\alpha$  preserves  $\psi$  allows us to define a unitary  $U \in \mathcal{B}(L^2(B)) \otimes A$  which implements  $\alpha$ , as  $\alpha(x) = U(x \otimes 1) U^*$ . Indeed, one way to prove Wang's theorem is to start with such a U and impose certain conditions on it (compare Compact Quantum Matrix Groups).
- Then, equivalently, we require that U and  $A_G \otimes 1$  commute.

## Coactions on operator bimodules

A coaction  $\alpha$  which preserves  $\psi$  gives a unitary U (which is a *corepresentation*) and it is then easy to see that

 $lpha_U: \mathcal{B}(L^2(B)) 
ightarrow \mathcal{B}(L^2(B)) \otimes A; x \mapsto \, U(x \otimes 1) \, U^*$ 

is a coaction (which extends  $\alpha$ ).

Might this leave  $S \subseteq \mathcal{B}(L^2(M))$  invariant if and only if U commutes with  $A_G$ ?

- No, as the "trivial quantum graph" is S = B', which should always be invariant, but  $\alpha_U$  leaves B invariant, not B'.
- Instead, we can use the modular conjugation J and antipode to form a "commutant" coaction  $\alpha'_U$ ; or equivalently, look at  $\alpha_U$  but work with

$$\mathcal{S}' := \{ JTJ : T \in \mathcal{S} \}.$$

#### Theorem (D.)

 $\alpha$  leaves  $A_{\mathit{G}}$  invariant if and only if  $\alpha_{\mathit{U}}$  leaves  $\mathcal{S}'$  invariant.