Around Compact Quantum Groups

Matthew Daws

23rd April 2009

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Well, it's a compact topological space G with the structure of a group such that the group action is jointly continuous, and the inverse is continuous.

It's a unital commutative C*-algebra A with a unital *-homomorphism $\Delta : A \rightarrow A \otimes_{\min} A$ which is:

• Co-associative, $(id \otimes \Delta)\Delta = (\Delta \otimes id)\Delta$

"Cancellative", that is, the sets

 $\{(a \otimes 1)\Delta(b) : a, b \in A\}, \{(1 \otimes a)\Delta(b) : a, b \in A\},\$

(日) (日) (日) (日) (日) (日) (日)

Well, it's a compact topological space G with the structure of a group such that the group action is jointly continuous, and the inverse is continuous.

It's a unital commutative C*-algebra A with a unital *-homomorphism $\Delta : A \rightarrow A \otimes_{\min} A$ which is:

• Co-associative, $(id \otimes \Delta)\Delta = (\Delta \otimes id)\Delta$

"Cancellative", that is, the sets

 $\{(a \otimes 1)\Delta(b) : a, b \in A\}, \{(1 \otimes a)\Delta(b) : a, b \in A\},\$

(日) (日) (日) (日) (日) (日) (日)

Well, it's a compact topological space G with the structure of a group such that the group action is jointly continuous, and the inverse is continuous.

It's a unital commutative C*-algebra A with a unital *-homomorphism $\Delta : A \rightarrow A \otimes_{\min} A$ which is:

• Co-associative, $(id \otimes \Delta)\Delta = (\Delta \otimes id)\Delta$

"Cancellative", that is, the sets

 $\{(a \otimes 1)\Delta(b) : a, b \in A\}, \{(1 \otimes a)\Delta(b) : a, b \in A\},\$

(日) (日) (日) (日) (日) (日) (日)

Well, it's a compact topological space G with the structure of a group such that the group action is jointly continuous, and the inverse is continuous.

It's a unital commutative C*-algebra A with a unital *-homomorphism $\Delta : A \rightarrow A \otimes_{\min} A$ which is:

- Co-associative, $(id \otimes \Delta)\Delta = (\Delta \otimes id)\Delta$
- "Cancellative", that is, the sets

 $\{(a \otimes 1)\Delta(b) : a, b \in A\}, \{(1 \otimes a)\Delta(b) : a, b \in A\},\$

(ロ) (同) (三) (三) (三) (三) (○) (○)

If G is a compact group, set

 $A = C(G) = \{$ continuous functions $G \to \mathbb{C}\},$

identify $A \otimes_{\min} A = C(G \times G)$, define

 $\Delta(f)\in \mathcal{C}(G imes G), \quad \Delta(f):(s,t)\mapsto f(st) \qquad (f\in \mathcal{C}(G),s,t\in G).$

Finally observe that

$$(a \otimes 1)\Delta(b) : (s,t) \mapsto a(s)b(st),$$

will separate the points of $G \times G$ (by varying *a* and *b*) so by Stone-Weierstrass,

$$lin\{(a \otimes 1)\Delta(b) : a, b \in A\}$$

If G is a compact group, set

 $A = C(G) = \{$ continuous functions $G \to \mathbb{C}\},$

identify $A \otimes_{\min} A = C(G \times G)$, define

 $\Delta(f)\in \mathcal{C}(G imes G), \quad \Delta(f):(s,t)\mapsto f(st) \qquad (f\in \mathcal{C}(G),s,t\in G).$

Finally observe that

$$(a \otimes 1)\Delta(b) : (s,t) \mapsto a(s)b(st),$$

will separate the points of $G \times G$ (by varying *a* and *b*) so by Stone-Weierstrass,

$$lin\{(a \otimes 1)\Delta(b) : a, b \in A\}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

If G is a compact group, set

 $A = C(G) = \{$ continuous functions $G \to \mathbb{C} \},$

identify $A \otimes_{\min} A = C(G \times G)$, define

 $\Delta(f)\in \mathcal{C}(G imes G), \quad \Delta(f):(s,t)\mapsto f(st) \qquad (f\in \mathcal{C}(G),s,t\in G).$

Finally observe that

$$(a \otimes 1)\Delta(b) : (s,t) \mapsto a(s)b(st),$$

will separate the points of $G \times G$ (by varying *a* and *b*) so by Stone-Weierstrass,

$$lin\{(a \otimes 1)\Delta(b) : a, b \in A\}$$

If G is a compact group, set

 $A = C(G) = \{$ continuous functions $G \to \mathbb{C} \},$

identify $A \otimes_{\min} A = C(G \times G)$, define

 $\Delta(f)\in \mathcal{C}(G imes G), \quad \Delta(f):(s,t)\mapsto f(st) \qquad (f\in \mathcal{C}(G),s,t\in G).$

Finally observe that

$$(a \otimes 1)\Delta(b)$$
 : $(s,t) \mapsto a(s)b(st),$

will separate the points of $G \times G$ (by varying *a* and *b*) so by Stone-Weierstrass,

$$lin\{(a \otimes 1)\Delta(b) : a, b \in A\}$$

Gelfand-Naimark tells us that a unital commutative C*-algebra A has the form C(X) for some compact space X. So again

 $A \otimes_{\min} A = C(X \times X)$. Then $\Delta : C(X) \to C(X \times X)$ a unital *-homomorphism induces a continuous map $\theta : X \times X \to X$ such that

$$f(\theta(\boldsymbol{s},t)) = \Delta(f)(\boldsymbol{s},t) \qquad (\boldsymbol{s},t \in X, f \in \mathcal{C}(X)).$$

The category of unital commutative C*-algebras and unital *-homomorphisms is dual to the category of compact spaces and continuous maps.

 Δ co-associative implies that θ is associative, so X is a compact semigroup.

The cancellation rules for Δ imply that X is cancellative, that is

$$st = rt \implies s = r, \quad ts = tr \implies s = r.$$

Gelfand-Naimark tells us that a unital commutative C*-algebra A has the form C(X) for some compact space X. So again $A \otimes_{\min} A = C(X \times X)$. Then $\triangle : C(X) \to C(X \times X)$ a unital *-homomorphism induces a continuous map $\theta : X \times X \to X$ such that

$$f(heta(s,t)) = \Delta(f)(s,t) \qquad (s,t\in X, f\in C(X)).$$

The category of unital commutative C*-algebras and unital *-homomorphisms is dual to the category of compact spaces and continuous maps.

 Δ co-associative implies that θ is associative, so X is a compact semigroup.

The cancellation rules for Δ imply that X is cancellative, that is

$$st = rt \implies s = r, \quad ts = tr \implies s = r.$$

Gelfand-Naimark tells us that a unital commutative C*-algebra A has the form C(X) for some compact space X. So again $A \otimes_{\min} A = C(X \times X)$. Then $\Delta : C(X) \to C(X \times X)$ a unital *-homomorphism induces a continuous map $\theta : X \times X \to X$ such that

$$f(heta(oldsymbol{s},t))=\Delta(f)(oldsymbol{s},t) \qquad (oldsymbol{s},t\in X,f\in C(X)),$$

The category of unital commutative C*-algebras and unital *-homomorphisms is dual to the category of compact

spaces and continuous maps.

 Δ co-associative implies that θ is associative, so X is a compact semigroup.

The cancellation rules for Δ imply that X is cancellative, that is

$$st = rt \implies s = r, \quad ts = tr \implies s = r.$$

Gelfand-Naimark tells us that a unital commutative C*-algebra A has the form C(X) for some compact space X. So again $A \otimes_{\min} A = C(X \times X)$. Then $\Delta : C(X) \to C(X \times X)$ a unital *-homomorphism induces a continuous map $\theta : X \times X \to X$ such that

$$f(\theta(\boldsymbol{s},t)) = \Delta(f)(\boldsymbol{s},t) \qquad (\boldsymbol{s},t \in \boldsymbol{X}, f \in \boldsymbol{C}(\boldsymbol{X})),$$

The category of unital commutative C*-algebras and unital *-homomorphisms is dual to the category of compact spaces and continuous maps.

 Δ co-associative implies that θ is associative, so *X* is a compact semigroup.

The cancellation rules for Δ imply that X is cancellative, that is

$$st = rt \implies s = r, \quad ts = tr \implies s = r.$$

Gelfand-Naimark tells us that a unital commutative C*-algebra A has the form C(X) for some compact space X. So again $A \otimes_{\min} A = C(X \times X)$. Then $\Delta : C(X) \to C(X \times X)$ a unital *-homomorphism induces a continuous map $\theta : X \times X \to X$ such that

$$f(heta(oldsymbol{s},t))=\Delta(f)(oldsymbol{s},t) \qquad (oldsymbol{s},t\in X,f\in C(X)).$$

The category of unital commutative C*-algebras and unital *-homomorphisms is dual to the category of compact spaces and continuous maps.

 Δ co-associative implies that θ is associative, so *X* is a compact semigroup.

The cancellation rules for Δ imply that X is cancellative, that is

$$st = rt \implies s = r, \quad ts = tr \implies s = r.$$

Gelfand-Naimark tells us that a unital commutative C*-algebra A has the form C(X) for some compact space X. So again $A \otimes_{\min} A = C(X \times X)$. Then $\Delta : C(X) \to C(X \times X)$ a unital *-homomorphism induces a continuous map $\theta : X \times X \to X$ such that

$$f(heta(oldsymbol{s},t))=\Delta(f)(oldsymbol{s},t) \qquad (oldsymbol{s},t\in X,f\in C(X)).$$

The category of unital commutative C*-algebras and unital *-homomorphisms is dual to the category of compact spaces and continuous maps.

 Δ co-associative implies that θ is associative, so *X* is a compact semigroup.

The cancellation rules for Δ imply that X is cancellative, that is

$$st = rt \implies s = r, \quad ts = tr \implies s = r.$$

Simply remove the word "commutative"!

For example, let Γ be a discrete group, and let Γ act on $\ell^2(\Gamma)$ by left translation:

$$\lambda(s)f:t\mapsto f(s^{-1}t)\qquad (s,t\in\Gamma,f\in\ell^2(\Gamma)).$$

Let $C_r^*(\Gamma)$ be the (reduced) group C*-algebra: that is, the norm closed algebra, acting on $\ell^2(\Gamma)$, generated by $\lambda(\Gamma)$. So $C_r^*(\Gamma)$ is commutative if and only if Γ is. There is a *-homomorphism

$$\Delta: C_r^*(\Gamma) \to C_r^*(\Gamma) \otimes_{\min} C_r^*(\Gamma) = C_r^*(\Gamma \times \Gamma),$$

$$\Delta: \lambda(s) \mapsto \lambda(s) \otimes \lambda(s) = \lambda(s, s) \qquad (s \in \Gamma).$$

Simply remove the word "commutative"!

For example, let Γ be a discrete group, and let Γ act on $\ell^2(\Gamma)$ by left translation:

$$\lambda(s)f:t\mapsto f(s^{-1}t)\qquad (s,t\in\Gamma,f\in\ell^2(\Gamma)).$$

Let $C_r^*(\Gamma)$ be the (reduced) group C*-algebra: that is, the norm closed algebra, acting on $\ell^2(\Gamma)$, generated by $\lambda(\Gamma)$. So $C_r^*(\Gamma)$ is commutative if and only if Γ is. There is a *-homomorphism

$$\Delta: C_r^*(\Gamma) \to C_r^*(\Gamma) \otimes_{\min} C_r^*(\Gamma) = C_r^*(\Gamma \times \Gamma),$$

$$\Delta: \lambda(s) \mapsto \lambda(s) \otimes \lambda(s) = \lambda(s, s) \qquad (s \in \Gamma).$$

Simply remove the word "commutative"!

For example, let Γ be a discrete group, and let Γ act on $\ell^2(\Gamma)$ by left translation:

$$\lambda(s)f: t\mapsto f(s^{-1}t) \qquad (s,t\in\Gamma,f\in\ell^2(\Gamma)).$$

Let $C_r^*(\Gamma)$ be the (reduced) group C*-algebra: that is, the norm closed algebra, acting on $\ell^2(\Gamma)$, generated by $\lambda(\Gamma)$. So $C_r^*(\Gamma)$ is commutative if and only if Γ is. There is a *-homomorphism

$$\Delta: C_r^*(\Gamma) \to C_r^*(\Gamma) \otimes_{\min} C_r^*(\Gamma) = C_r^*(\Gamma \times \Gamma),$$

$$\Delta: \lambda(s) \mapsto \lambda(s) \otimes \lambda(s) = \lambda(s, s) \qquad (s \in \Gamma).$$

Simply remove the word "commutative"!

For example, let Γ be a discrete group, and let Γ act on $\ell^2(\Gamma)$ by left translation:

$$\lambda(s)f: t\mapsto f(s^{-1}t) \qquad (s,t\in\Gamma,f\in\ell^2(\Gamma)).$$

Let $C_r^*(\Gamma)$ be the (reduced) group C*-algebra: that is, the norm closed algebra, acting on $\ell^2(\Gamma)$, generated by $\lambda(\Gamma)$. So $C_r^*(\Gamma)$ is commutative if and only if Γ is.

There is a *-homomorphism

$$\Delta: C_r^*(\Gamma) \to C_r^*(\Gamma) \otimes_{\min} C_r^*(\Gamma) = C_r^*(\Gamma \times \Gamma),$$

$$\Delta: \lambda(s) \mapsto \lambda(s) \otimes \lambda(s) = \lambda(s, s) \qquad (s \in \Gamma).$$

(日) (日) (日) (日) (日) (日) (日)

Simply remove the word "commutative"!

For example, let Γ be a discrete group, and let Γ act on $\ell^2(\Gamma)$ by left translation:

$$\lambda(s)f: t \mapsto f(s^{-1}t) \qquad (s,t \in \Gamma, f \in \ell^2(\Gamma)).$$

Let $C_r^*(\Gamma)$ be the (reduced) group C*-algebra: that is, the norm closed algebra, acting on $\ell^2(\Gamma)$, generated by $\lambda(\Gamma)$. So $C_r^*(\Gamma)$ is commutative if and only if Γ is. There is a *-homomorphism

$$\Delta : C_r^*(\Gamma) \to C_r^*(\Gamma) \otimes_{\min} C_r^*(\Gamma) = C_r^*(\Gamma \times \Gamma),$$

 $\Delta : \lambda(s) \mapsto \lambda(s) \otimes \lambda(s) = \lambda(s,s) \qquad (s \in \Gamma).$

(日) (日) (日) (日) (日) (日) (日)

Compact or Discrete?

Hang on: we're saying that for *discrete* Γ , we have that $C_r^*(\Gamma)$ is a *compact* quantum group?

If Γ were abelian, then the fourier transform tells us that

 $C_r^*(\Gamma) \cong C(\hat{\Gamma}),$

(日) (日) (日) (日) (日) (日) (日)

where $\hat{\Gamma}$ is the Pontryagin dual of $\Gamma.$ As Γ is discrete, $\hat{\Gamma}$ is compact.

As C(G) is our "commutative" base algebra, this weird terminology is forced upon us.

Hang on: we're saying that for *discrete* Γ , we have that $C_r^*(\Gamma)$ is a *compact* quantum group?

If Γ were abelian, then the fourier transform tells us that

 $C_r^*(\Gamma) \cong C(\hat{\Gamma}),$

(日) (日) (日) (日) (日) (日) (日)

where $\hat{\Gamma}$ is the Pontryagin dual of Γ . As Γ is discrete, $\hat{\Gamma}$ is compact. As C(G) is our "commutative" base algebra, this weird terminology is forced upon us Hang on: we're saying that for *discrete* Γ , we have that $C_r^*(\Gamma)$ is a *compact* quantum group?

If Γ were abelian, then the fourier transform tells us that

 $C_r^*(\Gamma) \cong C(\hat{\Gamma}),$

where $\hat{\Gamma}$ is the Pontryagin dual of $\Gamma.$ As Γ is discrete, $\hat{\Gamma}$ is compact.

As C(G) is our "commutative" base algebra, this weird terminology is forced upon us.

Hang on: we're saying that for *discrete* Γ , we have that $C_r^*(\Gamma)$ is a *compact* quantum group?

If Γ were abelian, then the fourier transform tells us that

 $C_r^*(\Gamma) \cong C(\hat{\Gamma}),$

(日) (日) (日) (日) (日) (日) (日)

where $\hat{\Gamma}$ is the Pontryagin dual of $\Gamma.$ As Γ is discrete, $\hat{\Gamma}$ is compact.

As C(G) is our "commutative" base algebra, this weird terminology is forced upon us.

From Woronowicz in the C*-setting, but independently discovered by Soibelman and Vaksman C(SU(2)) is the commutative C*-algebra generated by a, b with

$a^*a + b^*b = 1.$

 $aa^* + bb^* = 1$, $b^*b = bb^*$, ab = ba, $ab^* = b^*a$.

We introduce a real parameter $\mu \in [-1, 1] \setminus \{0\}$, and let $C(SU_{\mu}(2))$ be the (non-commutative) C*-algebra generated by a, b with

$$a^*a + b^*b = 1$$
, $aa^* + \mu^2bb^* = 1$,
 $b^*b = bb^*$, $ab = \mu ba$, $ab^* = \mu b^*a$.

There exists a coproduct Δ with

 $\Delta(a) = a \otimes a - \mu b^* \otimes b, \quad \Delta(b) = b \otimes a + a^* \otimes b.$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

From Woronowicz in the C*-setting, but independently discovered by Soibelman and Vaksman C(SU(2)) is the commutative C*-algebra generated by a, b with

$$a^*a + b^*b = 1.$$

 $aa^* + bb^* = 1, \quad b^*b = bb^*, \quad ab = ba, \quad ab^* = b^*a.$

We introduce a real parameter $\mu \in [-1, 1] \setminus \{0\}$, and let $C(SU_{\mu}(2))$ be the (non-commutative) C*-algebra generated by a, b with

$$a^*a + b^*b = 1$$
, $aa^* + \mu^2bb^* = 1$,
 $b^*b = bb^*$, $ab = \mu ba$, $ab^* = \mu b^*a$.

There exists a coproduct Δ with

$$\Delta(a) = a \otimes a - \mu b^* \otimes b, \quad \Delta(b) = b \otimes a + a^* \otimes b.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

From Woronowicz in the C*-setting, but independently discovered by Soibelman and Vaksman

C(SU(2)) is the commutative C*-algebra generated by a, b with

$$a^*a + b^*b = 1.$$

 $aa^* + bb^* = 1, \quad b^*b = bb^*, \quad ab = ba, \quad ab^* = b^*a.$

We introduce a real parameter $\mu \in [-1, 1] \setminus \{0\}$, and let $C(SU_{\mu}(2))$ be the (non-commutative) C*-algebra generated by a, b with

$$a^*a + b^*b = 1$$
, $aa^* + \mu^2 bb^* = 1$,
 $b^*b = bb^*$, $ab = \mu ba$, $ab^* = \mu b^*a$.

There exists a coproduct Δ with

 $\Delta(a) = a \otimes a - \mu b^* \otimes b, \quad \Delta(b) = b \otimes a + a^* \otimes b.$

From Woronowicz in the C*-setting, but independently discovered by Soibelman and Vaksman

C(SU(2)) is the commutative C*-algebra generated by a, b with

$$a^*a + b^*b = 1.$$

 $aa^* + bb^* = 1, \quad b^*b = bb^*, \quad ab = ba, \quad ab^* = b^*a.$

We introduce a real parameter $\mu \in [-1, 1] \setminus \{0\}$, and let $C(SU_{\mu}(2))$ be the (non-commutative) C*-algebra generated by a, b with

$$a^*a + b^*b = 1$$
, $aa^* + \mu^2bb^* = 1$,
 $b^*b = bb^*$, $ab = \mu ba$, $ab^* = \mu b^*a$.

There exists a coproduct Δ with

$$\Delta(a) = a \otimes a - \mu b^* \otimes b, \quad \Delta(b) = b \otimes a + a^* \otimes b.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

(Topological) Quantum groups grew out of:

- How do we extend the notion of the Fourier transform, or more specifically, the Pontryagin Duality, to non-abelian groups? Ideally, we'd like a self-dual category into which all proper groups fit (so Tannaka-Krein duality doesn't quite fit the bill). This lead to *Kac algebras*.
- ▶ But SU_µ(2) does not fit into this framework! Indeed, we have rather few examples of Kac algebras.

(日) (日) (日) (日) (日) (日) (日)

(Topological) Quantum groups grew out of:

- How do we extend the notion of the Fourier transform, or more specifically, the Pontryagin Duality, to non-abelian groups? Ideally, we'd like a self-dual category into which all proper groups fit (so Tannaka-Krein duality doesn't quite fit the bill). This lead to Kac algebras.
- ▶ But SU_µ(2) does not fit into this framework! Indeed, we have rather few examples of Kac algebras.

(日) (日) (日) (日) (日) (日) (日)

(Topological) Quantum groups grew out of:

- How do we extend the notion of the Fourier transform, or more specifically, the Pontryagin Duality, to non-abelian groups? Ideally, we'd like a self-dual category into which all proper groups fit (so Tannaka-Krein duality doesn't quite fit the bill). This lead to Kac algebras.
- ▶ But SU_µ(2) does not fit into this framework! Indeed, we have rather few examples of Kac algebras.

(日) (日) (日) (日) (日) (日) (日)

(Topological) Quantum groups grew out of:

- How do we extend the notion of the Fourier transform, or more specifically, the Pontryagin Duality, to non-abelian groups? Ideally, we'd like a self-dual category into which all proper groups fit (so Tannaka-Krein duality doesn't quite fit the bill). This lead to Kac algebras.
- ▶ But SU_µ(2) does not fit into this framework! Indeed, we have rather few examples of Kac algebras.

(日) (日) (日) (日) (日) (日) (日)

(Topological) Quantum groups grew out of:

- How do we extend the notion of the Fourier transform, or more specifically, the Pontryagin Duality, to non-abelian groups? Ideally, we'd like a self-dual category into which all proper groups fit (so Tannaka-Krein duality doesn't quite fit the bill). This lead to *Kac algebras*.
- But SU_µ(2) does not fit into this framework! Indeed, we have rather few examples of Kac algebras.

(日) (日) (日) (日) (日) (日) (日)

(Topological) Quantum groups grew out of:

- How do we extend the notion of the Fourier transform, or more specifically, the Pontryagin Duality, to non-abelian groups? Ideally, we'd like a self-dual category into which all proper groups fit (so Tannaka-Krein duality doesn't quite fit the bill). This lead to *Kac algebras*.
- ► But SU_µ(2) does not fit into this framework! Indeed, we have rather few examples of Kac algebras.

(Topological) Quantum groups grew out of:

- How do we extend the notion of the Fourier transform, or more specifically, the Pontryagin Duality, to non-abelian groups? Ideally, we'd like a self-dual category into which all proper groups fit (so Tannaka-Krein duality doesn't quite fit the bill). This lead to Kac algebras.
- ► But SU_µ(2) does not fit into this framework! Indeed, we have rather few examples of Kac algebras.

Haar state

A compact group admits a unique Haar measure: a probability measure which is invariant under the group action. In our language, this corresponds to a state φ on C(G) with

$$(\varphi \otimes id)\Delta(a) = (id \otimes \varphi)\Delta(a) = \varphi(a) \qquad (a \in C(G)).$$

Woronowicz and van Daele showed that such a state always exists on a compact quantum group (A, Δ) Applying the GNS construction gives a Hilbert space *H* and a *-representation of *A* on *H*. This is the analogue of *C*(*G*) acting on $L^2(G)$ by pointwise multiplication.

(日) (日) (日) (日) (日) (日) (日)
A compact group admits a unique Haar measure: a probability measure which is invariant under the group action. In our language, this corresponds to a state φ on C(G) with

$(\varphi \otimes id)\Delta(a) = (id \otimes \varphi)\Delta(a) = \varphi(a)$ $(a \in C(G)).$

Woronowicz and van Daele showed that such a state always exists on a compact quantum group (A, Δ) Applying the GNS construction gives a Hilbert space *H* and a *-representation of *A* on *H*. This is the analogue of *C*(*G*) acting on $L^2(G)$ by pointwise multiplication.

A compact group admits a unique Haar measure: a probability measure which is invariant under the group action. In our language, this corresponds to a *state* φ on C(G) with

$$(\varphi \otimes id)\Delta(a) = (id \otimes \varphi)\Delta(a) = \varphi(a)$$
 $(a \in C(G)).$

Woronowicz and van Daele showed that such a state always exists on a compact quantum group (A, Δ) Applying the GNS construction gives a Hilbert space *H* and a *-representation of *A* on *H*. This is the analogue of *C*(*G*) acting on $L^2(G)$ by pointwise multiplication.

A compact group admits a unique Haar measure: a probability measure which is invariant under the group action. In our language, this corresponds to a *state* φ on C(G) with

$$(\varphi \otimes id)\Delta(a) = (id \otimes \varphi)\Delta(a) = \varphi(a) \qquad (a \in C(G)).$$

Woronowicz and van Daele showed that such a state always exists on a compact quantum group (A, Δ)

Applying the GNS construction gives a Hilbert space H and a *-representation of A on H. This is the analogue of C(G) acting on $L^2(G)$ by pointwise multiplication.

A compact group admits a unique Haar measure: a probability measure which is invariant under the group action. In our language, this corresponds to a *state* φ on C(G) with

$$(\varphi \otimes \operatorname{id})\Delta(a) = (\operatorname{id} \otimes \varphi)\Delta(a) = \varphi(a) \qquad (a \in C(G)).$$

Woronowicz and van Daele showed that such a state always exists on a compact quantum group (A, Δ) Applying the GNS construction gives a Hilbert space *H* and a *-representation of *A* on *H*. This is the analogue of C(G) acting on $L^2(G)$ by pointwise multiplication.

A compact group admits a unique Haar measure: a probability measure which is invariant under the group action. In our language, this corresponds to a *state* φ on C(G) with

$$(\varphi \otimes id)\Delta(a) = (id \otimes \varphi)\Delta(a) = \varphi(a) \qquad (a \in C(G)).$$

Woronowicz and van Daele showed that such a state always exists on a compact quantum group (A, Δ) Applying the GNS construction gives a Hilbert space *H* and a *-representation of *A* on *H*. This is the analogue of *C*(*G*) acting on $L^2(G)$ by pointwise multiplication.

$$\Delta(u_{ij}) = \sum_{k=1}^n u_{ik} \otimes u_{kj}.$$

- ► All irreducible corepresentations of (A, △) are finite-dimensional.
- Using the Haar state, it's possible to show that any finite-dimensional corepresentation u is equivalent to a unitary corepresentation: u*u = uu* = I_n.
- There is an (infinite-dimensional) corepresentation of (A, Δ) on H; all finite-dimensional corepresentations are sub-corepresentations of this. So we have a generalised Peter-Weil theory.
- There is a character theory.

$$\Delta(u_{ij}) = \sum_{k=1}^n u_{ik} \otimes u_{kj}.$$

- ► All irreducible corepresentations of (A, △) are finite-dimensional.
- Using the Haar state, it's possible to show that any finite-dimensional corepresentation u is equivalent to a unitary corepresentation: u*u = uu* = I_n.
- There is an (infinite-dimensional) corepresentation of (A, Δ) on H; all finite-dimensional corepresentations are sub-corepresentations of this. So we have a generalised Peter-Weil theory.
- There is a character theory.

$$\Delta(u_{ij}) = \sum_{k=1}^n u_{ik} \otimes u_{kj}.$$

- ► All irreducible corepresentations of (A, △) are finite-dimensional.
- Using the Haar state, it's possible to show that any finite-dimensional corepresentation u is equivalent to a unitary corepresentation: u*u = uu* = In.
- There is an (infinite-dimensional) corepresentation of (A, Δ) on H; all finite-dimensional corepresentations are sub-corepresentations of this. So we have a generalised Peter-Weil theory.
- There is a character theory.

$$\Delta(u_{ij}) = \sum_{k=1}^n u_{ik} \otimes u_{kj}.$$

- ► All irreducible corepresentations of (A, △) are finite-dimensional.
- Using the Haar state, it's possible to show that any finite-dimensional corepresentation u is equivalent to a unitary corepresentation: u*u = uu* = I_n.
- There is an (infinite-dimensional) corepresentation of (A, Δ) on H; all finite-dimensional corepresentations are sub-corepresentations of this. So we have a generalised Peter-Weil theory.
- There is a character theory.

$$\Delta(u_{ij}) = \sum_{k=1}^n u_{ik} \otimes u_{kj}.$$

- ► All irreducible corepresentations of (A, △) are finite-dimensional.
- Using the Haar state, it's possible to show that any finite-dimensional corepresentation u is equivalent to a unitary corepresentation: u*u = uu* = I_n.
- There is an (infinite-dimensional) corepresentation of (A, Δ) on H; all finite-dimensional corepresentations are sub-corepresentations of this. So we have a generalised Peter-Weil theory.
- There is a character theory.

A (finite-dimensional) corepresentation of (A, Δ) is a matrix $u \in \mathbb{M}_n(A)$ with

$$\Delta(u_{ij}) = \sum_{k=1}^n u_{ik} \otimes u_{kj}.$$

- ► All irreducible corepresentations of (A, △) are finite-dimensional.
- Using the Haar state, it's possible to show that any finite-dimensional corepresentation u is equivalent to a unitary corepresentation: u*u = uu* = I_n.
- There is an (infinite-dimensional) corepresentation of (A, Δ) on H; all finite-dimensional corepresentations are sub-corepresentations of this. So we have a generalised Peter-Weil theory.

There is a character theory.

$$\Delta(u_{ij}) = \sum_{k=1}^n u_{ik} \otimes u_{kj}.$$

- ► All irreducible corepresentations of (A, △) are finite-dimensional.
- Using the Haar state, it's possible to show that any finite-dimensional corepresentation u is equivalent to a unitary corepresentation: u*u = uu* = I_n.
- There is an (infinite-dimensional) corepresentation of (A, Δ) on H; all finite-dimensional corepresentations are sub-corepresentations of this. So we have a generalised Peter-Weil theory.
- There is a character theory.

Let A be the collection of matrix entries of all irreducible corepresentations of (A, Δ) .

- Then \mathcal{A} is a *-algebra.
- \mathcal{A} is norm-dense in \mathcal{A} .
- Δ restricts to give a map $\mathcal{A} \to \mathcal{A} \otimes \mathcal{A}$ (algebraic tensor product).
- We can turn (A, △) into a Hopf *-algebra: there exists an antipode and counit.
- ▶ But, in general, these are *unbounded*, and so don't make sense on *A*.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Let A be the collection of matrix entries of all irreducible corepresentations of (A, Δ) .

- Then \mathcal{A} is a *-algebra.
- \mathcal{A} is norm-dense in \mathcal{A} .
- ► △ restricts to give a map A → A ⊗ A (algebraic tensor product).
- We can turn (A, △) into a Hopf *-algebra: there exists an antipode and counit.
- ▶ But, in general, these are *unbounded*, and so don't make sense on *A*.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Let A be the collection of matrix entries of all irreducible corepresentations of (A, Δ) .

- Then \mathcal{A} is a *-algebra.
- \mathcal{A} is norm-dense in \mathcal{A} .
- ► △ restricts to give a map A → A ⊗ A (algebraic tensor product).
- We can turn (A, △) into a Hopf *-algebra: there exists an antipode and counit.
- ▶ But, in general, these are *unbounded*, and so don't make sense on *A*.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Let A be the collection of matrix entries of all irreducible corepresentations of (A, Δ) .

- Then \mathcal{A} is a *-algebra.
- \mathcal{A} is norm-dense in \mathcal{A} .
- ► ∆ restricts to give a map A → A ⊗ A (algebraic tensor product).
- We can turn (A, △) into a Hopf *-algebra: there exists an antipode and counit.
- ▶ But, in general, these are *unbounded*, and so don't make sense on *A*.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Let A be the collection of matrix entries of all irreducible corepresentations of (A, Δ) .

- Then \mathcal{A} is a *-algebra.
- \mathcal{A} is norm-dense in \mathcal{A} .
- ► ∆ restricts to give a map A → A ⊗ A (algebraic tensor product).
- We can turn (A, Δ) into a Hopf *-algebra: there exists an antipode and counit.
- ▶ But, in general, these are *unbounded*, and so don't make sense on *A*.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Let A be the collection of matrix entries of all irreducible corepresentations of (A, Δ) .

- Then \mathcal{A} is a *-algebra.
- \mathcal{A} is norm-dense in \mathcal{A} .
- ► ∆ restricts to give a map A → A ⊗ A (algebraic tensor product).
- We can turn (A, △) into a Hopf *-algebra: there exists an antipode and counit.
- ▶ But, in general, these are *unbounded*, and so don't make sense on *A*.

(日) (日) (日) (日) (日) (日) (日)

Let A be the collection of matrix entries of all irreducible corepresentations of (A, Δ) .

- Then \mathcal{A} is a *-algebra.
- \mathcal{A} is norm-dense in \mathcal{A} .
- ► ∆ restricts to give a map A → A ⊗ A (algebraic tensor product).
- We can turn (A, △) into a Hopf *-algebra: there exists an antipode and counit.
- But, in general, these are *unbounded*, and so don't make sense on A.

(日) (日) (日) (日) (日) (日) (日)

Let A be the collection of matrix entries of all irreducible corepresentations of (A, Δ) .

- Then \mathcal{A} is a *-algebra.
- \mathcal{A} is norm-dense in \mathcal{A} .
- ► ∆ restricts to give a map A → A ⊗ A (algebraic tensor product).
- We can turn (A, △) into a Hopf *-algebra: there exists an antipode and counit.
- But, in general, these are *unbounded*, and so don't make sense on A.

(日) (日) (日) (日) (日) (日) (日)

We can go in reverse! Dijkhuizen and Koornwinder showed that if (\mathcal{A}, Δ) is a Hopf *-algebra which is spanned by the matrix entries of its finite-dimensional unitary corepresentations, then there is a compact quantum group (\mathcal{A}, Δ) such that \mathcal{A} is given by \mathcal{A} .

Drinfeld's approach to quantum groups starts with a Lie group G, the Lie algebra \mathfrak{g} and the enveloping algebra $U(\mathfrak{g})$ which is naturally a Hopf algebra. It is this Hopf algebra which is deformed to get a "quantum group". If we start with SU(2), and we now take the *-representations of this deformed enveloping algebra, we naturally get a Hopf *-algebra which is isomorphic to the Hopf *-algebra associated to $C(SU_{\mu}(G))$. So we are really studying the "dual" world to what is often

understood by the term "quantum group".

We can go in reverse! Dijkhuizen and Koornwinder showed that if (\mathcal{A}, Δ) is a Hopf *-algebra which is spanned by the matrix entries of its finite-dimensional unitary corepresentations, then there is a compact quantum group (\mathcal{A}, Δ) such that \mathcal{A} is given by \mathcal{A} .

Drinfeld's approach to quantum groups starts with a Lie group G, the Lie algebra \mathfrak{g} and the enveloping algebra $U(\mathfrak{g})$ which is naturally a Hopf algebra. It is this Hopf algebra which is deformed to get a "quantum group". If we start with SU(2), and we now take the *-representations of this deformed enveloping algebra, we naturally get a Hopf *-algebra which is isomorphic to the Hopf *-algebra associated to $C(SU_{\mu}(G))$. So we are really studying the "dual" world to what is often understood by the term "quantum group"

We can go in reverse! Dijkhuizen and Koornwinder showed that if (\mathcal{A}, Δ) is a Hopf *-algebra which is spanned by the matrix entries of its finite-dimensional unitary corepresentations, then there is a compact quantum group (\mathcal{A}, Δ) such that \mathcal{A} is given by \mathcal{A} .

Drinfeld's approach to quantum groups starts with a Lie group G, the Lie algebra \mathfrak{g} and the enveloping algebra $U(\mathfrak{g})$ which is naturally a Hopf algebra. It is this Hopf algebra which is deformed to get a "quantum group". If we start with SU(2), and we now take the *-representations of this deformed enveloping algebra, we naturally get a Hopf *-algebra which is isomorphic to the Hopf *-algebra associated to $C(SU_{\mu}(G))$. So we are really studying the "dual" world to what is often understood by the term "quantum group".

We can go in reverse! Dijkhuizen and Koornwinder showed that if (\mathcal{A}, Δ) is a Hopf *-algebra which is spanned by the matrix entries of its finite-dimensional unitary corepresentations, then there is a compact quantum group (\mathcal{A}, Δ) such that \mathcal{A} is given by \mathcal{A} .

Drinfeld's approach to quantum groups starts with a Lie group G, the Lie algebra \mathfrak{g} and the enveloping algebra $U(\mathfrak{g})$ which is naturally a Hopf algebra. It is this Hopf algebra which is deformed to get a "quantum group". If we start with SU(2), and we now take the *-representations of this deformed enveloping algebra, we naturally get a Hopf *-algebra which is isomorphic to the Hopf *-algebra associated to $C(SU_{\mu}(G))$. So we are really studying the "dual" world to what is often understood by the term "quantum group".

We can go in reverse! Dijkhuizen and Koornwinder showed that if (\mathcal{A}, Δ) is a Hopf *-algebra which is spanned by the matrix entries of its finite-dimensional unitary corepresentations, then there is a compact quantum group (\mathcal{A}, Δ) such that \mathcal{A} is given by \mathcal{A} .

Drinfeld's approach to quantum groups starts with a Lie group G, the Lie algebra \mathfrak{g} and the enveloping algebra $U(\mathfrak{g})$ which is naturally a Hopf algebra. It is this Hopf algebra which is deformed to get a "quantum group". If we start with SU(2), and

we now take the *-representations of this deformed enveloping algebra, we naturally get a Hopf *-algebra which is isomorphic to the Hopf *-algebra associated to $C(SU_{\mu}(G))$.

So we are really studying the "dual" world to what is often understood by the term "quantum group".

We can go in reverse! Dijkhuizen and Koornwinder showed that if (\mathcal{A}, Δ) is a Hopf *-algebra which is spanned by the matrix entries of its finite-dimensional unitary corepresentations, then there is a compact quantum group (\mathcal{A}, Δ) such that \mathcal{A} is given by \mathcal{A} .

Drinfeld's approach to quantum groups starts with a Lie group G, the Lie algebra \mathfrak{g} and the enveloping algebra $U(\mathfrak{g})$ which is naturally a Hopf algebra. It is this Hopf algebra which is deformed to get a "quantum group". If we start with SU(2), and we now take the *-representations of this deformed enveloping algebra, we naturally get a Hopf *-algebra which is isomorphic to the Hopf *-algebra associated to $C(SU_{\mu}(G))$. So we are really studying the "dual" world to what is often understood by the term "quantum group".

We can go in reverse! Dijkhuizen and Koornwinder showed that if (\mathcal{A}, Δ) is a Hopf *-algebra which is spanned by the matrix entries of its finite-dimensional unitary corepresentations, then there is a compact quantum group (\mathcal{A}, Δ) such that \mathcal{A} is given by \mathcal{A} .

Drinfeld's approach to quantum groups starts with a Lie group G, the Lie algebra \mathfrak{g} and the enveloping algebra $U(\mathfrak{g})$ which is naturally a Hopf algebra. It is this Hopf algebra which is deformed to get a "quantum group". If we start with SU(2), and we now take the *-representations of this deformed enveloping algebra, we naturally get a Hopf *-algebra which is isomorphic to the Hopf *-algebra associated to $C(SU_{\mu}(G))$.

So we are really studying the "dual" world to what is often understood by the term "quantum group".

We can go in reverse! Dijkhuizen and Koornwinder showed that if (\mathcal{A}, Δ) is a Hopf *-algebra which is spanned by the matrix entries of its finite-dimensional unitary corepresentations, then there is a compact quantum group (\mathcal{A}, Δ) such that \mathcal{A} is given by \mathcal{A} .

Drinfeld's approach to quantum groups starts with a Lie group G, the Lie algebra \mathfrak{g} and the enveloping algebra $U(\mathfrak{g})$ which is naturally a Hopf algebra. It is this Hopf algebra which is deformed to get a "quantum group". If we start with SU(2), and we now take the *-representations of this deformed enveloping algebra, we naturally get a Hopf *-algebra which is isomorphic to the Hopf *-algebra associated to $C(SU_{\mu}(G))$. So we are really studying the "dual" world to what is often

understood by the term "quantum group".

► For a compact group G, we start with C(G), and find a Haar measure to form L²(G).

- ▶ Then C(G) is a C*-algebra acting on C(G).
- ► Consider the strong operator topology closure: this gives us L[∞](G), a von Neumann algebra.
- Δ extends to $L^{\infty}(G)$: it has the same formula.
- $L^{\infty}(G)$ has a predual: $L^{1}(G)$.
- ► Then Δ induces a Banach algebra product on $L^1(G)$, which is the usual convolution product.

- ► For a compact group G, we start with C(G), and find a Haar measure to form L²(G).
- Then C(G) is a C*-algebra acting on C(G).
- ► Consider the strong operator topology closure: this gives us L[∞](G), a von Neumann algebra.
- Δ extends to $L^{\infty}(G)$: it has the same formula.
- $L^{\infty}(G)$ has a predual: $L^{1}(G)$.
- ► Then Δ induces a Banach algebra product on $L^1(G)$, which is the usual convolution product.

- ► For a compact group G, we start with C(G), and find a Haar measure to form L²(G).
- Then C(G) is a C*-algebra acting on C(G).
- ► Consider the strong operator topology closure: this gives us L[∞](G), a von Neumann algebra.
- \triangle extends to $L^{\infty}(G)$: it has the same formula.
- $L^{\infty}(G)$ has a predual: $L^{1}(G)$.
- ► Then Δ induces a Banach algebra product on $L^1(G)$, which is the usual convolution product.

- ► For a compact group G, we start with C(G), and find a Haar measure to form L²(G).
- Then C(G) is a C*-algebra acting on C(G).
- ► Consider the strong operator topology closure: this gives us L[∞](G), a von Neumann algebra.
- Δ extends to $L^{\infty}(G)$: it has the same formula.
- $L^{\infty}(G)$ has a predual: $L^{1}(G)$.
- ► Then Δ induces a Banach algebra product on $L^1(G)$, which is the usual convolution product.

- ► For a compact group G, we start with C(G), and find a Haar measure to form L²(G).
- Then C(G) is a C*-algebra acting on C(G).
- ► Consider the strong operator topology closure: this gives us L[∞](G), a von Neumann algebra.
- Δ extends to $L^{\infty}(G)$: it has the same formula.
- $L^{\infty}(G)$ has a predual: $L^{1}(G)$.
- ► Then Δ induces a Banach algebra product on $L^1(G)$, which is the usual convolution product.

- ► For a compact group G, we start with C(G), and find a Haar measure to form L²(G).
- Then C(G) is a C*-algebra acting on C(G).
- ► Consider the strong operator topology closure: this gives us L[∞](G), a von Neumann algebra.
- Δ extends to $L^{\infty}(G)$: it has the same formula.
- $L^{\infty}(G)$ has a predual: $L^{1}(G)$.
- Then ∆ induces a Banach algebra product on L¹(G), which is the usual convolution product.

Interlude: KMS condition

• The Haar state on C(G) or $C_r^*(\Gamma)$ is a *trace*:

$$\varphi(ab) = \varphi(ba)$$
 $(a, b \in A).$

- For a compact quantum group, this is true if and only if we really have a Kac algebra.
- So not so for $C(SU_{\mu}(2))$ say.
- But φ is KMS.
- Loosely speaking, this means that there is an automorphism σ of A such that

 $\varphi(ab) = \varphi(b\sigma(a))$ $(a, b \in A).$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Interlude: KMS condition

• The Haar state on C(G) or $C_r^*(\Gamma)$ is a *trace*:

$$\varphi(ab) = \varphi(ba)$$
 $(a, b \in A).$

- For a compact quantum group, this is true if and only if we really have a Kac algebra.
- So not so for $C(SU_{\mu}(2))$ say.
- But φ is KMS.
- Loosely speaking, this means that there is an automorphism σ of A such that

 $\varphi(ab) = \varphi(b\sigma(a))$ $(a, b \in A).$

・ロト・(四ト・(日下・(日下・))への)
Interlude: KMS condition

• The Haar state on C(G) or $C_r^*(\Gamma)$ is a *trace*:

$$\varphi(ab) = \varphi(ba)$$
 $(a, b \in A).$

- For a compact quantum group, this is true if and only if we really have a Kac algebra.
- So not so for $C(SU_{\mu}(2))$ say.
- But φ is KMS.
- Loosely speaking, this means that there is an automorphism σ of A such that

 $\varphi(ab) = \varphi(b\sigma(a))$ $(a, b \in A).$

(日) (日) (日) (日) (日) (日) (日)

Interlude: KMS condition

• The Haar state on C(G) or $C_r^*(\Gamma)$ is a *trace*:

$$\varphi(ab) = \varphi(ba)$$
 $(a, b \in A).$

- For a compact quantum group, this is true if and only if we really have a Kac algebra.
- So not so for $C(SU_{\mu}(2))$ say.
- But φ is KMS.
- Loosely speaking, this means that there is an automorphism σ of A such that

 $\varphi(ab) = \varphi(b\sigma(a))$ $(a, b \in A).$

(日) (日) (日) (日) (日) (日) (日)

Interlude: KMS condition

• The Haar state on C(G) or $C_r^*(\Gamma)$ is a *trace*:

$$\varphi(ab) = \varphi(ba)$$
 $(a, b \in A).$

- For a compact quantum group, this is true if and only if we really have a Kac algebra.
- So not so for $C(SU_{\mu}(2))$ say.
- But φ is KMS.
- Loosely speaking, this means that there is an automorphism σ of A such that

$$arphi(\textit{ab}) = arphi(\textit{b}\sigma(\textit{a})) \qquad (\textit{a},\textit{b} \in \mathcal{A}).$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Can do the same thing:

- $(A, \Delta) \implies$ Haar state $\varphi \implies$ Hilbert space H
 - \implies von Neumann algebra M
 - \implies predual M_* has structure of a Banach algebra.

(日) (日) (日) (日) (日) (日) (日)

If we start with discrete Γ then we get $A(\Gamma)$, the *Fourier algebra*: this encodes information about positive definite functions on Γ , and so forth.

Can do the same thing:

- $(A, \Delta) \implies$ Haar state $\varphi \implies$ Hilbert space H
 - \implies von Neumann algebra *M*
 - \implies predual M_* has structure of a Banach algebra.

(日) (日) (日) (日) (日) (日) (日)

If we start with discrete Γ then we get $A(\Gamma)$, the Fourier algebra: this encodes information about positive definite functions on Γ , and so forth. If we start with $C(SU_{\mu}(2))$, we get: Who knows?

Can do the same thing:

- $(A, \Delta) \implies$ Haar state $\varphi \implies$ Hilbert space H
 - \implies von Neumann algebra *M*
 - \implies predual M_* has structure of a Banach algebra.

(日) (日) (日) (日) (日) (日) (日)

If we start with discrete Γ then we get $A(\Gamma)$, the *Fourier algebra*: this encodes information about positive definite functions on Γ , and so forth.

Can do the same thing:

- $(A, \Delta) \implies$ Haar state $\varphi \implies$ Hilbert space H
 - \implies von Neumann algebra *M*
 - \implies predual M_* has structure of a Banach algebra.

If we start with discrete Γ then we get $A(\Gamma)$, the *Fourier algebra*: this encodes information about positive definite functions on Γ , and so forth.

Can do the same thing:

- $(A, \Delta) \implies$ Haar state $\varphi \implies$ Hilbert space H
 - \implies von Neumann algebra *M*
 - \implies predual M_* has structure of a Banach algebra.

If we start with discrete Γ then we get $A(\Gamma)$, the Fourier algebra: this encodes information about positive definite functions on Γ , and so forth.

If \mathfrak{A} is a Banach algebra, then in the category of left \mathfrak{A} -modules, *P* is *projective* if:

Complication: it might be impossible to solve this diagram problem for purely toplogical reasons. So we insist that the map $X \rightarrow Y$ is *admissible*, that is, there is a bounded linear (but not necessarily \mathfrak{A} -linear) right inverse.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Then \mathfrak{A} is (left) projective if, as a module over itself, it is projective.

If \mathfrak{A} is a Banach algebra, then in the category of left \mathfrak{A} -modules, *P* is *projective* if:

Complication: it might be impossible to solve this diagram problem for purely toplogical reasons. So we insist that the map $X \rightarrow Y$ is *admissible*, that is, there is a bounded linear (but not necessarily \mathfrak{A} -linear) right inverse. Then \mathfrak{A} is (left) projective if, as a module over itself, it is projective

(日) (日) (日) (日) (日) (日) (日)

If \mathfrak{A} is a Banach algebra, then in the category of left \mathfrak{A} -modules, *P* is *projective* if:

Complication: it might be impossible to solve this diagram problem for purely toplogical reasons. So we insist that the map $X \rightarrow Y$ is *admissible*, that is, there is a bounded linear (but not necessarily \mathfrak{A} -linear) right inverse.

(ロ) (同) (三) (三) (三) (三) (○) (○)

Then \mathfrak{A} is (left) projective if, as a module over itself, it is projective.

If \mathfrak{A} is a Banach algebra, then in the category of left \mathfrak{A} -modules, *P* is *projective* if:

Complication: it might be impossible to solve this diagram problem for purely toplogical reasons. So we insist that the map $X \rightarrow Y$ is *admissible*, that is, there is a bounded linear (but not necessarily \mathfrak{A} -linear) right inverse.

Then \mathfrak{A} is (left) projective if, as a module over itself, it is projective.

► For a locally compact group *G*, we can still form *L*¹(*G*) with convolution.

- Then $L^1(G)$ is projective if and only if G is compact.
- Similarly, the Fourier algebra A(Γ) can be defined in general.
- If we work in the right category, then A(Γ) is projective if and only if Γ is discrete.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- ► For a locally compact group *G*, we can still form *L*¹(*G*) with convolution.
- Then $L^1(G)$ is projective if and only if G is compact.
- Similarly, the Fourier algebra A(Γ) can be defined in general.
- If we work in the right category, then A(Γ) is projective if and only if Γ is discrete.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- ► For a locally compact group G, we can still form L¹(G) with convolution.
- Then $L^1(G)$ is projective if and only if G is compact.
- Similarly, the Fourier algebra A(Γ) can be defined in general.
- If we work in the right category, then A(Γ) is projective if and only if Γ is discrete.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- ► For a locally compact group *G*, we can still form *L*¹(*G*) with convolution.
- Then $L^1(G)$ is projective if and only if G is compact.
- Similarly, the Fourier algebra A(Γ) can be defined in general.
- If we work in the right category, then A(Γ) is projective if and only if Γ is discrete.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- ► For a locally compact group G, we can still form L¹(G) with convolution.
- Then $L^1(G)$ is projective if and only if G is compact.
- Similarly, the Fourier algebra A(Γ) can be defined in general.
- If we work in the right category, then A(Γ) is projective if and only if Γ is discrete.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Let M_* be the predual convolution algebra associated to a (locally) compact quantum group (A, Δ) . Again, we work with completely bounded maps.

- If M_* is projective, then A is compact.
- ► The converse is tricky!
- Abstract nonsense implies that M_* is projective if and only if

 $\Delta_*: M_*\widehat{\otimes}M_* \to M_*$

- ▶ (Daws) If this inverse map is contractive, then *A* is a Kac algebra.
- The proof ends up showing that the modular automorphism of φ must be trivial.

Let M_* be the predual convolution algebra associated to a (locally) compact quantum group (A, Δ) . Again, we work with completely bounded maps.

- If M_* is projective, then A is compact.
- The converse is tricky!
- ▶ Abstract nonsense implies that *M*_{*} is projective if and only if

 $\Delta_*: M_*\widehat{\otimes}M_* \to M_*$

- (Daws) If this inverse map is contractive, then A is a Kac algebra.
- The proof ends up showing that the modular automorphism of φ must be trivial.

Let M_* be the predual convolution algebra associated to a (locally) compact quantum group (A, Δ) . Again, we work with completely bounded maps.

- If M_* is projective, then A is compact.
- The converse is tricky!
- ▶ Abstract nonsense implies that *M*_{*} is projective if and only if

 $\Delta_*: M_*\widehat{\otimes}M_* \to M_*$

- ► (Daws) If this inverse map is contractive, then *A* is a Kac algebra.
- The proof ends up showing that the modular automorphism of φ must be trivial.

Let M_* be the predual convolution algebra associated to a (locally) compact quantum group (A, Δ) . Again, we work with completely bounded maps.

- If M_* is projective, then A is compact.
- The converse is tricky!
- Abstract nonsense implies that M_{*} is projective if and only if

$$\Delta_*: M_*\widehat{\otimes}M_* \to M_*$$

- ▶ (Daws) If this inverse map is contractive, then *A* is a Kac algebra.
- The proof ends up showing that the modular automorphism of φ must be trivial.

Let M_* be the predual convolution algebra associated to a (locally) compact quantum group (A, Δ) . Again, we work with completely bounded maps.

- If M_* is projective, then A is compact.
- The converse is tricky!
- ▶ Abstract nonsense implies that *M*_{*} is projective if and only if

$$\Delta_*: M_*\widehat{\otimes}M_* \to M_*$$

- ▶ (Daws) If this inverse map is contractive, then *A* is a Kac algebra.
- The proof ends up showing that the modular automorphism of φ must be trivial.

Let M_* be the predual convolution algebra associated to a (locally) compact quantum group (A, Δ) . Again, we work with completely bounded maps.

- If M_* is projective, then A is compact.
- The converse is tricky!
- ▶ Abstract nonsense implies that *M*_{*} is projective if and only if

$$\Delta_*: M_*\widehat{\otimes}M_* \to M_*$$

- ▶ (Daws) If this inverse map is contractive, then *A* is a Kac algebra.
- The proof ends up showing that the modular automorphism of φ must be trivial.

Let M_* be the predual convolution algebra associated to a (locally) compact quantum group (A, Δ) . Again, we work with completely bounded maps.

- If M_* is projective, then A is compact.
- The converse is tricky!
- ▶ Abstract nonsense implies that *M*_{*} is projective if and only if

$$\Delta_*: M_*\widehat{\otimes}M_* \to M_*$$

the product map (\otimes is the topological tensor product which linearises bilinear, completely bounded maps) has a completely bounded right inverse, which is an M_* module map.

 (Daws) If this inverse map is contractive, then A is a Kac algebra.

The proof ends up showing that the modular automorphism of φ must be trivial.

Let M_* be the predual convolution algebra associated to a (locally) compact quantum group (A, Δ) . Again, we work with completely bounded maps.

- If M_* is projective, then A is compact.
- The converse is tricky!
- ▶ Abstract nonsense implies that *M*_{*} is projective if and only if

$$\Delta_*: M_*\widehat{\otimes}M_* \to M_*$$

- (Daws) If this inverse map is contractive, then A is a Kac algebra.
- The proof ends up showing that the modular automorphism of φ must be trivial.