
We now turn to the general case, which is joint work
in progress with White, Schlumprecht and Haydon.

Suppose that E ⊆ `∞(Z), and let A be the unital C∗-
algebra generated by E, inside `∞(Z). As A is com-
mutative, A ∼= C(Ω), and so A′ ∼= M(Ω).

As E, and hence A, separates the points of `1(Z),
we get an injection Z → Ω. We can then extend
the product on Z to Ω, making Ω into a compact
semitopological semigroup. We can also extend this
injection to a map `1(Z) → M(Ω), which is bounded
below as E is a predual.

Of course, we are now putting no extra conditions on E, and so in

general Ω will not be Z. The maximal compact semitopological

semigroup which contains Z densely is Zwap; this is not in general

separable, and so at least Ω cannot be as large as Zwap. It would

be convienient if Ω were always countable.

Theorem. There is a projection P : M(Ω) → `1(Z)
which is an algebra homomorphism, such that

E = ⊥(ker P ) := {f ∈ C(Ω) : 〈a, f〉 = 0 (P (a) = 0)}.
Furthermore, ker P is weak∗-closed.

The projection P can be constructed as follows. For each µ ∈
M(Ω) = A′, the restriction of µ to E induces a unique member

of `1(Z), as E is a predual for Z. We let this be P (µ). That

P is an algebra homomorphism follows because E makes the

product on `1(Z) separately weak∗-continuous. It easily follows

that E = ⊥ ker P and that ker P is weak∗-closed.

The key idea in constructing preduals of `1(Z) is to
find a suitable converse of this theorem. It turns out
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that it is much easier to work in the situation when Ω
is countable, essentially because then M(Ω) = `1(Ω).

So let Ω be a countable compact semitopological
semigroup, and suppose that Ω contains Z as a sub-
group. We can hence regard `1(Z) as a subalge-
bra of `1(Ω). Suppose that we have a projection
P : `1(Ω) → `1(Z) which is an algebra homomorphism.



Theorem. Let ⊥(ker P ) induce a space of functionals
on `1(Z), say E ⊆ `∞(Z). Then E is a predual if and
only if ker P is weak∗-closed.

The E constructed here is rather hard to get a handle
on. However, the weak∗-topology it induces can be
found using P .

Proposition. Let (aα) be a bounded net in `1(Z) which
tends weak∗ to b ∈ C(Ω)′ = `1(Ω). Then (aα) tends
to a = P (b) in the weak∗-topology on `1(Z) induced
by E.

Our task now is to construct suitable semigroups Ω
and projections P .

We start with the simplest case: let Ω be the free
abelian semigroup generated by Z and a single extra
generator z. We shall also add a semigroup zero, de-
noted by ∞, as we ultimately want Ω to be compact.

By this, we mean that s +∞ = ∞ for any s ∈ Ω. When we give

Ω a topology, ∞ will be the point added “at infinity”, as in the

usual one-point compactification of a topological space.

Hence every member of Ω is of the form

kz + n (n ∈ Z, k ≥ 0).

The group product is simply (kz+n)+(lz+m) = (k+l)z+(n+m).

Any projection P is uniquely determined by P (δz), as
P is an algebra homomorphism:

P (δkz+n) = P (δz)
kδn, P (δ∞) = 0.
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Theorem. Suppose that Ω is given some topology
such that Ω becomes a compact semitopological semi-
group. Suppose, furthermore, that for each K > 0
there exists k > K and an open neighbourhood U
of kz such that U ⊆ {lz + s : s ∈ Z, l ≤ k}. When
‖P (δz)‖ < 1, we have that X = ⊥(ker P ) is a predual
for `1(Z).

This is a long, technical proof. The basic idea is one of successive

approximation to show that ⊥(ker P ) is weak∗-closed.



The condition that ‖P (δz)‖ < 1 can be weakened to

lim
k
‖P (δz)

k‖ = 0.

We have a proof, however, that for P (δz) = δ0, the
resulting E is not a predual.

The proof of this takes a huge detor via Banach space theory,

and in particular the Szlenk index. We have currently not been

able to find a more (Banach) algebraic proof.

It is completely unclear if we could have P (δz) = 1
2
(δ0+

δ1) though.

We have an argument, far from rigourous, that we can have

P (δz) = 1
2
(δ0 + δ1).

So finally we wish to construct a suitable topology on
Ω.

Let J ⊆ Z be a very “sparse” set. We can make this

rigourous, but the current working definition is a little tedious.

We define a clopen neighbourhood of kz to be

{kz}∪
k⋃

l=1

{(k−l)z+s : s = j1+· · ·+jl, n < |j1| < · · · < |jl|}.

This additive structure is chosen to make the product
on Ω separately continuous. We have no choice for the

clopen neighbourhoods of kz + t as the map x 7→ x + t, and its

inverse, must be continuous. As these sets are clopen, we also

have a ready supply of open neigbourhoods of ∞.
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We can fairly easily check that we have defined a base
for a topology on Ω making Ω a semitopological semi-
group which is compact. Our meaning of “sparse” is
chosen so that the topology is Hausdorff.

Theorem. Let J ⊆ Z be an “sparse” set, and let a ∈
`1(Z) with ‖a‖ < 1. Then there exists a predual for
`1(Z) such that δn → a as n tends through J, in the
weak∗-topology.



For example, we can let J = {2n : n ∈ N}. For this
choice, the natural involution on `1(Z) given by

δ∗n = δ−n (n ∈ Z)

is not weak∗-continuous.

However, for J = {±n! : n ∈ N}, as J = −J, it is
not hard to show that the involution becomes weak∗-
continuous.

For the first choice, with P (δz) = λδ0 for some λ ∈ C
with |λ| < 1, we can throw a lot of Banach space ma-
chinery into an argument to show that the constructed
predual is isomorphic to c0, purely as a Banach space.
Furthermore, the predual is generated, as an `1(Z)-
bimodule, by a single element.

One can express the space as a “G-space”, in the sense of

Benyamini, Samuel et al. Thus the predual is a C(K) space

for some K. We can compute the Szlenk index in this specific

case, however, which tells us that C(K) ∼= c0. That the pre-

dual has a single generator follows from an even more specific

argument. It is tempting to conjecture that this single generator

property follows from the fact that Ω is, in a sense, a single

element extension of Z.
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