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Project

UK Home Office Police Innovation Fund: “More with Less: Authentic
Implementation of Evidence-Based Predictive Patrol Plans”. With
Andy Evans and Monsuru Adepeju here at Leeds.

My task:

o Take crime prediction algorithms from the literature, and
implement in an open source way

(https://github.com/QuantCrimAtLeeds/PredictCode/)
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Project

UK Home Office Police Innovation Fund: “More with Less: Authentic
Implementation of Evidence-Based Predictive Patrol Plans”. With
Andy Evans and Monsuru Adepeju here at Leeds.

My task:

o Take crime prediction algorithms from the literature, and
implement in an open source way
(https://github.com/QuantCrimAtLeeds/PredictCode/)

o Allow other researchers to see what benefit different crime
prediction algorithms are likely to give.

o My background is in Mathematics; and Software Development.
o Runs until February 2018.
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The (Near-)repeat hypothesis

“The tendency of victims of crime to, in the nearby future, be repeat
victims; and of near-by (say) buildings to also be future victims.”
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higher risk, localised in space and time, for nearby locations.
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The (Near-)repeat hypothesis

“The tendency of victims of crime to, in the nearby future, be repeat
victims; and of near-by (say) buildings to also be future victims.”

(Principally interested in Burglary.)
That is, a crime event at a spatial/temporal location tends to imply a
higher risk, localised in space and time, for nearby locations.

o Classical prediction techniques tend to generate “hot spots”
around previous locations.
e Part I: How do we do this? (Plea for reproducible research.)

o Part II: And what do we mean by “prediction” anyway? What
makes a “good” prediciton?
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The Predictive Policing Company

PredPol® uses artificial intelligence to help you prevent crime by predicting when and where crime
is most likely to occur, allowing you to optimize patrol resources and measure effectiveness.
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The algorithm

We start our investigation with an overview of PREDPOL.
PREDPOL [8] assumes that crimes follow an earthquake af-
tershock model, 5o that regions that previously experienced

crime are likely fo again, with
Mohler et al. 8] model the crime rate A, (£) in region r at time
tasfollows: A, (1) = jir + ., 6we (' '¥) where 1}, represents

the time of an event in mgiun r,  quantifies the time decay
of a shock, and § captures the degree to which aftershocks
are generated from an initial event. They use an expectation-
maximization procedure to determine the parameters of the
model.

Matthew Daws (Leeds)

22 Epidemic-Type Aftershock Sequence Model for
Crime Prediction

Building on a foundation of reaction-diffusion models of
crime (Short et al. 2010), we treat the dynamic occurrence of
crime as a continuous time, discrete s| ETAS point process.
(Marsan and Lengline 2008; Mohler et al. 2011; Mohler 2014).
Policing areas were first discretized into 150 x 150 m square
boxes. The conditional intensity. or probabilistic rate (1) of
events in box 7 at time ¢ was determined by

20 = gty 3 0w, )

where 1} are the times of events in box 7 in the history of the
process. The ETAS model has two components, one model-
ing place-based environmental conds constant in
time and the other modeling dynamic changes in risk. Rather
than modeling fixed environmental characteristics of a hotspot
explicitly using census data or locations of crime atiractors,
I In

particular, the background rate ¢ is a nonparametric histogram
estimate of a stationary Poisson process (Marsan and Lengline
2008). If over the past 365 days a grid cell has a high crime
volume, the estimate of 1 will be large in that grid cell. The
size of the grid cells on which u s defined can be estimated by
maximum likelihood and in general the optimum size of the grid
cell will decrease with increasing data. However, for a fixed arca
flagged for patrol. a greater number of small hotspots are more
diffcult o patrol than a small number of large hotspots. The
150 x 150 m hotspots were chosen in this study to be the size
o acity block in Foothill and were then held constant across all
of the experimental regions. The number of days of data used
as input to the ETAS model, 365 days, was also chosen subjec-
tively, though is consistent with other hotspot policing studies
that use 1-2 years of data to select hotspots.

‘The second component of the ETAS model is the triggering
Kernel fwe= that models “near-repeat” or “contagion” effects
incrime data. The exponential decay causes grid cells containing

fower recentevntsand he same bckground e The min i~

E-step
——
foe 2 @
2alt)
e
3 &)
= ¢
M-step
PR 5 »BY @
P Z,(, p,.u" -1
)
= ©

where T is the length of the time window of observation.
‘The EM algorithm can be intwitively understood by viewing
the ETAS model as a branching process (Mohler et al. 2011).
First-generation events occur according t0 a Poisson process
with constant rate . Events (from all generations) each give
birth to N direct offspring events. where N s a Poisson random
variable with parameter 6. As events ocur, the rate of crime
increases locally in space, leading to a contagious sequence of
“aftershock” crimes (Mohler et al. 2011) that eventually dies
out on its own, or is interrupted by police intervention; the
former occurs naturally so long as 6 < 1. while the latter is
unaccounted for by the model. In the E-step, the pmmb.my
that event j s a direct offspring of event i is estimated. alon
with the probability that the event was generated by the Poison
process 1. Given the probabilistic estimate of the branching
structure, the complete data log-likelihood is then maximized in
the M-step. providing an estimate of the model parameters. For

pot maps
(Bowers, Johnson, :md Pease 2004) that model near-epeat -
flcts s the introduction of the background rate 1. Wherea:
prospective hotspot maps only take into account short-term
hotspot dynamics, the ETAS model estimates both long-term
and short-term hotspots and systematically estimates the rela-
tive contribution o risk of each via expectation-maximization
(EM)(Mohler et al. 2011: Mohler 2014). Given an initial guess
or 1. and o, the EM
atively until cnnvclgcncc by alternating between the following

Assessing predictions

of the ETA!
see Veen and Schoenberg (2008) or Lewis and Mohler (2011)
where the EM algorithm is shown to be cquivalent to projected
gradient ascent optimization on the log-likelihood.



The code
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Reproducible Research

“An article about computational science in a scientific publication is
not the scholarship itself, it is merely advertising of the scholarship.
The actual scholarship is the complete software development
environment and the complete set of instructions which generated the

”
ﬁgures. — Buckheit, Donoho, “WaveLab and Reproducible Research”, 1995.
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Reproducible Research

“An article about computational science in a scientific publication is
not the scholarship itself, it is merely advertising of the scholarship.
The actual scholarship is the complete software development
environment and the complete set of instructions which generated the

”
ﬁgures. — Buckheit, Donoho, “WaveLab and Reproducible Research”, 1995.

“In my own experience, error is ubiquitous in scientific computing ...”

— Donoho, “An invitation to reproducible computational research”, Biostatistics (2010).

Merton’s norms: universalism, communalism, disinterestedness,

organized scepticism.
With thanks to Victoria Stodden.
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Resources

Implementing
Reproducible
Research

Reproducible Research
with R and RStudio

Second Edition

@ http://reproducibleresearch.net/
@ https://rroxford.github.io/

@ http://www.bmj.com/content/344/bmj.e4383

The Practice of
Reproducible
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But to continue

Wikipedia entry “Hobby horse”

St

iy el Goby on fis Hbby-hinoe

“My Uncle Toby on his Hobby-horse”,
Wikipedia
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What is crime prediction?

“Precrime: It Works!”

FANTASTIC

it

L. TOM CRUISE

N,

WiﬂlESlllY‘S CHILD by Wilin Tour
THE MINORITY REPORT by Phiip K. ick
_KEEPERS OF THE HOUSE by Lostor ol Rey

MINORITY

Wikipedia entry “The Minority l{l:[n)}{] -

Report”

From IMDB
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What is crime prediction actually?

“Although much news coverage promotes the meme that predictive
policing is a crystal ball, these algorithms predict the risk of future
eVentS, not the events themselves.” Perry, Mclnnis, Price, Smith, Hollywood,

“Predictive Policing”, RAND report.
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What is crime prediction actually?

“Although much news coverage promotes the meme that predictive
policing is a crystal ball, these algorithms predict the risk of future
events, not the events themselves.” perry, Mcinnis, Price, Smith, Hollywood,
“Predictive Policing”, RAND report.

“Prior to each shift, Santa Cruz police officers receive information
identifying 15 such squares with the highest probability of crime, and
are encouraged — though not required — to provide greater attention
to these areas.” ioh, “Policing by numbers: Big data and the fourth amendment.

“Despite the increased emphasis on proactive policing, the core of
police work remains that of responding to calls for service...” crof, ra

Vigne, “Forecasting the future of predictive crime mapping”.
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Analogy with weather forecasting

I have found analogies with probabilistic forecasting within
Meteorology to be very profitable.
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Analogy with weather forecasting

I have found analogies with probabilistic forecasting within
Meteorology to be very profitable.

“There 1s a 20% chance of rain in Leeds tomorrow.”

@ What does this mean?

o If we make this prediction many times, then 1 in 5 times, it should
rain tomorrow. “relzability”.
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Analogy with weather forecasting

I have found analogies with probabilistic forecasting within
Meteorology to be very profitable.

“There 1s a 20% chance of rain in Leeds tomorrow.”

@ What does this mean?

o If we make this prediction many times, then 1 in 5 times, it should
rain tomorrow. “relzability”.

@ But maybe it rains 20% of the time in Leeds anyway (over a year,
say)?
e “resolution” (which is hard to actually define.)
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Lack of analogy
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Naive prediction

KDE prediction

Actual events
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Northside of Chicago, predictions and reality for 5th Nov 2016, and
23rd October 2016.

@ The probabilities involved are tiny.

Matthew Daws
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Hit rate

The de facto standard.

Matthew Daws
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e Pick a “coverage level”, say 10% of the
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Hit rate

The de facto standard.

e Pick a “coverage level”, say 10% of the
area, which might be chosen given
Policing resources.

o Pick that % of grid cells, by picking
those with the highest risk first.

@ Then calculate the fraction of actual
events which fall in the selected grid
cells.

588000

587000

586000

585000

584000

583000

588000

587000

586000

585000

584000

583000
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Top 10% of 'naive' prediciton
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The good, the bad, the ugly
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The good, the bad, the ugly
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The good, the bad, the ugly

Top 10% of 'naive' prediciton

588000
@ Easy to understand, tied to usage of the ™
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o But seems to me to confuse prediction
with hot-spot / patrol plan creation.
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The good, the bad, the ugly

Top 10% of 'naive' prediciton

588000

587000

o Easy to understand, tied to usage of the
prediction; 585000

584000

o But seems to me to confuse prediction
with hot-spot / patrol plan creation.

583000

350000 352000 354000 356000 358000
Top 10% of 'kde' prediciton

o Notice the huge quantitative difference ssoo

in the two examples. 567000 .
586000 O
e How do you deal with the selection of a s
coverage level? 584000

583000

350000 352000 354000 356000 358000
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Interpret the results

Mean hit rate

@
S

Hit rate (%)

@ Usual to plot mean hitrate against
coverage. Then use some statistical test. 20
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Interpret the results

@ Usual to plot mean hitrate against
coverage. Then use some statistical test.

@ But what’s the model?

@ Let’s suppose that each trial is an
independent draw from a binomial with
unknown p.

@ Use a flat prior. Compute the predictive
posterior, plot the median and
inter-quartile range.

Matthew Daws (Leeds) Assessing predictions
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Interpret the results

@ Usual to plot mean hitrate against
coverage. Then use some statistical test.

@ But what’s the model?

@ Let’s suppose that each trial is an
independent draw from a binomial with
unknown p.

@ Use a flat prior. Compute the predictive
posterior, plot the median and
inter-quartile range.

@ Gives much the same result (the number
of events per day doesn’t vary that much).

Matthew Daws (Leeds) Assessing predictions
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Brier scores

BS =L Y (f— 0:)?

Return to Meteorology and probabilistic forecasting.

@ Binary events: either happens (1) or not (0).

F= %Zszl (pk - %)2

Matthew Daws (Leeds) Assessing predictions LIDA, Nov 2017 17 / 20



Brier scores

BS =L Y (f— 0:)?

Return to Meteorology and probabilistic forecasting.
@ Binary events: either happens (1) or not (0).

@ For t =1, ---, N make a prediction f; € [0, 1].

F= %Zszl (pk - %)2

Matthew Daws (Leeds) Assessing predictions LIDA, Nov 2017 17 / 20



Brier scores

BS =L Y (f— 0:)?
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@ Binary events: either happens (1) or not (0).
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@ Have actual events (oy).
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Brier scores

BS =L Y (f— 0:)?

Return to Meteorology and probabilistic forecasting.
@ Binary events: either happens (1) or not (0).
@ For t =1, ---, N make a prediction f; € [0, 1].
@ Have actual events (oy).

o We follow a variant from Roberts, “Assessing the spatial and
temporal variation in the skill of precipitation forecasts from an
NWP model”

F= % Zszl (pk - %)2
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Brier scores

BS =L Y (f— 0:)?

Return to Meteorology and probabilistic forecasting.
@ Binary events: either happens (1) or not (0).
@ For t =1, ---, N make a prediction f; € [0, 1].
@ Have actual events (oy).

o We follow a variant from Roberts, “Assessing the spatial and
temporal variation in the skill of precipitation forecasts from an
NWP model”

» K grid cells
» predicted probability pg ' F— % Zszl (Pk . %)2
» n; actual events so ng/N fraction.

o “Fractional Brier Score”
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Skill score; results

@ What are units of F?
@ Fyg is the “skill”; closer to 1 is better.

Fyorst = % Zi{:l (p;% + (%)2)

FS=1_F/FW0rst

Brier score Brier score; CDF of difference
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Bayesian information gain

o Want to capture the feeling that if we see more events on a given
day, we should learn more about the quality of the prediction.

@ My idea is to use the prediction to form a prior, the update this
given the data to form a posterior, and then compare these with
the Kullback-Leibler divergence.

@ Measures the information gain from prior to posterior— a good
prediction should mean less gained on learning the result.

Dirichlet distribution CDF of differences Predictive distribution CDF of differences
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Conclusions?

@ Seems a little inconclusive.
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Conclusions?

@ Seems a little inconclusive.
o Hit rate, Brier scores, (other ideas we develop) show roughly a tie.

@ The information gain idea is more of a clear win for the KDE
method.

Original aim was to get beyond the “hit rate” as being the only game
in town.

Bit of a work in progress: any ideas much appreciated!

https://github.com/QuantCrimAtLeeds/PredictCode/
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