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Group algebras

Consider a locally compact group G and the left-regular representation
of G on L?(G),

AE)(t) =&(s71t) (s, te G, &€ L*(G)).
Integrating gives a contractive algebra homomorphism

A LHG) = B(LA(G)),  AMS)E) =f &
The norm closure of the image is the (reduced) group C*-algebra

C}(G), and the weak*-closure is the group von Neumann algebra
VN(G).
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Varying p

There is nothing special about p = 2 here. The norm closure of the
image of Ap: L*(G) — B(LP(G)) has long been studied, and is the
algebra of p-pseudo functions, PF,(G) or F{’ (G).
The weak*-closure is PM,(G) the algebra of p-pseudo measures.
o At least if 1 < p < oo of course, so that LP(G) is reflexive, with
dual space LP' (G) for 1/p +1/p’ = 1.
@ There is a natural pairing between B(LP) and N(L?) the nuclear
operators on LP, which turns B(LP) into a dual Banach algebra.
o Indeed, N(LP) is the dual of the compact operators X(LP).

@ Reminder: T is nuclear where there are (f,) in L?(G) and (g,) in
LP'(G) with

D Mallpllgnllyr <00y T(F) =D (gn,fifn (f € LP(G)).

n
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Commutants
We think of PM,(G) as being like VN(G).

@ We also have the right-regular representation p, of G on LP(G),
which leads to PM}(G) say.

@ Thinking about von Neumann’s bicommutant theorem, we could
also define

CV,(G) =7(G),  CVP(G) =pp(G)”,

the algebras of p-convolvers. These are weak*-closed.

o [D.-Spronk; folklore] we have PM,(G)’' = CVy'(G) and
CV,(G) = CVP(G)’ (and so forth).

@ But...do we have PM,(G) = PM,(G)" (= CV,(G))? von
Neumann's result uses projections.

o [Cowling; D.—Spronk| when G has the approximation property
(e.g. G is amenable, weakly-amenable, etc.) then
PM,(G) = CV,(G). Unknown in general.
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Cuntz algebras; Cohn algebras; Leavitt algebras

The Cohn algebra Cs has generators si, sz, t1, to subject to the
relations

t1$1 = t282 = ]., t182 = t231 =0.

If we impose the further relation

st + sty =1,

we obtain the Leavitt algebra L.

Of course, if we consider the C*-algebra with ¢; = s then we obtain
the Cuntz algebra 0.
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As LP-operator algebras

Consider ¢? = (P(N), thought of as sequences z = (z,) with

lzllp = 2y lznlP < oo.
Define S;, T;: {P — {P by

Sl(a:) = ($1>0)m2)0)' e )) SQ(:B) = (0> :131,0,3}2,0, o )

Ti(z) = (21, 23, T5, Try - -+ ), To(z) = (2, T4, Te, Tay -+ - ).

Then S;, Sy are isometries, T4, T are contractions, and S; T4, So T are
contractive idempotents. We check the relations:

T131 = TgSg = 1, T1,5’2 = T281 = 0, Sl T+ Sz T, =1.

So we obtain a representation of Lo; this is faithful.
Denote by OF the closure of Ly in B(€). [Phillips]
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Spatial partial isometries

To what extent is OF unique, for p # 27

Question J

Fix p # 2. There are not many isometries on an LP((Q)) space:

@ We can form a composition operator (“Koopman operator”) with a
measure-preserving transformation;

@ Or more generally allow a change-of-density;
@ We can multiply by f € L*(Q) where |f(w)| =1 a.e.

Lamperti’s Theorem states that this is it.
We obtain a notion of a “spatial partial isometry” LP(Q) — LP(Q’)
given by an isometry LP(E) — LP(E’) where E C Q and E' C Q'.

Notice that each S;, T} is a spatial partial isometry on 7.
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Matrix algebras; isometric representations

Notice that e;; = s;t; € Ly form a copy of the matrix units of M. We
can identify B(¢5) with My which gives the LP-operator algebra M.
Theorem (Phillips)

Any contractive representation p: MY — B(LP) is automatically
1sometric, and p(e;) s a spatial partial isometry for each 1,7.

Theorem (Phillips)

Let p: Ly — B(LP) be a representation which is contractive on Mé”
and with p(t;), p(s;) contractions for 1 = 1,2. Then p s “spatial”
and the identification of Ly C OF and p: Ly — p(Ls) extends to an
isometric isomorphism OF — p(Ly).

Thus, OF is unique, for contractive homomorphisms.
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Contractive representations

These ideas of “contractive (often) implies isometric” and “there are not
many isometries” can be further exploited.

Theorem (Gardella—Thiel)

For p #2, and G, H locally compact groups, we have that PM,(G)
15 1sometrically isomorphic to PMy(H) if and only if G and H are
1somorphic. Simailarly for PF, and CV)p.

This fails when p = 2.

Question
Should we be more interested in the isomorphic theory? J

Are we looking for our keys under the lamppost, or being guided by
(non-selfadjoint) operator algebra theory?
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The non-reflexive case
Much of the theory works when p = 1, but a little care is needed.

e B(L') is not naturally a dual Banach algebra (unless the L' space
is finite-dimensional).
e B(£') is a one-sided dual Banach algebra, for the predual given by
the nuclear operators on cg.
So it’s not clear what PM;(G) should be, and CV;(G) need not be
weak*-closed, at least from general theory.

Result

For any G, the left-reqular representation A\: L*(G) — B(L}(G)) 1is
an isometry. Thus PFi(G) = L'(G) canonically and isometrically. )

Result

For discrete G, we have CV1(G)' = p({}(G)) and
CVP(G) =A(G)). In particular, PFi(G) = PM1(G) = CV1(G).

v
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Idea: what’s the {!-Leavitt/Cuntz algebra?

We can of course consider (‘)% C B(£Y), but this is a “concrete” algebra,
which seems very different to {!(G) in construction.

Instead, let’s start by looking at the “Cuntz semgrioup” (monoid)
which is a semigroup with zero, which we denote ¢, with presentation

Cup = (s1, 8, b1, bt t1s1 = sy = 1, t1sp = tps1 = O).

(This is actually an involutive semigroup, if we define s = t;. Our

representations won’t have any star structures however.)

We consider the Banach algebra £!(Cuy). I will abuse notation, and for
s € Cup write s € (*(Cuy) for the point-mass at s.
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Identifying zeroes

We'd like to identify the semigroup zero and the algebra 0. At present,
O # 0 as of course ||0] = 1.

@ Notice that C{ is a (two-sided) ideal in {*( Cup).

@ So we can quotient by it, leading to A = ¢*(Cuy)/CO.

@ Slightly informally, this is just the same as setting ¢ = 0.
@ Nothing strange happens with the norm.

Indeed, we could instead take the Cohn algebra Cs, thought of as
C-linear combinations of words in s;, ¢;. Define a norm by taking the
¢*-sum of the coefficients of these words. Then A is the completion.

[Dales, Laustsen, Read, 2003] studied A.
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To Leavitt algebras

We now further quotient A = €*(Cuy)/C¢ by the relation
S1t1 + satp = 1.
That is, we consider the closed two-sided ideal J generated by the

element fy = s1t + s2t; — 1 and quotient by this ideal.

@ Both A and A/J are extremely agreeable to combinatorial study.
@ We can combinatorially characterise when f € J.

I want to argue that A/J is an “¢*-completion of Ly”.

o It seems rare in the Banach algebra world to study quotients of
semigroup algebras.

Matthew Daws LP-operator algeras June 2024 13 /22



Purely infinite algebras

Theorem (D.—Horvath)

For f € A, the following are equivalent:
Q fed;
© f has zero sums at every v € Cup \ {O} without symmetric core;
© there are no g,h € A with gfh = 1.

Corollary
A/J s purely infinite: for each x # 0 there are y, z with yzz = 1.

This is perhaps not the usual C*-algebraic meaning of “purely infinite”,
but it is equivalent to it.
Phillips showed that O is purely infinite.
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Our motivation: ultrapowers

Recall the ultrapower construction for a Banach algebra A. We first
consider {*(A), the algebra of all bounded sequences (z,) in A. Let U
be a countably-incomplete ultrafilter. Then

{(:L’n) €lP(A): nllnu |zl = O}

is a closed ideal in £*°(A); we denote the quotient algebra by (A)q the
ultra-power of A.

We were seeking a counter-example to the claim that a purely infinite

Banach algebra has purely infinite ultrapowers. (This holds for
C*-algebras.)

Theorem (D.—Horvath)
(A/J)u s not stmple, so certainly not purely infinite. }
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(non-)Isomorphisms and questions

The natural representation Ly — B(€!) which defines O} gives an

injective representation A/J — O C B(£') but one can show that it is
not bounded below.

Theorem (D.—Horvath)

There are no non-zero bounded traces on O%, but there are on A/J.
Thus A/d is not isomorphic to O} in any way.

Question

Does O} have purely infinite ultrapowers?

Question
Is A/J amenable?

Phillips showed, using ideas from the C*-world, that O% is amenable,
but the norm estimates cannot work for A/{J.
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Coxeter groups

As a second example, I will consider Coxeter groups.
A Coxeter group W has generators s € S subject to relations of the
form

s2=1 (se8), (st)™st =1,
where ms 1 = my s €{2,3,--- , 00} gives the order of the element st for
s #t.
Example

Take S = {s, t} with m, ; =3, so
W =(s,t:s®=1t>=1,ststst = 1).

This is isomorphic to S3, via s — (12),% — (23).
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Generic algebras

Let (as), (bs) be scalars indexed by the generators S, with the only
constraint that if s, ¢ are conjugate in W, then a; = a; and bs = b;.

Definition

The generic algebra C, ,[W] is generated by elements {T : s € S}
with the relations

T2 = g, Ty + b Ty, TsTyTs - = T3TsTy---

ms ¢ times ms ¢ times

@ Although not clear in this presentation, the T's act like generators

of the group algebra, except in the case when cancellation occurs
in the combinatorics of W.

o If a; =0, bs =1 then we obtain exactly the group algebra.
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Weighted semigroup algebras

Given a reduced word w = s; - - - s, we (well-)define
n
w(w) = [ max(1, las,| + |bs,]).
j=1

Let Sg be the free monoid on generators S, and define w on Sg in the
same way. Consider the weighted semigroup algebra

(S5, @) = {(au)ues, : )_ w(wla] < oo},

Denote by 8, the point mass at u € Sg.
Let I be the ideal in ¢*(Sg, w) generated by the relations in C, 5[ W],

65 = a355+b361, 050405+ = 040504 -+

ms, ¢ times ms ¢ times
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An {!-generic algebra

There is a natural map Sg — W: send a word u € Sg to the element
of W it defines. This induces a Banach space isometric isomorphisms

(Sg, w)/I — (W, w).

The LHS is an algebra, so we have effectively defined a “twisted”
product on ¢!( W, w). Indeed, the natural map

Cop[W] = HW,w);  Ts > s,

is an injective homomorphism. We think of ¢*( W, w) with this
product as being the £* version of the Generic algebra.

Again, there is a natural action of C, ;[ W] on {*( W), leading to

Fé’ »( W) say. [Ruam-Skalski]

This extends to a contraction £*( W, w) — F;’b( W), but again this is
rarely bounded below.
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Final question

I deliberately ellided the difference between C*-algebras and
non-self-adjoint operator algebras when motivating LP-operator
algebras.

Question

The examples here all seem more “ C*-algebra like” than
“non-self-adjoint”, although there was no involution.

Is there some sense in which an LP-operator algebra can be considered
“self-adjoint”.

I mean to ask this by analogy.
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Thanks to the organisers!

And let’s hope for a repeat of this conference in the future.
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