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Group algebras

Consider a locally compact group G and the left-regular representation
of G on L2(G),

(λsξ)(t) = ξ(s−1t) (s , t ∈ G , ξ ∈ L2(G)).

Integrating gives a contractive algebra homomorphism

λ : L1(G) → B(L2(G)), λ(f )(ξ) = f ∗ ξ.

The norm closure of the image is the (reduced) group C ∗-algebra
C ∗

r (G), and the weak∗-closure is the group von Neumann algebra
VN (G).
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Varying p

There is nothing special about p = 2 here. The norm closure of the
image of λp : L1(G) → B(Lp(G)) has long been studied, and is the
algebra of p-pseudo functions, PFp(G) or F p

λ (G).
The weak∗-closure is PMp(G) the algebra of p-pseudo measures.

At least if 1 < p < ∞ of course, so that Lp(G) is reflexive, with
dual space Lp ′

(G) for 1/p + 1/p ′ = 1.

There is a natural pairing between B(Lp) and N(Lp) the nuclear
operators on Lp , which turns B(Lp) into a dual Banach algebra.

Indeed, N(Lp) is the dual of the compact operators K(Lp).

Reminder: T is nuclear where there are (fn) in Lp(G) and (gn) in
Lp ′

(G) with∑
n

∥fn∥p∥gn∥p ′ < ∞, T (f ) =
∑
n

⟨gn , f ⟩fn (f ∈ Lp(G)).
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Commutants
We think of PMp(G) as being like VN (G).

We also have the right-regular representation ρp of G on Lp(G),
which leads to PMρ

p (G) say.
Thinking about von Neumann’s bicommutant theorem, we could
also define

CVp(G) = λp(G) ′′, CV ρ
p (G) = ρp(G) ′′,

the algebras of p-convolvers. These are weak∗-closed.
[D.–Spronk; folklore] we have PMp(G) ′ = CV ρ

p (G) and
CVp(G) = CV ρ

p (G) ′ (and so forth).
But. . . do we have PMp(G) = PMp(G) ′′ (= CVp(G))? von
Neumann’s result uses projections.
[Cowling; D.–Spronk] when G has the approximation property
(e.g. G is amenable, weakly-amenable, etc.) then
PMp(G) = CVp(G). Unknown in general.
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Cuntz algebras; Cohn algebras; Leavitt algebras

The Cohn algebra C2 has generators s1, s2, t1, t2 subject to the
relations

t1s1 = t2s2 = 1, t1s2 = t2s1 = 0.

If we impose the further relation

s1t1 + s2t2 = 1,

we obtain the Leavitt algebra L2.

Of course, if we consider the C ∗-algebra with ti = s∗i then we obtain
the Cuntz algebra O2.
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As Lp-operator algebras

Consider ℓp = ℓp(N), thought of as sequences x = (xn) with
∥x∥p

p =
∑

n |xn |
p < ∞.

Define Si ,Ti : ℓ
p → ℓp by

S1(x ) = (x1, 0, x2, 0, · · · ), S2(x ) = (0, x1, 0, x2, 0, · · · )
T1(x ) = (x1, x3, x5, x7, · · · ), T2(x ) = (x2, x4, x6, x8, · · · ).

Then S1,S2 are isometries, T1,T2 are contractions, and S1T1,S2T2 are
contractive idempotents. We check the relations:

T1S1 = T2S2 = 1, T1S2 = T2S1 = 0, S1T1 + S2T2 = 1.

So we obtain a representation of L2; this is faithful.
Denote by O

p
2 the closure of L2 in B(ℓp). [Phillips]
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Spatial partial isometries

Question
To what extent is O

p
2 unique, for p ̸= 2?

Fix p ̸= 2. There are not many isometries on an Lp(Ω) space:

We can form a composition operator (“Koopman operator”) with a
measure-preserving transformation;

Or more generally allow a change-of-density;

We can multiply by f ∈ L∞(Ω) where |f (ω)| = 1 a.e.

Lamperti’s Theorem states that this is it.
We obtain a notion of a “spatial partial isometry” Lp(Ω) → Lp(Ω ′)

given by an isometry Lp(E) → Lp(E ′) where E ⊆ Ω and E ′ ⊆ Ω ′.

Notice that each Si ,Ti is a spatial partial isometry on ℓp .

Matthew Daws Lp -operator algeras June 2024 7 / 22



Matrix algebras; isometric representations

Notice that eij = si tj ∈ L2 form a copy of the matrix units of M2. We
can identify B(ℓp2) with M2 which gives the Lp-operator algebra M p

2 .

Theorem (Phillips)
Any contractive representation ρ : M p

2 → B(Lp) is automatically
isometric, and ρ(eij ) is a spatial partial isometry for each i , j .

Theorem (Phillips)
Let ρ : L2 → B(Lp) be a representation which is contractive on M p

2
and with ρ(ti ), ρ(si ) contractions for i = 1, 2. Then ρ is “spatial”
and the identification of L2 ⊆ O

p
2 and ρ : L2 → ρ(L2) extends to an

isometric isomorphism O
p
2 → ρ(L2).

Thus, Op
2 is unique, for contractive homomorphisms.
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Contractive representations

These ideas of “contractive (often) implies isometric” and “there are not
many isometries” can be further exploited.

Theorem (Gardella–Thiel)
For p ̸= 2, and G,H locally compact groups, we have that PMp(G)

is isometrically isomorphic to PMp(H ) if and only if G and H are
isomorphic. Similarly for PFp and CVp.

This fails when p = 2.

Question
Should we be more interested in the isomorphic theory?

Are we looking for our keys under the lamppost, or being guided by
(non-selfadjoint) operator algebra theory?
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The non-reflexive case
Much of the theory works when p = 1, but a little care is needed.

B(L1) is not naturally a dual Banach algebra (unless the L1 space
is finite-dimensional).

B(ℓ1) is a one-sided dual Banach algebra, for the predual given by
the nuclear operators on c0.

So it’s not clear what PM1(G) should be, and CV1(G) need not be
weak∗-closed, at least from general theory.

Result
For any G, the left-regular representation λ : L1(G) → B(L1(G)) is
an isometry. Thus PF1(G) = L1(G) canonically and isometrically.

Result
For discrete G, we have CV1(G) ′ = ρ(ℓ1(G)) and
CV ρ

1 (G) ′ = λ(ℓ1(G)). In particular, PF1(G) = PM1(G) = CV1(G).
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Idea: what’s the ℓ1-Leavitt/Cuntz algebra?

We can of course consider O1
2 ⊆ B(ℓ1), but this is a “concrete” algebra,

which seems very different to ℓ1(G) in construction.

Instead, let’s start by looking at the “Cuntz semgrioup” (monoid)
which is a semigroup with zero, which we denote ♢, with presentation

Cu2 =
〈
s1, s2, t1, t2 : t1s1 = t2s2 = 1, t1s2 = t2s1 = ♢

〉
.

(This is actually an involutive semigroup, if we define s∗i = ti . Our
representations won’t have any star structures however.)

We consider the Banach algebra ℓ1(Cu2). I will abuse notation, and for
s ∈ Cu2 write s ∈ ℓ1(Cu2) for the point-mass at s .
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Identifying zeroes

We’d like to identify the semigroup zero and the algebra 0. At present,
♢ ̸= 0 as of course ∥♢∥ = 1.

Notice that C♢ is a (two-sided) ideal in ℓ1(Cu2).

So we can quotient by it, leading to A = ℓ1(Cu2)/C♢.

Slightly informally, this is just the same as setting ♢ = 0.

Nothing strange happens with the norm.

Indeed, we could instead take the Cohn algebra C2, thought of as
C-linear combinations of words in si , ti . Define a norm by taking the
ℓ1-sum of the coefficients of these words. Then A is the completion.

[Dales, Laustsen, Read, 2003] studied A.
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To Leavitt algebras

We now further quotient A = ℓ1(Cu2)/C♢ by the relation

s1t1 + s2t2 = 1.

That is, we consider the closed two-sided ideal J generated by the
element f0 = s1t1 + s2t2 − 1 and quotient by this ideal.

Both A and A/J are extremely agreeable to combinatorial study.

We can combinatorially characterise when f ∈ J.

I want to argue that A/J is an “ℓ1-completion of L2”.

It seems rare in the Banach algebra world to study quotients of
semigroup algebras.
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Purely infinite algebras

Theorem (D.–Horvath)
For f ∈ A, the following are equivalent:

1 f ∈ J;
2 f has zero sums at every v ∈ Cu2 \ {♢} without symmetric core;
3 there are no g , h ∈ A with gfh = 1.

Corollary
A/J is purely infinite: for each x ̸= 0 there are y , z with yxz = 1.

This is perhaps not the usual C ∗-algebraic meaning of “purely infinite”,
but it is equivalent to it.
Phillips showed that O

p
2 is purely infinite.
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Our motivation: ultrapowers

Recall the ultrapower construction for a Banach algebra A. We first
consider ℓ∞(A), the algebra of all bounded sequences (xn) in A. Let U

be a countably-incomplete ultrafilter. Then{
(xn) ∈ ℓ∞(A) : lim

n→U
∥xn∥ = 0

}
is a closed ideal in ℓ∞(A); we denote the quotient algebra by (A)U the
ultra-power of A.
We were seeking a counter-example to the claim that a purely infinite
Banach algebra has purely infinite ultrapowers. (This holds for
C ∗-algebras.)

Theorem (D.–Horvath)
(A/J)U is not simple, so certainly not purely infinite.
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(non-)Isomorphisms and questions
The natural representation L2 → B(ℓ1) which defines O1

2 gives an
injective representation A/J → O1

2 ⊆ B(ℓ1) but one can show that it is
not bounded below.

Theorem (D.–Horvath)

There are no non-zero bounded traces on O1
2, but there are on A/J.

Thus A/J is not isomorphic to O1
2 in any way.

Question
Does O1

2 have purely infinite ultrapowers?

Question
Is A/J amenable?

Phillips showed, using ideas from the C ∗-world, that O1
2 is amenable,

but the norm estimates cannot work for A/J.
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Coxeter groups

As a second example, I will consider Coxeter groups.
A Coxeter group W has generators s ∈ S subject to relations of the
form

s2 = 1 (s ∈ S), (st)ms,t = 1,

where ms,t = mt,s ∈ {2, 3, · · · ,∞} gives the order of the element st for
s ̸= t .

Example
Take S = {s , t } with ms,t = 3, so

W =
〈
s , t : s2 = t2 = 1, ststst = 1

〉
.

This is isomorphic to S3, via s 7→ (1 2), t 7→ (2 3).
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Generic algebras

Let (as), (bs) be scalars indexed by the generators S , with the only
constraint that if s , t are conjugate in W , then as = at and bs = bt .

Definition
The generic algebra Ca,b [W ] is generated by elements {Ts : s ∈ S }

with the relations

T 2
s = asTs + bsT1, TsTtTs · · ·︸ ︷︷ ︸

ms,t times

= TtTsTt · · ·︸ ︷︷ ︸
ms,t times

Although not clear in this presentation, the Ts act like generators
of the group algebra, except in the case when cancellation occurs
in the combinatorics of W .

If as = 0, bs = 1 then we obtain exactly the group algebra.
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Weighted semigroup algebras
Given a reduced word w = s1 · · · sn , we (well-)define

ω(w) =

n∏
j=1

max(1, |asj |+ |bsj |).

Let SS be the free monoid on generators S , and define ω on SS in the
same way. Consider the weighted semigroup algebra

ℓ1(SS ,ω) =
{
(au)u∈SS :

∑
u

ω(u)|au | < ∞}
.

Denote by δu the point mass at u ∈ SS .
Let I be the ideal in ℓ1(SS ,ω) generated by the relations in Ca,b [W ],

δ2
s = asδs + bsδ1, δsδtδs · · ·︸ ︷︷ ︸

ms,t times

= δtδsδt · · ·︸ ︷︷ ︸
ms,t times
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An ℓ1-generic algebra

There is a natural map SS → W : send a word u ∈ SS to the element
of W it defines. This induces a Banach space isometric isomorphisms

ℓ1(SS ,ω)/I → ℓ1(W ,ω).

The LHS is an algebra, so we have effectively defined a “twisted”
product on ℓ1(W ,ω). Indeed, the natural map

Ca,b [W ] → ℓ1(W ,ω); Ts 7→ δs ,

is an injective homomorphism. We think of ℓ1(W ,ω) with this
product as being the ℓ1 version of the Generic algebra.
Again, there is a natural action of Ca,b [W ] on ℓ1(W ), leading to
F 1

a,b(W ) say. [Ruam–Skalski]
This extends to a contraction ℓ1(W ,ω) → F 1

a,b(W ), but again this is
rarely bounded below.
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Final question

I deliberately ellided the difference between C ∗-algebras and
non-self-adjoint operator algebras when motivating Lp-operator
algebras.

Question
The examples here all seem more “C ∗-algebra like” than
“non-self-adjoint”, although there was no involution.
Is there some sense in which an Lp-operator algebra can be considered
“self-adjoint”.
I mean to ask this by analogy.
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Thanks to the organisers!
And let’s hope for a repeat of this conference in the future.
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