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Graphs

A graph consists of a (�nite) set of vertices V and a collection of

edges E ⊆ V ×V .

V = {A,B ,C } say, and E =

{(A,B), (B ,C ), (C ,B), (C ,A)}.

A graph is undirected if (x , y) ∈ E ⇔ (y , x ) ∈ E . We allow self-loops,

so (x , x ) ∈ E .

Notice that a graph G = (V ,E) is exactly a relation on the set V . An

undirected graph gives a symmetric relation; having a loop on each

vertex gives a reexive relation.
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Channels

A channel sends an input message (element of a �nite set A) to an

output message (element of a �nite set B) perhaps with noise so that

there is a probability that a ∈ A is mapped to di�erent b ∈ B .

Input \o" might be sent to \o" or \0" or \a".

p(b|a) = probability that b is received given that a was sent

De�ne a (simple, undirected) graph structure on A by

(a1, a2) an edge when p(b|a1)p(b|a2) > 0 for some b.

This is the confusability graph of the channel.

If we want to communicate with zero error then we seek a maximal

independent set in A.
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Quantum Mechanics

A state is a unit vector |ψ⟩ in a (�nite dim) Hilbert space H .

More generally, a density is a positive, trace one operator

ρ ∈ B(H ).

A rank-one density is always of the form |ψ⟩⟨ψ| for some state ψ.

(Use Trace duality, so ω ∈ B(H )∗ is associated uniquely to

A ∈ B(H ) with ω(T ) = tr(AT ). Then densities are exactly the

states on B(H ). Here we \overload" the term \state"!)

A (quantum) channel is a trace-preserving, completely positive

(CPTP) map B(HA)→ B(HB ):

positive and trace-preserving so it maps densities to densities;

completely positive so you can tensor with another system and

still have positivity.
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Stinespring and Kraus

The Stinespring Representation Theorem tells us that any CP map

E : B(HA)→ B(HB ) has the form

E(x ) = V ∗π(x )V (x ∈ B(HA)),

where V : HB → K , and π : B(HA)→ B(K ) is a ∗-representation.
Any such π is of the form π(x ) = x ⊗ 1 where K ∼= HA ⊗K ′.

Take an o.n. basis (ei ) for K
′ so V (ξ) =

∑
i K

∗
i (ξ)⊗ ei for some

operators Ki : HA → HB .

We arrive at the Kraus form:

E(x ) =
∑
i

KixK
∗
i (x ∈ B(HA)).

Trace-preserving when
∑

i K
∗
i Ki = 1.
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Quantum zero-error

We turn B(H ) into a Hilbert space using the trace: (T |S) = tr(T ∗S),

so densities ρ, σ are orthogonal when

0 = tr(ρσ) = tr(σ1/2ρ1/2ρ1/2σ1/2) ⇔ ρ1/2σ1/2 = 0.

Let E(x ) =
∑

i KixK
∗
i be a quantum channel. We can distinguish

densities exactly when E(ρ) ⊥ E(σ). As E is positive, this is equivalent

to

E(|ψ⟩⟨ψ|) ⊥ E(|ϕ⟩⟨ϕ|) (ψ ∈ Im ρ,ϕ ∈ Imσ).

Thus

0 = tr
(
E(|ψ⟩⟨ψ|)E(|ϕ⟩⟨ϕ|)

)
=
∑
i ,j

tr
(
Ki |ψ⟩⟨ψ|K ∗

i Kj |ϕ⟩⟨ϕ|K ∗
j

)
=
∑
i ,j

|⟨ψ|K ∗
i Kj |ϕ⟩|2

is equivalent to ⟨ψ|K ∗
i Kj |ϕ⟩ = 0 for each i , j .
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To operator systems

So ψ,ϕ are distinguishable when

⟨ψ|T |ϕ⟩ = 0 for each T ∈ lin{K ∗
i Kj }.

Set S = lin{K ∗
i Kj } which has properties:

S is a linear subspace;

T ∈ S if and only if T ∗ ∈ S;
1 ∈ S (as

∑
i K

∗
i Ki = 1 as E is CPTP).

That is, S is an operator system, which depends only on E and not

the choice of (Ki ).

Theorem (Duan)

For any operator system S ⊆ B(HA) there is some quantum

channel E : B(HA)→ B(HB ) giving rise to S.
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In the classical case

Given a classical channel from A to B with probabilities p(b|a), de�ne

Kraus operators

Kab = p(b|a)1/2|b⟩⟨a | : HA → HB .

Here (⟨a |) is the canonical basis of HA = ℓ2(A) ∼= C|A|.∑
ab

Kab |c⟩⟨c|K ∗
ab =

∑
ab

p(b|a)|b⟩⟨a |c⟩⟨c|a⟩⟨b| =
∑
b

p(b|c)|b⟩⟨b|.

So the pure state |c⟩⟨c| is mapped to the combination of pure states

which can be received, given that message c is sent.

S = lin{K ∗
abKcd } = lin{p(b|a)1/2p(d |c)1/2|a⟩⟨b|d⟩⟨c|}

= lin{|a⟩⟨c| : a ∼ c}

Thus S is directly linked to the confusability graph of the channel.
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Quantum relations

Simultaneously, and motivated more by \noncommutative geometry",

Weaver studied:

De�nition

Let M ⊆ B(H ) be a von Neumann algebra. A quantum relation on M

is a weak∗-closed subspace S ⊆ B(H ) with M ′SM ′ ⊆ S . The relation

is:

1 reexive if M ′ ⊆ S ;

2 symmetric if S∗ = S where S∗ = {x ∗ : x ∈ S };

3 transitive if S2 ⊆ S where S2 = lin
w∗

{xy : x , y ∈ S }.

When M = ℓ∞(X ) ⊆ B(ℓ2(X )) there is a bijection between the usual

meaning of \relation" on X and quantum relations on M , given by

S = lin
w∗

{ex ,y : x ∼ y}.
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Quantum graphs

As a graph on a (�nite) vertex set V is simply a relation, and

undirected graph corresponds to a symmetric relation;

a reexive relation corresponds to having a \loop" at every vertex.

De�nition (Weaver)

A quantum graph on a von Neumann algebra M ⊆ B(H ) is a reexive,

symmetric quantum relation. That is, a unital, self-adjoint,

weak∗-closed subspace S ⊆ B(H ), which is an M ′-bimodule

(M ′SM ′ ⊆ S).

If M = B(H ) with H �nite-dimensional, then as M ′ = C, a quantum

graph is just an operator system: that is, exactly what we had before!

[Duan, Severini, Winter; Stahlke]
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Adjacency matrices

Given a graph G = (V ,E) consider the {0, 1}-valued matrix A with

Ai ,j =

{
1 : (i , j ) ∈ E ,

0 : otherwise,

the adjacency matrix of G .

A is idempotent for the Schur product;

G is undirected if and only if A is self-adjoint;

A has 1s down the diagonal when G has a loop at every vertex.

We can think of A as an operator on ℓ2(V ). This is the GNS space for

the C ∗-algebra ℓ∞(V ) for the state induced by the uniform measure.
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General C ∗-algebras

Let B be a �nite-dimensional C ∗-algebra, and let φ be a faithful state

on B , with GNS space L2(B). Thus B bijects with L2(B) as a vector

space, and so we get:

The multiplication on B induces a map

m : L2(B)⊗ L2(B)→ L2(B);

The unit in B induces a map η : C→ L2(B).

We get an analogue of the Schur product:

x • y = m(x ⊗ y)m∗ (x , y ∈ B(L2(B))).
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Quantum adjacency matrix

De�nition (Many authors)

A quantum adjacency matrix is a self-adjoint A ∈ B(L2(B)) with:

m(A⊗A)m∗ = A (so Schur product idempotent);

(1⊗ η∗m)(1⊗A⊗ 1)(m∗η⊗ 1) = A;

m(A⊗ 1)m∗ = id (a \loop at every vertex");

The middle axiom is a little mysterious: it roughly corresponds to

\undirected".

I want to sketch why this de�nition is equivalent to the previous

notion of a \quantum graph".
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Subspaces to projections
Fix a �nite-dimensional C ∗-algebra (von Neumann algebra) M . A

\quantum graph" is either:

A subspace of B(H ) (where M ⊆ B(H )) with some properties; or

An operator on L2(M ) with some properties.

How do we move between these?

S ⊆ B(H ) is a bimodule over M ′. As H is �nite-dimensional, B(H ) is

a Hilbert space for

(x |y) = tr(x ∗y).

Then M ⊗M op is represented on B(H ) via

π : M ⊗M op → B(B(H )); π(x ⊗ y) : T 7→ xTy .

The commutant of π(M ⊗M op) is naturally M ′ ⊗ (M ′)op.

So an M ′-bimodule of B(H ) corresponds to an

M ′ ⊗ (M ′)op-invariant subspace of the Hilbert space B(H );

Which corresponds to a projection in M ⊗M op.
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Operators to algebras

So how can we relate:

Operators A ∈ B(L2(M ));

Projections in M ⊗M op?

[Musto, Reutter, Verdon]

Matthew Daws Quantum Graphs April 2022 15 / 28



Operators to algebras 2

Recall the GNS construction for a tracial state ψ on M :

Λ : M → L2(M ); (Λ(x )|Λ(y)) = ψ(x ∗y).

As L2(M ) is �nite-dimensional, every operator on L2(M ) is a linear

combination of rank-one operators of the form

θΛ(a),Λ(b) : ξ 7→ (Λ(a)|ξ)Λ(b) (ξ ∈ L2(M )).

De�ne a bijection

Ψ : B(L2(M ))→M ⊗M op; θΛ(a),Λ(b) = b ⊗ a∗,

and extend by linearity!

Matthew Daws Quantum Graphs April 2022 16 / 28



Operators to algebras 3

Ψ : B(L2(M ))→M ⊗M op; θΛ(a),Λ(b) = b ⊗ a∗,

Ψ is a homomorphism for the \Schur product"

A1 •A2 = m(A1 ⊗A2)m
∗;

A 7→ (1⊗ η∗m)(1⊗A⊗ 1)(m∗η⊗ 1) corresponds to the

anti-homomorphism σ : a ⊗ b 7→ b ⊗ a ;

A 7→ A∗ corresponds to e 7→ σ(e)∗.

Conclude: A quantum adjacency matrix corresponds to a projection e

with σ(e) = e . But: There is no clean one-to-one correspondence

between the axioms.
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Non-tracial case

If the functional ψ on M is not tracial, then this correspondence fails.

However:

Theorem (D.)

There is a bijection between:

\Schur idempotent", self-adjoint operators A on L2(M );

e ∈ M ⊗M op with e2 = e and e = σ(e)∗;

self-adjoint M ′-bimodules S ⊆ B(H ) such that there is another

self-adjoint M ′-bimodule S0 with S ⊕ S0 = B(H )
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KMS States

Any faithful state ψ is KMS: there is an automorphism σ ′ of M with

ψ(ab) = ψ(bσ ′(a)) (a , b ∈ M ).

Indeed, there is Q ∈ M positive and invertible with

ψ(a) = tr(Qa) σ ′(a) = QaQ−1.

Theorem (D.)

Twisting our bijection Ψ using σ ′ allows us to establish a bijection

between:

Quantum adjacency operators A ∈ B(L2(M ));

projections e ∈ M ⊗M op with e = σ(e) and (σ ′ ⊗ σ ′)(e) = e;

self-adjoint M ′-bimodules S ⊆ B(H ) with QSQ−1 = S.

So this is more restrictive than the tracial case.
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Pullbacks

Let θ : M → N be a normal CP map between von Neumann algebras

M ⊆ B(HM ) and N ⊆ B(HN ). The Stinespring dilation tales a special

form:

there is K and U : HN → HM ⊗K ;

θ(x ) = U ∗(x ⊗ 1)U for x ∈ M ⊆ B(HM );

there is a normal ∗-homomorphism ρ : N ′ → HM ⊗K with

Ux ′ = ρ(x ′)U for x ′ ∈ N ′.

Given S ⊆ B(HM ) a Quantum (Graph/Relation) over M , de�ne←−
S = weak∗-closure{U ∗xU : x ∈ S⊗B(K )}.

Use of ρ shows that
←−
S is a Quantum (Graph/Relation) over N , the

\pullback".
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Pullbacks: Kraus forms

When M ,N are �nite-dimensional, θ : M → N has a Kraus form

θ(x ) =

n∑
i=1

b∗i xbi .

(Notice I have swapped to considering UCP maps, not TPCP maps.)

Then [Weaver] for S1 ⊆ B(HM )←−
S1 = lin{b∗i xbj : x ∈ S1}.
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Pushforwards
Given S2 ⊆ B(HN ) a quantum relation over N , also

−→
S2 = lin{bixb

∗
j : x ∈ S2}

is a quantum relation over M , the \pushforward".

Given classical graphs G = (VG ,EG) and H = (VH ,EH ), a function

f : VG → VH de�nes a ∗-homomorphism (so certainly a UCP map)

θ : C (VH )→ C (VG); a 7→ a ◦ f (a ∈ C (VH )).

Let G induce SG ⊆ B(ℓ2(VG)), that is,

SG = lin{eu ,v : u , v ∈ EG }

the span of matrix units supported on the edges. Then

−→
SG = lin{ef (u),f (v) : u , v ∈ EG }

and so
−→
SG ⊆ SH exactly when f is a graph homomorphism.
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Homomorphisms

[Stahkle] de�nes θ : M → N to be a homomorphism between S1 and

S2 when
−→
S2 ⊆ S1. [Weaver] calls this a CP-morphism.

Theorem (Stahkle)

Let θ : C (VH )→ C (VG) be a UCP map giving a homomorphism G

to H (that is, with
−→
SG ⊆ SH ). Then there is some map

f : VG → VH which is a (classical) homomorphism.

In general θ need not be directly related to f .

However, often we just care about the existence of a

homomorphism.

E.g. a k -colouring of G corresponds to some homomorphism

G → Kk , the complete graph.
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Further developments

The pushforward −→
S = lin{bixb

∗
j : x ∈ S }

doesn't make sense in the in�nite-dimensional setting.

What is a good notion of homomorphism in in�nite dimensions?

Here we have worked exclusively with the operator bimodule picture of

Quantum Graphs.

Can we say something useful about homomorphisms and

\adjacency matrices"?

Already this seems problematic in the commutative case.

[Stop?]
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Isomorphisms

Homomorphisms / CP-morphisms in this sense give a category.

Playing around with multiplicative domains for CP maps shows that

the isomorphisms are exactly the ∗-isomorphisms θ : M → N which

intertwine the Quantum Graphs.

With M ⊆ B(L2(M )), any ∗-automorphism θ : M →M is

implemented: there is a unitary u ∈ B(L2(M )) with θ(x ) = uxu∗.

Then θ is an automorphism of the quantum graph S exactly

when uSu∗ = S .

What about an automorphism of the associated adjacency matrix A?

A acts on L2(M , ψ), say for some (tracial) ψ.

It is hence natural to restrict to those θ which preserve ψ

(automatic if ψ a trace).
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Acting on L2(M )

Let Λ : M → L2(M ) be the GNS map. If θ preserves ψ then

θ0 : Λ(x ) 7→ Λ(θ(x )) (x ∈ M )

is an isometry (and so a unitary). (Indeed, θ0 then implements θ.)

Then θ is an automorphism of our Quantum Graph if and only if

Aθ0 = θ0A on L2(M ).

[Stop?]
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Quantum Automorphisms

[We now shift gears. . . ]

Let (A, ∆) be a compact quantum group. A coaction on M (still

�nite-dimensional) is a ∗-homomorphism

α : M →M ⊗A; (α⊗ id)α = (id⊗∆)α,

and satisfying the density condition lin{(1⊗ a)α(x ) : x ∈ M , a ∈ A}

dense in M ⊗A.

If we let M act on L2(M ), then α has a unitary implementation, a

unitary corepresentation U ∈ B(L2(M ))⊗A with

α(x ) = U (x ⊗ 1)U ∗ (x ∈ M ).

We say that α coacts on the adjacency matrix AG when

U (AG ⊗ 1) = (AG ⊗ 1)U .
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Quantum Automorphisms of Operator Bimodules

U (AG ⊗ 1) = (AG ⊗ 1)U .

Same as the single automorphism case, uAG = AGu ;

Which corresponds to uSu∗ = S

So might conjecture that we want S ⊆ B(L2(M )) and ask for

U (S ⊗ 1)U ∗ = S ⊗ 1.

For various reasons, this doesn't work. For example, the \trivial

quantum graph" is not preserved!

Instead, you need to twist by the modular automorphism group, or

equivalently, look at a coaction of the opposite quantum group. Not

clear to me exactly why this is. . .

Matthew Daws Quantum Graphs April 2022 28 / 28


